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Abstract
Motivation: The increasing availability of complete genomes demands for models to study genomic variability within entire populations. 
Pangenome graphs capture the full genomic similarity and diversity between multiple genomes. In order to understand them, we need to 
see them. For visualization, we need a human-readable graph layout: a graph embedding in low (e.g. two) dimensional depictions. Due to a 
pangenome graph’s potential excessive size, this is a significant challenge.
Results: In response, we introduce a novel graph layout algorithm: the Path-Guided Stochastic Gradient Descent (PG-SGD). PG-SGD uses the 
genomes, represented in the pangenome graph as paths, as an embedded positional system to sample genomic distances between pairs of 
nodes. This avoids the quadratic cost seen in previous versions of graph drawing by SGD. We show that our implementation efficiently 
computes the low-dimensional layouts of gigabase-scale pangenome graphs, unveiling their biological features.
Availability and implementation: We integrated PG-SGD in ODGI which is released as free software under the MIT open source license. 
Source code is available at https://github.com/pangenome/odgi.

1 Introduction
Reference genomes are widely used in genomics, serving as a 
foundation for a variety of analyses, including gene annota
tion, read mapping, and variant detection (Singh et al. 2022). 
However, this linear model is becoming obsolete given the ac
cessibility to hundreds or even thousands of high-quality 
genomes. A single genome cannot fully represent the genetic 
diversity of any species, resulting in reference bias (Ballouz 
et al. 2019). In contrast, a pangenome models the entire set of 
genomic elements of a given population (Tettelin et al. 2008, 
Computational Pan-Genomics Consortium 2018, Eizenga 
et al. 2020, Sherman and Salzberg 2020). Pangenomes can be 
represented as a sequence graph incorporating sequences as 
nodes and their relationships as edges (Hein 1989). In the vari
ation graph model (Garrison et al. 2018), genomes are 
encoded as paths traversing the nodes in the graph.

A graph layout is the arrangement of nodes and edges in an 
N-dimensional space. Graph layout algorithms aim to find 

optimal node coordinates in order to minimize overlapping 
nodes or edges, reduce edge crossings, and promote an intui
tive understanding of the graph. One popular approach is 
force-directed graph drawing (Cheong and Si 2022) which 
uses physical simulation to produce esthetic layouts. The clas
sical approach combines repulsive forces on all vertices and 
attractive forces on adjacent vertices. This is prone to get 
stuck in local minima, but multi-layer strategies such as the 
Fast Multipole Multilevel Method (FM3) (Hachul and J€unger 
2005) or Stochastic Gradient Descent (SGD) implementations 
alleviate such a problem (Zheng et al. 2019). SGD uses the 
gradient of its individual terms to approximate the gradient 
of a sum of functions.

A pangenome graph layout can provide a human-readable 
visualization of genetic variation between multiple genomes. 
However, Zheng et al. (2019)’s algorithm has a quadratic up 
front cost in the number of nodes to find pairwise distances 
to guide the layout, making it impossible to apply to 
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pangenome graphs with millions of nodes. Also, existing ge
neric graph layout approaches ignore the biological informa
tion inherent in pangenome graphs. One such bioinformatics 
tool is BandageNG, the current state of the art for genome 
graph visualization. It uses FM3 which only considers the 
nodes and edges of a graph.

In practice, MultiDimensional Scaling (MDS) is applied to 
minimize the difference between the visual distance and theo
retical graph distance. This can be accomplished by using 
pairwise node distances to minimize an energy function. 
Since pangenome graphs represent genomes as paths in the 
graph, a reasonable distance metric would be the nucleotide 
distance between a pair of nodes traversed by the same path. 
Such path sampling would overcome the quadratic costs of 
previous versions of graph drawing by SGD.

Typically, force-directed layouts are hard to compute 
(Wang et al. 2014). Although, BandageNG applies FM3 for 
layout generation, its parallelism is bound by the number of 
connected graph components. Alternatively, the lock-free 
HOGWILD! method offers a highly parallelizable and thus 
scalable SGD approach that can be applied when the optimi
zation problem is sparse (Recht et al. 2011).

Here, we present a new pangenome graph layout algorithm 
which applies a Path-Guided SGD (PG-SGD) to use the paths 
as an embedded positional system to find distances between 
nodes, moving pairs of nodes in parallel with a modified 
HOGWILD! strategy. The algorithm computes the pange
nome graph layout that best reflects the nucleotide sequences 
in the graph. To our knowledge, no generic graph layout al
gorithm takes into account such path encoded biological in
formation when computing a graph’s layout.

