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Abstract

In-context learning (ICL), the ability of large
language models to perform novel tasks by con-
ditioning on a prompt with a few task examples,
requires these examples to be informative about
the test instance. The standard approach of
independently ranking and selecting the most
similar examples selects redundant examples
while omitting important information. In this
work, we show that BERTScore-Recall (BSR)
selects better examples that demonstrate more
of the salient aspects, e.g. reasoning patterns,
of the test input. We further extend BSR and
many standard metrics to easily optimizable
set-level metrics, giving still better coverage of
those salient aspects. On 15 datasets spanning
6 tasks and with 7 diverse LLMs, we show that
(1) BSR is the superior metric for in-context
example selection across the board, and (2) for
compositional tasks, set selection using Set-
BSR outperforms independent ranking by up to
17 points on average and, despite being training-
free, surpasses methods that leverage task or
LLM-specific training.’

1 Introduction

Large language models (LLMs) (Devlin et al.,
2019; Brown et al., 2020) are capable of gener-
alizing to novel tasks (Brown et al., 2020) by con-
ditioning on textual prompts consisting of a few
task examples. This training-free paradigm of few-
shot inference, known as in-context learning (ICL),
reduces the cost of modeling new tasks while also
providing an interpretable and customizable in-
terface (Liu et al., 2022; Wei et al., 2023) and
improving generalization (Anil et al., 2022; Qiu
et al., 2022b; Drozdov et al., 2023) and reasoning
skills (Wei et al., 2023). However, ICL perfor-
mance is critically sensitive to the choice of demon-
strations (Zhao et al., 2021; Liu et al., 2022; Lu
et al., 2022; Rubin et al., 2022; Schick and Schiitze,

"https://github.com/Shivanshu-Gupta/
icl-coverage

Add a meeting with Jim and his manager for tomorrow

(a) Test Input

Q: Add a meeting with Jim tomorrow.
A: CreateEvent (AND(with_attendee(" Jim "), starts_at (Tomorrow())))

Q: Add an appointment with Jim for tomorrow
A: CreateEvent (AND(with_attendee(" Jim "),starts_at (Tomorrow())))

Q: Add a meeting with Jim and his manager for tomorrow
A: CreateEvent (AND (with_attendee(" Jim ") ,with_attendee(" his
manager ") ,starts_at(Tomorrow())))

(b) Similarity-based Independent Selection

Q: Schedule a meeting with Doug and his boss for next week to review
A: CreateEvent (AND(with_attendee(" Doug "),
with_attendee(FindManager (" Doug ")),has_subject (" review
"),starts_at (NextWeekList())))

Q: Add an appointment with Jim for tomorrow
A: CreateEvent (AND(with_attendee(" Jim "),starts_at (Tomorrow())))

Q: Add a meeting with Jim and his manager for tomorrow
A: CreateEvent (AND (with_attendee(" Jim ") ,with attendee(
FindManager (" Jim ")) ,starts_at (Tomorrow()))) J

(c) Coverage-based Set Selection

Figure 1: (a) Test input with salient aspects highlighted.
(a) Independently selecting similar examples leads to
redundancy and failure to demonstrate all salient as-
pects, in this case, the need to identify the manager.
(b) Coverage-based selection using SET-BSR mitigates
this by selecting a less similar example that contains the
missing information. Blue indicates LLM generation.

2021), as the LLM relies on them for understanding
and solving the test instance.

The standard approach to selecting ICL exam-
ples or demonstrations from a pool of candidates is
to independently score them using a relevance met-
ric and choose the top-ranked ones. However, co-
sine similarity and BM25, the two commonly used
metrics, are sub-optimal for selecting demonstra-
tions due to their reliance on a single dense embed-
ding and unigram overlap, respectively. Moreover,
since it selects examples independently, this ap-
proach ignores their utility as a set. It is particularly
inadequate for complex compositional tasks like se-
mantic parsing (Levy et al., 2022) where no single
candidate might contain all reasoning patterns, and
an independent selection would select multiple re-
dundant examples with the same reasoning patterns
but fail to demonstrate the others. Figure 1 shows a
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failure case where similarity-based selection picks
paraphrased examples that fail to demonstrate how
to find a manager. Prior work on selecting demon-
strations as a set (Ye et al., 2023; Levy et al., 2022)
required task and/or LLM-specific training, limit-
ing their utility. For this reason, simple yet widely
applicable training-free methods like BM25 and co-
sine similarity remain the most popular approaches
for ICL example selection.

In this work, we propose a novel framework for
selecting sets of maximally informative demon-
strations for the salient aspects of the test input,
e.g., reasoning patterns, entities, etc. Examples se-
lected using this framework are informative about
the test input and help the LLM understand and
perform the task. We use this framework to explore
different ways to characterize salient aspects, in-
cluding syntactic structures like dependency parse
subtrees and contextual token embeddings, while
using BM25 and BERTScore (Zhang et al., 2020)
to measure their coverage, respectively. To select
the demonstrations as a set, we extend the coverage
metrics to measure the overall informativeness of a
set of demonstrations. We show that these set-level
metrics are submodular and can be efficiently op-
timized to find demonstration sets that maximally
cover the salient aspects.

We evaluate our ICL example selection meth-
ods on 15 diverse datasets, including 6 semantic
parsing, 2 numerical reasoning, and 7 classification
datasets, and with 7 LLMs of varying sizes and pre-
training. Among instance-level metrics, BSR, the
recall version of BERTScore, consistently outper-
forms standard retrieval metrics on all datasets and
LLMs, beating cosine similarity by up to 8 points
on average in semantic parsing datasets and 15
points in the rest. Selecting demonstrations as a set
using SET-BSR, the set-extension of BSR, leads to
further gains in semantic parsing and is particularly
effective in compositional settings where the gains
grow with LLM size. With Codex, a 175B parame-
ter LLM, SET-BSR outperforms cosine similarity
by 17% on average with up to 49% improvement in
some splits, and, despite being training-free, outper-
forms even trained methods like those from Rubin
etal. (2022), Levy et al. (2022), and Ye et al. (2023)
that require task and/or LLM-specific training.

2 Related Work

In-context learning for few-shot inference facili-
tates the use of LLMs for novel tasks without the

need for expensive supervised fine-tuning. In addi-
tion to reduced cost, it has several other advantages
over supervised fine-tuning: it provides a more
interpretable and customizable interface to using
LLMs (Liu et al., 2022; Wei et al., 2023); and re-
tention of linguistic understanding and knowledge
from pretraining leading to improved generaliza-
tion (Anil et al., 2022; Qiu et al., 2022b; Drozdov
et al., 2023) and reasoning skills (Wei et al., 2023).

However, the performance of ICL is critically
sensitive to the choice of demonstrations (Zhao
et al., 2021; Liu et al., 2022). This has led to a
growing interest in techniques for selecting good
demonstrations. Prior work can be roughly classi-
fied into (1) independently scoring and retrieving
examples (Liu et al., 2022; Rubin et al., 2022), (2)
selecting diverse examples to reduce redundancy
among them (Su et al., 2022; Levy et al., 2022;
Agrawal et al., 2022; Ye et al., 2022), and (3) se-
lecting examples that minimize the entropy of the
LLM’s output distribution for the test input (Lu
et al., 2022; Wu et al., 2023). Recent work has
also trained RL agents (Lu et al., 2023) and used
Bayesian inference (Wang et al., 2023).

The most similar studies to ours are Levy et al.
(2022) and Ye et al. (2023). Levy et al. (2022)
select diverse demonstrations that cover substruc-
tures of the target output predicted by task-specific
classifiers but are limited in applicability to a few
semantic parsing tasks. Ye et al. (2023) use Deter-
minantal Point Processes (Kulesza, 2012) to select
a diverse set of demonstrations similar to the test
instance but do not optimize for coverage directly
and require training with the LLM. Moreover, both
methods require task or LLM-specific training that
limits their use and effectiveness for larger LMs.

3 Preliminaries

In-context learning is the ability of LLMs to solve
novel tasks by merely conditioning on a few task
demonstrations. Formally, given demonstrations
{(z4, yi)}le and the test input Ty, it involves
using textual templates to linearize instance inputs
and outputs into sequences of tokens from the LLM
vocabulary, x = Z(z) = (z1...7x) and y =
O(y) = (y1---y}y|)- The linearizations are then
concatenated to form a prompt and fed to the LLM
for conditional generation of the test output:

Yiest ~ P (| X1, 51, XK, YK Xeest ) (1)
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The interpretable and training-free nature of ICL
makes it an attractive alternative to supervised fine-
tuning. However, its performance is highly sensi-
tive to the choice and order of demonstrations.

Demonstration Selection identifies which exam-
ples to include in the prompt for any test instance.
Formally, given a test input x.s and a pool of can-
didates 7 = {2}, = {(zs, vi)}L\,, the goal is
to select a subset of k& < /N demonstrations that
when included in the context make y.s; the most
likely generation. A naive approach is to randomly
sample k instances from 7, but this is sub-optimal
since the demonstrations are often completely un-
related to the test input. Instead, the standard ap-
proach to selecting demonstrations that are informa-
tive about the test input is to independently assign
each candidate z a score score (e, 2) using a rel-
evance metric and then select the top k candidates.

Relevance Metrics The two most commonly
used relevance metrics for scoring demonstration
are cosine similarity and BM25. Cosine similar-
ity uses a representation function R to indepen-
dently map the textual linearizations of inputs to
unit-norm embeddings r, = R(z) in a common
vector space and then scores the candidate z using
the dot product, cosine (e, 2) = rgmrz. BM25,
on the other hand, is a sparse information retrieval
algorithm belonging to a class of TF-IDF measures
that view the test input and the candidates as bags
of terms and measures relevance as a weighted re-
call or coverage of these terms:

tEidf (e, 2) = D 1df(s)tf(s, TL)  (2)

s ETItest

Here 7). and T, are the set of terms in x and z re-
spectively, and tf(s,7T,) and idf(s) are the term
frequency and inverse document frequency statis-
tics that measure the coverage of a particular term
and the relative importance of terms respectively.
We use tf and idf as per the Okapi variant of
BM25 (Robertson et al., 1993; Jones et al., 2000).

4 Informative Demonstrations

The limitation of the standard demonstration se-
lection approach is that by independently scoring
the demonstrations, it ignores their utility as a set.
For ICL to work, the demonstrations included in
the context need to be informative about how to
understand and solve the test input. In this section

and the next, we describe our approach to select-
ing informative sets of demonstrations for ICL. We
begin by defining our notion of informativeness
of demonstrations in ICL and describing how to
measure it. Thereafter, in §5, we will discuss how
to extend this notion to an algorithm for selecting
optimally informative sets of demonstrations.

Informativeness Demonstrations should demon-
strate the salient aspects, e.g., reasoning patterns,
entities, etc., of the test input. Formally, denoting
Sz as the set of salient aspects of the test input,

we measure the informativeness of a demonstration
z in terms of the coverage of such salient aspects,

cover (Tiest, 2) = Z c(s, 2) 3)

SE€Sriey

where c(s, z) measures the coverage (or recall) of
a single salient aspect s by z.

Salient Aspects Both cosine similarity and BM25
are special cases of Eq. 3 for different notions of
salient aspects. For BM25, S, = T4, the set
of unigrams in z, and c(s, z) = idf(s)tf(s,T%).
And cosine similarity, although not explicitly a re-
call metric, can also be interpreted as evaluating
coverage of the dimensions of the test input embed-
ding by defining S;,., = [1, d], the dimensions of

the dense embedding as the salient aspects, i.e.,

d
cosine(Tieys, 2) = Z Ty ls]-r2ls] (4
s=1

The above interpretations reveal why neither co-
sine similarity nor BM25 are good measures of
informativeness. While cosine similarity captures
some aspects of semantic similarity (depending on
the embedding), it is limited to a single embed-
ding. And, unigrams, the commonly used terms
with BM25, are too small to capture most salient
aspects. A good measure of informativeness ne-
cessitates an accurate characterization of salient
aspects. One way might be to use larger syntactic
substructures of the input as terms with BM25. We
experiment with using larger n-grams and subtrees
of the dependency parse tree. However, such syn-
tactic structures are constrained to the surface form
of the instance and hence may not capture meaning
and aspects like reasoning patterns. A better way
to capture salient aspects is to use contextualized
token embeddings, the idea behind the BERTScore
(Zhang et al., 2020) metric.
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BERTScore was originally proposed as a metric
for evaluating the quality of machine-generated
text (e.g., machine translation) by comparing it
to a reference text. It leverages pre-trained con-
textual embeddings to match words in the candi-
date and reference sentences by cosine similarity
and compute precision, recall, and F1 measures.
Formally, given the sequences of contextual em-
beddings (x1,X2,...,X|y) and (z1,22,...,2,|)
of tokens in z = (x1,72,...,7)y) and z =
(z1,22,... , 2||) respectively, the recall measure,
BERTScore-Recall (BSR), is defined as:

BSR(z, z) = Z w(z;) mjaxx?zj 3)

TiET

Here, w(z;) is a weight assigned to token z; and
can be defined as ﬁ if treating each token as
idf(z;)
vy e0 14E(27)
ing rare words. The precision measure is defined
analogously, while the F1 measure is the harmonic
mean of the two. BSR is also a special case of Eq.
3 with contextualized tokens as salient aspects, i.e.,
Sy = (X1,X2,. .. ,x|$|) and can be used to select
examples by treating them as candidates and the
test input as the reference. The following table sum-
marizes the informativeness measures and salient
aspects in this work.

equally important or 5 if downweight-

Metric Salient Aspects
Cosine embedding dimensions
BM25 unigrams, n-grams, dependency parse subtrees

BERTScore contextual token embeddings

5 Set-level Information Coverage

So far, we have focused on measuring the infor-
mativeness of a single demonstration to rank and
independently select the most informative ones.
However, as depicted in Fig. 1, when no single
single candidate demonstrates all salient aspects,
this approach can fail to cover all of them while
also selecting redundant demonstrations that pro-
vide no new information. A scenario where this
can happen is when the candidate pool contains
close paraphrases (or duplicates). This suggests
that demonstrations should be selected as a set.

