Check for
Updates

‘Put the Car on the Stand’: SMT-based Oracles for

Samuel Judson
samuel.judson@yale.edu

Yale University
USA

Timos Antonopoulos

timos.antonopoulos@yale.edu

Yale University
USA

Investigating Decisions

Matthew Elacqua
matt.elacqua@yale.edu
Yale University
USA

Bettina Konighofer
bettina.koenighofer@iaik.tugraz.at
Graz University of Technology
Austria

Ruzica Piskac
ruzica.piskac@yale.edu

Yale University
USA

Filip Cano
filip.cano@iaik.tugraz.at
Graz University of Technology
Austria

Scott J. Shapiro
scott.shapiro@yale.edu
Yale Law School & Yale University
USA

Abstract

Principled accountability in the aftermath of harms is essential to
the trustworthy design and governance of algorithmic decision
making. Legal theory offers a paramount method for assessing cul-
pability: putting the agent ‘on the stand’ to subject their actions
and intentions to cross-examination. We show that under minimal
assumptions automated reasoning can rigorously interrogate algo-
rithmic behaviors as in the adversarial process of legal fact finding.
We use the formal methods of symbolic execution and satisfiability
modulo theories (SMT) solving to discharge queries about agent
behavior in factual and counterfactual scenarios, as adaptively for-
mulated by a human investigator. We implement our framework
and demonstrate its utility on an illustrative car crash scenario.

CCS Concepts

- Applied computing — Law; « Theory of computation —
Automated reasoning; Logic and verification.

Keywords

algorithmic decision making, algorithmic accountability, formal
methods, SMT solving, symbolic execution

ACM Reference Format:

Samuel Judson, Matthew Elacqua, Filip Cano, Timos Antonopoulos, Bettina
Konighofer, Scott J. Shapiro, and Ruzica Piskac. 2024. ‘Put the Car on the
Stand’: SMT-based Oracles for Investigating Decisions. In Symposium on
Computer Science and Law (CSLAW ’24), March 12-13, 2024, Boston, MA, USA.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3614407.3643699

This work is licensed under a Creative Commons Attribution International
4.0 License.

CSLAW °24, March 12-13, 2024, Boston, MA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0333-1/24/03
https://doi.org/10.1145/3614407.3643699

1 Introduction

Our lives are increasingly impacted by the automated decision mak-
ing of Al. We share roads with autonomous vehicles, as healthcare
providers use algorithms to diagnose diseases and prepare treat-
ment plans, employers to automate hiring screens, and even judges
to analyze flight and recidivism risks. Though the creators of Al
often intend it to improve human welfare, it is a harsh reality that
algorithms often fail. Automated decision makers (ADMs) are now
deployed into roles of immense social responsibility even as their
nature means they are not now, and likely will never be, trustwor-
thy enough to do no harm. When autonomous vehicles drive on
open roads they cause fatal accidents [Smiley 2022]. Classification
and scoring algorithms perpetuate race- and gender-based biases
in hiring and recidivism evaluations, both characteristics legally
protected from discrimination in many countries [Angwin et al.
2016; Dastin 2018; Kroll et al. 2017]. Both the rule of law and a more
ordinary sense of justice demand that society hold accountable
those responsible and answerable for harms. In this work, we inves-
tigate how formal methods can aid society and the law in providing
accountability and trust in a clear, rigorous, and efficient manner
through SMT-based automated reasoning.

Ideally, computer scientists would verify decision making algo-
rithms to confirm their correctness before deployment. Using the
techniques of program verification discrimination and other social
harms would be automatically detected and eliminated by engineers
before ADMs appear in the field. Unfortunately, the formal verifica-
tion of these algorithms is undecidable in the general case, and even
when theoretically possible will often require computational power
that can make the task uneconomical, if not practically infeasible.
Additionally, writing specifications for algorithmic decision making
often treads onto contentious questions of law and policy with no
universally agreed upon, let alone formalizable, answers [Kroll et al.
2017]. Nevertheless, assessing responsibility for harms remains
vital to the safe use of ADMs.

To better understand the concept of accountability, consider a
case in which one autonomous car hits another. We can ask: Which
car is responsible for the accident? Which made the error, and

https://doi.org/10.1145/3614407.3643699
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3614407.3643699
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3614407.3643699&domain=pdf&date_stamp=2024-03-12

CSLAW 24, March 12-13, 2024, Boston, MA, USA

to what end? When human drivers crash, lawyers investigate the
drivers’ reasoning and actions. Did the drivers intend to hit the
other car? Did the drivers know that an accident would occur?
To infer drivers’ intentions, lawyers engage in direct and indirect
examination to uncover the decision logic that lead to the accident.
Standard notions of due process view this opportunity to mount
a defense as essential to justice. A person must be permitted to
explain and justify themselves through arguing the facts of the
case [Edwards 2021]. For example, if a human driver can convince
a jury the crash was an unforeseeable accident, then they may
be subject to lesser penalties than had they acted intentionally or
negligently. A self-driving car cannot do likewise. Like a person,
an ADM makes unsupervised decisions in complex environments
which can lead to harm. But very much unlike a person, an algo-
rithm cannot simply walk into a courtroom and swear to tell the
whole truth.

ADMs leave us with the traditional need for explanation but —
as a program and not a mind — without the traditional means for
acquiring one. Still, a program can be translated into logic, and
logic can be rigorously reasoned about. While an algorithm may
not be able to defend itself under interrogation, we show the right
formal method can absolutely advocate on its behalf. And at least
in one sense, a formal method makes for a better witness than a
human - while the human can lie, the car cannot. The provable
rigor of our approach guarantees that whatever answers we get
from the decision algorithm are both accurate and comprehensive.

1.1 Contribution

We developed a method and tool, soid, for applying automated
reasoning to ‘put the algorithm on the stand’ in cases where its
correct behavior cannot be reduced to a practically verifiable formal
specification. Using soid, an investigator can pose tailored factual
and counterfactual queries to better understand the functional in-
tention of the decision algorithm, in order to distinguish accidents
from honest design failures from malicious design consequences.
Our method also generates counterexamples and counterfactuals
to challenge flawed conclusions about agent behavior — just as
would a human assisting in their own defense. We assume only
access to a program A implementing a decision making algorithm
A as granted by its controller. Our method supports three types of
queries: factuals (‘did the agent do..”), might counterfactuals (‘might
the agent have possibly done..), and would counterfactuals (‘would
the agent have necessarily done..”) [Lewis 2013]. We formally define
each in §3. The distinction between ‘would’ and ‘might’ counter-
factuals is foundational to their treatment in philosophy [Lewis
2013]. Logically, we implement ‘might’ counterfactuals using the 3
operator, and ‘would’ counterfactuals using V.

We have also implemented an example of a domain-specific
graphical user interface (GUI) that allows operation of soid with-
out requiring technical expertise, but here describe how it works
directly. The investigator starts from the logs of A, the factual in-
formation within capturing the state of the world as the agent
perceived it. These logs can be easily translated into a first-order
formalism as a sequence of equalities. For example, in the left panel
of the car crash diagrammed in Figure 1 the information in the
logs of A (blue at bottom) about the other car (red at left) might be

Judson et al.

Figure 1: A broadside car crash rendered in the soid GUL
encodable as a system of equalities

@ = agent1_pos_x =1.376 A ---
A agentl1_signal =RIGHT A ---. (1)

In the GUI all such statements are translated into formal logic
automatically. Using the automated reasoning method of symbolic
execution, we can answer queries about what the car did under these
constraints by checking formula entailment. Posing counterfactual
queries requires manipulating the state of the world since such
queries ask how would the agent react if the situation were different.
Counterfactuals can be encoded by substituting constraint values

¢’ = ¢[(agent1_pos_x = 1.376) >
(agent1_pos_x = 1.250)]. (2)

This formalism also allows us to reason about whole families of
counterfactuals, which can be defined by relaxing the constraints
and negating the original factual state as a valid model

¢" = p[(agent1_pos_x = 1.376) >
(1.0 < agent1_pos_x < 1.5)] A=¢. (3)

In this way, hypothetical-but-similar scenarios of interest to the
investigator (‘what if that car was outside instead of inside the inter-
section?’, ‘what if the car was signaling a turn instead of straight?”)
can be rigorously formalized to enable automated analysis of the
agent’s behavior.

We use SMT-based automated reasoning [Baldoni et al. 2018;
Cadar et al. 2008; Moura and Bjerner 2008] for the oracle that
answers the factual and counterfactual questions the investigator
asks. Each query and its answer helps the expert investigator to
build a body of knowledge, the FAacTs, about the decision logic used
in the autonomous agent. The investigator then decides when to
terminate the investigation when they have enough information
for the final judgement of an agent’s culpability.

