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ABsTRACT: The stability of a dark matter detector on the timescale of a few years is a key requirement
due to the large exposure needed to achieve a competitive sensitivity. It is especially crucial to
enable the detector to potentially detect any annual event rate modulation, an expected dark matter
signature. In this work, we present the performance history of the DarkSide-50 dual-phase argon time
projection chamber over its almost three-year low-radioactivity argon run. In particular, we focus on
the electroluminescence signal that enables sensitivity to sub-keV energy depositions. The stability of
the electroluminescence yield is found to be better than 0.5%. Finally, we show the temporal evolution
of the observed event rate around the sub-keV region being consistent to the background prediction.

Keyworbps: Dark Matter detectors (WIMPs, axions, etc.); Time projection chambers

ARrRX1v EPRINT: 2311.18647


mailto:mkimura@camk.edu.pl
https://doi.org/10.48550/arXiv.2311.18647

Contents

1 Introduction 1
2 The DarkSide-50 detector 2
3 Stability of the detector performance 2
3.1 Methodology 3
3.2 Stability of each parameter 5
4 TPC event rate stability 7
4.1 Expectation from radioactivity 7
4.2 Analysis with the background model 8
5 Conclusion 9

1 Introduction

Dark matter direct detection experiments with an Earth-based detector look for energy depositions
from an interaction between dark matter and the detector medium. In the Standard Halo Model, the
orbital motion of the Earth around the Sun produces an annual variation of the relative velocity of
the Earth with respect to the Galactic center, and consequently with respect to the static dark matter
halo. As the energy deposition depends on the relative dark matter velocity, the count rate above
the detector threshold may show an annual oscillation [1]. The detection of such an oscillation is
a promising avenue towards the discovery of dark matter.

As of today, several experiments have conducted an annual modulation search using a variety of
detector technologies. The DAMA Collaboration (DAMA/Nal and DAMA/LIBRA) has operated a
large array of Nal crystal detectors in the deep underground site of Laboratori Nazionali del Gran
Sasso (LNGS) in Italy, observing a clear modulation [2, 3]. The signal is in the energy window
of 0.75-6keV.. (“electron-recoil equivalent”) and appears to be consistent in phase and period
with the dark matter hypothesis. However, other experiments using liquid xenon detectors have
failed to confirm this result [4-6]. The interpretation of the observed modulation in several dark
matter models, including Weakly Interacting Massive Particles (WIMPs), has also been constrained
by many experiments, e.g. refs. [6-14]. DAMA’s observation represents a long-standing anomaly,
while other experiments adopting technologies similar to DAMA’s are making progress towards
definitively testing the result [15-17].

Dual-phase noble liquid time projection chambers (TPCs), if employing solely the ionization
signal, reach sensitivity to lower-energy depositions, far below DAMA’s threshold [18-20]. However,
the long-term operation of such detectors requires active cryogenic controls to maintain a high-purity
target. Thus, careful attention has to be paid to the detector performance, as the stability of the event
rate is highly sensitive to the cryogenic conditions.

The DarkSide-50 experiment performed a direct dark matter search using a liquid argon TPC at
LNGS [10, 18, 21-25]. Here, we present a study of the stability of the DarkSide-50 TPC performance



over the data-taking period of 2.5 years. We also present the temporal evolution of both the expected
and observed event rate in the low energy region that is of particular interest for the dark matter search.

2 The DarkSide-50 detector

The DarkSide-50 TPC measures scintillation (S1) and ionization signals from an energy deposition in
the liquid phase. It is filled by an active mass of (46.4 + 0.7) kg of low-radioactivity argon extracted
from a deep underground source (UAr) [21, 26-28]. A thin gas layer (“‘gas pocket™) lies above the
active volume to convert the ionization signal to electroluminesence light (S2). Two arrays of nineteen
3-inch Hamamatsu R11065 photomultiplier tubes (PMTs) are located at the top and the bottom of
the TPC. As the argon light emission lies in the vacuum ultraviolet (128 nm), it is downshifted to the
visible spectrum before reaching the PMT by a wavelength shifter (TPB, tetraphenyl butadiene) coated
on all inner surfaces facing the fiducial volume. The PMT signals are routed to a digitizer that triggers
upon a coincidence of at least two PMTs above 0.6 photoelectron (PE) within 100 ns [29]. The average
S2 PE per ionization electron (g;) in the inner ~23 cm-diameter cylindrical volume (~20kg), which
defines the fiducial volume for the S2-only analysis in refs. [ 18, 22-25], is measured to be 17-23 PE/e™,
depending on the radial position of an electron extracted to the gas phase. The resolution of a single
electron signal is 0.27 e~. The trigger efficiency for S2 from that volume reaches ~100% at 1.3 e~ [22].