Set Metric To evaluate the informativeness of a set
of examples Z, we propose to extend the coverage
measure in Eq. 3 to a measure for sets as follows:

setcov (T, £) = max c(s,z) (6)
sesﬂ”lest €

Algorithm 1 Greedy Optimization of Set Coverage

Require: Instance pool T test input s ; desired number of
demonstrations k; coverage scoring function setcov

1: Z+0 > Selected Demonstrations
2 Zewr — 0 > Current Set Cover
3: curr_cov < —inf

4: while |Z|< k do

5: z",next_cov = argmax setcov (Test , Zeur U 2)

ze€T—Z

6: if next_cov > curr_cov then > Pick z*
7: curr_cov < next_cov

8: Z <+ ZUz"

9: ZCU]T <; ZCUIT U Z*

10: else > Or start new cover
11: Zeur — 0, curr_cov < —inf

12: end if
13: end while

14: return Z

Intuitively, this measures the coverage of each
salient aspect as the best coverage it receives from
any example in the set. In other words, maximizing
it requires that every salient aspect appears at least
once in some demonstration without considering
which or how many. Since cosine similarity, BM25,
and BSR are all special cases of Eq. 3, they can be
extended to set measures using Eq. 6.

Submodularity Given the combinatorial space of
sets of demonstrations, for a measure on sets to
be practical, it needs to be efficiently optimizable.
Fortunately, the set-level metric, as defined above,
is also submodular for any definition of c(s, z). We
prove this in Appendix A. Intuitively, this follows
from the facts that (1) for any given test instance,
c(s, z) assigns a scalar weight to each demonstra-
tion z € Z, (2) the maximum of weights across
set elements is submodular, and (3) the sum of sub-
modular functions is also submodular. This means
that the set-level metric can be optimized using a
greedy algorithm with a constant factor approxima-
tion guarantee (Nemhauser et al., 1978).

Algorithm The greedy algorithm we use to select
the optimal set is shown in Algorithm 1. In ev-
ery iteration, it selects the example that maximally
increases the coverage of the current set of demon-
strations (lines 5-9). If no such example exists, it
resets (lines 11). Using the following identity when
computing the score for candidate sets (line 5),

setcov (xtest ,Z U z')

= Z max (C(sz)jc(s’zl)) 7)

sESfElest

and assuming constant time for computing each
c(s,z), the time complexity of algorithm is
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O(kNL), where L = |S,,,|- For BSR, the com-
plexity of computing c(x,z) for all z € Z is
O(Td), where T is the total number of tokens in
Z and d is the token embedding size. Thus, the
time complexity of both instance and set-level BSR
is dominated by the computation of ¢(z, z), and
is O(LTd). While slower than cosine and BM25,
we found it to be a small overhead to in-context
learning for most datasets considered in this work.
We discuss this further in App. C.

6 Experimental Setup

6.1 Datasets

We experiment with a total of 15 datasets including
six diverse semantic parsing datasets viz. Geo-
Query (Zelle and Mooney, 1996), ATIS (Hemphill
et al., 1990; Dahl et al., 1994), Overnight (Wang
et al., 2015), SMCalFlow (Andreas et al., 2020),
BREAK (Wolfson et al., 2020), and MTOP (Li
et al., 2021); a math-word problems (GSM8K
(Cobbe et al., 2021)) and a machine reading com-
prehension (DROP (Dua et al., 2019)) dataset re-
quiring multi-step numeric reasoning; and seven
classification datasets spanning natural language
inference, paraphrase detection and sentiment clas-
sification viz. QNLI (Wang et al., 2018), MNLI
(Williams et al., 2018), RTE (Bentivogli et al.,
2009), MRPC (Dolan and Brockett, 2005), PAWS
(Zhang et al., 2019), QQP (Wang et al., 2018), and
SST2 (Socher et al., 2013). We refer the reader to
App. B for detailed descriptions of each dataset
along with sample instances and prompt templates.

In addition to the standard IID splits, we also
evaluate compositional generalization using com-
positional splits wherever available. For GeoQuery
we use three types of compositional splits: Tem-
plate (Finegan-Dollak et al., 2018), TMCD (Key-
sers et al., 2020), and Length. Following Levy
et al. (2022), we use the compositional splits—
three Template, three TMCD, and one Length—
generated by Qiu et al. (2022a) and average results
across the TMCD and Template splits. For ATIS
and Overnight, we experiment with Template splits
(Finegan-Dollak et al., 2018) generated by Gupta
et al. (2022). For SMCalFlow, we experiment with
splits in SMCalFlow-CS (Yin et al., 2021): an IID
split (8-S) and a compositional split (32-C).

For all the splits, following prior work (Ye et al.,
2023; Rubin et al., 2022) we randomly subsample
44,000 instances from the train set to use as pool
to select demonstrations from. For evaluation, we

use a random subsample of 1000 instance of the
validation set if available, and the test set otherwise.
We use Exact Match (EM) accuracy for all datasets
except BREAK where we use LF-EM (Hasson and
Berant, 2021), which is preferred over EM for se-
mantic equivalence.

6.2 Models

We experiment with the following LLMs: GPT-
Neo-2.7B (Black et al., 2021): A 2.7B-parameter
LM trained on The Pile (Gao et al., 2020), an
825 GB text corpus. LLaMA (Touvron et al.,
2023): A collection of LMs ranging from 7B
to 65B parameters pretrained on CommonCrawl,
GitHub, Arxiv, etc. We experiment with LLaMA-
7B and LLaMA-13B. StarCoder (Li et al., 2023):
A 15.5B parameter model trained on 80+ program-
ming languages (Kocetkov et al., 2022). GPT-
3.5-Turbo?: 175B LM trained with RL to fol-
low instructions and optimized for chat. Cush-
man, Codex> (Chen et al., 2021): 12B and 175B
parameter code-pretrained LMs. GPT-Neo-2.7B,
LLaMA-7B, LLaMA-13B, and Cushman have con-
text window lengths of 2048, GPT-3.5-Turbo of
4096, Codex of 8001, and StarCoder of 8192.

6.3 Methods

6.3.1 Training-Free Methods
We compare the following training-free metrics:

Cosine similarity (COSINE) We use the Sentence-
Bert library (Reimers and Gurevych, 2019) with
the all-mpnet-base-v2 model. For independent
selection, we use FAISS # (Johnson et al., 2019)
retrieve the most similar examples.

BM25 (BM25) We use the Okapi variant (Robert-
son et al., 1993; Jones et al., 2000) of BM25 from
the rank_bm25 library with three syntactic struc-
tures as terms: unigrams, size-4 or smaller n-grams,
and size-4 or smaller subtrees of the input depen-
dency parse (obtained using the spaCy®).

BERTScore We use the bert_score’ library
(Zhang et al., 2020) with deberta-large-mnli
and deberta-base-mnli models which are De-
BERTa models (He et al., 2021) finetuned on the
MNLI dataset (Williams et al., 2018). We will refer

2https://openai.com/blog/cha’cgpt/. We use the
gpt-3.5-turbo-0301 snapshot from March 2023.

3We use code-davinci-002 and code-cushman-001.

4https: //github.com/facebookresearch/faiss

5ht’cps: //github.com/dorianbrown/rank_bm25

6ht’cps: //spacy.io

7https: //github.com/Tiiiger/bert_score
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Selector GPT-Neo LLaMA-7B LLaMA-13B Cushman StarCoder GPT-3.5-Turbo  Codex
Training RANDOM 5.5(233) 5.7 (-28.7) 9.8 (-28.9) 12.0 -32.9) 13.6 (-33.5) 13.0 (-31.9) 20.7 (-32.6)
Free COSINE  28.8 344 38.7 44.9 47.1 44.9 534

BM25 31.2 +24) 36.7 (+2.3) 42.8 (+4.0)  49.7 +48) 529 (+5.7) 50.3 (+5.4) 60.9 (+7.5)

Trained EPR 38.3 (+9.5) 43.7 (+9.3) 48.1 (+94)  51.8 (+7.0) 53.5 (+6.4) 47.4 (+2.5) 58.5 (+5.1)
CEIL 38.1 +9.3) 44.5 (+10.1) 499 (+112)  54.8 (+9.9) 57.3 (+10.2) 51.2 (+6.3) 64.0 (+10.7)

Ours BSR 34.1 +53) 40.1 (+5.8) 46.5 (+7.8)  52.6 +7.7) 54.8 (+7.7) 52.7 (+7.8) 61.2 (+7.9)
SET-BSR 358 +7.0) 43.8(+94) 51.4 (+12.7) 59.5 (+14.6) 61.6 (+14.5)  60.1 (+15.2)  70.3 (+16.9)

Table 1: Average 8-shot ICL performance across all splits of semantic parsing datasets using different LLMs and
demonstration-selection methods with absolute improvement over COSINE in brackets. Both BSR and SET-BSR
outperform prior training-free methods, with the latter outperforming even trained methods with larger LLMs.

to the recall, precision, and F1 variants as BSR,
BSP, and BSF1, respectively. Unless specified
otherwise, we do not apply importance weighting
(IDF) and use deberta-large-mnli.
Additionally, we experiment with (1) a ran-
dom baseline (RANDOM) that randomly selects
demonstrations from the pool, and (2) with the
set-extensions of COSINE, BM25 and BSR as de-
scribed in §5 which will be referred to as SET-
COSINE, SET-BM25, and SET-BSR respectively.

6.3.2 Trained Methods

We also compare with methods that require task or
LLM-specific training. EPR (Rubin et al., 2022)
uses LLM perplexity to train a dense retriever for
each dataset. CEIL (Ye et al., 2023) uses EPR
and an LLM to train a Determinantal Point Pro-
cess (Kulesza, 2012) for each dataset and then uses
it to select examples. We use Ye et al. (2023)’s
implementation of EPR and CEIL and use GPT-
Neo-2.7B LLM. We also compare with LFCoOV
(Levy et al., 2022), a method for semantic pars-
ing, specifically SMCalFlow-CS and GeoQuery. It
trains a classifier to predict logical form substruc-
tures and then selects diverse examples containing
them. We use the shots provided by the authors.

6.4 Prompt Construction

For k-shot (we use k = 8 unless specified other-
wise) ICL with any given dataset (§ 6.1), demon-
stration selection method (§ 6.3) and LLM (§ 6.2),
we construct the prompt as follows: (1) select up
to k demonstrations depending on the context win-
dow of the LLM; (2) order the demonstrations in
increasing order of relevance so that the most rele-
vant demonstrations appear closest to the test input;
and (3) linearize the ordered demonstrations and
the test input using the dataset’s prompt template
in Table 5 and concatenate to form the prompt. For
set-selection methods, the demonstrations are or-

Selector 8_S 32 C
. RANDOM 319 (-228) 7.4 (-45)
Trlilrfc‘;“g COSINE 547 11.9
BM25 65.4 (+10.7) 29.4 (+17.5)
EPR 76.3 (+21.6) 21.7 (+9.8)
Trained CEIL 77.5 (+22.8) 40.1 (+28.2)
LFCov 66.3 (+11.6) 45.9 (+33.9)
Ours BSR 72.5 (+17.8) 31.5 (+19.6)
SET-BSR  75.7 (+21.0) 61.2 (+49.3)

Table 2: 8-shot ICL accuracy on SMCalFlow-CS us-
ing Codex with absolute improvement over COSINE in
brackets. SET-BSR is competitive with trained methods
on the IID split while dramatically outperforming them
on the compositional split.

dered by their corresponding instance-level score.
For the trained baselines, we use orderings recom-
mended by the corresponding authors.

7 Results

We begin by comparing the performance of our
proposed methods, BSR and SET-BSR, with prior
training-free and state-of-the-art trained methods
in § 7.1. We then analyze the different metrics for
measuring informativeness of individual demon-
strations (§ 7.2) and the impact of coverage-based
set selection using our set extension (§ 7.3).

