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ABSTRACT

Background. Near-term forecasts of fire danger based on predicted surface weather and fuel
dryness are widely used to support the decisions of wildfire managers. The incorporation of
synoptic-scale upper-air patterns into predictive models may provide additional value in opera-
tional forecasting. Aims. In this study, we assess the impact of synoptic-scale upper-air patterns
on the occurrence of large wildfires and widespread fire outbreaks in the US Pacific Northwest.
Additionally, we examine how discrete upper-air map types can augment subregional models of
wildfire risk. Methods. We assess the statistical relationship between synoptic map types, surface
weather and wildfire occurrence. Additionally, we compare subregional fire danger models to
identify the predictive value contributed by upper-air map types. Key results. We find that these
map types explain variation in wildfire occurrence not captured by fire danger indices based on
surface weather alone, with specific map types associated with significantly higher expected daily
ignition counts in half of the subregions. Conclusions. We observe that incorporating upper-air
map types enhances the explanatory power of subregional fire danger models. Implications. Our
approach provides value to operational wildfire management and provides a template for how
these methods may be implemented in other regions.

Keywords: fire danger, fire management, forecasting, Pacific Northwest, policy, subregional,

predictive services, synoptic, weather.

Introduction

Wildland fire is a pervasive and growing concern in much of the western United States,
with considerable resources expended annually on wildfire suppression. In Pacific US
forests, the mean fire weather season lengthened by 43% from 1979 to 2019, and annual
burned area increased by nearly 50% from 2001 to 2019 (Jones et al. 2022). Wildfire
occurrence in western US forests is projected to continue increasing into future decades,
with annual burned area potentially doubling between 2020 and 2050 (Abatzoglou et al.
2021). As a result of increasing season length and intensity, fire managers are having to
contend with more simultaneous wildfires, creating additional strains on wildfire sup-
pression resources (Podschwit and Cullen 2020). Climate projections suggest increases in
both the number of simultaneous wildfires and the length of the high-simultaneity season
across the western US over the coming decades, further taxing suppression resources
(McGinnis et al. 2023).

The National Predictive Services Program, which employs fire meteorologists at the
National Interagency Coordination Center (NICC) and 10 regional Geographic Area
Coordination Centers (GACCs), provides fire weather forecasting services that support
the short-term to seasonal decision making of fire managers (Wordell and Ochoa 2006).
Since the program’s inception in 2001, meteorologists at Predictive Services have become
a trusted source of information and are central actors in the interagency network of fire
management professionals (Owen et al. 2012). Although Predictive Services products
such as the 7-Day Significant Fire Potential Outlook have been found to have significant
skill predicting both ignitions and operationally significant fires (Preisler et al. 2016),
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additional improvements to forecasting methods may
reduce expenditures and increase the efficacy of suppression
resources (Preisler et al. 2011).

Fire weather predictions rely on forecasts of both surface
weather and upper-air conditions. Surface weather attri-
butes including temperature, moisture and wind are often
combined using fuel models to calculate fire danger indices
(Fosberg 1978; Cohen and Deeming 1985; Srock et al
2018). Upper-air characteristics, such as 500-hPa geopoten-
tial heights, are useful for understanding the synoptic-scale
features — such as the configuration and strength of ridges
and troughs - that drive surface weather as well as cloud-to-
ground lightning. Previous studies have linked variability in
upper-air geopotential heights to critical fire weather
(Schroeder et al. 1964; Newark 1975; Crimmins 2006) and
lightning occurrence (van Wagtendonk and Cayan 2008;
Kalashnikov et al. 2022), including in the Northwestern
US (Rorig and Ferguson 1999; Gedalof et al. 2005; Zhong
et al. 2020). Synoptic patterns, particularly upper-air ridges,
have also been linked directly to increased wildfire activity
(Henry 1978; Skinner et al. 2002; Nauslar et al. 2019;
Sharma et al. 2022).

In this study, we explore the predictive value of a set of
13 map types used operationally by meteorologists at the
Northwest Interagency Coordination Center (NWCC) to
characterise synoptic-scale variation in 500-hPa geopoten-
tial heights over the region. This set of archetypal synoptic
patterns was developed at the NWCC by fire weather mete-
orologist Terry Marsha in the late 1980s and early 1990s.
Although the methodology for identifying this particular set
of map types is not well documented, there are a number of
techniques commonly used to condense gridded 500-hPa
geopotential height data into a set of discrete map types,
including empirical orthogonal function analysis, k-means
clustering and self-organising maps (Grotjahn et al. 2016;
Harries and O’Kane 2020). Rather than employing these
methods to generate a new set of map types, the present
work examines the relationship between a set of 13 opera-
tional map types and wildfire occurrence to provide value in
NWCC wildfire forecasting operations.

This scientific co-production grew out of stakeholder
engagement conducted as part of a larger National
Science Foundation (NSF) convergence research effort
focused on projecting future wildland fire occurrence and
impacts in the western US (Cullen et al. 2023). We build on
the deep qualitative understanding of synoptic map types
leveraged by fire weather forecasters at the NWCC by
assessing the quantitative relationships between 500-hPa
map types, surface-based fire danger indices and wildfire
occurrence. We investigate three main research questions:
(1) which 500-hPa map types are associated with large
fires and widespread fire outbreaks? (2) How do 500-hPa
map types correlate to regional fire danger indices? (3)
How can 500-hPa map types augment subregional models
of wildfire risk?