PG-SGD can be extended in any number of dimensions. In 
the ODGI toolkit (Guarracino et al. 2022), we provide imple
mentations for 1D and 2D layouts. These algorithms have al
ready been successfully applied to construct and visualize 
large-scale pangenome graphs of the Human Pangenome 
Reference Consortium (HPRC) (Guarracino et al. 2023, Liao 
et al. 2023). In addition, we show that PG-SGD is almost an 
order of magnitude faster than BandageNG.

2 Algorithm
While PG-SGD is inspired by Zheng et al. (2019), we 
designed the algorithm to work on the variation graph model 
(Definition 2.1).

Definition 2.1. Variation graphs are a mathematical 
formalism to represent pangenome graphs (Garrison 
2019). In the variation graph G ¼ ðV;E;PÞ, nodes (or 
vertices) V ¼ v1 . . .vjVj contain nucleotide sequences. 
Each node vi has a unique identifier i and an implicit 
reverse complement �vi . The node strand o represents 
the node orientation. Edges E ¼ e1 . . .ejEj connect 
ordered pairs of node strands (ei ¼ ðoa;obÞ), defining 
the graph topology. Paths P ¼ p1 . . .pjPj are series of 
connected steps si that refer to node strands in the 
graph (pi ¼ s1 . . . sjpij); the paths represent the genomes 
embedded in the graph.   

We report PG-SGD’s pseudocode in Algorithm 1 and its 
schematic in Fig. 1. In brief, the algorithm moves one pair of 
nodes ðvi;vjÞ at a time, minimizing the difference between the 

layout distance ldij of the two nodes and the nucleotide dis
tance ndij of the same nodes as calculated along a path that 
traverses them. In the 2D layouts, nodes have two ends. 
When moving a pair of nodes, we actually move one end of 
each node. For clarification, an example is given in Fig. 1. vi 

is the node associated with the step si sampled uniformly 
from all the steps in P. vj is the node associated with the step 
sj sampled from the same path of si by drawing a uniform or 
a Zipfian distribution (Zipf 1932). The difference between 
ndij and ldij guides the update of the node coordinates in the 
layout. The magnitude r of the update depends on the learn
ing rate μ. The number of iterations steers the annealing step 
size η which determines the learning rate μ. A large η in the 
first iterations leads to a globally linear (in 1D) or planar (in 
2D) layout. By decreasing η, the layout adjustments become 
more localized, ensuring that the nodes are positioned to best 
reflect the nucleotide distances in the paths (i.e. in 
the genomes).

Originating from empirical inspection of word frequency 
tables, Zipf’s law states that a word with rank n occurs 1=n 
times as the most frequent one. This law is modeled by the 
Zipf distribution. Sampling sj from a Zipf distribution fixed 

Figure 1. 2D PG-SGD update operation sketches. (a) The path information 
of the graph. path1 and path2 both visit the same first node. Then their 
sequence diverges and they visit distinct nodes. (b–e) vi/vj or vi/vk is the 
current pair of nodes to update. ldij/ldik is the current layout distance. r ; − r 
is the current size of the update. (b) Initial graph layout highlighting the 
future update of the two nodes of path1. (c) The graph layout after the 
first update. The nodes appear longer now, because we updated at the 
end of the nodes. Highlighted is the future update of the two nodes of 
path2. (d) The graph layout after the second update. Highlighted is the 
future update of the two nodes of path1. (e) Final graph layout after three 
updates using the 2D PG-SGD.
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in the si’s path position space increases the possibility to draw 
a nucleotide position close to si. So there is a high chance to 
use small nucleotide distances ndij to refine the layout of 
nodes comprising a few base pairs. The Zipf distribution is 
also long-tailed, with many occurrences of low frequency 
events. However, extremely long-range correlations might 
not be captured sufficiently, resulting in collapsed layouts for 
structures that are otherwise linear. To provide balance be
tween global and local layout updates, in half of the updates 
(flip flag in Algorithm 1), the sj is sampled uniformly instead 
from a Zipf distribution, with uniform sampling being 
more favorable for global updates. Furthermore, to enhance 
local linearity (in 1D) or planarity (in 2D) of the graph lay
out, a cooling phase skews the Zipfian distribution after half 
of iterations have been completed. This increases the likeli
hood of sampling smaller nucleotide distances for the lay
out updates.

3 Implementation
We implemented PG-SGD in ODGI (Guarracino et al. 2022): 
the 1D version can be found in odgi sort and the 2D version 
in odgi layout. To efficiently retrieve path nucleotide posi
tions, we implemented a path index. This index is a strict sub
set of the XG index (Garrison et al. 2018) where we avoid to 
use succinct SDSL data structures (Gog et al. 2014). Instead, 
we rely on bit-compressed integer vectors, enabling efficient 
retrieval of path nucleotide positions to quickly compute nu
cleotide distances without having to store all pairwise distan
ces between nodes in memory. This approach ensures to scale 
on large pangenome graphs representing thousands of 
whole genomes.