7.1 Main Results

Table 1 compares average performance across all
semantic parsing splits for seven LLMs of varying
sizes. See Table 2 for comparison with LFCov,
which only works with GeoQuery and SMCalFlow-
CS and Table 11 for results on individual splits.
While BSR consistently outperforms COSINE and
BM25 for all LLMs, set-selection using SET-BSR
leads to further dramatic gains with upto 17% im-
provement over COSINE with Codex, beating even
state-of-the-art trained methods like EPR and CEIL
by 12 and 6 points, respectively. Further, from
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Selector GSM8K DROP MNLI PAWS SST2
Random 60.6 62.7 419 48  86.9

T‘”;‘;E;“g Cosine 64 65.4 440 525 819
BM25 648 669 422 552 826
Trained EPR 61.7 - 6617 - -
CEIL 63.1 - gt - -
o BSR 681 681 767 75 909
urs

Set-BSR 674 664 786 749 615

Table 3: 8-shot ICL performance for tasks other than
semantic parsing (using GPT-Neo-2.7B for the classi-
fication tasks and Codex for the harder GSM8K and
DROP). BSR is competitive with prior methods, how-
ever, as these are IID splits, SET-BSR doesn’t lead to
further gains. 1 50-shot results from Ye et al. (2023).
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Figure 2: Gain in average ICL accuracy compared to
COSINE on IID and COMPositional splits in semantic
parsing. Trained methods (EPR and CEIL) become
less effective with larger LLMs on IID splits. This is
unlike SET-BSR, which, on compositional splits, even
becomes more effective with larger LLMs.

Table 3, we see that, unlike SET-BSR, BSR is
effective even for non-semantic parsing datasets
outperforming COSINE by 15 points on average
with GPT-Neo-2.7B (see Table 12), and often even
EPR and CEIL (see Table 13). All the above im-
provements were statistically significant (p < 0.05)
under paired permutation-tests.

SET-BSR is more effective with larger LLMs
The effectiveness of SET-BSR monotonically im-
proves as LLMs become more powerful. The trend
is particularly pronounced in compositional splits,
where it gets 25% absolute improvement v/s CO-
SINE on average (see Fig. 2) and 49% improvement
on the 32-C split of SMCalFlow-CS (see Table 2).

Trained methods do not leverage larger LL.Ms
As EPR and CEIL are trained using GPT-Neo-2.7B,
they have difficulty generalizing to and taking ad-

Selector ALL IID COMP
BSF1 60.6 71.0 50.1
BSP 543 65.5 432
BSR 61.2 71.5 509
BM25 609 68.9 528

+ Coverage 564 634 495
BM25[4-gram] 59.1 67.1 51.0
+ Coverage 64.5 689 60.2
BM25[4-depst] 57.8 65.5 50.0
+ Coverage 649 68.6 61.2

Table 4: Average 8-shot ICL performance with Codex
on IID, COMPositional, and ALL semantic parsing
splits. Top compares different variants of BERTScore,
white Bottom compares the different variants of BM25.

vantage of larger, more powerful LLMs, becoming
less effective on IID splits (Fig. 2), and failing on
GSMBSK (Table 3). The latter is likely because GPT-
Neo-2.7B itself fails on GSMS8K (Table 13), which
requires Chain-of-Thought reasoning, an emergent
ability of larger LLMs (Wei et al., 2022). As train-
ing with increasingly large LLMs is prohibitively
expensive and impractical, these results demon-
strate serious limitations of trained methods.

7.2 Measure of Informativeness

Contextual embeddings capture salient aspects
From Tables 1 and 3, it is clear that BSR consis-
tently outperforms COSINE and BM25. This is
true even when using the same encoder (see App.
D), is seen in both IID and compositional splits (see
Fig. 2), and with varying number of demonstrations
(see Fig. 4). Larger syntactic substructures did not
improve BM25 as seen in Table 4 (Bottom). These
results show that contextual embeddings are indeed
better at capturing salient aspects.

Recall outperforms other measures Comparing
the variants of BERTScore, for Codex in Table 4
(Top), and other LLMs in Fig. 7 in App. D, it is
evident that recall is on par with, or better than,
the F1 metric. This supports our hypothesis that
recall or coverage (of salient aspects) is a useful
metric for informativeness. We include additional
ablations in App. D, analyzing the effect of using
importance weighting (IDF) and using a larger LM
to compute token embeddings for BSR.

7.3 Coverage-based Set Selection

Impact on performance From Fig. 3, we see
that coverage-based set selection is most effective
in compositional splits where it improves the aver-
age performance of all metrics, including COSINE.
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Figure 3: Change in average performance on different types of splits of semantic parsing datasets from set-selection

using our set metrics v/s the corresponding instance-leve

1 metric. Coverage-based set selection is most useful in

compositional splits and when covering larger syntactic structures (BM25) or contextual embeddings (BSR).

Split Type = IID

=

Set-BSR
BSR
BM25
Cosine

Split Type = COMP

—

Test Accuracy

u
o
1

IS
vl

1
[N NN )

N
o
1

T
16
#shots

-

T
16
#shots

24

Figure 4: Average performance on IID and COMP
semantic parsing splits with Codex. SET-BSR consis-
tently outperforms independent selection.

This shows the importance of selecting demonstra-
tions as a set in compositional settings where exam-
ples demonstrating all the salient aspects of the test
input are even less likely to exist. The set extension
is less effective in IID splits and even hurts per-
formance for COSINE and vanilla unigram BM25.
Overall, BSR and BM25 with larger substructures
benefit the most from the set extension. We pro-
vided further analyses of improvements from set
selection and the impact of reordering in App. D.

Ilustrative Example We present a GeoQuery test
input in Fig 5 along with demonstrations (only the
inputs) selected by COSINE and SET-BSR (more
examples in Appendix E). COSINE selections tend
to be redundant, with repeated operations, and are
somewhat restrictive, mostly limited to the min
operation. Contrastingly, SET-BSR exhibits a more
balanced selection, opting for demonstrations of
comparable complexity to the test instance and
collectively encapsulating all necessary operations.

Failure Cases There are a few limitations of
coverage-based set-selection using SET-BSR. First,
by only considering uncovered aspects, it sacrifices

Test Instance:

what is the highest point of the state with the smallest population density

Selected by COSINE

what state has the smallest population density
which state has the smallest population density
what is the state with the lowest population density

what is the area of the state with the smallest population density

Selected by SET-BSR

what is the state with the lowest population density

what is the lowest point of the state with the largest area
what is the highest point of the state with the largest area

what is the area of the state with the smallest population density

Figure 5: Demonstrations selected for a GeoQuery input
(outputs omitted for clarity). COSINE demonstrations
are redundant (repeated operations) and limited (only
cover “population” aspect). SET-BSR, instead, selects
demonstrations that are similarly complex as the test
instance and, together, cover all required operations.

the relevance of individual demonstrations to pri-
oritize coverage of all aspects with the set (see
Table 9 for an example from GSM8K). Addition-
ally, even contextual token embeddings can only
capture salient aspects that are explicitly expressed
in the input text and thus may not be suitable for
tasks where the salient aspects are more abstract
and require reasoning themselves (see Table 10 for
an example from QNLI). We leave it to future work
to explore better measures of informativeness, in-
cluding better characterizations of salient aspects.

8 Conclusion

This paper presents a novel framework for select-
ing informative sets of demonstrations that cover
salient aspects of the test input to aid the lan-
guage model (LLM) in solving it. We explore
different ways to characterize these aspects and
quantify their coverage. Evaluation on a wide
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range of tasks and LLMs validates the effective-
ness of BERTScore-Recall as a measure of in-
formativeness of individual demonstrations. Fur-
ther, our results demonstrate the superiority of
SET-BSR in selecting informative sets of demon-
strations compositional tasks like semantic pars-
ing and highlight the ability of coverage-based
demonstration selection, unlike trained methods, to
leverage increasingly powerful larger LLMs. Our
code base is available at https://github.com/
Shivanshu-Gupta/icl-coverage.
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Limitations

Contextual token embeddings require the salient as-
pects to be expressed in text and hence may not be
able to capture them for all tasks. Moreover, since
it requires computing a dot product for every pair
of test and candidate instance tokens, this causes
it to scale quadratically with the average number
of tokens making it computationally infeasible for
tasks with very long textual linearizations. Future
work can thus explore more general characteriza-
tions of salient aspects and more efficient methods
for selecting demonstrations covering them.

References

Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke
Zettlemoyer, and Marjan Ghazvininejad. 2022. In-
context examples selection for machine translation.

Jacob Andreas, John Bufe, David Burkett, Charles
Chen, Josh Clausman, Jean Crawford, Kate Crim,
Jordan DeLoach, Leah Dorner, Jason Eisner, Hao
Fang, Alan Guo, David Hall, Kristin Hayes, Kellie
Hill, Diana Ho, Wendy Iwaszuk, Smriti Jha, Dan
Klein, Jayant Krishnamurthy, Theo Lanman, Percy
Liang, Christopher H. Lin, Ilya Lintsbakh, Andy Mc-
Govern, Aleksandr Nisnevich, Adam Pauls, Dmitrij
Petters, Brent Read, Dan Roth, Subhro Roy, Jesse
Rusak, Beth Short, Div Slomin, Ben Snyder, Stephon
Striplin, Yu Su, Zachary Tellman, Sam Thomson, An-
drei Vorobev, Izabela Witoszko, Jason Wolfe, Abby
Wray, Yuchen Zhang, and Alexander Zotov. 2020.

Task-oriented dialogue as dataflow synthesis. Trans-
actions of the Association for Computational Linguis-
tics, 8:556-571.

Cem Anil, Yuhuai Wu, Anders Johan Andreassen, Aitor
Lewkowycz, Vedant Misra, Vinay Venkatesh Ra-
masesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer,
and Behnam Neyshabur. 2022. Exploring length gen-
eralization in large language models. In Advances in
Neural Information Processing Systems.

Luisa Bentivogli, Bernardo Magnini, Ido Dagan,
Hoa Trang Dang, and Danilo Giampiccolo. 2009.
The fifth PASCAL recognizing textual entailment
challenge. In Proceedings of the Second Text Analy-
sis Conference, TAC 2009, Gaithersburg, Maryland,
USA, November 16-17, 2009. NIST.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and
Stella Biderman. 2021. GPT-Neo: Large scale autore-
gressive language modeling with meshtensorflow.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurlPS 2020, December 6-12,
2020, virtual.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

13932



Deborah A. Dahl, Madeleine Bates, Michael Brown,
William Fisher, Kate Hunicke-Smith, David Pallett,
Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the scope of the ATIS
task: The ATIS-3 corpus. In Human Language Tech-
nology: Proceedings of a Workshop held at Plains-
boro, New Jersey, March 8-11, 1994.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Andrew Drozdov, Nathanael Schirli, Ekin Akyiirek,
Nathan Scales, Xinying Song, Xinyun Chen, Olivier
Bousquet, and Denny Zhou. 2023. Compositional
semantic parsing with large language models. In
The Eleventh International Conference on Learning
Representations.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2368-2378, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir Radev. 2018. Improving text-
to-SQL evaluation methodology. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 351-360, Melbourne, Australia. Association
for Computational Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.

Shivanshu Gupta, Sameer Singh, and Matt Gardner.
2022. Structurally diverse sampling for sample-
efficient training and comprehensive evaluation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2022, pages 4966—4979, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Matan Hasson and Jonathan Berant. 2021. Question
decomposition with dependency graphs.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: decoding-enhanced
bert with disentangled attention. In 9¢h International
Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net.

Charles T. Hemphill, John J. Godfrey, and George R.
Doddington. 1990. The ATIS spoken language sys-
tems pilot corpus. In Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27,1990.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535-547.

Karen Spirck Jones, Steve Walker, and Stephen E.
Robertson. 2000. A probabilistic model of informa-
tion retrieval: development and comparative experi-
ments - part 2. Inf. Process. Manag., 36:809—-840.

Daniel Keysers, Nathanael Schirli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia
Li, Chenghao Mou, Carlos Muiioz Ferrandis, Yacine
Jernite, Margaret Mitchell, Sean Hughes, Thomas
Wolf, Dzmitry Bahdanau, Leandro von Werra, and
Harm de Vries. 2022. The stack: 3 tb of permissively
licensed source code.

Alex Kulesza. 2012. Determinantal point processes
for machine learning. Foundations and Trends® in
Machine Learning, 5(2-3):123-286.

Itay Levy, Ben Bogin, and Jonathan Berant. 2022. Di-
verse demonstrations improve in-context composi-
tional generalization.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit
Gupta, Sonal Gupta, and Yashar Mehdad. 2021.
MTOP: A comprehensive multilingual task-oriented
semantic parsing benchmark. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 2950-2962, Online. Association for Computa-
tional Linguistics.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, Jodo Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo

13933



Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Mufioz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro
von Werra, and Harm de Vries. 2023. Starcoder: may
the source be with you!