Materials and methods

Study area

Our study area is composed of the 12 predictive service
areas (PSAs) in the Northwest geographic area, which
encompasses the states of Washington and Oregon in the
northwestern United States. PSAs represent the spatial unit
at which the NWCC and other regional coordination centres
produce both seasonal and subseasonal fire weather fore-
casts. In the NWCC, PSA boundaries were drawn to encom-
pass Remote Automatic Weather Stations (RAWSs) with
highly correlated measurements of daily minimum relative
humidity (Marsha 2014). The study period spans the 20 fire
seasons from 2001 to 2020, with earlier years excluded
owing to inconsistencies in the RAWS data. We define the
fire season to include the months of June through
September, which account for 84% of all fires and 91% of
the burned area in the region over the study period.

The 12 PSAs in the Northwest are grouped into three
broad regions: westside, central and eastside (see Fig. 1).
The four westside PSAs (NW01-NWO04) include the most
densely populated areas in the region as well as the moist
coniferous forests of the Olympic Peninsula and the western
slopes of the Cascades. NWO04, located in southwest Oregon,
is more mountainous than the other westside PSAs owing to
its inclusion of the northern Klamath Mountains. The three
central PSAs (NW05-NWOQ7) lie in the rain shadow of the
Cascades and are dominated by dry coniferous forests. The
five eastside PSAs (NW08-NW12) are more varied: NWOS,
NWO09 and NW11 are mountainous, whereas NW10 and
NW12 include significant areas of shrubland, grassland
and cultivated crops.

The PSAs vary greatly both in terms of number of annual
fires and area burned (Fig. 2). The heavily populated west-
side PSAs of NWO01 and NWO02 have the smallest annual burn
areas despite their moderate ignition counts, indicating that
fires that ignite in these areas do not grow beyond a fairly
small size. In contrast, average fire sizes are much larger in
the eastside PSAs of NW10 and NW12, which experience the
largest annual burn areas resulting from relatively few
annual fires. These differences in average fire size are likely
due to variation in both landcover and wildfire suppression
priorities.

Data

In this study, we construct and analyse a longitudinal data-
set combining daily wildfire occurrence data with 500-hPa
map types and fire danger indices. Data on the occurrence of
wildfires are drawn from the Fire Program Analysis fire-
occurrence database (Short 2022). Each fire in the dataset
includes a point of origin, discovery date and final burned
area. Wildfires are spatially matched to PSAs using their
point of origin. We further classify fires as ‘large’ based on

2



www.publish.csiro.au/wf

International Journal of Wildland Fire 33 (2024) WF23117

* Key RAWS

[ Central PSAs
[ Eastside PSAs

I Open water

[ Mixed forest
] shrub/Scrub

[] Pasture/Hay

Total no. fires
per season

450

400

350

300

250

200

150

Predictive Service Areas
] Westside PSAs

[ ] Grasslands/Herbaceous

- Cultivated crops
[ ] Woody wetlands
[ Emergent herbaceous wetlands

NLCD Land Cover Classification

[ ] Perennial ice/Snow

] Developed — open space
[ Developed — low intensity
B Developed — medium intensity
Il Developed - high intensity
[ Barren land (rock/sand/clay)
[ Deciduous forest

Il Evergreen forest

Fig. 1. Predictive Service Areas (PSAs) of the
Northwest geographic area and land cover classifica-
tions from the 2011 National Land Cover Database
(NLCD), with key RAWSs used to calculate daily fire
danger in each PSA indicated.
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Fig. 2. Average number of fires and area burned per PSA, fire seasons 2001-2020.

whether their final size exceeds the operational threshold
for significant fires, which is defined as fires that are likely
to require the mobilisation of outside resources (Marsha
2014). In the Northwest, significant fires are identified as
those exceeding PSA-specific size thresholds (Table 1),
which approximately correspond to historical 95th percent-
ile fire sizes within each PSA. Focusing on fires that are
relatively large within a given region, in addition to consid-
ering total ignition counts, is of operational significance
because these large fires require the largest amount of sup-
pression resources (Nagy et al. 2018).

Following the protocol used operationally by the NWCC,
the 500-hPa maps assessed in this study are centred over the

Northwest geographic area, with a geographical extent of
110°-135°W longitude and 35°-55°N latitude. Geopotential
heights are sampled at 30 points across this area at five-
degree increments from Global Forecast System (GFS) initi-
alisations at 00Z, which corresponds to 5:00 pm local time
(i.e. Pacific Daylight Time) during the fire season. This
30-point grid, which is relatively coarse compared with
currently available weather products, was adopted by the
NWCC in the late 1980s owing to data availability and
computational limitations. This spatiotemporal sampling
methodology has been used operationally by the NWCC
since the early 1990s and captures much of the synoptic-
scale variation in the region.
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Table 1. Size thresholds for significant fires in the Northwest
geographic area.