1.2 Related Work

Formal methods for accountability are a burgeoning research topic,
both in general [Baier et al. 2021a; Chockler and Halpern 2004;
Datta et al. 2015; Feigenbaum et al. 2020; Halpern and Pearl 2005a,b;
Kisters et al. 2010] and focused on specific domains including auto-
mated and economic decision making [Baier et al. 2021b,c; Ghosh
and Meel 2019; Kroll et al. 2017; Su et al. 2015] and security [Feigen-
baum et al. 2011; Kiinnemann et al. 2019]. In particular, a recent
work uses such methods to investigate similar questions to ours
under stronger modeling assumptions [Cano Cérdoba et al. 2023].
Trustworthy algorithmic decision making is now a major focus

SMT-based Oracles for Investigating Decisions

of classical formal methods research as well [Alshiekh et al. 2018;
Christakis et al. 2021; Dreossi et al. 2019; Garcia and Fernandez
2015; Gehr et al. 2018; Katz et al. 2019; Singh et al. 2019]. Intention
and its relationship to responsibility is a central focus of law and
the philosophy of action, with a cross-discipline history dating back
millennia [Beebee and Menzies 2019; Lewis 2013; Moore 2019; Starr
2021; Wachter et al. 2017], including an extensive modern focus on
(often symbolic) automated decision making in particular [Bratman
1987; Cohen and Levesque 1990; Rao and Georgeff 1991]. Counter-
factual reasoning is accordingly a significant topic in Explainable
AI (XAI) [Adadi and Berrada 2018; Arrieta et al. 2020; Guidotti et al.
2018; Padovan et al. 2023], using both logical [Chockler and Halpern
2004; Halpern and Pearl 2005a,b] and statistical methods [Wachter
et al. 2017]. SMT solving [Barrett et al. 2021; Moura and Bjerner
2008] and symbolic execution [Baldoni et al. 2018; Cadar et al. 2008],
are both foundational topics in automated reasoning.

Technically, our approach differs from the already significant
body of work in counterfactual analysis of algorithmic decision
making in two significant ways: in our analysis of executable code
‘as it runs’ — rather than just of a partial component (such as an
ML model in isolation) or of some higher-level mathematical ab-
straction of the system — and in our reliance on formal verification.
By analyzing the code itself, rather than an idealized abstraction or
particular model, we can capture behaviors of the entire software
system: preprocessing, decision making, postprocessing, and any
bugs and faults therein. This makes our analysis more complete.
In §6.2, for example, we consider a hypothetical case study where an
instance of API misusage — rather than any mistakes of logic within
the code itself - undermines a machine learning decision. The deci-
sion and its consequences are not analyzable by considering only
the (correct on its own terms) decision model alone.

Meanwhile, verification technologies allow us to analyze all pos-
sible executions obeying highly expressive pre- and post-conditions.
SMT-based methods in particular provide the full expressiveness
of first-order logic. As such, our approach can encode entire fam-
ilies of counterfactuals in order to provide a broad and thorough
picture of agent decision making, so as to better interpret responsi-
bility. Prevailing, often statistical methods, commonly focus more
on gathering explanations prioritized on informal measures, such
as minimality or diversity criteria, in order to demonstrate causality,
see e.g., [Mothilal et al. 2020; Wachter et al. 2017]. Informally, in
computer science terms, this distinction is analogous to that in
automated reasoning between methods for verification — which
emphasize overall safety and the correctness of the set of all pro-
gram traces provably meeting some logically expressed property
— and methods like testing or fuzzing that focus on finding or ex-
cluding representative executions believed to exemplify that prop-
erty [Abebe et al. 2022]. Of course (SMT-based) verification does
have costs - it carries substantially more computational complexity
than testing approaches, which can increase compute costs and
limit scalability. Accordingly, we implement and benchmark the
empirical efficacy of our method in a laboratory environment in §6.
In human terms, our approach is analagous to enabling asking
broad, positive questions about agent behavior under a coherent
family of scenarios, rather than asking questions aimed primarily at
generating or falsifying a particular claimed explanation for a (fac-
tual or counterfactual) decision. The work of [Cano Cérdoba et al.

CSLAW 24, March 12-13, 2024, Boston, MA, USA

2023] and VerifAI [Dreossi et al. 2019] are the related approaches of
which we are aware most similar to our own in goals and method,
although the former requires stronger modeling assumptions while
the latter sacrifices some formal guarantees for scalability.

2 Motivation

To illustrate the purpose of soid, we continue with the crash from
Figure 1. In the left panel the autonomous vehicle A (blue at bottom)
perceived that the other car (red at left) had its right turn signal
on. Call this time ¢*. When A entered the intersection — believing
the action to be safe, even though it lacked the right-of-way —
the other car proceeded straight, leading to a collision. Because
it did not possess the right-of-way, A is culpable for the crash.
This scenario forms the basis for our benchmarks in §6, where the
specific question we investigate with soid is ‘with what purpose
did A move, and so to what degree is it culpable for the crash?’

Note that the actions of A are consistent with with three signifi-
cantly different interpretations:

i areasonable (or standard) A drove carefully, but proceeded
straight as is common human driving behavior given the (per-
ception of an) indicated right turn;

ii an impatient A drove with reckless indifference to the risk
of a crash; and

iii a pathological A drove to opportunistically cause crashes
with other cars, without unjustifiable violations of traffic laws
such as weaving into an oncoming lane.

Even for the same act, these different interpretations will likely lead
to drastically different liabilities for the controller under criminal
or civil law. Interestingly, the natural language explanations for
the i) reasonable and iii) pathological cars are identical: ‘moving
straight would likely not cause a crash, so proceeding would bring
me closer to my goal’. Nonetheless, counterfactual queries (notated
0—) can help distinguish between these candidate interpretations.

at t*

0= Could a different turn signal have led A to remain
stationary?

O— If A had arrived before the other car, and that other

car was not signaling a turn, would A have waited? (e.g.,

to ‘bait’ the other car into passing in front of it?)
Interpretation i) is consistent with (yes, no), ii) with (no, no), and iii)
with (no, yes). Note the adaptive structure of our questions, where
the second query can be skipped based on the answer to the first.
The goal of soid is to enable efficient and adaptive investigation of
such queries, in order to distinguish the computational reasoning
underlying agent decisions and support principled assessment of
responsibility. Although autonomous vehicles provide an insightful
example, soid is not limited to cyberphysical systems. In §6.2 we
use soid to analyze a buggy application of a decision tree leading
to a health risk misclassification.

2.1 Legal Accountability for ADMs

Before presenting the technical details of soid, we also overview
how the philosophy and practice of legal accountability might apply
to ADMs, and so motivate the analysis soid is designed to enable. We
work in broad strokes as the legal liability scheme for ADM:s is still

CSLAW 24, March 12-13, 2024, Boston, MA, USA

being developed, and so we do not want to limit our consideration
to a specific body of law. This in turn limits our ability to draw
specific conclusions, as disparate bodies of law often place vastly
different importance on the presence of intentionality, negligence,
and other artifacts of decision making.

A core principle of legal accountability is that the ‘why’ of a
wrongful act is almost always relevant to evaluating how (severely)
liable the actor is. In the words of the influential United States
Supreme Court justice Oliver Wendell Holmes, ‘even a dog distin-
guishes between being stumbled over and being kicked.” As every
kick has its own reasons bodies of law often distinguish further —
such as whether the ‘why’ is an active intent to cause harm. Though
holding algorithmic agents accountable raises the many technical
challenges that motivate soid, once we understand the ‘why’ of an
algorithmic decision we can still apply the same framework of our
ethical and legal practices we always use for accountability [Hal-
levy 2013; Kroll et al. 2017]. The algorithmic nature of a harmful
decision does not invalidate the need for accountability: the locus
of Holmes’ adage lies in the harm to the victim, being justifiably
more aggrieved to be injured on purpose or due to a negligent
disregard of the risk of a kick than by an accidental contact in the
course of reasonable behavior. In practice, even though criminal
law and civil law each place different emphasis on the presence
of attributes like intention and negligence in a decision, intention
in particular almost always matters to — and often intensifies -
an agent’s liability. Any time the law penalizes an unintentional
offense it will almost always punish an intentional violation as
well, and should intention be present, the law will usually apply
the greatest possible penalties authorized for the harm. Given the
importance of recognizing intention, soid is designed to support
rigorous and thorough findings of fact about algorithmic decisions
from which a principled assessment of their ‘why’ can be drawn.

