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Abstract

Motivation: The increasing availability of complete genomes demands for models to study genomic variability within entire populations.
Pangenome graphs capture the full genomic similarity and diversity between multiple genomes. In order to understand them, we need to
see them. For visualization, we need a human-readable graph layout: a graph embedding in low (e.g. two) dimensional depictions. Due to a
pangenome graph’s potential excessive size, this is a significant challenge.

Results: In response, we introduce a novel graph layout algorithm: the Path-Guided Stochastic Gradient Descent (PG-SGD). PG-SGD uses the
genomes, represented in the pangenome graph as paths, as an embedded positional system to sample genomic distances between pairs of
nodes. This avoids the quadratic cost seen in previous versions of graph drawing by SGD. We show that our implementation efficiently
computes the low-dimensional layouts of gigabase-scale pangenome graphs, unveiling their biological features.

Availability and implementation: We integrated PG-SGD in ODG/ which is released as free software under the MIT open source license.

Source code is available at https://github.com/pangenome/odgi.

1 Introduction

Reference genomes are widely used in genomics, serving as a
foundation for a variety of analyses, including gene annota-
tion, read mapping, and variant detection (Singh ef al. 2022).
However, this linear model is becoming obsolete given the ac-
cessibility to hundreds or even thousands of high-quality
genomes. A single genome cannot fully represent the genetic
diversity of any species, resulting in reference bias (Ballouz
et al. 2019). In contrast, a pangenome models the entire set of
genomic elements of a given population (Tettelin et al. 2008,
Computational Pan-Genomics Consortium 2018, Eizenga
et al. 2020, Sherman and Salzberg 2020). Pangenomes can be
represented as a sequence graph incorporating sequences as
nodes and their relationships as edges (Hein 1989). In the vari-
ation graph model (Garrison et al. 2018), genomes are
encoded as paths traversing the nodes in the graph.

A graph layout is the arrangement of nodes and edges in an
N-dimensional space. Graph layout algorithms aim to find

optimal node coordinates in order to minimize overlapping
nodes or edges, reduce edge crossings, and promote an intui-
tive understanding of the graph. One popular approach is
force-directed graph drawing (Cheong and Si 2022) which
uses physical simulation to produce esthetic layouts. The clas-
sical approach combines repulsive forces on all vertices and
attractive forces on adjacent vertices. This is prone to get
stuck in local minima, but multi-layer strategies such as the
Fast Multipole Multilevel Method (FM?) (Hachul and Jiinger
2005) or Stochastic Gradient Descent (SGD) implementations
alleviate such a problem (Zheng et al. 2019). SGD uses the
gradient of its individual terms to approximate the gradient
of a sum of functions.

A pangenome graph layout can provide a human-readable
visualization of genetic variation between multiple genomes.
However, Zheng et al. (2019)’s algorithm has a quadratic up
front cost in the number of nodes to find pairwise distances
to guide the layout, making it impossible to apply to
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pangenome graphs with millions of nodes. Also, existing ge-
neric graph layout approaches ignore the biological informa-
tion inherent in pangenome graphs. One such bioinformatics
tool is BandageNG, the current state of the art for genome
graph visualization. It uses FM> which only considers the
nodes and edges of a graph.

In practice, MultiDimensional Scaling (MDS) is applied to
minimize the difference between the visual distance and theo-
retical graph distance. This can be accomplished by using
pairwise node distances to minimize an energy function.
Since pangenome graphs represent genomes as paths in the
graph, a reasonable distance metric would be the nucleotide
distance between a pair of nodes traversed by the same path.
Such path sampling would overcome the quadratic costs of
previous versions of graph drawing by SGD.

Typically, force-directed layouts are hard to compute
(Wang et al. 2014). Although, BandageNG applies FM? for
layout generation, its parallelism is bound by the number of
connected graph components. Alternatively, the lock-free
HOGWILD! method offers a highly parallelizable and thus
scalable SGD approach that can be applied when the optimi-
zation problem is sparse (Recht et al. 2011).