Predictive service area Significant fire size (hectares)

NWOI1 40.47
NWO02 40.47
NWO03 40.47
NWO04 40.47
NWO05 32375
NWO06 809.37
NWO07 40.47
NwWO08 890.31
NWO09 40.47
NWI10 101.71
NW1 202.34
NW12 4046.86

The 500-hPa geopotential heights for a given day are
correlated against a set of 13 operational map type templates
(Fig. 3), and the map type that is most highly correlated with
a given day’s geopotential heights is selected to represent that
day. This set of 13 map types was developed by fire meteo-
rologists at the NWCC to characterise the region’s major
synoptic-scale patterns. The map types (UMAPs) can be sub-
divided into several groups based on their dominant synoptic
patterns. UMAP 1 and UMAP 2 both feature offshore upper-
level troughs that drive southwesterly winds and precipita-
tion. UMAP 3 through UMAP 6 are characterised by troughs
over the Pacific Northwest and cooler temperatures. UMAP 7
and UMAP 8 indicate zonal and split flow, respectively, and
suggest onshore winds and mild temperatures. Finally, UMAP
9 through UMAP 13 are ridging patterns, associated with
higher temperatures and dry conditions.

Our analyses test 10 standard fire danger indices for both
correlation with the 500-hPa map types and their utility in
forecasting wildfire occurrence. Four of these, Energy Release
Component (ERC), Spread Component (SC), Burning Index
(BI) and Ignition Component (IC), are composite fire danger
indices that are part of the National Fire Danger Rating System
(National Wildfire Coordinating Group 2002). Four are fuel
moisture indices, which include 100-hour fuel moisture con-
tent (F100) for small-diameter dead fuels, 1000-hour fuel
moisture content (F1000) for larger-diameter dead fuels, her-
baceous fuel moisture (FMH) for live herbaceous vegetation
and woody fuel moisture (FMW) for live woody vegetation.
Additionally, we consider daily maximum vapour pressure
deficit (VPDM) and the Keetch-Byram Drought Index (KBDI).

Each of the 10 fire danger indices is calculated daily for
each PSA. Weather metrics including daily maximum tem-
perature, minimum relative humidity, precipitation dura-
tion and VPDM are measured at key RAWSs within each

PSA, shown in Fig. 1. There are 72 key RAWSs in the
Northwest, with each PSA represented by between three
and nine RAWS. The RAWS density is fairly high in most
of the Northwest, and the selection of the key RAWSs for
each PSA in the Northwest was optimised by NWCC fire
weather meteorologists in 2001 (Brown et al. 2011). The
RAWS observations serve as inputs to the FireFamilyPlus
software (Bradshaw and McCormick 2000), which generates
daily fire danger indices for each PSA using equations from
the 2016 version of the National Fire Danger Rating System
(NFDRS).

To quantify the value added by incorporating map types
into predictive models of large wildfire, we establish a
baseline using historical 7-Day Significant Fire Potential
Outlooks (SFPOs) issued for the Northwest geographic
area from 2006 to 2020. Although these outlooks have
shifted from a nine-level qualitative scale to a five-level
qualitative scale over the history of the SFPO, both coding
schemes include a critical threshold at which the expected
probability of significant wildfire exceeds 20% on a given
day. In our assessment of the value added to fire weather
forecasting by incorporating 500-hPa map types, we there-
fore flatten the qualitative SFPOs to a binary value for each
day that indicates whether the forecast probability of a large
fire was below or above this 20% threshold.

Statistical approach

To address our first research question, which compares the
regional incidence of large fires and widespread fire out-
breaks among 500-hPa map types, we consider two out-
comes: (i) the probability that a large wildfire will ignite
on a given day, and (ii) the probability that a high number
of ignitions will occur on a given day. Our analysis of the
probability of large wildfire is conducted using PSA-specific
size thresholds. That is, if a fire that ultimately exceeds the
size threshold for the PSA in which the fire ignites on a given
day, that day is designated as a ‘large fire’ day. For the
second measure of risk, we define ‘high ignition’ days as
those with ignition counts at or above the 80th percentile,
which corresponds to days with 33 or more ignitions across
the entire GACC. The statistical significance of variation
between map types in the frequency of high-ignition days
and days with large fires is assessed using a chi-square test.

Our second research question examines the relationship
between the 500-hPa map types and fire danger indices.
This analysis is conducted at the GACC level by calculating
aggregate fire danger for the entire geographic area using
the area-weighted mean of daily PSA-level indices. We then
estimate Pearson correlation coefficients between a set of
dichotomous map type indicators and each fire danger
index. These correlations allow us to determine whether
there is a statistically significant difference (P < 0.05) in
fire danger between days associated with a given map
type and days when a different map type is observed.
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Fig. 3.
height data used for matching have been smoothed by taking a composite of 1-degree ERA5 geopotential heights from days that
match to each map type over the study period.

Our third research question assesses the value of the 500-
hPa map types in augmenting subregional models of wildfire
risk. In this analysis, we compare the performance of statisti-
cal models for two different PSA-level outcomes: (i) the total
number of ignitions on each day, and (ii) the probability of a
large fire igniting on each day. The models of total daily
ignitions are estimated using negative binomial regression,
which is appropriate for overdispersed count data and per-
forms well in this empirical context (Arienti et al. 2009). The
models of the probability of a large fire igniting on a given
day are estimated using logistic regression, which is com-
monly used to model binary outcomes (Andrews et al. 2003).