Taking a step back, it is deeply contentious whether ADMs now
and in the future can, could, or should possess agency, legal per-
sonhood, or sovereignty, and whether they can ever be morally
and legally responsible [Miiller 2023]. Even the basic nature of
computational decision making is a significant point of debate in
artificial intelligence and philosophy, with a long and contentious
history [Bratman 1987; Cole 2020]. For the moment, ADMs are
not general intelligences. They will likely not for the foreseeable
future possess cognition, agency, values, or theory of mind, nor
will they formulate their own goals and desires, or be more than
‘fancy toasters’ that proxy the decision making agency and respon-
sibility of some answerable controller. An algorithm is no more
than a computable function implemented by symbolic manipu-
lation, statistically-inferred pattern matching, or a combination
thereof. Nonetheless, even working off the most stringent rejection
of modern ADMs forming explicit knowledge or intentional states,
following Holmes we can see there is still value in grading the
severity of a harmful decision. It is deeply ingrained in our gov-
erning frameworks for legal and moral accountability that when
acting with the purpose of harm an agent (or its controller) has
committed a greater transgression than in the case where the harm
was unintended.

In this work we sidestep whether and how computers can pos-
sess intentionality by viewing intention through a functionalist lens.
Even for conscious reasoning, it is impossible to replay a human

Judson et al.

being’s actual thought process during a trial. So in practice, legal
definitions refer instead to an ex post rationalization of the agent’s
decisions made by the accountability process through the finding
of fact. A person is assessed to have, e.g., purposely caused harm if
the facts show they acted in a way that is consistent with purpose-
ful behavior. We can approach computational reasoning in much
the same way, with an investigator making an ex post descriptive
rationalization capturing their understanding of an ADM’s decision
making. This understanding then justifies a principled assessment
of the controller’s responsibility. For example, a controller can be
assessed to have released into the world an ADM that the facts
show acted in a way that is consistent with a purposeful attempt
to cause harm. The design and algorithmic processes of the agent
are otherwise irrelevant. How the ADM actually decision makes —
whether through statistical inference or explicit goal-oriented deci-
sion logic or otherwise - is relevant only with respect to our ability
to interrogate its decision making. This approach is consistent with
soid, which is capable of analyzing arbitrary programs.

An investigator using soid to label an ADM as ‘reasonable’ or
‘reckless’ or ‘pathological’ or similar is, however, only the start.
How such an assessment should then be interpreted and used by an
accountability process is, ultimately, a policy question. The unset-
tled nature of the laws, policies, and norms that govern ADMs, both
for now and into the future, means there are many open questions
about the relevance of the intent of an ADM and its relationship to
the intent of the controller. But we can consider the ramifications
in broad strokes. For individuals harmed by ADMs (whether as con-
sumers, other end-users, or just unlucky ‘bystanders’), the situation
seems little different than for human misconduct: the finding of
intent amplifies the harm, and the victim can reasonably expect
the accountability process to penalize the transgressor appropri-
ately. More specific questions are harder. Should apparent intent
in both the controller and ADM be assessed more harshly than in
one or the other alone? Or would apparent intent in the controller
render the actions of the ADM relevant only in how successfully
the intent of the controller was carried out? How should an emer-
gent ‘algorithmic intent’ traceable to software faults interact with
any documented, contrary evidence of the intent of the controller?
These questions lay beyond the scope of this work, but they are
each dependent on our capacity to first recognize and distinguish
the functional intent of the ADM, motivating our research goals.

For the controllers of ADMs (whether as programmers, vendors,
owners, or sovereign states), it is a natural starting point to view
them as responsible for the actions of their computational agents,
just as they would (most often) be responsible for human agents
acting on their behalf. With reward comes responsibility. If a con-
troller profits from deploying an ADM, so must they bear the costs
of its harms. Legal concepts governing humans acting on behalf or
through each other or organizations are well-founded throughout,
e.g., agency and criminal law [Hallevy 2013; Legal Information In-
stitute 2023]. These mechanisms may be either directly applicable
or can form the basis for analogous systems governing algorith-
mic accountability. For example, just as a business is expected to
adequately prepare (i.e., train) a human agent to operate on their
behalf without causing harm, a controller can be expected to ade-
quately prepare (i.e., design or train) a computational agent. What
standard the controller sets internally ex ante before deploying the

SMT-based Oracles for Investigating Decisions

ADM is primarily relevant insofar as it provides confidence to the
controller the ADM will not be found ex post to have operated in
a way consistent with an intent to harm — and so carry with it a
corresponding increase in liability.

Grounding our approach in the functionalist perspective also
helps us manage difficult questions about the validity of anthropo-
morphizing algorithmic systems through the use of language like
‘intent’, ‘beliefs’, or ‘reasonableness’, as we ourselves have done
throughout §2. It is not immediately clear such language is intrinsi-
cally confusing or harmful: the use of such labels in characterizing
automated decision making is decades-old, to the extent that consid-
eration of whether and how machines can form intentional states
has informed how prevailing approaches in the philosophy of action
now capture whether and how humans form them [Bratman 1987;
Bratman et al. 1988]. Moreover, as accountability processes begin to
wrestle with algorithmic decision making some anthropomorphiza-
tion is perhaps unavoidable, due to the often heavily analogical
nature of legal reasoning [Levi 1947]. We ourselves invoked the
analogy of Holmes to frame our discussion. The validity of some
such analogies are in some cases already contentious. For example,
whether the ‘creativity’ required to earn authorship under copy-
right law must necessarily be human is under active consideration
in litigation and scholarship concerning generative models [tha
[n.d.]; Dornis 2020]. On the other hand, the negative consequences
of anthropomorphizing ADMs has been itself widely recognized in
scholarship and science fiction dating back decades: it can cause us
to, e.g., ascribe to machines and their actions non-existent morality
and common sense, or grow attached to them in ways that cause
us to disregard their harms or cloud our judgement of their true
capabilities and limitations.

To avoid conflation, perhaps machine analogues to terms like
‘intention’ will arise. But wherever the legal and policy language
settles, the core philosophical principle - that a functional interpre-
tation of the ‘why’ of a decision matters for accountability — will
hold. So long as the philosophical (and computational) principles
remain, the goals of our research should likewise remain applicable
no matter what norms of language develop.

3 Technical Background

In this section we present some relevant foundations for soid from
formal and automated reasoning.

3.1 Programs and Traces

Let A be the program instantiating a decision algorithm A. A
operates over a finite set of program variables var(A) = V =
{01, ..., vn}. We view var(A) as a union of disjoint subsets V =
IUD. The set D = {vdy, ..., vdnp,} is the set of internal decision
variables. The set of input variables I = E U S is itself partitioned
into sets of environment variables E = {vey, ..., vep,} and state
variables S = {vsy, ..., vspg}. Therefore n = ng + ng + np. E is
composed of variables encoding input sources external to the agent,
while S is composed of variables encoding internal state.

Every v; is associated with a domain D,,. A state is the com-
position of the variable assignments at that point of the execu-
tiono € D = (Dy, X -+ X Dy,). Given o = (d1,...,dn) € D,
we denote the restriction to only environment variables as o|g =

CSLAW 24, March 12-13, 2024, Boston, MA, USA

(dq, ... ,LﬂenE) € Dy X-++ X DenE, and similarly for ol|g, o|j, and
o|p.Atrace T = 010203 . .. is a (possibly infinite) sequence of states.
We access states by 7(t) = oz, and values of variables at states by
o(v;) = d;. The set of possible traces is governed by a transition
relation R C D X D, so that 7(¢) = o and 7(¢ + 1) = ¢’ may occur
within some 7 only if (0, 6’) € R. The program A encodes a par-
tial transition relation, R4, with the constraint that (o, ¢’) € Ry
requires that Vi € [ng]. o(ve;) = o’ (ve;). That is, by definition
A cannot define how the environment E[A]| updates the ve;, as
that capacity is exactly the distinction between a program and the
environment it runs within.

We work with statements over the program variables in the logic
QF_FPBV. The available domains are those of floating points and
bitvectors. An expression e is built from variables composed with
the constants and function symbols defined over those domains, e.g.,
(fp.to_real b011) + 2.34 - v14. A formula ¢ is built from expressions
and relation symbols composed using propositional operators, e.g.,
the prior expression could extend to the formula (fp.to_real b011) +
2.34 - v14 > —1.87.1f ¢ is a formula over var(A) = V, notated ¢(V),
and o = (41, ..., dp) € D, then we write o | ¢(V) if the constant
formula that results from substituting each d; for v; evaluates to
TRUE. We use ¢ and when writing formulas over I that represent
scenarios, f§ when writing formulas over D representing decisions
made, and II when writing formulas over V representing whole
program executions.

A symbolic state & = D= (2551 XX ZA)ZA,", 7s) is defined over
a set of symbolic variables symvar(A) = V = {4y, ..., 0}, with I,
E, S, and D defined analogously. Each Z%i augments the concrete
domain Dy, by allowing 9; to reference an expression e; over a
set of symbolic values {a;};c(k], €8 €i = ai or e; = 2a; +3.0. We
write & |= ¢ (V) for formulas over symvar(A) analogously to the
concrete case, still in QF _FPBV. The path constraint ns (a1, ..., an)
is such a formula over the «;, which captures their possible settings.