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (Deel 1O
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100-114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and Ashwin Kalyan. 2023. Dynamic prompt learning
via policy gradient for semi-structured mathematical
reasoning.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086-8098, Dublin, Ireland. Association for Compu-
tational Linguistics.

Joram Meron. 2022. Simplifying semantic annotations
of SMCalFlow. In Proceedings of the 18th Joint
ACL - ISO Workshop on Interoperable Semantic An-
notation within LREC2022, pages 81-85, Marseille,
France. European Language Resources Association.

George L. Nemhauser, Laurence A. Wolsey, and Mar-
shall L. Fisher. 1978. An analysis of approximations
for maximizing submodular set functions—i. Mathe-
matical Programming, 14:265-294.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Pawel
Nowak, Tal Linzen, Fei Sha, and Kristina Toutanova.
2022a. Improving compositional generalization with
latent structure and data augmentation. In Proceed-
ings of the 2022 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4341-4362, Seattle, United States. Association for
Computational Linguistics.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Tianze Shi,
Jonathan Herzig, Emily Pitler, Fei Sha, and Kristina
Toutanova. 2022b. Evaluating the impact of model
scale for compositional generalization in semantic
parsing. In Proceedings of the 2022 Conference on

Empirical Methods in Natural Language Processing,
pages 9157-9179, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Com-
putational Linguistics.

Stephen Robertson, Steve Walker, Susan Jones, Miche-
line Hancock-Beaulieu, and Mike Gatford. 1993.
Okapi at trec. 500207, pages 109-123. National
Institute of Standards and Technology.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2655-2671, Seattle, United States.
Association for Computational Linguistics.

Timo Schick and Hinrich Schiitze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255-269, Online. Association for Computa-
tional Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631-1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi,
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A. Smith, and Tao Yu. 2022.
Selective annotation makes language models better
few-shot learners.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353-355, Brussels, Belgium. Association for Com-
putational Linguistics.

13934



Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark
Steyvers, and William Yang Wang. 2023. Large lan-
guage models are implicitly topic models: Explain-
ing and finding good demonstrations for in-context
learning.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1332-1342, Beijing,
China. Association for Computational Linguistics.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022. Emer-
gent abilities of large language models.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112-1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gard-
ner, Yoav Goldberg, Daniel Deutch, and Jonathan
Berant. 2020. Break it down: A question understand-
ing benchmark. Transactions of the Association for
Computational Linguistics, 8:183—198.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Ling-
peng Kong. 2023. Self-adaptive in-context learn-
ing: An information compression perspective for in-
context example selection and ordering.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and
Lingpeng Kong. 2023. Compositional exemplars for
in-context learning.

Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, Ves Stoy-
anov, Greg Durrett, and Ramakanth Pasunuru. 2022.
Complementary explanations for effective in-context
learning.

Pengcheng Yin, Hao Fang, Graham Neubig, Adam
Pauls, Emmanouil Antonios Platanios, Yu Su, Sam
Thomson, and Jacob Andreas. 2021. Compositional
generalization for neural semantic parsing via span-
level supervised attention. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2810-2823, Online.
Association for Computational Linguistics.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence - Volume

2, AAAT’ 96, pages 1050-1055. AAAI Press.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with BERT. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
PAWS: Paraphrase adversaries from word scrambling.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 12981308,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Vir-
tual Event, volume 139 of Proceedings of Machine
Learning Research, pages 12697-12706. PMLR.

13935



A Submodularity

Definition A.1 (Submodular Function). If €2 is a
finite set, a submodular function is a set function
f 22 = R, where 2 denotes the power set of
), which satisfies one of the following equivalent
conditions.

1. Forevery X,Y C Q with X C Y and every
x € Q\Y we have that f(XU{z})— f(X) >

fY U{z}) = f(Y).

2. For every S,T C Q we have that f(S) +
F(T) =z f(SUT)+ f(SNT).

3. Forevery X C Q and z1,22 € Q\X such
that 71 # x5 we have that f (X U {z1}) +

F(XU{z2}) = f(X Ufar, 22}) + f(X).

Theorem A.1. The function fyan, (X) = Max wy
FAS

is submodular for any assignment of weights w,, to
the elements x € ).

Proof. The following are clearly true for any z € €2
and any z1, z2 € 2 such that wy, > wg,:

L fnaw (X U{z}) = f(X)
2. fmaxw (X U {1‘1}) = fmaxw (X U {xlaxQ})

Adding these two inequalities together, we get
the third definition of submodularity and thus fpaxw
is submodular. O

Theorem A.2. If { f;}!'_, are all submodular func-
n

tions, then Y f; is also submodular.
i=1

Proof. We show this for n = 2:

(fi+ f2) (X1 UX2)+ (fi + f2) (X1 N X2)
= (fi(X1U X2) + f1(X1 N X2))
+ (f2(X1 U X2) + fo(X1 N X2))
< (i(X1) + fi(X2)) + (f2(X1) + fa(X2))
= (fi + f2)(X1) + (f1 + f2)(X2)
(8)

Therefore, f1 + f2 is submodular using the second
definition of submodularity. By induction, this is
true for any number n of functions. O

Theorem A.3. The set-level coverage metric
setcov (T , Z) as defined in Eq. 6 is submodu-
lar for any definition of c(s, z).

Proof. From Theorem A.1, the function fs(Z) de-
fined as fs(Z) = max c(s, z) is submodular for
zE

any definition of c(s, z). Further, since from Theo-
rem A.2, the sum of submodular functions is also

submodular, setcov (s, Z) = Y. fs(Z)is
sesfﬁlest
submodular. ]

B Datasets

We use 15 diverse datasets, including 6 semantic
parsing, 2 numerical reasoning, and 7 classification
datasets.

B.1 Semantic Parsing

We use 6 semantic parsing datasets with IID and
compositional splits for our experiments. Table
5 shows sample instances from each dataset we
experiment with along with the textual template
we use to linearize the instances. The ICL prompt
is constructed by concatenating the templatized
demonstrations and the test instance using \n\n as
the separator.

GeoQuery (Zelle and Mooney, 1996): A dataset
containing 880 natural language questions about
US geography paired with Prolog programs. In
addition to the standard (IID) split, we experiment
with three types of compositional splits: (1) Tem-
plate split where the training and test sets have
disjoint program templates (Finegan-Dollak et al.,
2018); (2) TMCD split which creates train and test
sets with maximal compound divergence and min-
imal atom divergence (Keysers et al., 2020); and
(3) Length split which evaluates for length gener-
alization by testing on sequences longer than ones
in training. Following Levy et al. (2022), we use
the compositional splits — three Template, three
TMCD, and one Length — generated by Qiu et al.
(2022a) and average results across the TMCD and
Template splits.

ATIS (Hemphill et al., 1990; Dahl et al., 1994):
A dataset of natural language queries about avi-
ation paired with A-calculus programs. We ex-
periment with an IID split and a Template split
(Finegan-Dollak et al., 2018) for evaluating com-
positional generalization, both taken from (Gupta
et al., 2022).

Overnight (Wang et al., 2015): A dataset contain-
ing both synthetic and natural language utterances
from 11 domains (e.g. socialnetwork, restaurants,
etc.) paired with Lambda-DCS logical forms. We
experiment with an IID and a Template split of
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the socialnetwork domain taken from (Gupta et al.,
2022).

SMCalFlow (Andreas et al., 2020): A dataset of
task-oriented natural language dialogs about calen-
dars, weather, places, and people paired with exe-
cutable dataflow programs. SMCalFlow-CS (Yin
et al., 2021) is a subset of SMCalFlow containing
single-turn dialogs involving two domains (organi-
zation structure and calendar event creation), each
having its own set of program symbols with two
types of test sets: a cross-domain (C) test set con-
taining only instances where both domains appear
and meant to test for compositional generalization,
and a single-domain (S) test set contains instances
with only single-domain for in-distribution evalu-
ation. For compositional evaluation, we use the
32-C split which is a few-shot cross-domain split
where the training set includes 32 cross-domain
examples. For our IID evaluation, following Levy
et al. (2022), we use the 8-S split. Additionally,
we use the programs with the simplified syntax
provided by (Meron, 2022).

BREAK (Wolfson et al., 2020) is a dataset that
maps complex natural language questions into a
language-based meaning representation (QDMR)
comprising an ordered list of atomic steps neces-
sary to answer the question. Following (Rubin
et al., 2022), we use the low-level Break subset
where the targets are logical forms comprising lists
of operators with their arguments based on the cor-
responding QDMR.

MTOP (Li et al., 2021): A multilingual task-
oriented semantic parsing dataset spanning six lan-
guages and 11 domains. The target commands are
complex queries featuring nested intent-slot pre-
diction. We use the English subset of MTOP from
(Rubin et al., 2022).

B.2 Non-Semantic Parsing

We additionally experiment with the standard IID
splits of 9 non-semantic parsing datasets from the
following categories:

Numerical Reasoning: For this category, we
experiment with GSM8K (Cobbe et al., 2021),
a chain-of-thought reasoning (Wei et al., 2023)
dataset of grade school-level arithmetic reasoning
problems expressed in natural language and DROP
(Dua et al., 2019), a dataset of question-answer
pairs where the questions are about paragraphs con-
taining numerical information and the answers are
spans in the paragraph.

Classification: For this category, we experiment
with three Natural Language Inference (NLI)
datasests (QNLI (Wang et al., 2018), MNLI
(Williams et al., 2018), and RTE (Bentivogli
et al., 2009)), three Paraphrase Detection datasets
(MRPC (Dolan and Brockett, 2005), PAWS
(Zhang et al., 2019), and QQP (Wang et al., 2018))
and one Sentiment Classification dataset (SST2
(Socher et al., 2013)).

C Selection Time

Despite their O(L7'd) time complexity, we found
example selection using both BSR and SET-BSR
to be fast enough to not be a bottleneck to in-
context learning for most datasets considered in
this work. By using a GPU to compute ¢(z, 2)s,
we could get both to work in the order tens of
milliseconds per test input on average which was
significantly faster than the LLM inference time
itself. The exceptions were DROP, PAWS, QQP,
MNLI and QNLI for which the selection took >1
second due to much longer instances and/or larger
instance pool. We leave it to future work to explore
more efficient ways to measure informativeness.

D Additional Analyses

BM25 From Fig. 6 we can see that coverage-based
selection using BM25 with larger substructures out-
performs vanilla unigram BM25 in compositional
splits.

BERTScore-Recall Examining the impact of im-
portance weighting in Fig. 8 which compares the
performance change with using importance weight-
ing (IDF) in BSR, we can see that its effect is
not consistent across different LLMs. We also did
not see any consistent improvement from using
larger deberta-large-mnli for computing token
embeddings for instance-level BSR (see Fig. 9).
However, it did help with set-level selection using
SET-BSR.

Reordering We found the reordering of demonstra-
tions according to the corresponding instance-level
metric to only be necessary for smaller LLMs (see
Fig. 10), with it even hurting the performance of
larger LLMs. We believe this is because larger and
code-pretrained LLMs are more capable at com-
posing the salient aspects in the different demon-
strations and taking advantage of the full context.

BSR outperforms Cosine even with the same
encoder In § 7.2, we showed that BSR with
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Dataset Example Template Sample Instance

Overnight  {source}\t{target} source: employees who finish after alices birthday
target: (call listValue (call getProperty ((lambda s (call filter (var
s) (call ensureNumericProperty (string employment_end_date)) (string
>) (call ensureNumericEntity (call getProperty en.person.alice (string
birthdate))))) (call domain (string employee))) (string employee)))

ATIS {source}\t{target} source: give me the flights from pittsburgh to los angeles thursday evening
target: ( lambda $0 e ( and ( flight $0 ) ( during_day $@ evening :
pd ) ( from $0 pittsburgh : ci ) ( to $0 los_angeles : ci ) ( day $0
thursday : da ) ) )

GeoQuery  {source}\t{target} source: which river traverses most states

target:

answer ( most ( river, traverse_2, state ) )

SMCalFlow {source}\t{target} source: Please puta 2 o’clock on my schedule where I'm meeting with boss Daniel.

target:

CreateEvent (AND(with_attendee(” Daniel

"),starts_at(NextTime(time=NumberPM(2)))))

{source}\t{target} source: Is there another cube that is the same size as the cyan cube; what color is it?
return the cyan cube ;return size of #1

;return cubes besides

#1 ;return sizes of #3 ;return #3 where #4 is the same as #2 ;return

BREAK
target:
color of #5
MTOP {source}\t{target} source: latest news from washington times please

target:

[IN:GET_STORIES_NEWS [SL:DATE_TIME latest ] [SL:NEWS_TYPE news

1 [SL:NEWS_SOURCE washington times ] ]

Table 5: Semantic Parsing Datasets with corresponding sample instances and example templates used in for ICL.

deberta-large-mnli outperforms Cosine with
all-mpnet-base-v2. Tables 15, 16, 17, and 18
show that the same trend holds even when using
the same encoder, bert-base-uncased, for both
metrics confirming that contextual embeddings are
indeed better at capturing salient aspects.