For each outcome and PSA, we test a set of 10 fire-
danger-only models and a set of 10 with-map-type models.
In the fire-danger-only models, the outcome of interest is
modelled using each of the 10 fire danger indices, in turn, as
a predictor. The 10 with-map-type models build on the fire-
danger-only models by pairing each of the 10 fire danger

Thirteen 500-hPa map types used operationally by the NWCC for fire weather forecasting. The 30-point geopotential

indices with a set of daily map type indicators. After fitting
each set of candidate models, we identify the most predic-
tive model by comparing Akaike weights between the mod-
els. Akaike weights compare the Akaike information
criterion (AIC) of each candidate model against the model
with the lowest AIC, estimating the probability that each
model provides the best fit within the set of candidate
models (Wagenmakers and Farrell 2004).

Finally, we assess the predictive value added by the map
types by evaluating how our logistic models of large fire
improve on the accuracy of historical SFPOs. We evaluate
the forecasts using two metrics: the false alarm rate and the
miss rate. The false alarm rate is calculated by dividing the
number of false positives (days when large fires were pre-
dicted but did not occur) by the total number of days when
large fires were predicted. The miss rate is calculated by
dividing the number of false negatives (days when large
fires were not predicted but did occur) by the total number
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of days when large fires occurred. We calculate both metrics
first for the historical SFPOs and then for forecasts that
augment the SFPOs with the output of our logistic models
of large fire. The difference between these two sets of met-
rics represents the operational value added by incorporating
map types into forecasts of large wildfire.

Results

Regional association between 500-hPa map types
and wildfire risk

At the regional level, there is notable variation between map
types in both the probability of observing a high-ignition
day and the probability of a large fire igniting, as shown in
Fig. 4. The three map types in the top-right quadrant of the
graph (UMAPs 9-11) are all ridging patterns associated with
elevated probabilities of both high ignition counts and large
fires. Statistically significant (P < 0.05) increases in high-
ignition days are observed for UMAP 2 and UMAPs 9-11,
whereas UMAPs 9, 11 and 12 have significantly more days
with large fires. In contrast, the patterns corresponding to
upper-level troughs (UMAPs 3-6) have the lowest probabil-
ity of high ignition counts and large fire. UMAPs 1, 4-6 and
8 have significantly fewer high-ignition days, and UMAPs
4-6 have significantly fewer days with large fires.

The map types are also associated with significant varia-
bility in regional fire danger indices. Fig. 5 shows the corre-
lations between GACC-level fire danger indices and daily
assigned 500-hPa map types. The trough patterns (UMAPs
3-6) are observed to have strongly significant negative

associations with the NFDRS fire danger indices (SC, ERC,
BI and IC) and generally positive associations with the fuel
moisture indices (F100, F1000, FMH and FMW). The ridge
patterns (UMAPs 9-13) illustrate the inverse pattern of
correlation: these map types are associated with high fire
danger and low fuel moisture. The offshore troughs (UMAPs
1-2), zonal flow (UMAP 7) and split flow (UMAP 8) patterns
deviate less significantly from average levels of fire danger
and fuel moisture.

Augmenting subregional models with 500-hPa map
types

Our model selection procedure indicates that the inclusion
of map type effects offers a significant improvement in the
performance of daily PSA-level ignition count models. The
top panel of Table 2 shows the Akaike weights for the fire-
danger-only models (rows 1-10) and the with-map-type
models (rows 11-20). The best-performing model among
the fire-danger-only and the with-map-type models is high-
lighted in grey for each PSA. For the ignition count models,
the preferred fire danger index does not change between the
fire-danger-only and the with-map-type models. ERC and
VPDM are the preferred fire danger indices for the majority
of PSAs, whereas F1000 is most predictive in the NW04 and
NW11 PSAs. Finally, the bottom panel of Table 2 shows the
Akaike weight comparison between the best fire-danger-
only and the best with-map-type model for each PSA. For
all PSAs, the models that include map type indicators out-
perform those that rely on fire danger indices alone.

The model selection results for the probability of large
fire are analogously shown in Table 3. VPDM is the most

1
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o Lol _o__1__% ¢ y __Li __w______l___l_ each map type is observed. Horizontal
5 : 7 axis shows the probability of a high-
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Fig. 5. Correlations between map type indicators and GACC-level daily fire danger indices. Map type indicators are coded

dichotomously with 1for days when the map type was observed and 0 for days when a different map type was observed.

Note: *** P <0.01; ** P<0.05; * P<0.10.

predictive fire danger index for most PSAs in both the fire-
danger-only and with-map-type models. As shown in the
lower panel of the table, the inclusion of map type improves
the prediction of large fire in 4 of the 12 PSAs. In eight of the
PSAs, the additional explanatory power of the map type
indicators does not outweigh the model complexity penalty
imposed by the AIC estimator. In none of the PSAs were
statistically significant map type effects observed in models
of the probability of large fire.