3.2 SMT-based Program Analysis

We overview SMT solving and symbolic execution, and refer the
reader to [Moura and Bjgrner 2008] and [Baldoni et al. 2018; Cadar
et al. 2008] respectively for greater detail.

SMT Solving. Satisfiability modulo theory (SMT) solving is a form
of automated theorem proving that computes the satisfiability (and,
by duality, validity) of formulas in certain fragments of first-order
(FO) logic. SMT solvers — we use the state-of-the-art Z3 [Moura
and Bjerner 2008] - are also able to return satisfying models when
they exist. In the case of validity queries, these models are concrete
counterexamples to the disproven theorem. An SMT formula ®
is a FO-formula over a decidable theory T. In this work, we set
T = QF_FPBY, the combination of quantifier-free formulas in the
theories of floating-points and bitvectors [Barrett et al. 2021]. We
require support for floating-point statements due to their centrality
in machine learning.

Symbolic Execution. One of the great successes of SMT-based pro-
gram analysis, symbolic execution explores the reachable paths of
a program P when executed over V. Concrete values are computed
exactly, assignments to or from symbolic-valued variables update

CSLAW 24, March 12-13, 2024, Boston, MA, USA

their expressions, and branching conditions update the path con-
straints. For a branch condition b(V) reached at symbolic state 6,
such as a guard for an if-statement or while-loop, an SMT solver is
invoked to check which branches are feasible under 7;, i.e., whether
®=b(V) A nj and/or &’ = -b(V) A 7 are satisfiable. If only one
is, the execution continues along it and its path constraints are up-
dated. For example, if only @’ is satisfiable then ; < 7 A -b(V).
If both are satisfiable, the execution can fork in order to explore all
reachable paths and produce a set of constraint formulas {7;};e[cs]
encoding each path at termination. By setting initial constraints
on the input variables, symbolic execution can narrow the search
space to only the paths of executions meeting preconditions.

3.3 Counterfactual Reasoning

Counterfactuals are essential to modern theories of causation and
responsibility in philosophy and law [Beebee and Menzies 2019;
Lewis 2013; Moore 2019; Starr 2021; Wachter et al. 2017], and are are
already quite prominent in formal methods for accountability [Baier
etal. 2021a,b,c; Chockler and Halpern 2004; Datta et al. 2015; Feigen-
baum et al. 2020; Halpern and Pearl 2005a,b; Wachter et al. 2017].
Causation refers to the influence an input of some process has on
its output, e.g., in an MDP how a choice of action influences the
resultant distribution on (some property of) the next state, or for a
program how changes in the inputs influence the outputs. In the
simplest possible case, an action a is an actual cause of an outcome,
such as a harm h, if under every counterfactual a is both neces-
sary and sufficient for the harm to occur, notated as a O— h and
—a 00— —h. Here a and h are some domain-specific formal objects,
while the modal notation x O— y, popularized by Lewis [Lewis
2013], means if x had happened, then y would have happened. The
canonical unified logical and computational treatment of counter-
factuals are the works of Pearl and Halpern [Halpern and Pearl
2005a,b], which provide a directed acyclic graph-based formalism
able to inductively model causal effects in far more complicated
dependency structures.

Responsibility is a higher-order property than causality. As raised
in §2, counterfactuals of decision making are essential to interro-
gating intention and with it responsibility. Put simply, counterfac-
tuals enable challenging and verifying proposed explanations for
an agent’s decisions. Importantly, counterfactual analysis is well-
defined independent of any specific decisions, or the inferences
about agent intention made on the basis of them. So although we of-
ten frame our discussion in terms of behaviors that match common
understanding of human decision making, we stress our formal
approach would generalize to future models of algorithmic decision
making interested in very different attributes and behaviors than
those we apply to humans.

Formalism. Working ex post, we formalize counterfactual algo-
rithmic decision making by starting from a set of factual traces
Tf = {rlf sy r,{ } encoding a history of A’s harmful or otherwise
relevant decisions. A counterfactual 7/ = (tf, PP, t*) is a tuple of
a factual trace 7/, a past possibility trace 7°P, and an integer t* € N
that we call the keyframe. We write ¢/ fst = ¢/ and 7/ snd = P?.
Intuitively, we want counterfactuals to represent the decisions that
A would have made in revealing alternate circumstances. What

Judson et al.

makes a counterfactual ‘revealing’ is a deep and nuanced question,
but the philosophy of action highlighs the importance of particular
attributes for counterfactual scenarios to be meaningful. We enforce
these tenets as predicates, in order to guarantee that our method
works for counterfactuals possessing them.

(1) Non-backtracking: Counterfactuals should encode scenarios
with a meaningful relationship to observed events, and should
not require us to ‘replay’ the evolution of the world under sig-
nificant changes to past history. Formally, both 7/ and PP must
be defined at t*, and must agree up until it:

nbt(z¢) = V' t* < |f| A t* < |tPP| A
(t' <t = (') =PP(t)).
Every past possibility trace forms a non-backtracking counter-
factual for t* = 1, so usually choice of keyframe will come first

from some a priori understanding the investigator has about
the critical decision moments leading to a harm.

@

~

Scope of Decisions: In order to clarify the purpose of an agent’s
actions, what an agent might have done is less important than
what it would have decided to try to do. In complex systems the
former is often contaminated by the decisions of other agents
and the evolution of the environment, as agents rarely have
complete control over outcomes. To clarify this distinction, we
enforce a scope to the decision making of A by limiting past
possibility traces to internal reasoning. No transition after ¢*
may update the valuations of E.

scope(r, t*) = Vt'Vi € [ng].t* <t —
(" — 1) (ve;) = (") (ve;).

This scope constraint can be interpreted as formalizing that we do
not require or use access to an environmental model E[A].

An admissible counterfactual is both non-backtracking and lim-
ited in scope:

admit(rF) = nbt(rf) A scope(e??, t*).

In order to use automated reasoning to interrogate A’s decision
making history (in the form of Tf), we need to formalize the se-
mantics of two different families of trace properties:

? .
factuals : o E o) = ae (D)
when faced with ¢ at time ¢, did A do f at time ¢£?

? .
counterfactuals : f e o(I) O> g4+ B(D)
if faced with ¢ at time ¢*, would A have done f at time £?

We begin with factuals. In order to formulate a useful semantics
for this predicate, we need a reasonable interpretation of the subse-
quence 7/ (¢) ... 7/ (¢) that the property implicitly analyzes. Work-
ing after-the-fact justifies one: as a window of agency, during which
either A made a decision or failed to do so as a harm played out.
If the window of agency was still open, we could not be working
ex post. We can then formulate a semantic definition in which q)(f)
specifies preconditions on the inputs to A, and §(D) then specifies
post-conditions on its decision variables, limited in scope and to

SMT-based Oracles for Investigating Decisions

the window of agency.

o E o) e fD)
ifscope(rf, t) and (1) k E ¢(I) and rf({’) b E B(D).

On the contrary, for counterfactuals it is not obvious that we can
assume a known and finite window. As 7’ (+*) may have never
been observed it could lead to A looping forever, and without an
E[A] we cannot know how long the window would last. However,
as counterfactuals are objects of our own creation, we will assume
that the investigator can conjecture a reasonable window [t*, £]
within which the decision of A must be made in order to be timely,
with responsibility attaching to the agent if it is unable to make a
decision within it. This assumption guarantees termination.

With this philosophically distinct but mathematically equivalent
assumption, we are able to define the semantics of the counterfac-
tual operator as

f e o(d) O .40 B(D)
if admit(zf) and /()

: i o(I) and
P (1), ¢() and P (0)|, [B(D).

In practice, our use of symbolic execution will abstract away these
details by framing the scope and the window of agency so that
admit(¢f) is true by construction. We discuss this formally in §5.1.
Lastly, we will oftentimes discuss families of counterfactuals,
which are sets of counterfactuals which share a factual trace

1 = (ol i e) st = o sty

Families of counterfactuals can naturally be defined implicitly by a
tuple ctx = (rf, t*, @) as

T = (| admit(r) and =/ fst(£*) I o (1)
and r*f snd(t*) = o(D)}.

Choice of context ctx will be our usual way of delineating families,
especially as ¢ then provides a descriptive representation.

4 Formal Reasoning for Accountability

Given a program A and log of factual executions T/, soid aims to
provide an interactive, adaptive procedure for the investigator to
refine a set FACTSs of trace properties capturing how A behaves in
TS and related counterfactuals, just as in a legal finding of fact. We
call this counterfactual-guided logic exploration. Our end goal is for
soid to is to enable continuous refinement of a formal representation
of A’s decision making:

Facts = {...., (/. (1) = 00 Bi(V)),.. JU
Lo (& 0 (D Do e BiV).).