The argon inside the TPC is handled by the system shown in figure 1. Gaseous argon extracted
from the cryostat containing the TPC passes through a commercial getter gas purifier (SAES Monotorr
PS4-MT50-R-2 [30]) where electronegative and VUV light absorbing impurities, such as O, H,O,
CHy4, and N, are reduced to parts per billion levels. The gas is then pre-cooled by a heat exchanger
coupled to cold nitrogen and is passed through a charcoal trap for radon removal. A condenser
following the filters returns purified liquid argon directly into the TPC. The gas pocket of the TPC
is maintained by a “boiler” on the side of the TPC which extracts liquid argon from the inside of
the TPC and returns boiled-off gas. The electronics and the filters are located in the clean room on
top of the water and liquid scintillator tanks surrounding the cryostat.

Data collection lasted 35 months, between April 2015 when the detector was filled with UAr,
until February 2018 (see figure 2(a)). The UAr was extracted in southwestern Colorado, purified at
Fermi National Accelerator Laboratory, and transported to LNGS [26, 27]. The data from the first four
months yielded the initial dark matter search [21] and were also used to calibrate the detector thanks
to the presence of a measurable amount of 37 Ar (the half-life of 35.0d), a product of cosmogenic
activation of argon during its transportation [31]. The last 27 months of data taking were used for
improved dark-matter searches, see refs. [18, 24, 25]. The modulation analyses, presented in this paper
as well as in ref. [32], use all the data except the initial four months’, with the total livetime of 693.3 d.

More details on the DarkSide-50 apparatus can be found in refs. [29, 33].

3 Stability of the detector performance

Variations in the performance of the experimental system may affect the detector response and
introduce calibration uncertainties or artificial event rate modulations. From its accumulated exposure
and measured radioactive backgrounds, DarkSide-50 can be sensitive to a modulation amplitude of
~1% of the observed event rate. The sensitivity would decrease if the experimental system exhibits
any variations larger than that level.
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Figure 1. Schematic overview of the DarkSide-50 cryogenic system.

Three parameters especially influence the detector response. One is the electric field in the
fiducial volume, F,, which at the nominal value of 200 V/cm affects the scintillation and ionization
yields approximately linearly [34]. The other two are the average numbers of detected PE per
scintillation photon, g1, and per ionization electron, g,. While g; impacts the energy reconstruction
in high-mass (>10 GeV/c?) dark matter searches [10, 21, 33], g is critical for the S2-only analyses.
Indeed, a toy Monte Carlo simulation study, which accounts for the expected background model
(see section 4.1) and the detector response model, suggests that a 1% fluctuation of g, could lead
to a non-physical O(1) keV signal.

Throughout the data-taking period we continuously monitored these and other environmental
and detector parameters using source calibration data and an array of temperature, pressure and
flow sensors in the argon system and monitoring the stability of voltage delivery to the TPC. The
possible impact of the monitored parameters on the scintillation and ionization observables is described
in the following section.

3.1 Methodology

Besides the aforementioned parameters Fy, g1, and g;, other parameters having a clear correlation
with the light signals are the gain and resolution of the PMTs to a single photoelectron, the
electroluminescence field Fy, the temperature and pressure of the gas pocket of the TPC, and the
liquid argon purity. Their potential impact is evaluated by propagating the observed fluctuation
according to the expected correlation.
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Figure 2. Temporal evolution of the detector parameters of interest for this analysis. a: accumulated livetime
over the time, b—d: the parameters measured by 8- or y-ray events from the TPC such as the S2/S1 ratio, S1
detection efficiency, and electron lifetime. e: temporally correlated and uncorrelated SE rates. f: the observed
event rates of both the Rol and higher energy region. g: full drift time of the TPC measured by the event near
the cathode and the measured current at the voltage supplier. h-l: the parameters monitored by sensors inside
the system such as temperatures, pressures, and gas flow rate. The blue-shaded period represents the period
devoted to the 37 Ar calibration. The vertical dashed lines represent June 2nd of each year when the dark matter
induced event rate is expected to be maximum.