Map-type effects for the best-performing models of total
daily ignitions are estimated as incidence rate ratios and
displayed for each PSA in Fig. 6. These incidence rate ratios
indicate how many times more (or fewer) ignitions occurred
when each map type was observed relative to what would be
expected when a different map type occurred on a day with
the same level of fire danger. Notably, the PSAs in eastern
Washington and all of Oregon have significantly higher
expected daily ignitions on days when UMAP 2, the offshore
trough, was observed, experiencing between 1.23 and 1.98
times higher ignition counts than expected given the fire
danger. The ridging patterns (UMAPs 9-13) were notably
heterogeneous in their effects, particularly in southwestern
Oregon. Whereas UMAPs 9-11 were associated with an

increase in conditional ignitions in the NW04 and NWO07
PSAs, UMAP 12 was associated with fewer ignitions than
expected in these PSAs.

Our assessment of the value added by incorporating map
types into the forecasting of large fires indicates that our
logistic models reduce the miss rate in 8 of the 12 PSAs,
while increasing the false alarm rate in only five PSAs. Fig. 7
shows the false alarm and miss rates for both the historical
SFPOs and a forecast constructed by taking the union of the
SFPO and with-map-type logistic models of large wildfire.
That is, a large fire is forecast if either the SFPO or our
logistic models incorporating map types indicate a 20% or
greater predicted probability of large fire. The horizontal
lines in Fig. 7 show the direction of change in the false alarm
and miss rates from the historical SFPOs to the forecasts
constructed by combining the SFPOs with the output of our
logistic models. Reductions in the false alarm and miss rates
are plotted in green and represent positive values added by
the logistic models, whereas increases in the false alarm and
miss rates are shown in purple. The greatest reduction in the
miss rate is achieved in NW11, where the logistic models
correctly identify six large wildfires that the SFPOs missed
out of the 66 total.
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Table 2. Akaike weights for negative binomial models of ignition counts

Model specification NwO1 NwWO02 NwO03 NwWo04 NWO5 NWO06 NwWO7 Nwo08 NWO09 Nw10 NWT11 Nw12
Ignitions = f(SC_Y) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ignitions = f(ERC_Y) 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ignitions = f(BI_Y) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ignitions = f(IC_Y) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ignitions = f(F100) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ignitions = f(F1000) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Ignitions = f(FMH) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ignitions = f(FMW) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ignitions = f(VPDM) 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00
Ignitions = f(KBDI) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ignitions = f(UMAP, SC_Y) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ignitions = f(UMAP, ERC_Y) 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ignitions = f(UMAP, BI_Y) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ignitions = f(UMAP, IC_Y) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ignitions = f(UMAP, F100) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ignitions = f(UMAP, F1000) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Ignitions = f(UMAP, FMH) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ignitions = f(UMAP, FMW) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ignitions = f(UMAP, VPDM) 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00
Ignitions = f(UMAP, KBDI) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ignitions = f(BestFD) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ignitions = f(UMAP, BestFD) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Cells indicate the Akaike weights for negative binomial models of ignition counts, with the best-fitting model for each Predictive Service Area (NWOI-NW12) in
each set highlighted. The first 10 rows correspond to models fitted using each fire danger index, in turn. The second set of 10 models pairs each fire danger index
with the set of map type indicators. The final two rows compare the best-fitting fire-danger-only model against the best fitting with-map-type model for

each PSA.

Discussion and conclusions

This research demonstrates that the set of 500-hPa map types
currently utilised by Predictive Services at the NWCC has
predictive value that can supplement the use of fire danger
indices in near-term wildfire forecasting. These map types
resolve subtypes within broad synoptic patterns (e.g. upper-
air ridges and troughs) that have spatially heterogeneous
effects on daily ignition counts. The map type effects estimated
in our analysis shift expectations of ignition counts conditioned
on surface-based fire danger indices alone. Additionally, fore-
casts of significant wildfire that incorporate our logistic models
improve on the accuracy of historical SFPOs.

This study extends prior research by isolating the predic-
tive value added by incorporating synoptic map typing into
short-term spatially explicit wildfire forecasting in the
northwestern US. Our subregional models demonstrate
that synoptic patterns explain variation in ignition counts
that is not captured by fire danger indices alone. Similarly to

earlier studies linking daily synoptic patterns to surface-
based fire danger indices (Newark 1975; Crimmins 2006),
we find that severe fire weather is associated with ridging
patterns. Also consistent with prior research (Skinner et al.
2002; Gedalof et al. 2005; Sharma et al. 2022), our analysis
finds that positive anomalies in the 500-hPa geopotential
heights are associated with increased wildfire activity.
Although the impact of positive height anomalies on wild-
fire occurrence is reflected in fire danger indices, we find
that offshore troughs, exemplified by UMAP 2, are associ-
ated with both heightened wildfire risk and lower values of
surface-based fire danger indices. These results may be
explained by increased lightning activity associated with
these patterns, which is observed during our study period
when UMAP 2 occurs (see Fig. Al). Rorig and Ferguson
(1999) identify a similar synoptic pattern as being associ-
ated with dry lightning events.