Recall of Syntactic Structures The improvements
from set-based selection may be explained by
Fig. 11 where we see that set-extensions COSINE
and unigram BM25 reduce the recall of substruc-
tures of the test input whereas the recalls increase
with set-extensions of both BM25[4-GRAM] and
BM25[4-DEPST], and even BSR, which does not
explicity consider these substructures.

E Qualitative Analysis of Prompts

Tables 7, 8 show demonstrations selected using
COSINE and SET-BSR for instances from MTOP
and SMCalFlow-CS respectively. In each case, CO-
SINE find demonstrations that are all very similar to
the test input but fails to demonstrate some salient
aspect, whereas BSR selects less similar instances
but ensures complete coverage of all salient aspects.
Tables 9 and 10 additionally illustrate limitations of
set-selection and of token-embeddings in capturing
salient aspects.

F All Results

Tables 11 contains 8-shot ICL results for our pro-
posed methods and prior learning-free and learning-
based demonstration selection on all the LLMs

for all the semantic parsing datasets. For numeri-
cal reasoning and classification datasets, Tables 12
and 13 compare 8-shot ICL performance with prior
training-free and trained methods, respectively. Ta-
ble 14 provides average performances across all
datasets.

Additionally, Tables 15, 16, 17, 18, 20, and 21
contain results on semantic parsing datasets of all
ablations of learning-free selection methods we
ran, with GPT-Neo-2.7B, LLaMA-7B, LLaMA-
13B, StarCoder, Cushman, and Codex, respectively.
We did not run ablations on GPT-3.5-Turbo due to
its cost.
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Figure 6: Absolute improvement in average 8-shot ICL performance on different types of semantic parsing splits
from using the set extensions SET-BM25 with larger substructures over vanilla BM25.
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Figure 7: Comparison of 8-shot ICL performance of different variants of BERTScore with token embeddings
computed using deberta-base-mnli. For easier visualization, since we found BERTScore-Precision to consistently
perform worst, we show absolute improvement in average performance on different types of splits from the recall
and F1 metrics over the precision metric.
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Figure 9: Impact on average 8-shot ICL performance on semantic parsing splits from using a larger
deberta-large-mnli LLM for computing contextual token embeddings v/s using deberta-base-mnli in BSR

and SET-BSR.
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Dataset Example Template Sample Instance

GSMS8K Question: {question} question: Natalia sold clips to 48 of her friends in April, and then she sold half as
Solution: {solution} many clips in May. How many clips did Natalia sell altogether in April and May?
solution: Natalia sold 48/2 = «48/2=24»24 clips in May. Natalia sold 48+24 =
«48+24=72»72 clips altogether in April and May. #### 72

DROP Passage: {passage} passage: 7To start the season, the Lions traveled south to Tampa, Florida to take
Question: {question} on the Tampa Bay Buccaneers. The Lions scored first in the first quarter with a
Answer: {answer} 23-yard field goal by Jason Hanson. The Buccaneers tied it up with a 38-yard field

goal by Connor Barth, then took the lead when Aqib Talib intercepted a pass from
Matthew Stafford and ran it in 28 yards. The Lions responded with a 28-yard field
goal. In the second quarter, Detroit took the lead with a 36-yard touchdown catch by
Calvin Johnson, and later added more points when Tony Scheffler caught an 11-yard
TD pass. Tampa Bay responded with a 31-yard field goal just before halftime. The
second half was relatively quiet, with each team only scoring one touchdown. First,
Detroit’s Calvin Johnson caught a 1-yard pass in the third quarter. The game’s final
points came when Mike Williams of Tampa Bay caught a 5-yard pass. The Lions
won their regular season opener for the first time since 2007

question: How many points did the buccaneers need to tie in the first?

answer: 3
QNLI Question: {question} sentence: Unlike the two seasons before it and most of the seasons that followed,
Sentence: {sentence} Digimon Tamers takes a darker and more realistic approach to its story featuring
Answer: {label} Digimon who do not reincarnate after their deaths and more complex character

development in the original Japanese.
question: When did the third Digimon series begin?

label: No
MNLI  Premise: {premise} premise: The new rights are nice enough
Hypothesis: {hypothesis} hypothesis: Everyone really likes the newest benefits
Answer: {label} label: Maybe
RTE Premise: {premise} premise: Dana Reeve, the widow of the actor Christopher Reeve, has died of lung
Hypothesis: {hypothesis} cancer at age 44, according to the Christopher Reeve Foundation.
Answer: {label} hypothesis: Christopher Reeve had an accident.
label: Yes

MRPC Sentence 1: {sentencel} sentencel: He said the foodservice pie business doesn t fit the company ’s long-term
Sentence 2: {sentence2} growth strategy.
Answer: {label} sentence2: " The foodservice pie business does not fit our long-term growth strategy

label: Yes
PAWS  Sentence 1: {sentencel} sentencel: Bradd Crellin represented BARLA Cumbria on a tour of Australia with 6
Sentence 2: {sentence2} other players representing Britain , also on a tour of Australia .

Answer: {label} sentence2: "Bradd Crellin also represented BARLA Great Britain on a tour through
Australia on a tour through Australia with 6 other players representing Cumbria .
label: No

QQP Question 1: {question1} questionl: Why are African-Americans so beautiful?
Question 2: {question2} question2: "Why are hispanics so beautiful?

Answer: {label} label: No
SST2 Review: {sentence} sentence: it 's a charming and often affecting journey .
Answer: {label?} label: Positive

Table 6: Non-Semantic Parsing Datasets with corresponding sample instances and example templates used for ICL.
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Figure 10: Impact on average 8-shot ICL performance on semantic parsing splits from reordering the demonstrations
selected by the different set-level metric using the corresponding instance-level metric as absolute gain v/s the

unreordered version.
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Selector

Prompt

COSINE

Sentence: Easy vegan recipes
Logical Form: [IN:GET_RECIPES [SL:RECIPES_ATTRIBUTE Easy 1 [SL:RECIPES_TYPE vegan ] ]

Sentence: Vegetarian recipes
Logical Form: [IN:GET_RECIPES [SL:RECIPES_TYPE Vegetarian ] ]

Sentence: Please find me vegan recipes
Logical Form: [IN:GET_RECIPES [SL:RECIPES_TYPE vegan ] ]

Sentence: Give me vegan recipes
Logical Form: [IN:GET_RECIPES [SL:RECIPES_TYPE vegan 1 1]

SET-BSR

Sentence: I have a nut allergy. Find me a dessert recipe
Logical Form: [IN:GET_RECIPES [SL:RECIPES_EXCLUDED_INGREDIENT nut ] [SL:RECIPES_MEAL dessert ]
]

Sentence: Create a video message for Victoria with plan options for dinner with family next
week
Logical Form: [IN:SEND_MESSAGE [SL:TYPE_CONTENT video ] [SL:RECIPIENT Victoria ] 1]

Sentence: What are some no-bake dessert ideas
Logical Form: [IN:GET_RECIPES [SL:RECIPES_COOKING_METHOD no - bake ] [SL:RECIPES_MEAL dessert
11

Sentence: Vegan birthday cakes
Logical Form: [IN:GET_RECIPES [SL:RECIPES_TYPE Vegan ] [SL:RECIPES_DISH birthday cakes ] 1]

Table 7:

Demonstrations selected for the MTOP input: Vegan desert options with target output

[IN:GET_RECIPES [SL:RECIPES_TYPE Vegan ] [SL:RECIPES_DISH birthday cakes 1 1. COSINE’s re-
liance on a single dense embedding means it is unable to account for the fact that "options" could mean dishes and
not just recipes.

Selector

Prompt

Sentence: I need a meeting with El1li tomorrow at 11 pm
Logical Form: CreateEvent (AND(with_attendee(” E1li "),starts_at(Tomorrow()),starts_at(NumberPM
a1d»

Sentence: Set a meeting with Elli for tomorrow at 2 pm through the end of the day and call it
Recap

Logical Form: CreateEvent (AND(ends_at (AND(GE(DateTime?(date=Tomorrow(),time=NumberPM(2))),
EndOfWorkDay())),with_attendee(” E1li "),has_subject(” Recap "),starts_at(Tomorrow()),

COSINE starts_at (NumberPM(2))))
Sentence: Schedule a meeting with El1li for tomorrow at 4 pm through the end of the workday
Logical Form: CreateEvent (AND(ends_at (AND(GE(DateTime?(date=Tomorrow(),time=NumberPM(4))),
EndOfWorkDay())),with_attendee(” E1li "),starts_at(Tomorrow()),starts_at(NumberPM(4))))
Sentence: Schedule a meeting with E1li from 4 PM until the end of the day tomorrow
Logical Form: CreateEvent (AND(ends_at (AND(GE(DateTime?(date=Tomorrow(),time=NumberPM(4))),
EndOfWorkDay())),with_attendee(” E1li "),starts_at(Tomorrow()),starts_at(NumberPM(4))))
Sentence: I need a doctor 's appointment on Wednesday morning
Logical Form: CreateEvent (AND(has_subject(” doctor's appointment "),starts_at(Morning()),
starts_at(NextDOW(" WEDNESDAY "))))
Sentence: I need to see Alice and her boss next Monday at 3 pm
Logical Form: CreateEvent (AND(with_attendee(” Alice "),with_attendee(FindManager (" Alice ")),
starts_at (NextDOW(" MONDAY ")),starts_at(NumberPM(3))))
SET-BSR

Sentence: Schedule a meeting with Jake , El1li , and Jesse for Friday at 2 pm
Logical Form: CreateEvent (AND(with_attendee (" Jesse "),with_attendee(” Jake "),with_attendee(”
E11i "),starts_at(NextDOW("” FRIDAY ")),starts_at(NumberPM(2))))

Sentence: I need to schedule a meeting with Jeff 's supervisor Lynne for tomorrow at 10 AM
Logical Form: CreateEvent (AND(with_attendee(” Lynne "),starts_at(Tomorrow()),starts_at(
NumberAM(10))))

Table 8: Demonstrations selected for the SMCalFlow-CS input: Schedule a meeting with E1li and her
manager ’s boss tomorrow morning. SET-BSR is able to find demonstrations covering all fragments of the test
input while COSINE fails to include anything which involves finding someones manager.
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Selector ~ Prompt

Question: Justin has a box that is 12 inches in height. The length of the box is 3 times its
height and 4 times its width. What is the volume of the box?
Question: John builds a box. The box is 26 inches by 26 inches by 14 inches. The walls are 1
inch thick on each side. How much is the internal volume in cubic feet?

COSINE

Question: A window is made up of 8 glass panes. Each pane has a length of 12 inches and a
BSR width of 8 inches. What is the area of the window?
Question: John builds a box. The box is 26 inches by 26 inches by 14 inches. The walls are 1
inch thick on each side. How much is the internal volume in cubic feet?

Question: Jazel has 3 sticks. One stick is 3 centimeters long. The second stick is twice as
long while the third stick is 1 centimeter shorter than the second stick. What is the
SET-BSR total length of Jazel's sticks when they are put together?
Question: John builds a box. The box is 26 inches by 26 inches by 14 inches. The walls are 1
inch thick on each side. How much is the internal volume in cubic feet?

Table 9: Demonstrations selected by different methods for the GSM8K input: John has 3 boxes. Each box is
5 inches by 6 inches by 4 inches. The walls are 1 inch thick. What is the total inner volume
of all 3 boxes? We only show the inputs for clarity. Only BSR solves this input (2-shot ICL with Codex). All
three methods select one example that demonstrates most of the aspects of the test input, i.e., computing the volume
of a box after subtracting wall thickness. The remaining aspect is computing the total of a quantity computed for 3
identical items. COSINE fails to do so, selecting yet another example that requires computing a single box’s volume.
Since SET-BSR prioritizes coverage of the remaining aspect, it selects an example that has exactly three items
whose total length has to be computed but overall is not very similar in reasoning. BSR on the other hand tries
to find an example that demonstrates all aspects by itself and happens to find one that partially demonstrates the
remaining aspect as well.

Selector  Prompt

Begun in 1960 and opened to traffic in 1968, the bridge is a two-tiered road and rail design
spanning 4,600 metres on the upper deck, with approximately 1,580 metres spanning the
river itself. Can we

know "What type of design is the bridge?"? Yes

The BBC also introduced Ceefax, the first teletext service, starting in 1974. Can we know "What
kind of service was Ceefax?”? Yes

BSR The Water, Sanitation and Hygiene (WSH) program of the Gates Foundation was launched in mid
-2005 as a "Learning Initiative,” and became a full-fledged program under the Global
Development Division in early 2010. Can we know "What was the WSH program launched in
2005"? Yes

Television broadcasting in Hyderabad began in 1974 with the launch of Doordarshan, the
Government of India's public service broadcaster, which transmits two free-to-air
terrestrial television channelsand one satellite channel. Can we know "What is Doordarshan
?"? Yes

Table 10: Top four demonstrations selected by different methods for the QNLI input: Telenet was incorporated
in 1973 and started operations in 1975. Can we know "What was telenet”? Since BSR doesn’t have
access to the labels and also cannot reason about the inputs themselves, it cannot account for the fact that the context
in the test input does not contain the answer for the question and selects demonstrations that are all answered "Yes"
even though the answer to the test input is "No".
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Dataset ATIS Overnight Break MTOP GeoQuery SMCalFlow-CS AVERAGE
Split [ID/Templ. IID/Templ. IID IID  IID/Templ./TMCD/Len. 8_S/32_C All/IID/Comp.