Here, we present a new pangenome graph layout algorithm
which applies a Path-Guided SGD (PG-SGD) to use the paths
as an embedded positional system to find distances between
nodes, moving pairs of nodes in parallel with a modified
HOGWILD! strategy. The algorithm computes the pange-
nome graph layout that best reflects the nucleotide sequences
in the graph. To our knowledge, no generic graph layout al-
gorithm takes into account such path encoded biological in-
formation when computing a graph’s layout.

PG-SGD can be extended in any number of dimensions. In
the ODGI toolkit (Guarracino et al. 2022), we provide imple-
mentations for 1D and 2D layouts. These algorithms have al-
ready been successfully applied to construct and visualize
large-scale pangenome graphs of the Human Pangenome
Reference Consortium (HPRC) (Guarracino et al. 2023, Liao
et al. 2023). In addition, we show that PG-SGD is almost an
order of magnitude faster than BandageNG.

2 Algorithm

While PG-SGD is inspired by Zheng et al. (2019), we
designed the algorithm to work on the variation graph model
(Definition 2.1).

Definition 2.1. Variation graphs are a mathematical
formalism to represent pangenome graphs (Garrison
2019). In the variation graph G = (V, &, P), nodes (or
vertices) V = vy ... v contain nucleotide sequences.
Each node v; has a unique identifier 7 and an implicit
reverse complement #;. The node strand o represents
the node orientation. Edges £ = e ... ejg connect
ordered pairs of node strands (¢; = (0,4,0)), defining
the graph topology. Paths P = p ... pp| are series of
connected steps s; that refer to node strands in the
graph (p; = s ...s),); the paths represent the genomes
embedded in the graph.

We report PG-SGD’s pseudocode in Algorithm 1 and its
schematic in Fig. 1. In brief, the algorithm moves one pair of
nodes (v;,v;) at a time, minimizing the difference between the
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Figure 1. 2D PG-SGD update operation sketches. (a) The path information
of the graph. path1 and path2 both visit the same first node. Then their
sequence diverges and they visit distinct nodes. (b—e) vi/v;or vj/vis the
current pair of nodes to update. /d//di is the current layout distance. r, —r
is the current size of the update. (b) Initial graph layout highlighting the
future update of the two nodes of path7. (c) The graph layout after the
first update. The nodes appear longer now, because we updated at the
end of the nodes. Highlighted is the future update of the two nodes of
path2. (d) The graph layout after the second update. Highlighted is the
future update of the two nodes of path1. (e) Final graph layout after three
updates using the 2D PG-SGD.

layout distance Id;; of the two nodes and the nucleotide dis-
tance nd;; of the same nodes as calculated along a path that
traverses them. In the 2D layouts, nodes have two ends.
When moving a pair of nodes, we actually move one end of
each node. For clarification, an example is given in Fig. 1. v;
is the node associated with the step s; sampled uniformly
from all the steps in P. v; is the node associated with the step
s; sampled from the same path of s; by drawing a uniform or
a Zipfian distribution (Zipf 1932). The difference between
nd;; and Id;; guides the update of the node coordinates in the
layout. The magnitude 7 of the update depends on the learn-
ing rate p. The number of iterations steers the annealing step
size n which determines the learning rate u. A large # in the
first iterations leads to a globally linear (in 1D) or planar (in
2D) layout. By decreasing 7, the layout adjustments become
more localized, ensuring that the nodes are positioned to best
reflect the nucleotide distances in the paths (i.e. in
the genomes).

Originating from empirical inspection of word frequency
tables, Zipf’s law states that a word with rank # occurs 1/n
times as the most frequent one. This law is modeled by the
Zipf distribution. Sampling s; from a Zipf distribution fixed
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Algorithm 1: Pseudocode of PG-SGD in 1D.