Although this set of map types is useful in forecasting
ignition counts, they are less informative for predicting the

8
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Table 3. Akaike weights for logistic models of large wildfire.
Model specification NWO1 NWO02 NwWO03 NwWOo04 NWO05 NWO06 NWO07 NWO08 NWO09 NwW10 NWI11 NW12
Large = f(SC_Y) 0.03 0.09 0.48 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00
Large = f(ERC_Y) 010 0.03 0.02 014 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Large = f(BL_Y) 0.86 0.87 0.49 0.00 0.00 0.00 0.00 0.00 0.10 0.03 0.00 0.00
Large = f(IC_Y) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00
Large = f(F100) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Large = f(F1000) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Large = f(FMH) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Large = f(FMW) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Large = f(VPDM) 0.00 0.00 0.01 0.85 1.00 1.00 1.00 1.00 0.70 0.97 1.00 1.00
Large = f(KBDI) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Large = flUMAP, SC_Y) 0.02 0.01 0.21 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00
Large = f(UMAP, ERC_Y) 0.09 0.15 0.07 0.54 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00
Large = f(UMAP, BI_Y) 0.48 0.83 0.57 0.02 0.00 0.00 0.00 0.00 0.12 0.02 0.00 0.00
Large = flUMAP, IC_Y) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.00
Large = f(UMAP, F100) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Large = f(UMAP, F1000) 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Large = f(UMAP, FMH) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Large = f(UMAP, FMW) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Large = f(UMAP, VPDM) 0.00 0.00 0.02 0.37 1.00 1.00 1.00 0.99 0.27 0.98 0.95 1.00
Large = f(UMAP, KBDI) 0.40 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Large = f(BestFD) 1.00 0.96 1.00 0.99 0.00 0.01 0.87 0.75 0.87 0.03 0.00 0.85
Large = f(UMAP, BestFD) 0.00 0.04 0.00 0.01 1.00 0.99 0.13 0.25 0.13 0.97 1.00 0.15

Cells indicate the Akaike weights for logistic models of large wildfire, with the best-fitting model for each Predictive Service Area (NWOI-NW12) in each set
highlighted. The first 10 rows correspond to models fitted using each fire danger index, in turn. The second set of 10 models pairs each fire danger index with the
set of map type indicators. The final two rows compare the best-fitting fire-danger-only model against the best fitting with-map-type model for each PSA.

occurrence of large fires. This is likely because the growth of
fires to reach operational thresholds and become large often
occurs over multiple days (Podschwit et al. 2018).
Specifically, whether a fire grows is contingent on a number
of factors, including the weather on days subsequent to igni-
tion (Potter and McEvoy 2021) as well as fuel dryness and
continuity (Barbero et al. 2014). Despite the lack of statistical
significance in the logistic models of large fire, we find that
using these models improves on the performance of historical
SFPOs. This formal modelling complements and reinforces the
qualitative understanding that fire weather meteorologists
have of the impact of these map types on wildfire occurrence.
Incorporating this set of discrete synoptic patterns into igni-
tion count models improves the specificity of fire weather
forecasts over models built using fire danger indices alone.
The effects of synoptic patterns that evolve over multiple
days can be explored by considering transitions between map
types. We conducted analyses to assess how the impact of a
given map type was moderated by the next-day map type (see
Fig. A2). Visual inspection of these transitions suggests that

considering 2-day sequences may uncover moderating effects.
However, one statistical challenge posed by this approach is
the large number of possible transitions between map types
and the small number of observations of each, which reduces
statistical power to detect significant effects. Additionally,
considering 2-day sequences may exacerbate the measure-
ment error in both identifying when transitions occurred
and when fires ignited.

Future work in this area may focus on trade-offs between
the simplicity and interpretability of a set of synoptic map
types and their explanatory power. Specifically, several of
the map types in this set of 13 appear to exert similar effects
on wildfire and may be combined. Alternatively, other
dimensionality reduction methods may be employed to
identify synoptic states that operate on larger or different
geographic areas. Our approach has generated interest from
Predictive Service units in other regions, demonstrating the
potential of our co-production approach to be applied in
other geographic areas to identify the unique and complex
influence of synoptic patterns in those domains.
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effects indicate the factor by which observing each map type shifts expected daily ignition counts in each PSA based on fire
danger indices alone. The statistical significance of these effects is indicated by hatching (ns, not significant).
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Fig. 7. Comparison of false alarm and miss rates for
large fires between historical Significant Fire Potential
Outlooks (SFPOs) and predictions that also incorpo-
rate the results of the with-map-type logistic models
presented here, for each of the 12 predictive service
areas in the Northwest (NWOI-NW12). Reductions in
the false alarm and miss rates represent positive value
added by the logistic models and are indicated by
green lines. Increases in the false alarm and miss rates
due to the incorporation of the logistic models are
shown in purple.