LM Selector
EPR 66.1/12.2 523/09 299 622 71.4/33.6/43.6/28.8 54.5/3.6 38.3/56.1/20.5
E!i CEIL 67.8/18.7 50.7/21 299 605 654/30.2/43.6/25.2 59.1/3.8 38.1/55.6/20.6
‘;‘ Random 124/0.0 3.6/0.0 1.9 1.3 17.5/11.0/14.0/0.9 3.0/0.0 5.5/6.6/43
:2 Cosine 46.1/6.5 383/04 223 439 679/24.1/41.4/28.5 252/1.2 28.8/40.6/17.0
= BM25 495/74 337/3.0 265 477 63.6/40.6/42.1/255 32.0/3.2 31.2/42.2/20.3
?5 BSR 483/7.8 40.1/2.6 29.1 545 67.1/40.7/47.7/28.2 39.7/3.5 34.1/46.5/21.7
Set-BSR 54.6/13.2 432/49 28.6 551 67.1/453/454/26.4 41.5/4.8 35.8/48.4/23.3
EPR 73.0/21.0 57.7/1.8 332 652 754/49.3/45.8/30.3 64.0/8.0 437/61.4/26.0
g CEIL 74.0/30.5 55.8/44 36.1 66.8 66.8/50.5/453/24.2 67.4/11.9 445/61.1/27.8
Z Random 9.5/0.0 42/0.5 8.8 2.8 93/13.3/9.2/4.5 6.2/0.0 5.7/6.8/4.6
= Cosine 56.7/11.5 487/0.0 26.1 49.8 73.9/33.5/42.6/29.4 37.3/3.2 34.4/48.8/20.0
S BM25 61.0/12.5 45.1/25 30.1 53.6 67.9/39.5/449/30.6 43.4/9.5 36.7/50.2/23.3
=  BSR 609/143 51.2/3.0 325 59.1 725/47.2/469/30.3 54.1/9.8 40.1/55.0/25.2
Set-BSR 64.3/21.2 515/63 337 619 76.1/52.3/485/35.8 54.5/19.3 43.8/57.0/30.6
EPR 753/282 62.6/07 372 683 80.4/57.5/53.9/34.8 66.5/11.9 48.1/65.0/31.2
2 CEIL 76.1/36.7 59.1/49 388 712 75.7/59.3/555/32.1 683/21.0 499/64.9/34.9
= Random 19.5/5.1 34/26 9.0 4.8 23.9/19.8/14.2/1.5 14.0/0.0 9.8/124/72
%ﬁ Cosine 57.8/20.5 486/3.0 294 540 77.1/44.8/48.5/32.7 429/54 38.7/51.6/25.8
< BM25 65.6/22.6 503/58 34.6 587 76.4/49.3/50.3/37.6 482/13.6  42.8/55.6/29.9
j BSR 64.0/22.8 557/58 377 644 79.6/60.1/55.2/38.5 60.1/14.5 46.5/60.3/32.8
Set-BSR 69.6/33.5 59.6/86 392 66.1 81.8/64.1/60.2/44.8 62.5/26.7 51.4/63.1/39.7
EPR 75.8/429 662/4.6 41,5 726 854/64.4/59.6/42.1 69.8/17.3 53.5/68.5/38.5
. CEIL 79.2/49.7 64.6/17.6 425 737 85.0/70.9/61.8/39.7 71.0/31.8 57.3/69.3/45.3
§ Random 222/120 10.8/33 8.8 4.7 25.7/279/21.5/6.1 20.1/0.0 13.6/15.4/11.8
© Cosine 68.9/31.9 63.8/11.1 31.5 621 81.4/579/54.4/42.7 488/10.7 47.1/59.4/34.8
E BM25 70.9/404 623/17.6 37.0 668 85.0/649/60.1/473 57.7124.3 52.9/63.3/42.4
“2 BSR 72.1/383 63.5/164 394 69.2 854/72.0/62.6/45.5 66.3/27.5 54.8/66.0/43.7
Set-BSR 78.2/50.6 67.3/27.1 39.7 734 86.8/76.1/64.8/54.5 70.7/50.1 61.6/69.3/53.9
EPR 75.1/41.1 63.3/33 375 70.8 85.0/63.4/574/40.3 68.7/16.0 51.8/66.7/36.9
. CEIL 76.8/49.2 63.0/11.4 362 709 82.5/66.4/60.6/40.3 69.9/30.0 54.8/66.6/43.0
=] Random 169/11.1 5.1/2.8 13.0 6.8 22.1/249/15.7/5.5 20.1/0.0 12.0/14.0/10.0
E Cosine 64.6/325 60.7/62 30.6 59.7 81.1/56.1/50.3/42.1 46.7/8.0 449/572/32.5
5 BM25 67.1/35.1 583/11.8 345 644 81.4/61.6/56.8/47.9 56.2/21.0 49.7/60.3/39.0
©  BSR 69.4/36.3 61.0/109 383 684 839/67.4/61.4/46.7 62.4/24.7 52.6/63.9/41.2
Set-BSR 76.7/46.9 63.9/19.9 402 715 88.6/749/64.1/50.3 68.7/47.8 59.5/68.3/50.7
o EPR 745/41.8 56.8/10.6 00 64.8 82.1/54.6/56.3/39.4 66.9/21.0 47.4/575/37.3
2 CEIL 79.2/53.4 549/269 00 682 754/56.9/55.8/33.0 72.8/37.6 51.2/58.4/43.9
= Random 19.8/14.1 84/25 145 4.8 26.8/27.2/17.8/3.3 17.1/0.0 13.0/15.2/10.8
W Cosine 64.2/32.8 58.1/12.0 302 54.6 76.1/56.5/55.1/39.1 48.8/11.2 449/553/34.4
;-’ BM25 71.6/39.5 52.5/169 363 605 78.9/63.3/58.1/41.2 59.8/24.6 50.3/59.9/40.6
A BSR 73.2/393 556/17.6 386 632 82.1/69.7/56.3/40.3 66.5/29.7 52.7/63.2/42.1
O  Set-BSR 78.6/53.3 582/259 395 669 83.9/74.1/61.3/52.4 71.6/55.1 60.1/66.5/53.7
EPR 80.0/49.0 69.6/12.1 455 76.6 87.9/709/64.5/47.6 76.3/21.7 58.5/72.6/44.3
CEIL 83.6/60.3 69.8/29.6 465 79.7 854/76.6/68.8/50.3 77.5740.1 64.0/73.7/54.3
% Random 27.3/143 16.1/65 26.7 9.3 36.4/283/25.7/19.1 31.9/74 20.7/24.6/16.9
g Cosine 74.1/39.5 67.7/17.1 41.0 69.1 86.8/68.4/61.5/48.5 54.7/11.9 53.4/65.6/41.1
O  BM25 76.9/46.7 66.5/30.1 452 723 87.1/772/71.2/62.1 65.4/294  60.9/68.9/52.8

BSR 79.3/48.1 68.1/224 440 76.8 88.2/78.8/71.6/53.0 72.5/315  61.2/71.5/50.9
Set-BSR 84.7/62.4 69.5/41.4 46.0 79.6 91.1/86.6/76.0/69.4 75.7/61.2  703/74.4/66.2

Table 11: Comparison of various methods on 8-shot ICL for semantic parsing datasets. Right-most column shows
average performances on ALL, only IID, and only COMPositional splits. BSR consistently outperforms COSINE
and BM25 and SET-BSR yields further gains surpassing even trained methods.
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LM Selector GSM8K DROP QNLI MNLI RTE MRPC PAWS QQP SST2 AVERAGE

Random 1.5 64 512 419 534 51 48 659 86.9 45.1
Cosine 1.9 123 56 44 542 525 525 75 819 47.8
GPT-Neo-2.7B BM25 3.7 126 58.1 422 509 576 552 713 826 48.2
BSR 29 139 81.1 767 679 70.1 75 864 909 62.8
Set-BSR 29 132 78,6 615 606 684 749 844 898 59.4

Random 11.3 234 542 543 70 338 59.1 662 942 51.8
Cosine 12.3 26.7 58 58 679 466 566 761 92 54.9
LLaMA-7B BM25 11.9 26.8 573 56.1 682 483 572 732 932 54.7
BSR 14.5 272 829 763 708 5938 74 804 95.8 64.6
Set-BSR 15 29.1 747 702 675 537 72 803 942 61.9

Random 153 299 563 513 755 723 60.1 673 93.1 57.9
Cosine 16.7 326 61.8 629 751 571 589 787 927 59.6
LLaMA-13B  BM25 16.3 31.7 633 628 73.6 625 588 769 92.7 59.8
BSR 19.2 343 856 82 765 728 715 852 952 69.8
Set-BSR  20.6 33.3 82 733 762 672 772 819 938 67.3

Table 12: Comparison of various methods on 8-shot ICL for reasoning and classification datasets. BSR outperforms
all prior training-free methods though SET-BSR doesn’t yield additional improvement.
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Figure 11: Coverage of aspects of the test instance:
Change in recall of unigrams, 4-grams, and depen-
dency parse subtrees (size < 4) in the test input with
set-selection of demonstrations, compared to their non-
set version, averaged across all datasets.

LM Selector GSM8K DROP QNLI
EPR 00 138 749
CFEIL 0.0 - 842
GPT-Neo-2.7B pop 29 139 811
Set-BSR 29 132 1786
EPR - - 809
CFIL ) - 841
LLaMA-7B  pop 145 272 829
Set-BSR 150 29.1 747
EPR - - 819
CFIL ; - 842
LLaMA-13B  pop 192 343 856
Set-BSR 206 333 820
EPR - - 817
CFEIL ] - 848
StarCoder  pop 171 266 847
Set-BSR  17.5 249 803
EPR 100 - 789
Cushman CFEIL 8.3 - 88
BSR 121 236 847
Set-BSR  11.1 237 744
EPR 617 - 838
Codex CEIL 631 - 849
BSR 68.1 681 887
Set-BSR 674 664 846

Table 13: Additional non-semantic parsing 8-shot ICL
results for comparison with trained methods and larger
LLMs. BSR is competitive with EPR and CEIL, even
outperforming them with larger LLMs. We could not
get CEIL to work for DROP.

GPT-Neo-2.7B LLaMA-7B LLaMA-13B

Random 22.5
Cosine 36.9
BM25 38.5
BSR 46.4

Set-BSR 459

25.5
43.2
44.4
50.6
51.6

30.4
47.7
50.1
56.5
58.2

Table 14: Average 8-shot ICL performance across all

datasets and splits.
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Dataset ATIS Overnight Break MTOP GeoQuery SMCalFlow-CS AVERAGE

Split IID/Tpl. ID/Tpl. 1D D 1IID/Tpl./ TMCD/ Len. 8.S/32_C All/1ID / Comp.
Selector
Random 12.4/0.0 3.6/00 1.9 1.3 17.5/11.0/14.0/0.9 3.0/0.0 5.5/6.6/4.3

Cosine[bert-base] 43.6/3.4 318/09 224 441 679/379/41.4/255 243709 28.7/39.0/18.3
Cosine[mpnet-base] 46.1/6.5 383/04 223 439 679/24.1/41.4/285 252712 28.8/40.6/17.0

+ Coverage 459/42 326/04 192 392 59.6/32.6/44.0/18.8 2721/14 27.1/373/16.9

- reorder 46.5/6.5 323/05 194 378 589/32.3/43.1/20.6 272/1.1 27.2/37.0/174
BM25 495/74 337/30 265 477 63.6/40.6/42.1/255 320/32 31.2/42.2/20.3
+ Coverage 448/81 258/04 21.1 415 56.8/27.0/39.8/20.9 221715 25.8/353/16.3

- reorder 449/74 241/04 207 40.6 53.6/283/39.3/20.0 23.0/23 254/345/16.3
BM25[4-gram] 454/55 33.4/21 273 489 654/39.6/39.6/27.3 2841735 30.5/41.5/19.6
+ Coverage 483/85 272/23 238 471 632/362/42.6/242 26.6/3.9 29.5/39.4/19.6

- reorder 47.1/81 27.1/1.8 209 46.1 59.3/30.8/39.2/245 257127 27.8/37.7/179
BM25[4-depst] 451/9.0 31.8/19 262 474 67.1/38.7/43.6/242 27517117 30.4/40.9/19.9
+ Coverage 48.5/12.0 28.7/09 228 447 58.6/38.8/41.8/24.2 26.6/2.4 29.2/38.3/20.0