On the other hand, for other parameters the correlation with the observable is not known a
priori. For such parameters, we calculate different correlation coefficients, namely Pearson, Kendall
and Spearman, to the event rate that assess either linear or rank correlation. Here, we use the
residual of the background-only fit, discussed in section 4, instead of the raw event rate, such that
the decay of known short-lived isotopes is accounted for. Furthermore, a fluctuation of one parameter
could produce a delayed effect in time on the event rate. In order to catch such a time-delayed
correlation, we repeat the correlation coefficient calculation by introducing a time shift ranging
from 1 day to 2 months.



Moreover, the Lomb-Scargle (LS) periodogram [35, 36] is supplementarily used to look for
any periodical fluctuation of the parameters. The output power spectrum is compared to the false
alarm probability calculated with the Bootstrap method [37], so that the significance of the periodic
fluctuation in a particular period is quantified, as described in section 3.2.7.

3.2 Stability of each parameter
3.2.1 Cryogenic system

The liquid argon inside the cryostat is maintained by a proportional-integral-derivative (PID) controller
which keeps the pressure at 1.08 x 103 Pa. The controller adjusts the cooling power from the nitrogen
loop by the mass flow controller shown in figure 1. Another PID loop controls the temperature of
the cryocooler to condense the nitrogen. The whole system is monitored by ~70 sensors measuring
temperature, pressure, gas flow, and heating power at various points of the system.

The time profile of the argon pressure and the cryostat temperatures are shown in figure 2(i). The
pressure is used in the PID control algorithm and is stable to better than 35 Pa. Temperatures are stable
to within +0.02 K. No visible impact is anticipated in terms of g,, as will be discussed in section 3.2.5.

Figures 2(j-k) show the parameters associated with the argon circulation line. The mass flow
of the circulation line is kept between 28—29 sl/min, while the pressure inside the line decreases
continuously through the data-taking period by 1.5%. This change reflects the change in the gas
temperature inside the loop. The instabilities of the temperatures and pressures related to the radon
trapping part are around 1%, which fluctuate coherently. There is an indication that the spurious
electron (SE) rate may have a correlation with the temperatures at the radon trap, the object of a
paper in preparation. However, we do not find any way for these instabilities to affect the ionization
signal above the typical energy threshold of 4 e~. Indeed, any of the three aforementioned correlation
coeflicients between these parameters and the event rate for different N, ranges above 4 e™ is less
than 0.06 (p-value larger than 0.15).

3.2.2 PMT response

The characterization of the PMTs is performed roughly every 12 h by illuminating the TPC with a
blue laser [33] so that the gain changes are calibrated out in such timescale. All PMTs show a similar
trend in time, i.e. a slight monotonic decrease in gain by ~5% over the data-taking period, while the
single photoelectron resolution remains constant. The fluctuations of both the gain and the resolution
are measured to be ~1% by looking at the distribution of these parameters. The impact of PMT
instabilities and temporal gain changes on the results of dark matter searches was assessed, with a
special focus on their effect on trigger and event selection efficiency. The study demonstrates that
this level of fluctuations has no visible effect on the results.

3.2.3 Electric fields

The stability of Fy is traced in situ by the drift time of events at the very bottom of the TPC, 777,
where the drift time is defined as the time difference between S1 and S2. Its instability is measured
to be 0(0.01%), as shown in figure 2(g), too small to affect the detector response. The measured
voltage at the power supply providing the appropriate potential to each electrode shows fluctuations
<0.01%. On the other hand, the current at the power supplier undergoes a gradual change as big

as ~10%. Although the cause of this variation remains unclear, a small correlation coeflicient, of



less than 0.05, to the observed event rate is found with the Pearson method. Therefore, we exclude
that a modulation search could be affected by such a variation.