Each fact in FAcTs is composed of a (counter)factual trace and a
property that holds over it, as proven by an SMT solver. Since we do
not assume access to some overarching property P(A) that we aim
to prove, FACTs is the ultimate product of the counterfactual-guided
logic exploration. The human investigator is trusted to take FAcTs
and use it to assess A’s responsibility for a harm.

CSLAW 24, March 12-13, 2024, Boston, MA, USA

Our method relies on an oracle interface, O 4 (+), into the decision
logic of A. We specify factual queries as ¢ = (¢, f), pairing an input
constraint ¢ and a behavior . Such a query asks whether the factual
program execution starting from the program state encoded by ¢
results in the agent behavior encoded by f, or more formally...

forf st.of (1) (1) uniquely, does of E o(D) — AL B(D)?

We specify counterfactual queries as ¢ = (13, ¢,), composed
of a ‘might’/‘would’ (existential/universal) indicator bit 15, input
constraint ¢, and behavior f. Each such query asks whether there
exists a program execution (a might counterfactual) starting from
a program state encoded by ¢ that results in the agent behavior
encoded by f, more formally...

if 13, for ctx = (¢, t*, @) does there exist “f e cht]: such that
=/ | (D) B a0 B(D);
or similarly, but now whether for all executions starting from the
program states encoded by ¢ (a would counterfactual)...

if =13, for ctx = (Tf, t*, ¢), w}'lether forall z¢f € chtj): it follows
that ¢/ | o () O 7,4+ B(D)?
This quite minimal information is sufficient for the oracle to resolve

the information needed to improve FAcTs. Note that as T:tj: excludes
the factual trace as a valid continuance from t*, it is not possible for
a counterfactual query to resolve (positively or negatively) on the
basis of the factual execution — only counterfactuals are considered.

An Example. Consider an investigator trying to understand the
facts under which the car in Figure 1 did, would, or might enter
the intersection. If ¢ of Equation 1 represents the critical moment
at which the car moved into the intersection, then the investigator
could query

q1 = (p,move = 1)

where move is a decision variable. If, for example, r; = (1,__),
then Algorithm 1 will set

Facts = {(Tf,gp — . move = 1)}

to capture the now confirmed fact that the car chose to move into
the intersection (rather than say, had a brake failure). Note that to
do so the investigator needs only to know the input constraints ¢
and the specific decision variable move . All other aspects of the
self-driving car’s decision logic is hidden by the oracle interface,
and the output is clear and interpretable answer to exactly the
question posed. Adaptively, the investigator might then decide to
skip Equation 2, and instead move on to querying using ¢’ from
Equation 3, e.g.,

q2 = (13,(p",move = 0)

to ask whether under the family of counterfactuals cht{ defined
by ¢” there exists a circumstance where the car would not have
entered the intersection. If then, for example, ry = (1, M), where
the model M encodes a concrete counterfactual scenario, the in-

vestigator can update
Facts « Facts U {(M, ¢"" O— g4+ , move = 0)}

and continue on from there.

CSLAW 24, March 12-13, 2024, Boston, MA, USA

Judson et al.

Algorithm 1 Counterfactual-Guided Logic Exploration

T « {1{, rf},FACTse {}
2: while not done? do
3 if factual? then
(«f, 1), P — startAT7, I)

4:

5 B« behavior?(V)

6 ri=(b,_) « 0a(qi = (o, B))

7: ifb=0

8: then Facts « Facts U {(¢/ (1), (p(f) AL —ﬁ(ﬁ))}

9 else Facts « Facts U {(cf (1), () = a1, (D))}

10: else

11: ctx = (Tf, t*, @), F « cf(Tf, I)

12: B, 13 « behavior?(V)

13: ri=(b, M) « Oa(qi = (13, ¢, B, F))

14: if 13 = 0 then

15: ifb=0

16: then FacTs « Facts U {(M, ¢(I) O 7 440 -p(D))}

17: else Facts « Facts U {(rjc.f(t*), o) B N ﬁ(ﬁ))}T?fETif

18: else ’

19: ifb=0

20: then Facts « FacTs U {(rjc.f(t*), o(D) O 7 4+.p ﬂﬁ(ﬁ))}rc_feﬁf
7 € le

21: else Facts « FacTs U {(M, ¢(I) 0= g+, (D))}

The Method. We define the counterfactual-guided logic explo-
ration loop and oracle interface that together underlie soid in Algo-
rithms 1 and 2, where calls in italics? indicate manual interventions
that must be made by the investigator. The investigatory procedure

starts from the set of factual traces TS = {rlf o, r]’:} observed
from A’s executions. At each iteration of the loop, the investigator
adaptively formulates and poses the next question in a sequence
QUERY = (q1, - .-, i, --.). The responses REsP = (rq, ..., I, ...)
are then used to build up the set FAcTs of trace properties regarding
A’s decision making under both the T/ and the set of counterfac-
tual scenarios, Tef = {Tlcf s, Tg }, defined within the g; by the
investigator. Each entry in FACTs is rigorously proven by the verifi-
cation oracle Oy4 (+), with access to the logical representation II of
A as expressed by A. We leave to the investigator the decision to
terminate the investigatory loop, as well as any final judgement as
to the agent’s culpability. In §5 we explain the encodings ® used
within Algorithm 2 in detail, and in our technical report [Judson
et al. 2023] prove that they correctly implement the semantics of
— A, and 0= g 4 ¢ as defined in §3.3.

Design Goals. We briefly highly how soid meets some critical
design goals to support principled analysis for legal accountability.

(1) The oracle design pushes the technical details of how A works
‘across the veil’, so that an investigator needs to know no more
than the meaning of the input/output API exposed by A (over
the variables in I and some subset of D, respectively) in order
to construct a query g; and interpret the response r; «— O4(q;).
To this end, we designed the oracle query to place as minimal a
possible burden on the investigator.

(2) The method emphasizes adaptive construction of FAcTs, so that
the investigator may shape the ith query not just by considering
the questions (g1, ..., gi—1) asked, but also using the responses
(r1, ..., ri—1) already received. We aim to put the agent on the
stand, not just send it a questionnaire. Crucial to this goal is to
return concrete traces from counterfactual queries, so that their
corresponding facts can help guide the construction of the next.
Using the ability of SMT solvers to return models for satisfiable

formulas, when 13 = 1 and there exists f e T;{ such that
°f | (1) O g4 (D), we are able to explicitly inform the
investigator of the fact (<1, o(D) O a0 B(D)). Conversely,
when 15 = 0 and q)(f) C= A e ﬁ(ﬁ) is not true for all ¢/ €
70

ctx?
-B(D)) fo:r1 slo/ncle counterexample 7¢f € chtj): encoded by the
output mode .

we also can explicitly return the fact (Tc_f, (p(f) B A

(3) The method is interpretable. When an investigator poses a ques-
tion, soid pushes everything ‘smart’ the method does across the
oracle interface to the verification, so that even non-technical
users can understand the relationship between query and re-
sponse. In a sense, our method benefits from a simple and
straightforward design, so that its process is direct and inter-
pretable to the investigators using it. As with a human on the
stand, we just want the answer to the question that was asked,
no more and no less. As this design goal describes what not to do
rather than what to do, we informally meet it by not introducing
unnecessary automation.

In general, we balance automation against interpretability, in order
to minimize the burden on the investigator: we want them to pick

SMT-based Oracles for Investigating Decisions

Algorithm 2 Oracle

Require: g; = (¢, p) or q; = (13, 2 B, F)
1 (ct, {myp}) < SymExec(A, ¢(1)) > ct is the branch count
2 11— Vae[n], be[ct] Tab
3: if |q| = 2 then
& e ((p() AII(V)) — B(D))
5 (b, M) «— SMT.isValid?(®)
6: else
7 if g.fst = 0 then
8 @ — = ((p(I) A=F(I) AIL(V)) — B(D))
9 (b, M) « SMT.isValid?(®)

10: else

11 @ — (p(I) A =F(I) ATI(V)) A

12: ((p(D) A =F(I) ATL(V)) — B(D))
13: (b, M) « SMT.isSat?(®)

14: returnr; = (b, M)

a critical moment and (family of) counterfactual scenarios, define a
behavior as a post-condition, and get push-button execution.

5 Representations and Queries

We discuss how we represent (counter)factual scenarios and queries
logically so that soid can resolve them using an SMT solver. For an
extended discussion of how see our full technical report [Judson
et al. 2023].

We specify a factual query as a tuple (¢, f8), the former logical
formula specifying the inputs to the program at a critical decision
moment (as in Equation 1), the latter encoding a description of
the possible agent decision being investigated. Implicitly, ¢ defines
a factual scenario (¢/, t, ¢), where ¢ encodes the program state
at that critical moment 7/ (¢). Counterfactual queries are encoded
similarly, but with the additional of the existential indicator bit 15.
They are also able to encode many different possible program exe-

cutions, captured by the notion of a family of counterfactuals cht]; .
The last necessary statement required to invoke an SMT solver is
II(V), the decision logic of A constrained to the scenario(s) implied
by ¢. We generate I1(V) dynamically given a (counter)factual query
using symbolic execution.