10



www.publish.csiro.au/wf

International Journal of Wildland Fire 33 (2024) WF23117

References

Abatzoglou JT, Battisti DS, Williams AP, Hansen WD, Harvey BJ,
Kolden CA (2021) Projected increases in western US forest fire
despite growing fuel constraints. Communications Earth &
Environment 2(1), 227. doi:10.1038/s43247-021-00299-0

Andrews PL, Loftsgaarden DO, Bradshaw LS (2003) Evaluation of fire
danger rating indexes using logistic regression and percentile analy-
sis. International Journal of Wildland Fire 12, 213-226. doi:10.1071/
WF02059

Arienti MC, Cumming SG, Krawchuk MA, Boutin S (2009) Road net-
work density correlated with increased lightning fire incidence in the
Canadian western boreal forest. International Journal of Wildland
Fire 18, 970-982. doi:10.1071/WF08011

Barbero R, Abatzoglou JT, Steel EA, K Larkin N (2014) Modeling very
large-fire occurrences over the continental United States from
weather and climate forcing. Environmental Research Letters 9,
124009. doi:10.1088/1748-9326,/9/12/124009

Bradshaw L, McCormick E (2000) FireFamily plus User’s Guide, Version
2.0. General Technical Report RMRS-GTR-67. (USDA Forest Service,
Rocky Mountain Research Station: Ogden, UT)

Brown TJ, Horel JD, McCurdy GD, Fearon MG (2011) What is the
appropriate RAWS network. CEFA Report 11-01.

Cohen JD, Deeming JE (1985) The national fire-danger rating system:
basic equations. PSW-GTR-82. (USDA Forest Service, Pacific
Southwest Forest and Range Experiment Station: Berkeley, CA)
doi:10.2737/PSW-GTR-82

Crimmins MA (2006) Synoptic climatology of extreme fire-weather
conditions across the southwest United States. International Journal
of Climatology 26, 1001-1016. doi:10.1002/joc.1300

Cullen AC, Prichard SJ, Abatzoglou JT, Dolk A, Kessenich L, Bloem S,
Bukovsky MS, Humphrey R, McGinnis S, Skinner H, Mearns LO
(2023) Growing convergence research: coproducing climate projec-
tions to inform proactive decisions for managing simultaneous wild-
fire risk. Risk Analysis 43, 2262-2279. do0i:10.1111/risa.14113

Fosberg MA (1978) Weather in wildland fire management: the fire
weather index. In ‘Conference on Sierra Nevada Meteorology’, Lake
Tahoe, CA. pp. 1-4. (American Meteorological Society: Lake Tahoe, CA)

Gedalof Z, Peterson DL, Mantua NJ (2005) Atmospheric, climatic, and
ecological controls on extreme wildfire years in the Northwestern
United States. Ecological Applications 15, 154-174. doi:10.1890/
03-5116

Grotjahn R, Black R, Leung R, Wehner MF, Barlow M, Bosilovich M,
Gershunov A, Gutowski WJ, Gyakum JR, Katz RW, Lee Y-Y, Lim Y-K,
Prabhat (2016) North American extreme temperature events and
related large scale meteorological patterns: a review of statistical
methods, dynamics, modeling, and trends. Climate Dynamics 46,
1151-1184. doi:10.1007/s00382-015-2638-6

Harries D, O’Kane TJ (2020) Applications of matrix factorization meth-
ods to climate data. Nonlinear Processes in Geophysics 27, 453-471.
doi:10.5194/npg-27-453-2020

Henry DM (1978) Forecasting Fire Occurrence Using 500 MB Map
Correlation. Technical Memorandum NWS AR-21. (National
Weather Service: Anchorage, Alaska)

Jones MW, Abatzoglou JT, Veraverbeke S, Andela N, Lasslop G, Forkel
M, Smith AJP, et al. (2022) Global and regional trends and drivers of
fire under climate change. Reviews of Geophysics 60(3),
€2020RG000726. doi:10.1029/2020RG000726

Kalashnikov DA, Abatzoglou JT, Nauslar NJ, Swain DL, Touma D, Singh
D (2022) Meteorological and geographical factors associated with dry
lightning in central and northern California. Environmental Research:
Climate 1, 025001. doi:10.1088/2752-5295/ac84a0

Marsha T (2014) ‘Fire Danger Rating Operations Plan 2014.
(Northwest Interagency Coordination Center). Available at https://
gacc.nifc.gov/nwee/content/products/fwx/fdrop/FDROP.pdf

McGinnis S, Kessenich L, Mearns L, Cullen A, Podschwit H, Bukovsky M
(2023) Future regional increases in simultaneous large Western USA
wildfires. International Journal of Wildland Fire 32(9), 1304-1314.
doi:10.1071/WF22107

Nagy RC, Fusco E, Bradley B, Abatzoglou JT, Balch J (2018) Human-
Related Ignitions Increase the Number of Large Wildfires across US
Ecoregions. Fire 1, 4. doi:10.3390/fire1010004

National Wildfire Coordinating Group (2002) Gaining an Understanding
of the National Fire Danger Rating System.