Since the distance between the gate grid and the anode does not change over time, F, depends
on the applied potential difference between the gate grid and the anode, and the height of the gas
pocket. Figure 2(h) shows the related parameters. The high voltage supplied to achieve the potential
difference is stable during the data-taking period. A power supply driving the boiler to maintain the
gas pocket fluctuates by +1%. This however does not directly affect the gas pocket condition since
it is set by a hole on the side wall of the TPC through which excess gas bubbles out to the cyrostat.
The stability of g, is independently studied in section 3.2.5.

3.2.4 Scintillation light yield

The temporal variation of g; is traced by mono-energetic peaks from background y-rays. The peak
positions of the 352keV y-ray from 2'“Pb and 609 keV y-ray from 2!4Bi are shown in figure 2(c).
Fluctuations of g; over the data-taking period are evaluated as 0.3%. It is also worth noting that the
fluctuations from these two peaks do not appear to be correlated.

An independent test of the g; stability was performed by looking at calibration campaigns
injecting 83 Kr diffused radioactive source into the TPC. The fluctuation between the three campaigns
performed during the period is ~0.4% [10].

3.2.5 Electroluminescence yield

As mentioned, since g, affects directly the observed ionization spectrum, its stability is of particular
interest. It is monitored via the S2/S1 ratio, R, of the background S-ray events whose energy is
higher than the region of interest (Rol) for dark matter searches (3—170 ™). The parameter R is
corrected by the electron lifetime 7, as obtained in section 3.2.6. Figure 2(b) shows the temporal
evolution of R, showing a fluctuation of 0.4%. Taking into account the fluctuation of g, that of
g2 is evaluated to be no more than 0.5%.

An auxiliary analysis traces the S2 spectrum from a-ray events that happened inside the bulk
UAr. By using the S1 yields to select 2*Rn and 2'3Po events [38], we get the monthly averaged
S2 yield for each of them. The instability is less than 1.5% as shown in figure 2(b), where the
sensitivity is limited by the statistical uncertainty.

It is known that the electroluminescence yield has a positive linear relationship with the electric
field and a negative linear relationship with the number density of argon atoms. As a cross check
of our measurements, based on ref. [39], we calculate the fluctuation by propagating the measured
fluctuations of the temperature and pressure inside the TPC. It predicts a negligible (relative change
of <O(107%)) fluctuation of g, as consistent with the observation above.

3.2.6 Liquid argon purity

Any impurities inside liquid argon may cause the deterioration of the detector’s performance. In
particular, electronegative impurities, such as O,, H,O, and CHy, absorb drifting electrons during
their path to the gaseous phase and more heavily suppress electrons closer to the cathode. The electron
lifetime 7, is measured by looking at a dependence of R on the path length of the electron. Figure 2(d)
shows the temporal evolution of 7., which increases from 5 ms (corresponding to an O, equivalent
concentration of 60 ppt [40]) to >20ms (15 ppt), while its fluctuation is ~1 ms. In addition, 7, is



well over an order of magnitude longer than the TPC full drift time of 376 ps. Such a long lifetime
and a small fluctuation with respect to the drift time are expected to have no significant impact on
the observed event rate, as confirmed by a Monte Carlo simulation incorporating the suppression
probability of the drift electrons in that range.

3.2.7 Overall parameters stability

As mentioned in section 3.1, for most of the parameters there is no expected a priori mechanism
responsible for causing sizable fluctuations of the event rate. Nevertheless, we performed an analysis
on all sensors to assess a potential seasonal change and a non-trivial influence they may have. All of
the aforementioned three correlation coefficients are well contained, between —0.07 and 0.10 (p-values
larger than 0.01), for different N, ranges relevant to the dark-matter search. In addition, as anticipated
the time-delay analysis returned low correlation coefficient values, between —0.08 and 0.10, showing
no sign of potential delayed impact in the TPC event rate. Owing to the overall stability of these
parameters as well as the low correlation they have with the TPC event rate, we can safely affirm
that none of the small visible fluctuations are impactful.

Finally, we perform a sanity analysis on all of the parameters based on the LS periodogram. We
find that only a few parameters have a periodicity of 1 yr with a 30" significance. Namely, the argon
pressure and temperature inside the cryostat (figure 2(i)), the liquid level of the nitrogen dewar, and
temperatures of auxiliary pumps inside the system. However, thanks to the already presented stability
of the argon pressure and temperature, as well as the aforementioned correlation analysis yielding
coefficients lower than, 0.03, 0.07, -0.05, -0.07, respectively, we consider that the few parameters with
periodicity found with the LS analysis have no impact on the final result. We also note that we do not
find any known mechanism of affecting the TPC performance for the latter two parameters.