Graph layout initialization can significantly influence the 
quality of the final layout. In the 1D implementation, by de
fault, nodes are placed in the same order as they appear in the 
input graph, although we also provide support for random 
layout initialization. In 2D, we offer several layout initializa
tion techniques. One approach places nodes in the first layout 
dimension according to their order in the input graph, adding 
either uniform or Gaussian noise in the second dimension. 
Another strategy arranges nodes along a Hilbert curve, an ap
proach that often favors the creation of planar final layouts. 
We also support fixing node positions to keep nodes in the 
same order as they are in a selected path, such as a reference 
genome. This feature allows us to build reference-focused 
graph layouts (Supplementary Fig. S1d).

Our implementation is multithreaded and uses shared 
memory for storing the layout in a vector, according to the 
HOGWILD! strategy (Recht et al. 2011). Threads perform 
layout updates without any locking for additional speed up. 
This approach is feasible since pangenome graphs are typi
cally sparse (Guarracino et al. 2022), with low average node 
degree. As a result, the updates only modify small parts of the 
entire layout. While the HOGWILD! SGD algorithm writes 
the layout updates to a shared non-atomic double vector, PG- 
SGD stores node coordinates in a vector of atomic doubles. 
This vector prevents any potential memory overwrites. Our 
tests revealed basically no performance loss with respect to 
the non-atomic counterpart.

4 Results
4.1 Performance
We apply the 2D PG-SGD to the human pangenome (Liao 
et al. 2023) from the HPRC to show the scalability of the al
gorithm. Experiments were conducted on a cluster with 24 
Regular nodes (32 cores/64 threads with two AMD EPYC 
7343 processors with 512 GB RAM) and 4 HighMem nodes 
(64 cores/128 threads with two AMD EPYC 7513 processors 
with 2048 GB RAM). We downloaded pangenome graphs 
for each autosome (24 in total) and for the mitochondrial 
DNA. Each graph represents 90 whole human haplotypes: 44 
diploid individuals plus the GRCh38 (Schneider et al. 2017) 
and CHM13 (Nurk et al. 2021) haploid human references 
(see Supplementary Table S1 for graph statistics). When ap
plied to these pangenome graphs using one Regular node 
for each calculation, odgi layout’s 2D PG-SGD implementa
tion obtains the graph layouts in 50 min on average, with the 
highest run time observed being chromosome 16 
(Supplementary Table S1). This is expected 
since chromosome 16 has one of the highest levels of segmen
tally duplicated sequence among the human autosomes 

Algorithm 1: Pseudocode of PG-SGD in 1D.
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(Martin et al. 2004). Repetitive sequences lead to graph 
nodes with a very high number of path steps, which are com
putationally expensive to work with (Guarracino et al. 
2022). Memory consumption is 29.66 GB of RAM on aver
age, with the memory peak again occurring with chromo
some 16, due to the path index building phase. Given its 
scalability, we applied 2D PG-SGD to the full graph with all 
chromosomes together using a HighMem node 
(Supplementary Table S1). To compare, BandageNG (https:// 
github.com/asl/BandageNG, last accessed July 2023), the cur
rent state of the art for graph visualization, was used to calcu
late a 2D layout of each of the HPRC pangenome graphs. For 
a fair comparison, we did not rely on BandageNG’s interac
tive GUI application, but we executed BandageNG layout, 
which directly emits a 2D graph layout similar to odgi layout. 
BandageNG was not able to produce a layout for the full 
graph within 7 days, hitting the wall clock time limit of the 
cluster. On average, PG-SGD is �8× faster than BandageNG 
while using �2× less memory.

4.2 Pangenome graph layouts reveal 
biological features
Graph visualization is essential for understanding pangenome 
graphs and the genome variation they represent. We show 
how 2D PG-SGD allows us gaining insight into biological 
data by looking at the graph layout structure. In Fig. 2a, the 
chromosomes of the HPRC graph show the large-scale struc
tural variations in the centromeres. Focusing on the major 
histocompatibility complex (MHC) of chromosome 6 
(Fig. 2b), the 2D layout reveals the positions and diversity of 
all MHC genes (Fig. 2c). In Fig. 2d, the C4A and C4B genes 
are highlighted. Complementary, we provide various 1D vis
ualizations in Supplementary Fig. S1.

5 Discussion
We presented PG-SGD, the first layout algorithm for pange
nome graphs that leverages the biological information avail
able within the genomes represented in the graph. Other 
generic graph layout algorithms, such as the one offered by 
BandageNG, ignore this additional information. Our imple
mentation efficiently computes the layout of pangenome 
graphs representing thousands of whole genomes.