- reorder 471/93 287/1.1 219 46.1 59.6/34.1/34.7/29.1 255720 28.3/38.2/184
BSR[bert-base] 50.1/85 369/19 279 515 679/46.2/455/27.0 35.8/24 33.5/45.0/21.9
+ Coverage 53.6/12.2 384/23 283 521 70.0/469/48.5/27.6 39.7/4.5 353/47.0/23.7

BSF1[deberta-base] 47.2/6.0 39.4/14 30.6 548 664/41.0/44.5/29.7 414718 33.7/46.6/20.7
BSP[deberta-base] 452/7.2 39.4/19 31.1 465 64.6/38.1/41.4/27.6 2751709 31.0/42.4/19.5
BSR[deberta-base] 47.5/9.0 37.2/25 302 535 689/445/44.4/273 40.6/4.1 34.1/46.3/22.0

+ IDF 482/93 40.0/2.1 282 537 689/40.2/427/31.5 39.1/4.1 34.0/46.4/21.7

+ Coverage 53.8/14.8 40.1/2.6 285 554 74.6/453/454/242 40.3/4.1 35.8/48.8/22.7

+ IDF 54.1/123 40.6/33 283 539 72.1/465/41.6/29.7 nan/3.6 35.1/49.8/22.9

- reorder 50.0/11.8 37.7/2.1 269 530 66.8/44.5/429/24.8 39.0/4.7 33.7/45.6/21.8
BSR[deberta-large] 483/7.8 40.1/2.6 29.1 545 67.1/40.7/47.7/28.2 39.7/3.5 34.1/46.5/21.7
+ IDF 48.8/9.7 415/26 278 540 69.3/36.6/454/26.4 40.3/3.8 33.8/47.0/20.7

+ Coverage 54.6/13.2 432/49 286 551 67.1/453/454/26.4 41.5/4.8 35.8/48.4/23.3

+ IDF nan/nan nan/nan 29.0 nan  72.1/43.8/46.8/25.8 409/5.1 37.6/47.4/30.4

- reorder 520/12.0 37.6/48 292 535 63.9/399/44.4/24.2 39.0/5.1 33.8/45.9/21.7

Table 15: 8-shot ICL results with GPT-Neo-2.7B for all ablations of learning-free methods on semantic parsing
datasets and splits.
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Dataset ATIS Overnight Break MTOP GeoQuery SMCalFlow-CS AVERAGE
Split IID/Tpl. 1ID/Tpl. I1ID OD 1IID/Tpl./TMCD/Len. 8_S/32.C  All/IID/Comp.
Selector
Random 9.5/00 42/05 88 2.8 93/13.3/9.2/45 6.2/0.0 5.7/6.8/4.6
Cosine[bert-base] 529/7.2 385/28 249 490 69.6/40.7/424/294 352/1.7 32.9/45.0/20.7
Cosine[mpnet-base] 56.7/11.5 48.7/0.0 26.1 498 73.9/33.5/42.6/29.4 37.3/32 34.4/48.8/20.0
+ Coverage 55.0/13.9 425/09 247 43.0 63.9/37.6/43.7/29.7 352/33 32.8/44.1/21.5
- reorder 56.0/143 41.8/12 255 436 654/358/43.6/35.2 3521735 334/44.6/22.3
BM25 61.0/12.5 451/2.5 30.1 53.6 67.9/39.5/44.9/30.6 43.4/9.5 36.7/50.2/23.3
+ Coverage 55.7/12.3 349/2.6 255 485 63.6/30.5/40.8/25.5 353/6.2 31.8/43.9/19.7
- reorder 55.0/12.5 34.4/28 251 483 60.4/31.9/41.8/22.7 36.3/6.0 31.4/43.2/19.6
BM25[4-gram] 55.5/10.8 424/5.6 319 522 70.7/44.7/41.7/30.9 4141/95 36.4/49.0/23.9
+ Coverage 56.7/16.2 39.6/5.8 294 535 68.6/429/42.6/34.5 45.8/13.6 37.4/48.9/259
- reorder 57.3/16.0 37.0/49 280 514 68.9/41.0/44.1/35.8 449/134 36.9/47.9/259
BM25[4-depst] 542/11.1 423/33 297 522 689/41.9/43.4/28.5 399/54 35.1/479/223
+ Coverage 59.7/17.8 41.1/5.6 292 524 63.6/38.9/40.9/37.3 45.6/11.5 37.0/48.6/25.3
- reorder 59.6/153 399/4.6 28.1 512 664/399/44.2/37.0 44.1/10.7 36.8/48.2/25.3
BSR[bert-base] 63.0/15.0 485/2.6 327 574 73.9/50.5/45.8/30.0 509/8.4 39.9/54.4/254
+ Coverage 643/17.8 483/58 341 592 76.8/51.9/48.7/34.8 50.2/17.6  42.5/555/294
BSF1[deberta-base] 58.8/13.1 49.7/3.5 334 59.5 757/419/43.8/32.7 55.7/8.4 39.7/55.5/23.9
BSP[deberta-base] 53.5/9.9 49.2/37 322 479 77.1/424/43.8/35.2 41.7/2.9 36.6/50.3/23.0
BSR[deberta-base] 61.2/152 50.3/2.6 334 59.1 743/50.2/459/33.6 51.2/11.6  40.7/549/26.5
+ IDF 60.8/153 51.4/42 324 584 70.7/47.5/42.0/35.2 50.3/12.1 40.0/54.0/26.1
+ Coverage 62.5/183 52.5/55 343 600 754/455/48.4/37.0 53.0/17.5 42.5/56.3/28.7
+ IDF 63.2/19.4 51.1/62 328 60.2 74.6/453/43.1/33.9 53.3/17.5 41.7/559127.6
- reorder 63.7/20.6 49.6/6.2 353 61.7 73.9/47.3/48.4/342 52.4/17.5 42.6/56.1/29.0
BSR[deberta-large] 60.9/143 51.2/3.0 325 59.1 725/47.2/46.9/30.3 54.1/9.8 40.1/55.0/25.2
+ IDF 61.6/150 514/4.6 332 59.1 73.2/53.2/46.5/32.1 52.0/10.7  41.0/55.1/27.0
+ Coverage 64.3/21.2 515/63 337 619 76.1/52.3/48.5/35.8 54.5/19.3 43.8/57.0/30.6
+ IDF 65.6/219 515/62 329 615 77.1/52.8/50.0/35.8 55.6/18.6  44.1/57.4/30.9
- reorder 654/19.6 51.6/7.0 335 619 76.1/51.2/48.6/35.5 54.5/19.6  43.7/57.2/30.2

Table 16: 8-shot ICL results with LLaMA-7B for all ablations of learning-free methods on semantic parsing datasets

and splits.
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Dataset ATIS Overnight Break MTOP GeoQuery SMCalFlow-CS AVERAGE
Split IID/Tpl. 1ID/Tpl. I1ID OD 1IID/Tpl./TMCD/Len. 8_S/32.C  All/IID/Comp.
Selector
Random 19.5/51 34/26 9.0 4.8 23.9/19.8/142/1.5 14.0/0.0 9.8/124/72
Cosine[bert-base] 55.8/17.8 44.7/5.1 30.7 527 757/53.1/49.2/31.5 42.71713.0 38.5/50.4/26.6
Cosine[mpnet-base] 57.8/20.5 48.6/3.0 294 540 77.1/44.8/48.5/32.7 429/5.4 38.7/51.6/25.8
+ Coverage 57.5/23.8 422/58 280 502 68.6/51.9/51.0/30.0 41.8/5.7 38.0/48.1/28.0
- reorder 56.8/219 416/6.0 276 499 68.9/542/51.0/31.8 39.6/5.4 37.9/47.4/28.4
BM25 65.6/22.6 50.3/5.8 346 58.7 76.4/49.3/50.3/37.6 482/13.6  42.8/55.6/29.9
+ Coverage 59.3/21.2 375/3.7 293 527 67.1/46.6/49.1/35.2 40.6 /8.6 37.6/47.8/27.4
- reorder 57.2/20.6 37.5/33 285 535 67.1/43.6/47.3/29.7 40.3/8.7 36.5/47.4/25.6
BM25[4-gram] 58.6/203 49.7/7.0 339 581 77.9/555/52.0/34.8 50.6/13.0 42.6/54.8/30.4
+ Coverage 62.4/265 456/6.7 31.8 575 73.6/559/51.5/40.6 49.1/204  43.5/53.3/33.6
- reorder 60.8/26.5 44.8/6.5 324 567 76.1/56.4/51.0/40.6 50.6/19.9  43.5/53.6/33.5
BM25[4-depst] 58.4/23.8 48.6/6.2 329 592 754/554/52.6/41.5 46.4/6.3 42.2/535/31.0
+ Coverage 63.7/284 458/7.2 32.1 588 75.7/553/50.6/41.5 50.5/19.8  44.1/54.4/33.8
- reorder 64.5/289 439/6.7 312 585 77.1/56.8/52.8/38.5 51.5/20.1 44.2/54.517134.0
BSR[bert-base] 65.0/275 533/58 350 638 77.9/59.5/54.0/39.4 55.6/13.6  459/58.4/333
+ Coverage 69.4/333 569/8.8 37.1 644 80.4/64.7/57.7/43.0 57.3/2377  49.7/60.9/38.5
BSF1[deberta-base] 62.2/23.3 555/44 358 594 80.7/59.2/52.0/37.6 59.8/17.5 45.6/589/323
BSP[deberta-base] 56.5/169 55.0/49 341 494 80.7/54.7/50.0/33.6 46.1/5.1 40.6/53.6/27.6
BSR[deberta-base] 63.3/26.1 56.4/6.7 363 643 80.0/61.9/54.0/40.0 59.5/15.8  47.0/60.0/34.1
+ IDF 63.8/28.0 53.8/5.6 366 643 77.5/582/54.7/34.8 55.3/179  459/585/33.2
+ Coverage 69.5/32.6 584/9.7 36,6 666 80.7/61.5/56.4/43.0 63.0/26.7 50.4/62.5/383
+ IDF 68.6/354 56.8/9.5 36.8 666 78.6/59.4/54.8/41.5 nan/ 26.8 48.6/61.5/37.9
- reorder 68.9/33.0 56.5/9.5 367 675 79.6/63.7/56.5/37.3 61.9/30.9 50.2/61.9/38.5
BSR[deberta-large] 64.0/22.8 55.7/58 3777 644 79.6/60.1/552/38.5 60.1/14.5 46.5/60.3/32.8
+ IDF 65.5/25.6 54.1/53 359 650 79.6/59.6/55.1/34.2 58.8/17.6  46.4/59.8/32.9
+ Coverage 69.6/33.5 59.6/8.6 392 66.1 81.8/64.1/60.2/44.8 62.5/26.7 51.4/63.1/39.7
+ IDF 69.2/349 57.0/7.7 382 663 80.4/58.1/58.0/43.3 nan/ 28.1 49.2/62.2/38.4
- reorder 71.1/335 57.2/92 373 67.6 81.8/60.1/57.5/39.7 60.6/29.1 50.4/62.6/38.2

Table 17: 8-shot ICL results with LLaMA-13B for all ablations of learning-free methods on semantic parsing

datasets and splits.
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Dataset ATIS Overnight Break MTOP GeoQuery SMCalFlow-CS AVERAGE

Split IID/Tpl. MD/Tpl. 1D IID 1ID/Tpl./ TMCD/ Len. 8.S/32.C  All/IID/Comp.
Selector
Random 222/12.0 10.8/33 8.8 4.7 25.7/279/215/6.1 20.1/0.0 13.6/154/11.8

Cosine[bert-base] 61.9/27.0 579/164 321 57.6 850/63.9/58.6/41.8 48.9/8.4 46.6/57.2/36.0
Cosine[mpnet-base] 68.9/31.9 63.8/11.1 31.5 62.1 81.4/57.9/54.4/42.7 48.8/10.7  47.1/59.4/34.8

+ Coverage 65.0/33.7 55.1/174 31.1 579 775/67.2/64.0/485 46.2/11.5  47.9/555/40.4

- reorder 65.2/36.0 55.4/155 304 588 78.6/71.4/63.3/49.1 45.6/12.1 48.4/557/41.2
BM25 709/404 623/17.6 370 66.8 850/64.9/60.1/47.3 57.7/24.3 52.9/633/424
+ Coverage 66.5/37.6 51.3/17.8 31.6 588 76.8/57.9/554/41.8 483/179  46.8/55.6/38.1

- reorder 66.8/37.6 50.7/17.8 327 58.8 782/61.2/53.8/41.2 4737179  47.0/55.7/38.3
BM25[4-gram] 66.4/34.6 62.2/220 377 633 83.9/682/593/49.4 57.3/20.5 52.1/61.8/42.3
+ Coverage 72.6/45.0 60.7/294 354 629 81.4/69.1/61.8/47.6 60.3/344  55.0/622/47.9