5.1 Representing Agents and Scenarios

We represent (counter)factual scenarios by formulas on the vari-
ables in I so that soid can resolve them using an SMT solver.

Factuals. Factual scenarios are naturally defined such that every
input variable is constrained by an equality, together encoding
some factual state 7/ (¢).

DEFINITION 5.1. A factual scenario is a tuple (t/, t, ¢) s.t.
) o (1) (D) and
ii) forall o|; # o () ool o(D).

In practice, a factual query is specified by a ¢ that has a unique
satisfying model over I. Evaluating a factual scenario is functionally

equivalent to a concrete execution, since f is the only possible
program trace. We tie factual analysis into our framework for com-
pleteness, and because unlike traditional ‘opaque’ assertion-based

CSLAW 24, March 12-13, 2024, Boston, MA, USA

testing soid supports writing complex behavioral conditions on
all of V, including both internal and output variables. Addition-
ally, our factual representations also naturally generate circuits for
(zero-knowledge) proofs-of-compliance, another promising tool for
algorithmic accountability [Kroll et al. 2017; Ozdemir et al. 2022].

Counterfactuals. A counterfactual is a formula which removes
the original factual f as a valid model, (p(f) = (p(ﬁ) A =F().

DEFINITION 5.2. 1. A counterfactual scenario is a tuple (r¢f =
(rf, P %), ¢, F) such that
i) PP(1°)|; k(D) A =F(D);
ii) rf(t*)‘l £ F(D); and
2. A family of counterfactual scenarios is a tuple (chtj:, ¢, F)
where the set T, contains every ¢/ = (¢f, PP, t*) such that

ctx

P (p(f) A=F() and (+¢7, @, F) is a counterfactual scenario.

In practice, a counterfactual query is specified by a (13, ¢, F) tuple
where 7 (¢*) is excluded as a model by the negation of the formula
F(I) tightly encoding it.

Behaviors. A behavior is just an arbitrary formula over D.
DEFINITION 5.3. A behavior is a formula p(D).

Decision Logic. We leave the more involved definition of the
decision logic II(V) to our technical report [Judson et al. 2023].
Roughly, it is a formula representing the possible executions of A
under the preconditions specified in the (family of counter)factual
scenarios, and is generated by symbolic execution of A.

5.2 Resolving (Counter)factual Queries

Given these representations, we can encode the semantics of our
factual (— 4, ¢) and counterfactual (50— 7 ;+ ;) operators as SMT
queries in the logic of QF _FPBV [Barrett et al. 2021]. To conclude the
following theorem we assume correctness of symbolic execution,
i.e., that TI(V) exactly represents the possible executions of A under
@(I) up to some step £ < fmax. For proofs of the results in this
section see our technical report [Judson et al. 2023].

THEOREM 5.4. Let q; = (¢, f) be a factual query, and (t/, t, ¢)
be a corresponding factual scenario. Then

@ = (p(I) ATI(V)) — B(D)
is valid iff o/ |£ o (1) > a6 B(D).
A similar result holds for both types of counterfactual query.

THEOREM 5.5. Let q; = (13, ¢, B) be a counterfactual query, and

(cht];, @, F) be a corresponding family of counterfactual scenarios.
Then

i) for -13,
© = (p(I) A =F(D) ATI(V)) — B(D)
is valid iff

Vil e T 2 p(l) A =F(D) O 00 B(D).

CSLAW 24, March 12-13, 2024, Boston, MA, USA

Judson et al.

Primary Agent

Agent 0. Decision Model:

Initial Direction of Travel: | N

3. Might the blue car possibly decide to move?

V. Would the blue car necessarily decide to move?

Other Agents

Agent 1. 23

Time of Intersection Arrival: N/A Intial Direction of Travel: &

General Information:
color:

Suppose | property. had type

ANGLE

91
(-]
Suppose signal | | had range
— incoing (E5) EE)
© 360
signalin {right et straight) =3
FireBrick

Ed

Figure 2: Still of the soid GUI (with a small section cut out for brevity). At top left is the critical moment from the program logs
as chosen by the investigator. At bottom right are the counterfactual conditions the investigator has specified.

ii) for 13,
@ = (p(I) A =F(I) ATL(V)) A
((p(D) A=F(D) ATI(V)) — B(D))
is satisfiable iff

3¢ e T o oD A =F(D) O 04 BD).

6 The soid Tool: Architecture and Case Studies

We implemented the counterfactual-guided logic exploration loop
in our tool soid, for SMT-based Oracle for Investigating Decisions.
The soid tool is implemented in Python, and invokes the Z3 SMT
solver [Moura and Bjerner 2008] for resolving queries. To begin, and
outside of the scope of soid, the investigator uses their knowledge
of the harm under investigation to extract the factual trace 7/ from
the logging infrastructure of A. Note that our tool assumes that
both the 7/ and A used in the analysis correspond to the real-world
execution. Accountable logging [Yoon and Shao 2019] and verifi-
able computation [Parno et al. 2013] can bolster confidence in these

assumptions, and further that the program execution pathways
being analyzed by soid are those applicable in deployment and are
not being manipulated by a ‘defeat device’ [Contag et al. 2017]. At
present soid also assumes deterministic programs, though symbolic
execution of randomized programs is an active area of formal meth-
ods research with developing tooling that could in the future be
used to extend our method [Susag et al. 2022]. After extracting the
trace the investigator specifies the (counter)factual query ¢(I) and
behavior A(D) using a Python library interface. Upon invocation,
soid symbolically executes A to generate IT(V). After the symbolic
execution completes, soid formulates @ as per §5 and invokes Z3 to
resolve the query. It then outputs the finding, as well as any model
M in the event one exists due to a failed verification or successful
counterfactual generation.

6.1 Three Cars on the Stand: A Case Study

In this section, we evaluate soid on the crash example from §2 (and
Figure 1). We pose and resolve the queries from the example:

SMT-based Oracles for Investigating Decisions

CSLAW 24, March 12-13, 2024, Boston, MA, USA

timings (avg. n = 10) ‘

model output symbolic (s) solving (s) total (s) paths
ALl @fact> moved?
standard v 3.575 4.290e-03 4.162 1
impatient v 3.607 4.317e-03 4.193 1
pathological v 3.626 4.249e-03 4.212 1
I WA @t = @fact [(agent1_signal_choice = 2) > (agent1_signal_choice € {0, 1, 2})], ever not move?
standard v 4.015 2.428 7.849 3
impatient X 3.919 2.334 7.673 3
pathological X 3.966 2.352 7.718 3
O ¢ ‘ @*[(agent1_pos_x = 1.376) +— (1.0 < agent1_pos_x < 1.5)], ever not move?
standard v 133.0 54.40 195.2 19
impatient X 126.0 4.648 138.5 19
pathological v 254.2 17.47 279.5 19
timings (avg. n = 10)
model output symbolic (s) solving (s) total (s) paths
—Ate ‘ @fact, lowrisk?
dt v 0.746 4.896e-03 0.812 1
T arte | @ = @pace| (weight = 249.973) > T1, ever high risk?
dt v 2.277 1.655 4.009 2

Table 1: Experimental results for our (top) car crash and (bottom) decision tree misclassification case studies.

00— Could a different turn signal have led A to remain
stationary?

O If A had arrived before the other car, and that other
car was not signaling a turn, would A have waited? (e.g.,
to ‘bait’ the other car into passing in front of it?)

in a simulated driving environment, and show that soid is able to
produce FAcTs that distinguish between three different machine-
learned self-driving car agents.

For our environment we employ Gym-Duckietown [Chevalier-
Boisvert et al. 2018] with a simple intersection layout. A rendering
of our example crash in our environment is given in Figure 1. For
our three agents, we used the same general C codebase, but used re-
inforcement learning — specifically Q-learning [Watkins and Dayan
1992] - to train three different versions of the decision model it
invokes, each based on a different reward profile. Informally we
deemed these reward profiles ‘standard’, ‘impatient’ and ‘patholog-
ical’. The ‘standard’ profile is heavily penalized for crashing, but
also rewarded for speed and not punished for moving without the
right of way, so long as it is ‘safe’. The ‘impatient’ profile is only
rewarded for speed. The ‘pathological’ profile is rewarded signifi-
cantly for crashes, and minimally for speed to promote movement
over nothing. The simulation environment is completely invisible
to soid, which only analyzes program executions on the basis of its
code and logs.