PG-SGD (G):

input: variation graph G = (V, &, P)

output: N-dimensional layout £ with |V| nodes

XP + PathIndex(G) // for path position
lookup

L < LayoutInitialization(V,N)

Z < InitZipf(G,XP)// Zipfian distribution

for n in annealing schedule:

for each planned term update:

$; <= Unif(XP)// uniform sampling of a
step from P

p < Path(s;, XP) // path of s;

if (cooling || flip) then

sj < Unif(StepCount(p, XP)) // uniform
sampling of a step from p

else
sj < Zipf(p) // Zipfian sampling of a

step from p

end

pi < StepPos(s;) // nuc. position
pj < StepPos(s;) // nuc. position
nd;; < |lpi — pj|| // nuc. distance
ldij < ||l; = 1j]| // layout distance
Wij 4= % // term weight

W< wi;m // learning rate

if > 1:

| p+1

end

6+ - % // the actual delta

if abs(§) <= 0 then

‘ STOP // we can’t optimize more

4 % // size of the update

ry <= 1-(l; —1j) // update size normalized
by layout distance

l; <1l +7ry // update v; coordinates

lj < 1lj —ry // update v; coordinates
end

end

end

in the s;s path position space increases the possibility to draw
a nucleotide position close to s;. So there is a high chance to
use small nucleotide distances nd;; to refine the layout of
nodes comprising a few base pairs. The Zipf distribution is
also long-tailed, with many occurrences of low frequency
events. However, extremely long-range correlations might
not be captured sufficiently, resulting in collapsed layouts for
structures that are otherwise linear. To provide balance be-
tween global and local layout updates, in half of the updates
(flip flag in Algorithm 1), the s; is sampled uniformly instead
from a Zipf distribution, with uniform sampling being
more favorable for global updates. Furthermore, to enhance
local linearity (in 1D) or planarity (in 2D) of the graph lay-
out, a cooling phase skews the Zipfian distribution after half
of iterations have been completed. This increases the likeli-
hood of sampling smaller nucleotide distances for the lay-
out updates.

3 Implementation

We implemented PG-SGD in ODGI (Guarracino et al. 2022):
the 1D version can be found in odgi sort and the 2D version
in odgi layout. To efficiently retrieve path nucleotide posi-
tions, we implemented a path index. This index is a strict sub-
set of the XG index (Garrison et al. 2018) where we avoid to
use succinct SDSL data structures (Gog et al. 2014). Instead,
we rely on bit-compressed integer vectors, enabling efficient
retrieval of path nucleotide positions to quickly compute nu-
cleotide distances without having to store all pairwise distan-
ces between nodes in memory. This approach ensures to scale
on large pangenome graphs representing thousands of
whole genomes.

Graph layout initialization can significantly influence the
quality of the final layout. In the 1D implementation, by de-
fault, nodes are placed in the same order as they appear in the
input graph, although we also provide support for random
layout initialization. In 2D, we offer several layout initializa-
tion techniques. One approach places nodes in the first layout
dimension according to their order in the input graph, adding
either uniform or Gaussian noise in the second dimension.
Another strategy arranges nodes along a Hilbert curve, an ap-
proach that often favors the creation of planar final layouts.
We also support fixing node positions to keep nodes in the
same order as they are in a selected path, such as a reference
genome. This feature allows us to build reference-focused
graph layouts (Supplementary Fig. S1d).

Our implementation is multithreaded and uses shared
memory for storing the layout in a vector, according to the
HOGWILD! strategy (Recht et al. 2011). Threads perform
layout updates without any locking for additional speed up.
This approach is feasible since pangenome graphs are typi-
cally sparse (Guarracino et al. 2022), with low average node
degree. As a result, the updates only modify small parts of the
entire layout. While the HOGWILD! SGD algorithm writes
the layout updates to a shared non-atomic double vector, PG-
SGD stores node coordinates in a vector of atomic doubles.
This vector prevents any potential memory overwrites. Our
tests revealed basically no performance loss with respect to
the non-atomic counterpart.