- reorder 72.2/455 59.4/303 357 639 829/71.6/589/49.7 60.6/35.6  55.5/62.4/48.6
BM25[4-depst] 63.5/35.8 60.6/20.1 363 643 81.8/68.7/61.0/52.7 51.7/10.1 50.5/59.7/41.4
+ Coverage 72.1/45.1 60.2/26.2 338 63.8 84.6/68.5/61.7/49.7 58.5/350 549/622/47.7

- reorder 74.0/45.7 60.7/283 340 650 82.1/71.6/59.9/48.2 59.4/34.5 55.3/62.5/48.0
BSR[bert-base] 71.8/44.6 63.4/199 389 69.6 87.1/73.9/63.3/442 61.9/2477  553/655/45.1
+ Coverage 76.6/519 66.0/27.5 399 727 88.2/76.3/62.2/53.0 69.0/50.5 61.2/68.7/53.6

BSF1[deberta-base] 69.7/33.3 65.6/18.1 393 67.0 85.0/69.6/60.4/47.0 66.9/232  53.8/65.6/41.9
BSP[deberta-base] 60.6/24.5 64.7/15.0 380 537 85.0/67.2/57.4/45.8 52.0/17.8 47.6/59.0/36.3
BSR[deberta-base] 70.6/383 64.7/15.1 39.7 682 85.0/722/60.4/44.8 66.9 /28.1 54.5/659/43.2

+ IDF 71.2/393 64.1/18.7 38.0 681 83.6/71.6/59.4/445 63.1/31.8 54.5/64.7/44.2

+ Coverage 773/50.4 669/259 40.0 717 87.1/75.5/63.6/503 69.3/53.7 61.0/68.7/53.2

+ IDF 78.0/519 66.5/28.2 41.1 70.7 87.1/77.3/62.2/53.6 nan/53.5 60.9/68.7/54.5

- reorder 78.0/529 66.7/29.2 395 722 875/782/629/555 68.6/54.1 62.1/68.7/55.5
BSR[deberta-large] 72.1/38.3 63.5/164 394 692 854/72.0/62.6/45.5 66.3/27.5 54.8/66.0/43.7
+ IDF 72.2/40.7 649/16.2 395 692 843/73.1/61.7/445 63.9/33.2  553/65.7/44.9

+ Coverage 78.2/50.6 67.3/27.1 397 734 86.8/76.1/64.8/545 70.7/750.1 61.6/69.3/53.9

+ IDF 78.0/52.0 655/27.6 384 725 87.1/77.5/649/51.5 nan/49.3 60.4/68.3/53.8

- reorder 79.0/52.4 68.2/29.8 393 73.1 879/76.0/64.2/57.3 70.2/49.9 62.3/69.6/54.9

Table 18: 8-shot ICL results with StarCoder for all ablations of learning-free methods on semantic parsing datasets
and splits.

Dataset ATIS Overnight Break MTOP GeoQuery SMCalFlow-CS AVERAGE
Split ID/Tpl. IID/Tpl. IID IID IID/Tpl./TMCD/Len. 8_S/32.C  All/IID/Comp.
Selector

Random 19.8/14.1 84/25 145 48 26.8/272/17.8/3.3 17.1/0.0 13.0/15.2/10.8

Cosine[bert-base]  63.3/29.3 49.5/164 334 548 77.1/573/54.7/38.2 49.7/9.2 44.4/54.6/342
Cosine[mpnet-base] 64.2/32.8 58.1/12.0 302 546 76.1/56.5/55.1/39.1 48.8/11.2  449/553/34.4

BM25 71.6/39.5 525/169 363 605 789/63.3/58.1/41.2 59.8/24.6 50.3/59.9/40.6
+ Coverage 72.1/48.7 479/254 355 613 77.1/65.2/572/49.7 61.5/38.5 53.3/59.2/474
BSR[bert-base] 72.3/40.0 553/19.2 379 6377 854/68.0/59.1/39.1 63.1/26.8 52.5/62.9/42.0
+ Coverage 78.2/51.5 58.4/259 388 651 832/71.3/62.0/51.5 66.5/51.4 58.7/65.0/52.3
BSR[deberta-large] 73.2/39.3 55.6/17.6 38.6 632 82.1/69.7/56.3/40.3 66.5/29.7 52.7163.2/42.1
+ Coverage 78.6/53.3 582/259 395 669 839/74.1/613/524 71.6/55.1 60.1/66.5/53.7

Table 19: 8-shot ICL results with GPT-3.5-Turbo for all ablations of learning-free methods on semantic parsing
datasets and splits.
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Dataset ATIS Overnight Break MTOP GeoQuery SMCalFlow-CS AVERAGE
Split IID/Tpl. ID/Tpl. 1D D IID/Tpl./TMCD/Len. 8_S/32_C  All/IID/Comp.
Selector
Random 169/11.1 5.1/28 130 68 22.1/249/15775.5 20.1/0.0 12.0/14.0/10.0
Cosine[mpnet-base] 64.6/32.5 60.7/6.2 306 59.7 81.1/56.1/50.3/42.1 46.7/8.0 449757217325
+ Coverage 59.0/31.6 52.7/120 278 533 76.1/58.6/56.3/46.7 46.1/8.1 44.0/52.5/35.5
- reorder 59.4/34.7 53.1/11.1 27.8 547 75.0/59.3/54.5/47.0 45.3/8.7 44.2/52.6/35.9
BM25 67.1/35.1 583/11.8 345 644 81.4/61.6/56.8/479 56.2/21.0  49.7/60.3/39.0
+ Coverage 61.3/33.9 48.4/109 29.6 585 73.9/504/56.2/41.2 48.3/12.4  43.77/53.3/34.1
- reorder 62.4/32.8 48.1/10.7 295 582 754/51.7/51.2/379 46.2/12.8  43.1/53.3/329
BM25[4-gram] 62.8/31.6 57.2/157 365 60.6 81.4/63.4/57.1/43.3 5737179  48.7/59.3/38.2
+ Coverage 68.0/40.2 56.2/18.0 33.7 613 80.0/61.9/60.3/46.4 57.3/28.1 50.9/59.4/42.5
- reorder 68.6/41.6 549/19.0 351 609 80.0/64.4/579/473 56.8/28.1 51.2/59.4743.0
BM25[4-depst] 60.7/31.7 57.4/144 350 627 82.1/61.5/57.9/48.2 50.5/9.5 47.6/58.1/37.2
+ Coverage 69.8/40.0 553/158 329 63.0 81.1/61.7/56.3/43.6 55.6/32.0 50.6/59.6/41.6
- reorder 70.4/399 56.6/165 33.6 634 82.1/64.4/575/494 56.8/33.5 52.0/60.5/43.5
BSF1[deberta-base] 67.3/289 61.9/10.2 379 652 86.4/68.4/51.9/43.6 659/22.6 509/64.1/37.6
BSP[deberta-base] 58.1/222 61.2/104 369 533 83.2/65.6/52.8/44.8 48.5/6.2 45.3/56.9/33.7
BSR[deberta-base] 67.2/347 61.7/88 395 674 839/67.1/61.6/43.3 61.8/24.9 51.8/63.6/40.1
+ IDF 69.0/374 615/9.7 36.1 67.7 825/66.7/589/42.4 60.6/28.8 51.8/62.9/40.6
+ Coverage 75.7/473 63.0/18.1 384 70.1 83.2/71.8/61.8/49.4 66.6/46.2  57.6/66.2/49.1
+ IDF 76.0/48.1 63.5/20.8 375 69.0 84.3/71.9/58.2/46.4 nan/48.3 56.7/66.1/48.9
- reorder 7527487 625/18.8 3777 698 84.6/703/64.6/473 67.8/49.6  58.1/66.3/49.9
BSR[deberta-large] 69.4/36.3 61.0/109 383 684 839/67.4/61.4/46.7 62.4/24.7 52.6/63.9/41.2
+ IDF 70.1/37.4 622/10.2 389 688 843/684/61.3/452 62.4/30.9 53.3/64.4/42.2
+ Coverage 76.7/46.9 639/199 402 715 88.6/74.9/64.1/503 68.7/47.8 59.5/68.3/50.7
+ IDF 7781469 64.0/19.7 385 705 850/73.7/649/533 nan/50.2 58.6/67.2/51.5
- reorder 76.6/48.0 63.2/18.7 39.0 70.1 85.0/74.4/633/555 67.7/48.1 59.1/66.9/51.3

Table 20: 8-shot ICL results with Cushman for all ablations of learning-free methods on semantic parsing datasets

and splits.
Dataset ATIS Overnight Break MTOP GeoQuery SMCalFlow-CS AVERAGE
Split IID/Tpl. ID/Tpl. 1D D 1IID/Tpl./TMCD/Len. 8.S/32_.C  All/IID/Comp.
Selector
Random 273/143 16.1/65 267 93 36.4/283/25.7/19.1 319/74 20.7/24.6/16.9
Cosine[mpnet-base] 74.1/39.5 67.7/17.1 41.0 69.1 86.8/68.4/61.5/48.5 54.7/11.9 53.4/65.6/41.1
+ Coverage 713/448 62.8/31.5 379 682 854/76.5/71.9/60.0 54.7/26.1 57.6/63.4/51.8
- reorder 71.7/45.1 62.6/29.8 364 675 850/78.3/725/59.4 53.8/25.9 57.3/62.8/51.8
BM25 76.9/46.7 66.5/30.1 452 723 87.1/77.2/71.2/62.1 65.4/294  60.9/689/52.8
+ Coverage 7447469 612/299 389 66.7 83.6/70.2/67.4/524 55.7/29.9 56.4/63.4/49.5
- reorder 74.2/46.7 60.1/29.2 396 653 83.9/69.3/66.6/54.2 55.7/29.0  56.2/63.1/49.2
BM25[4-gram] 73.0/39.9 65.7/33.8 4377 704 86.8/78.6/70.6/60.6 63.1/22.8 59.1/67.1/51.0
+ Coverage 80.3/552 654/43.0 422 704 86.4/81.2/73.4/61.5 68.6/46.8 64.5/68.9/60.2
- reorder 79.7/549 659/424 418 71.1 879/80.1/73.1/61.8 67.7/442  64.2/69.0/59.4
BM25[4-depst] 70.7/41.1 655/31.2 426 704 854/79.9/69.0/67.3 58.2/11.9 57.8/65.5/50.0
+ Coverage 80.0/56.4 64.1/403 409 703 88.9/79.9/73.3/68.2 67.2/49.0 64.9/68.6/61.2
- reorder 80.5/56.4 64.7/41.0 39.7 694 87.9/80.2/73.4/66.4 67.7/49.3 64.7/68.3/61.1
BSF1[deberta-base] 75.4/39.2 66.9/28.2 452 73.0 86.1/78.6/69.6/52.7 72.1/27.1 59.5/69.8/49.2
BSP[deberta-base]  68.5/29.3 67.6/26.2 4377 60.2 86.1/73.4/63.0/53.9 55.0/122  53.3/63.5/43.0
BSR[deberta-base] 75.7/47.1 67.4/222 456 757 88.6/79.7/69.9/52.4 72.1/32.0  60.7/70.8/50.6
+ IDF 76.7/489 67.1/24.6 44.1 763 87.5/81.0/69.5/545 70.8/39.5 61.7/70.4/53.0
+ Coverage 83.0/61.7 70.4/41.7 45.1 787 91.1/854/76.8/67.9 76.0/60.8 69.9/74.0/65.7
+ IDF 83.0/61.7 70.5/419 456 784 90.7/85.6/76.9/67.6 nan/ 62.0 69.4/73.6/659
- reorder 83.3/63.5 69.5/428 451 79.1 91.8/859/78.5/66.1 76.1/61.1 70.2/74.2/66.3
BSF1[deberta-large] 77.4/44.3 689/29.6 459 738 88.2/78.1/68.1/51.2 72.1/29.6  60.6/71.0/50.1
BSP[deberta-large] 70.1/32.5 69.0/229 447 589 87.1/75.6/61.9/50.6 63.0/15.7 54.3/65.5/43.2
BSR[deberta-large] 79.3/48.1 68.1/22.4 440 768 88.2/78.8/71.6/53.0 72.5/31.5 61.2/71.5/50.9
+ IDF 79.8/50.4 68.7/21.3 449 755 88.9/82.0/71.7/54.2 70.5740.9 62.4/71.4/53.4
+ Coverage 84.7/62.4 69.5/41.4 460 79.6 91.1/86.6/76.0/69.4 75.7/61.2  703/74.4766.2
+ IDF 83.8/62.6 69.4/39.8 465 787 91.1/86.6/78.6/68.8 nan/59.0 69.5/73.9/65.9
- reorder 84.0/64.6 69.6/39.6 464 79.0 90.0/86.3/78.0/70.6 77.5/60.2 70.5/74.4/66.5

Table 21: 8-shot ICL results with Codex for all ablations of learning-free methods on semantic parsing datasets and

splits.
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