On top of Gym-Duckietown we designed and implemented a
web GUI to enable non-expert interaction with soid. GUIs that auto-
matically generate representations of the driving environment are

already deployed into semi-autonomous vehicles, such as those pro-
duced by Tesla. While simulating the environment, a drag-and-drop
and button interface allows the user to manipulate the environ-
ment. by, e.g., introducing new cars, manipulating a car’s position
or angle, or changing a car’s destination or which car possesses
the right of way. After a factual trace plays out, a slider allows the
investigator to select a step of the execution, before a drop-down
and button interface allows specifying a counterfactual family and
behavior (whether or not the car moved). We provide still images
of the GUT’s interfaces in Figure 2.

Results. We provide a selection of the results of our benchmarks,
summarized in Table 1. We refer to our technical report [Judson et al.
2023] full the full set of benchmarks. All statistics were gathered on
an Intel Xeon CPU E5-2650 v3 @ 2.30GHz workstation with 64 GB
of RAM. Each heading in Table 1 specifies a set of constraints ¢ (1),
and implicitly a behavior (D). The rows list the trained model
invoked within A, the output of the evaluations, average timings,
and the total number of feasible paths. Note that the symbolic
and solving timings do not exactly sum to the total timing, due
to some overhead. In our full benchmarks we find most of our
queries resolved within < 20s, providing effective usability, though
as Table 1 shows the inclusion of a floating-point range query to
notably increase the cost of solving, with a ~6x increase in the
number of feasible program paths and a ~20-30x increase in the
time required.

6.2 Health Risk Decision Tree Misclassification

To demonstrate that soid is more general in application than to
just cyberphysical systems, we also consider a second motivating

CSLAW 24, March 12-13, 2024, Boston, MA, USA

glucose = 123.5 ‘

FALSE

1
2
3
4
5
6
7
8
9

10

Judson et al.

int traverse(Node *N, double xfv) {

if (N->class >= @) return N->class;
return (fv[N->tidx] <= N->test)
? traverse(N->tchild, fv)
¢ traverse(N->fchild, fv);
}
int classify(Node *root, double *data) {
double bmi = datal6] / pow(datal5], 2);
double fv[8] = {
datal[@], datal[1], datal[2], datal[3],
datal4], bmi, datal[7], data[8]
iy
return traverse(root, fv);
}

Figure 3: Our decision tree example. At top, the relevant decision subtree for a misclassification based on health data, with the
incorrect path taken in red - and the correct branch missed in blue - as the unit conversion bug leads to a significantly
smaller BMI input than is correct. At bottom, the (otherwise correct) decision tree inference logic in C.

example of incorrect statistical inference. We train a decision tree
to infer the health risk status of individuals using the Pima Indians
dataset, a classic example in counterfactuals due to [Wachter et al.
2017]. Notably, we consider a program A with an implicit unit
conversion bug: A computes the BMI input to the decision tree
using the height and weight parameters from its input. However,
it is written to expect metric inputs in kg and m, while the inputs
are instead provided in the imperial in and [b. This is a flaw of the
software system in general. Both the decision tree and program
themselves are correct, but end-to-end the system misclassifies
many inputs, as for the same quantities (kg/m?) > (Ib/in?).

Unlike statistical counterfactual methods like those of [Mothilal
et al. 2020; Wachter et al. 2017] which only analyze the (correct)
decision model, the end-to-end nature of soid allows it to analyze
everything, including the conversion bug. Figure 3 displays the
inference code and incorrect decision due to the conversion error.

We then ran a small case study on this decision tree health
risk misclassification example. The results of our benchmarks are
summarized in Table 1, and were gathered on the same Intel Xeon
CPU E5-2650 v3 @ 2.30GHz workstation with 64 GB of RAM. In
additional to a simple factual verification query as a baseline, we
posed a single counterfactual query:

at t*

00— Does there exist a weight for which the instance is

classified as high risk?

The results show soid is able to efficiently resolve the counterfactual
in the positive.

Acknowledgments

The authors thank Gideon Yaffe for many helpful conversations,
Man-Ki Yoon for his assistance in implementing an earlier simu-
lated driving environment, and Cristian Cadar and Daniel Liew
for their guidance on successfully using Klee-Float for symbolic
execution of our experiments. This work was supported by the
Office of Naval Research (ONR) of the United States Department
of Defense through a National Defense Science and Engineering
Graduate (NDSEG) Fellowship, by the State Government of Styria,
Austria — Department Zukunftsfonds Steiermark, by EPSRC grant
no EP/R014604/1, and by NSF awards CCF-2131476, CCF-2106845,

and CCF-2318974. The authors would also like to thank the Isaac
Newton Institute for Mathematical Sciences, Cambridge, for sup-
port and hospitality during the programme Verified Software where
work on this paper was undertaken.

References

[n.d.]. Memorandum Opinion, Thaler v. Shira Perlmutter et al. (2023) (No. 1:22-cv-
01564-BAH) https://storage.courtlistener.com/recap/gov.uscourts.dcd.243956/gov.
uscourts.dcd.243956.24.0_2.pdf.

Rediet Abebe, Moritz Hardt, Angela Jin, John Miller, Ludwig Schmidt, and Rebecca
Wexler. 2022. Adversarial Scrutiny of Evidentiary Statistical Software. In ACM
Conference on Fairness, Accountability, and Transparency (FAccT "22). 1733-1746.

Amina Adadi and Mohammed Berrada. 2018. Peeking Inside the Black-Box: a Survey
on Explainable Artificial Intelligence (XAI). IEEE Access 6 (2018), 52138-52160.

Mohammed Alshiekh, Roderick Bloem, Riidiger Ehlers, Bettina Kénighofer, Scott
Niekum, and Ufuk Topcu. 2018. Safe Reinforcement Learning via Shielding. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI ’18), Vol. 32.

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. May 23rd, 2016. Machine
Bias. ProPublica (May 23rd, 2016). https://www.propublica.org/article/machine-
bias-risk-assessments-in-criminal-sentencing.

Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez, Javier Del Ser, Adrien Bennetot,
Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lépez, Daniel Molina,
Richard Benjamins, Raja Chatila, and Francisco Herrera. 2020. Explainable Artificial
Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward
Responsible Al Information Fusion 58 (2020), 82-115.

Christel Baier, Clemens Dubslaff, Florian Funke, Simon Jantsch, Rupak Majumdar,
Jakob Piribauer, and Robin Ziemek. 2021a. From Verification to Causality-based
Explications. arXiv preprint arXiv:2105.09533 (2021).

Christel Baier, Florian Funke, and Rupak Majumdar. 2021b. A Game-Theoretic Account
of Responsibility Allocation. arXiv preprint arXiv:2105.09129 (2021).

Christel Baier, Florian Funke, and Rupak Majumdar. 2021c. Responsibility Attribution
in Parameterized Markovian Models. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 35. 11734-11743.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene
Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput. Surv.
51, 3, Article 50 (2018).

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2021. The SMT-LIB Standard: Version
2.6.

Helen Beebee and Peter Menzies. 2019. Counterfactual Theories of Causation. In
Stanford Encyclopedia of Philosophy, Edward N. Zalta (Ed.). Stanford University.

Michael Bratman. 1987. Intention, Plans, and Practical Reason.

Michael E. Bratman, David J. Israel, and Martha E. Pollack. 1988. Plans and Resource-
Bounded Practical Reasoning. Computational intelligence 4, 3 (1988), 349-355.
Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs. In
USENIX Symposium on Operating Systems Design and Implementation (OSDI "08).

209-224

Filip Cano Cérdoba, Samuel Judson, Timos Antonopoulos, Katrine Bjgrner, Nicholas
Shoemaker, Scott J. Shapiro, Ruzica Piskac, and Bettina Kénighofer. 2023. Analyzing
Intentional Behavior in Autonomous Agents under Uncertainty. In Proceedings of
the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23.
372-381.

https://storage.courtlistener.com/recap/gov.uscourts.dcd.243956/gov.uscourts.dcd.243956.24.0_2.pdf
https://storage.courtlistener.com/recap/gov.uscourts.dcd.243956/gov.uscourts.dcd.243956.24.0_2.pdf
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

SMT-based Oracles for Investigating Decisions

Maxime Chevalier-Boisvert, Florian Golemo, Yanjun Cao, Bhairav Mehta, and Liam
Paull. 2018. Duckietown Environments for OpenAl Gym. https://github.com/
duckietown/gym-duckietown.

Hana Chockler and Joseph Y. Halpern. 2004. Responsibility and Blame: A Structural-
Model Approach. Journal of Artificial Intelligence Research) 22 (2004), 93-115.

Maria Christakis, Hasan Ferit Eniser, Holger Hermanns, Jérg Hoffmann, Yugesh
Kothari, Jianlin Li, Jorge A Navas, and Valentin Wiistholz. 2021. Automated Safety
Verification of Programs Invoking Neural Networks. In International Conference on
Computer Aided Verification (CAV "21). Springer, 201-224.

Philip R. Cohen and Hector J. Levesque. 1990. Intention is Choice with Commitment.
Artificial Intelligence 42, 2-3 (1990), 213-261.