4 Results
4.1 Performance

We apply the 2D PG-SGD to the human pangenome (Liao
et al. 2023) from the HPRC to show the scalability of the al-
gorithm. Experiments were conducted on a cluster with 24
Regular nodes (32 cores/64 threads with two AMD EPYC
7343 processors with 512 GB RAM) and 4 HighMem nodes
(64 cores/128 threads with two AMD EPYC 7513 processors
with 2048 GB RAM). We downloaded pangenome graphs
for each autosome (24 in total) and for the mitochondrial
DNA. Each graph represents 90 whole human haplotypes: 44
diploid individuals plus the GRCh38 (Schneider et al. 2017)
and CHM13 (Nurk et al. 2021) haploid human references
(see Supplementary Table S1 for graph statistics). When ap-
plied to these pangenome graphs using one Regular node
for each calculation, odgi layout’s 2D PG-SGD implementa-
tion obtains the graph layouts in 50 min on average, with the
highest run time observed being chromosome 16
(Supplementary ~ Table  S1).  This is  expected
since chromosome 16 has one of the highest levels of segmen-
tally duplicated sequence among the human autosomes
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(Martin et al. 2004). Repetitive sequences lead to graph
nodes with a very high number of path steps, which are com-
putationally expensive to work with (Guarracino et al.
2022). Memory consumption is 29.66 GB of RAM on aver-
age, with the memory peak again occurring with chromo-
some 16, due to the path index building phase. Given its
scalability, we applied 2D PG-SGD to the full graph with all
chromosomes  together using a HighMem node
(Supplementary Table S1). To compare, BandageNG (https://
github.com/asl/BandageNG, last accessed July 2023), the cur-
rent state of the art for graph visualization, was used to calcu-
late a 2D layout of each of the HPRC pangenome graphs. For
a fair comparison, we did not rely on BandageNG’s interac-
tive GUI application, but we executed BandageNG layout,
which directly emits a 2D graph layout similar to odgi layout.
BandageNG was not able to produce a layout for the full
graph within 7 days, hitting the wall clock time limit of the
cluster. On average, PG-SGD is ~8x faster than BandageNG
while using ~2x less memory.

4.2 Pangenome graph layouts reveal
biological features

Graph visualization is essential for understanding pangenome
graphs and the genome variation they represent. We show
how 2D PG-SGD allows us gaining insight into biological
data by looking at the graph layout structure. In Fig. 2a, the
chromosomes of the HPRC graph show the large-scale struc-
tural variations in the centromeres. Focusing on the major
histocompatibility complex (MHC) of chromosome 6
(Fig. 2b), the 2D layout reveals the positions and diversity of
all MHC genes (Fig. 2¢). In Fig. 2d, the C4A and C4B genes
are highlighted. Complementary, we provide various 1D vis-
ualizations in Supplementary Fig. S1.

5 Discussion

We presented PG-SGD, the first layout algorithm for pange-
nome graphs that leverages the biological information avail-
able within the genomes represented in the graph. Other
generic graph layout algorithms, such as the one offered by
BandageNG, ignore this additional information. Our imple-
mentation efficiently computes the layout of pangenome
graphs representing thousands of whole genomes.

Graph visualization is key for understanding genome varia-
tions and the layouts produced by PG-SGD offer an unprece-
dented high-level perspective on pangenome variation. We
implemented PG-SGD to generate layouts in 1D and 2D.
These graph projections have already been employed in con-
structing and analyzing the first draft human pangenome ref-
erence (Liao er al. 2023), as well as in the discovery of
heterologous recombination of human acrocentric chromo-
somes (Guarracino et al. 2023). Furthermore, they are ap-
plied in the creation and analysis of pangenome graphs for
any species (Guarracino et al. 2022, Garrison et al. 2023). Of
note, there still remains a gap in interactive and scalable solu-
tions that merge layouts of large pangenome graphs with an-
notation. Our algorithm will underpin new pangenome
graph browsers for studying graph layouts and the genome
variation they represent (https://github.com/chfi/waragraph,
last accessed July 2023).