Graph visualization is key for understanding genome varia
tions and the layouts produced by PG-SGD offer an unprece
dented high-level perspective on pangenome variation. We 
implemented PG-SGD to generate layouts in 1D and 2D. 
These graph projections have already been employed in con
structing and analyzing the first draft human pangenome ref
erence (Liao et al. 2023), as well as in the discovery of 
heterologous recombination of human acrocentric chromo
somes (Guarracino et al. 2023). Furthermore, they are ap
plied in the creation and analysis of pangenome graphs for 
any species (Guarracino et al. 2022, Garrison et al. 2023). Of 
note, there still remains a gap in interactive and scalable solu
tions that merge layouts of large pangenome graphs with an
notation. Our algorithm will underpin new pangenome 
graph browsers for studying graph layouts and the genome 
variation they represent (https://github.com/chfi/waragraph, 
last accessed July 2023).

The performance analysis shows that our 2D implementa
tion outperforms BandageNG when handling large, complex 

pangenome graphs. While BandageNG was not able to de
liver a layout of the whole HPRC graph within 1 week, 
our 2D PG-SGD calculated one within one day. There are 
some possible optimization approaches for future work to 
further improve the performance of PG-SGD, making it 
possible for interactive use. The data structure could be opti
mized to improve cache performance. Moreover, the high- 
degree of parallelism could be further exploited by using a 
GPU. In BandageNG, one cannot select the number of 
threads for the calculations. They are automatically chosen 
by the number of connected components of the graph to 
draw. This limits its parallelism and leads to an unbalanced 
workload. Since BandageNG was primarily designed for as
sembly graphs, one may have to adjust its parameters depen
dent on the input graph, in order to boost the layout 
generation or to adjust the highlighting of desired 
graph features.

The classical force model of state of the art generic graph 
algorithms, such as FM3-based ones, places nodes according 
to their attractive and repulsive forces. This force can be seen 
as equivalent to how our 2D PG-SGD moves the nodes’ ends 
in 2D: If the nucleotide distance of the randomly chosen path 
steps is smaller than the layout distance of the nodes’ ends, 
we move them closer together (“attractive force”), else we 
move them further away (“repulsive force”). However, the 
key difference here is that this approach is path-guided: paths 
represent biological sequences in pangenome graphs, so it 
is as if PG-SDG considers a “biological force” for placing 
the graph nodes. Theoretically, it would be possible to com
bine our approach with a force-directed one. Combining 
both methods, we might get the best of both worlds: multi- 
threadable PG-SGD iteratively applied to different graph 
layout-levels. We can imagine that such an approach can 
lead to a further speedup when calculating the 
layout. However, for generic graphs, this would only work 
if path information for each node could be added: we would 
replace the classical physical simulation approach with 
our path-guided method. If such information is not available, 
one could randomly cover the graph with paths. This func
tion is already provided in odgi cover. However, this is an 
NP-hard problem and our preliminary solutions proved 
ineffective.

With assembly graphs we face the same problem: they usu
ally do not carry path information during each assembly step. 
One could map the initial assembly reads back against the as
sembly graph in order to build paths through the graph. This 
would allow us to obtain a layout using PG-SGD.

PG-SGD can be extended to any number of dimensions. It 
can be seen as a graph embedding algorithm that converts 
high-dimensional, sparse pangenome graphs into low- 
dimensional, dense, and continuous vector spaces, while pre
serving its biologically relevant information. This enables the 
application of machine learning algorithms that use the graph 
layout for variant detection and classification. Our future re
search involves leveraging these graph projections to detect 
structural variants and to identify and correct assembly 
errors. Moreover, we are considering extending the algorithm 
to RNA and protein sequences to support pantranscriptome 
graphs (Sibbesen et al. 2023) and panproteome graphs 
(Dabbaghie et al. 2023), respectively.
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Figure 2. 2D visualizations of all chromosomes of the Human Pangenome Reference Consortium (HPRC) 90 haplotypes pangenome graph, chromosome 
6, the major histocompatibility complex (MHC), and the complement component 4 (C4). (a) odgi draw layout of the HPRC pangenome graph 90 
haplotypes. Displayed are all 24 autosomes and the mitochondrial chromosome. A red rectangle highlights chromosome 6 which is shown in the 
subfigure below. (b) gfaestus screenshot of the chromosome 6 layout. Colored in blue is the MHC. The hairball in the middle is the centromere. The black 
structures in the centromere are edges. (c) gfaestus screenshot of the MHC. All MHC genes are color annotated and the names of the genes appear as a 
text overlay. (d) gfaestus screenshot of the region around C4, specifically color highlighting genes C4A and C4B. The black lines are the edges of 
the graph.
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