David Cole. 2020. The Chinese Room Argument. In The Stanford Encyclopedia of
Philosophy, Edward N. Zalta (Ed.). Stanford University.

Moritz Contag, Guo Li, Andre Pawlowski, Felix Domke, Kirill Levchenko, Thorsten
Holz, and Stefan Savage. 2017. How They Did It: An Analysis of Emission De-
feat Devices in Modern Automobiles. In IEEE Symposium on Security and Privacy
(Oakland ’17). IEEE, 231-250.

Jeffrey Dastin. 2018. Amazon scraps secret Al recruiting tool that showed bias against
women. Reuters (2018). https://www.reuters.com/article/us-amazon-com-jobs-
automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-
against-women-idUSKCN1MKO08G.

Anupam Datta, Deepak Garg, Dilsun Kaynar, Divya Sharma, and Arunesh Sinha. 2015.
Program Actions as Actual Causes: A Building Block for Accountability. In 2015
IEEE 28th Computer Security Foundations Symposium (CSF ’15). IEEE, 261-275.

Tim W. Dornis. 2020. Artificial Creativity: Emergent Works and the Void in Current
Copyright Doctrine. Yale JL & Tech. 22 (2020), 1.

Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi Ravan-
bakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia. 2019. VerifAI: A Toolkit
for the Formal Design and Analysis of Artificial Intelligence-based Systems. In
Intentional Conference on Computer Aided Verification (CAV °19). Springer, 432-442.

James Edwards. 2021. Theories of Criminal Law. In The Stanford Encyclopedia of
Philosophy, Edward N. Zalta (Ed.). Stanford University.

Joan Feigenbaum, Aaron D. Jaggard, and Rebecca N. Wright. 2011. Towards a For-
mal Model of Accountability. In Proceedings of the 2011 New Security Paradigms
Workshop. 45-56.

Joan Feigenbaum, Aaron D. Jaggard, and Rebecca N. Wright. 2020. Accountability in
Computing: Concepts and Mechanisms. Foundations and Trends® in Privacy and
Security 2, 4 (2020), 247-399.

Javier Garcia and Fernando Fernandez. 2015. A Comprehensive Survey on Safe Rein-
forcement Learning. Journal of Machine Learning Research 16, 1 (2015), 1437-1480.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaud-
huri, and Martin Vechev. 2018. AI%: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation. In 2018 IEEE Symposium on Security and
Privacy (S&P ’18). 3-18.

Bishwamittra Ghosh and Kuldeep S. Meel. 2019. IMLI: An Incremental Framework for
MaxSAT-based Learning of Interpretable Classification Rules. In Proceedings of the
2019 AAAI/ACM Conference on AL Ethics, and Society (AIES °19). 203-210.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti,
and Dino Pedreschi. 2018. A Survey of Methods for Explaining Black Box Models.
ACM Computing Surveys (CSUR) 51, 5 (2018), 1-42.

Gabriel Hallevy. 2013. When Robots Kill: Artificial Intelligence Under Criminal Law.
UPNE.

Joseph Y. Halpern and Judea Pearl. 2005a. Causes and Explanations: A Structural-
Model Approach. Part I: Causes. The British Journal for the Philosophy of Science 56,
4(2005), 843-887.

Joseph Y. Halpern and Judea Pearl. 2005b. Causes and Explanations: A Structural-
Model Approach. Part II: Explanations. The British Journal for the Philosophy of
Science 56, 4 (2005), 889-911.

Samuel Judson, Matthew Elacqua, Filip Cano Cérdoba, Timos Antonopoulos, Bettina
Konighofer, Scott J Shapiro, and Ruzica Piskac. 2023. ‘Put the Car on the Stand’:
SMT-based Oracles for Investigating Decisions. arXiv preprint arXiv:2305.05731
(2023).

Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel
Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zelji¢, David L. Dill,
Mykel J. Kochenderfer, and Clark Barrett. 2019. The Marabou Framework for
Verification and Analysis of Deep Neural Networks. In International Conference on
Computer Aided Verification (CAV ’19). 443-452.

Joshua A. Kroll, Joanna Huey, Solon Barocas, Edward W. Felten, Joel R. Reidenberg,
David G. Robinson, and Harlan Yu. 2017. Accountable Algorithms. University of
Pennsylvania Law Review 165, 3 (2017), 633-705.

Robert Kiinnemann, Ilkan Esiyok, and Michael Backes. 2019. Automated Verifica-
tion of Accountability in Security Protocols. In 2019 IEEE 32nd Computer Security
Foundations Symposium (CSF '19). IEEE, 397-39716.

Ralf Kiisters, Tomasz Truderung, and Andreas Vogt. 2010. Accountability: Definition
and Relationship to Verifiability. In Proceedings of the 17th ACM Conference on
Computer and Communications Security (CCS ’10). 526-535.

Legal Information Institute. 2023. Respondeat Superior. https://www.law.cornell.edu/
wex/respondeat_superior.

CSLAW 24, March 12-13, 2024, Boston, MA, USA

Edward H Levi. 1947. An Introduction to Legal Reasoning. U. Chi. L. Rev. 15 (1947),
501.

David Lewis. 2013. Counterfactuals. John Wiley & Sons. Originally published in 1973.

Michael Moore. 2019. Causation in the Law. In Stanford Encyclopedia of Philosophy,
Edward N. Zalta (Ed.). Stanford University.

Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan. 2020. Explaining Machine
Learning Classifiers Through Diverse Counterfactual Explanations. In ACM Con-
ference on Fairness, Accountability, and Transparency (FAT* 20). 607-617.

Leonardo de Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver. In Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS ’08). 337-340.

Vincent C. Miiller. 2023. Ethics of Artificial Intelligence and Robotics. In The Stanford
Encyclopedia of Philosophy, Edward N. Zalta and Uri Nodelman (Eds.). Stanford
University.

Alex Ozdemir, Fraser Brown, and Riad S Wahby. 2022. CirC: Compiler Infrastructure
for Proof Systems, Software Verification, and more. In IEEE Symposium on Security
and Privacy (Oakland 22). 2248-2266.

Paulo Henrique Padovan, Clarice Marinho Martins, and Chris Reed. 2023. Black is the
New Orange: How to Determine Al Liability. Artificial Intelligence and Law 31, 1
(2023), 133-167.

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio: Nearly
Practical Verifiable Computation. In 2013 IEEE Symposium on Security and Privacy.
IEEE, 238-252.

Anand S. Rao and Michael P. Georgeff. 1991. Modeling Rational Agents Within a
BDI-Architecture. KR 91 (1991), 473-484.

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. 2019. An Abstract
Domain for Certifying Neural Networks. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 1-30.

Lauren Smiley. 2022. ‘T'm the Operator’: The Aftermath of a Self-Driving Tragedy.
Wired Magazine (2022). https://www.wired.com/story/uber-self-driving- car-fatal-
crash/.

William Starr. 2021. Counterfactuals. In The Stanford Encyclopedia of Philosophy,
Edward N. Zalta (Ed.). Stanford University.

Guolong Su, Dennis Wei, Kush R. Varshney, and Dmitry M. Malioutov. 2015. In-
terpretable Two-Level Boolean Rule Learning for Classification. arXiv preprint
arXiv:1511.07361 (2015).

Zachary Susag, Sumit Lahiri, Justin Hsu, and Subhajit Roy. 2022. Symbolic Execution
for Randomized Programs. Proceedings of the ACM on Programming Languages 6,
OOPSLA (2022), 1583-1612.

Sandra Wachter, Brent Mittelstadt, and Chris Russell. 2017. Counterfactual Expla-
nations Without Opening the Black Box: Automated Decisions and the GDPR.
Harvard Journal of Law & Technology 31 (2017), 841.

Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. Machine Learning 8
(1992), 279-292.

Man-Ki Yoon and Zhong Shao. 2019. ADLP: Accountable Data Logging Protocol
for Publish-Subscribe Communication Systems. In International Conference on
Distributed Computing Systems (ICDCS ’19). IEEE, 1149-1160.

https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.law.cornell.edu/wex/respondeat_superior
https://www.law.cornell.edu/wex/respondeat_superior
https://www.wired.com/story/uber-self-driving-car-fatal-crash/
https://www.wired.com/story/uber-self-driving-car-fatal-crash/

	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 Motivation
	2.1 Legal Accountability for ADMs

	3 Technical Background
	3.1 Programs and Traces
	3.2 SMT-based Program Analysis
	3.3 Counterfactual Reasoning

	4 Formal Reasoning for Accountability
	5 Representations and Queries
	5.1 Representing Agents and Scenarios
	5.2 Resolving (Counter)factual Queries

	6 The soid Tool: Architecture and Case Studies
	6.1 Three Cars on the Stand: A Case Study
	6.2 Health Risk Decision Tree Misclassification

	Acknowledgments
	References