4 TPC event rate stability

4.1 Expectation from radioactivity

The majority of the observed events in the Rol come from diffused S-emitters (> Ar and 83Kr) and
y- and x-rays from radioactive contamination in the PMTs and the cryostat. The decay of 37 Ar also
makes a significant contribution until it decays away.

Contributions to the ionization spectrum from each component are evaluated, as done in ref. [18]
and shown in figure 3 (top). Here, we briefly summarize the way we evaluate them. For the S-emitters,
the shape of the energy spectra is derived from the theoretical calculation of the energy transition
of the B-decay, while its activity is evaluated in the data itself in a higher-energy sideband. We
then apply the detector response to the spectra. For the x- and y-rays from the detector materials,
we perform a Geant4-based Monte Carlo simulation [41] to get the ionization spectrum, while the
total normalization and associated uncertainty are determined by the result of the material screening
campaign, which happened before the detector was commissioned. The only isotope not discussed
in ref. [18] is 37 Ar. In this case, the spectrum shape is derived by simulating the detector response
to the monochromatic energy depositions of 2.83 keV (from the decay via K-shell electron capture)
and 0.277 keV (L1-shell), following the procedure in ref. [31]. The activity is directly measured by
the temporal evolution of the event rate in the low energy region for the first four months of data
to be (0.42 + 0.03) mBq/kg. This measurement is found to be consistent with that calculated from
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Figure 3. Top: background model of each component with their total uncertainties including both shape and
amplitude systematics. The amplitude of each component shown here is normalized at 123 d passed since the
reference day. Bottom: temporal evolution of the expected rate from each background source within 4-29 ¢~.
Also shown are that of WIMP with 3 GeV/c? assuming WIMP-nucleon cross-section equal to 3 X 107! cm?
with (QF) and without (NQ) quenching fluctuations (see text for more detail). The blue-shaded period is same
as in figure 2.

the argon activation history using nuclear data libraries within ~10.! Figure 3 (bottom) shows the
expected temporal evolution of these background events. In addition to 3’ Ar, ®°Co (5.27 yr) and ¥Kr
(10.8 yr) have lifetimes compatible to the data taking period.

4.2 Analysis with the background model

Further analyses utilizing both the energy and the temporal information of each event are performed.
The first four months of data are removed from these analyses to avoid over-constraining on the
parameters related to the 3’ Ar component and the detector calibration. Figure 4 shows the temporal
evolution of the event rate in 4-170 e, after imposing the same fiducialization and event selection
criteria as in ref. [18]. The data is fitted with the background model as discussed in the previous section
as shown in figure 4. The fit returns a y2/ndf of 144.0/127. We then perform the LS analysis on the
residual data after subtracting the best-fitted model to detect any sinusoidal event rate modulation over
the background. We do not observe significant periodicity around 1 yr as shown in figure 5.

Paper in preparation.
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The vertical dotted line corresponds to the frequency of 1 yr.

It is worth noting that in order to exploit, model dependently, the expected signal annual modulation
the likelihood of the dark matter spectrum searches in refs. [18, 24, 25] can be extended with an
additional term taking into account the timing information of each event. However, we have verified
that, because only a fraction of the dark matter signal would be annually modulated, such combined
likelihood does not bring a significant gain in sensitivity, in a realistic situation even in the presence
of a hint of a signal emerging from the expected background.

5 Conclusion

The DarkSide-50 dark matter experiment operated an argon TPC filled with UAr for nearly three years.
This paper describes the stability of the detector performance using both the TPC data and various
sensors incorporated inside the system. In particular, the electroluminescence detection efficiency
g2 is confirmed to be stable within fluctuations of no more than 0.5%, owing to the successful
control of the cryogenic system. Thanks to this stability, we find that both the energy and temporal
distribution in DarkSide-50 are consistent to the background prediction based on the radioisotopes’
contamination inside the detector. A comprehensive study of the detector stability shown here proves



that it is possible to further analyze the DarkSide-50 data with its temporal information [32]. In
addition, future argon-based dark matter experiments will benefit from the knowledge acquired from
the long-term operation of this detector.
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