The performance analysis shows that our 2D implementa-
tion outperforms BandageNG when handling large, complex
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pangenome graphs. While BandageNG was not able to de-
liver a layout of the whole HPRC graph within 1 week,
our 2D PG-SGD calculated one within one day. There are
some possible optimization approaches for future work to
further improve the performance of PG-SGD, making it
possible for interactive use. The data structure could be opti-
mized to improve cache performance. Moreover, the high-
degree of parallelism could be further exploited by using a
GPU. In BandageNG, one cannot select the number of
threads for the calculations. They are automatically chosen
by the number of connected components of the graph to
draw. This limits its parallelism and leads to an unbalanced
workload. Since BandageNG was primarily designed for as-
sembly graphs, one may have to adjust its parameters depen-
dent on the input graph, in order to boost the layout
generation or to adjust the highlighting of desired
graph features.

The classical force model of state of the art generic graph
algorithms, such as FM3-based ones, places nodes according
to their attractive and repulsive forces. This force can be seen
as equivalent to how our 2D PG-SGD moves the nodes’ ends
in 2D: If the nucleotide distance of the randomly chosen path
steps is smaller than the layout distance of the nodes’ ends,
we move them closer together (“attractive force”), else we
move them further away (“repulsive force”). However, the
key difference here is that this approach is path-guided: paths
represent biological sequences in pangenome graphs, so it
is as if PG-SDG considers a “biological force” for placing
the graph nodes. Theoretically, it would be possible to com-
bine our approach with a force-directed one. Combining
both methods, we might get the best of both worlds: multi-
threadable PG-SGD iteratively applied to different graph
layout-levels. We can imagine that such an approach can
lead to a further speedup when calculating the
layout. However, for generic graphs, this would only work
if path information for each node could be added: we would
replace the classical physical simulation approach with
our path-guided method. If such information is not available,
one could randomly cover the graph with paths. This func-
tion is already provided in odgi cover. However, this is an
NP-hard problem and our preliminary solutions proved
ineffective.

With assembly graphs we face the same problem: they usu-
ally do not carry path information during each assembly step.
One could map the initial assembly reads back against the as-
sembly graph in order to build paths through the graph. This
would allow us to obtain a layout using PG-SGD.

PG-SGD can be extended to any number of dimensions. It
can be seen as a graph embedding algorithm that converts
high-dimensional, sparse pangenome graphs into low-
dimensional, dense, and continuous vector spaces, while pre-
serving its biologically relevant information. This enables the
application of machine learning algorithms that use the graph
layout for variant detection and classification. Our future re-
search involves leveraging these graph projections to detect
structural variants and to identify and correct assembly
errors. Moreover, we are considering extending the algorithm
to RNA and protein sequences to support pantranscriptome
graphs (Sibbesen et al. 2023) and panproteome graphs
(Dabbaghie ez al. 2023), respectively.
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Figure 2. 2D visualizations of all chromosomes of the Human Pangenome Reference Consortium (HPRC) 90 haplotypes pangenome graph, chromosome
6, the major histocompatibility complex (MHC), and the complement component 4 (C4). (a) odgi draw layout of the HPRC pangenome graph 90
haplotypes. Displayed are all 24 autosomes and the mitochondrial chromosome. A red rectangle highlights chromosome 6 which is shown in the
subfigure below. (b) gfaestus screenshot of the chromosome 6 layout. Colored in blue is the MHC. The hairball in the middle is the centromere. The black
structures in the centromere are edges. (c) gfaestus screenshot of the MHC. All MHC genes are color annotated and the names of the genes appear as a
text overlay. (d) gfaestus screenshot of the region around C4, specifically color highlighting genes C4A and C4B. The black lines are the edges of

the graph.
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