Nauslar NJ, Hatchett BJ, Brown TJ, Kaplan ML, Mejia JF (2019) Impact
of the North American monsoon on wildfire activity in the southwest
United States. International Journal of Climatology 39, 1539-1554.
doi:10.1002/joc.5899

Newark MJ (1975) The relationship between forest fire occurrence and
500 mb longwave ridging. Atmosphere 13, 26-33. doi:10.1080/
00046973.1975.9648385

Owen G, McLeod JD, Kolden CA, Ferguson DB, Brown TJ (2012)
Wildfire Management and Forecasting Fire Potential: The Roles of
Climate Information and Social Networks in the Southwest United
States. Weather, Climate, and Society 4, 90-102. doi:10.1175/WCAS-
D-11-00038.1

Podschwit H, Cullen A (2020) Patterns and trends in simultaneous wild-
fire activity in the United States from 1984 to 2015. International
Journal of Wildland Fire 29, 1057-1071. doi:10.1071/WF19150

Podschwit HR, Larkin NK, Steel EA, Cullen A, Alvarado E (2018) Multi-
model forecasts of very-large fire occurences during the end of the
21st century. Climate 6, 100. doi:10.3390/cli6040100

Potter BE, McEvoy D (2021) Weather factors associated with extremely
large fires and fire growth days. Earth Interactions 25, 160-176.
doi:10.1175/E1-D-21-0008.1

Preisler HK, Westerling AL, Gebert KM, Munoz-Arriola F, Holmes TP
(2011) Spatially explicit forecasts of large wildland fire probability
and suppression costs for California. International Journal of
Wildland Fire 20, 508-517. doi:10.1071/WF09087

Preisler HK, Riley KL, Stonesifer CS, Calkin DE, Jolly WM (2016) Near-
term probabilistic forecast of significant wildfire events for the
Western United States. International Journal of Wildland Fire 25,
1169-1180. doi:10.1071/WF16038

Rorig ML, Ferguson SA (1999) Characteristics of lightning and wildland
fire ignition in the Pacific Northwest. Journal of Applied Meteorology
38, 1565-1575. doi:10.1175/1520-0450(1999)038 < 1565:COLAWEF >
2.0.CO;2

Schroeder MJ, Glovinsky M, Henricks VF, Hood FC, Hull MK (1964)
‘Synoptic weather types associated with critical fire weather.” (USDA
Forest Service, Pacific Southwest Forest and Range Experiment
Station: Berkeley, CA)

Sharma AR, Jain P, Abatzoglou JT, Flannigan M (2022) Persistent
positive anomalies in geopotential heights promote wildfires in
Western North America. Journal of Climate 35, 6469-6486.
doi:10.1175/JCLI-D-21-0926.1

Short KC (2022) Spatial wildfire occurrence data for the United States,
1992-2020 [FPA_FOD_20221014]. Available at https://www.fs.usda.
gov/rds/archive/catalog/RDS-2013-0009.6

Skinner WR, Flannigan MD, Stocks BJ, Martell DL, Wotton BM, Todd JB,
Mason JA, Logan KA, Bosch EM (2002) A 500-hPa synoptic wildland
fire climatology for large Canadian forest fires, 1959-1996. Theoretical
and Applied Climatology 71, 157-169. doi:10.1007/s007040200002

Srock A, Charney J, Potter B, Goodrick S (2018) The Hot-Dry-Windy
Index: a new fire weather index. Atmosphere 9, 279. doi:10.3390/
atmos9070279

van Wagtendonk JW, Cayan DR (2008) Temporal and spatial distribution
of lightning strikes in California in relation to large-scale weather
patterns. Fire Ecology 4, 34-56. doi:10.4996/fireecology.0401034

Wagenmakers E-J, Farrell S (2004) AIC model selection using Akaike
weights. Psychonomic Bulletin & Review 11, 192-196. doi:10.3758/
BF03206482

Wordell T, Ochoa R (2006) Improved decision support for proactive
wildland fire management. Fire Management Today 66, 25-28.

Zhong S, Yu L, Heilman WE, Bian X, Fromm H (2020) Synoptic weather
patterns for large wildfires in the northwestern United States — a
climatological analysis using three classification methods.
Theoretical and Applied Climatology 141, 1057-1073. doi:10.1007/
s00704-020-03235-y



R. Humphrey et al.

International Journal of Wildland Fire 33 (2024) WF23117

Data availability. The data that support this study will be shared upon reasonable request to the corresponding author.
Conflicts of interest.

The authors declare no conflicts of interest.

Declaration of funding. This research was funded by the US National Science Foundation Growing Convergence Research program, grant no. 2019762.
Author affiliations

AUniversi'ry of Washington, Evans School of Public Policy & Governance, Seattle, WA, USA.
BNorthwest Interagency Coordination Center, Portland, OR, USA.

CUniversity of California Merced, Management of Complex Systems, Merced, CA, USA.

Appendix

UMAP10

UMAP11 UMAP12 UMAP13

. . —
Fig. Al

PSA-level lightning strike density by map type. Darker shading indicates fewer daily strikes per square kilometre, while
lighter shading indicates higher strike density.
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Fig. A2. GACC-level wildfire risk by map type transition. The shading of cells in the leftmost column indicates the
probability of observing a high-ignition day for each map type, and each cell in this column is labelled with the probability
of that map type occurring. The shading of cells in the rightmost 13 columns indicates the probability of a large fire starting
given the ignition-day and next-day map types. These cells are labelled with the probability that each next-day map type

will occur, conditional on ignition-day map type.



