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The Feeling of Time Passing Is Associated with Recurrent
Sustained Activity and Theta Rhythms Across the Cortex
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Abstract

Introduction: We are constantly estimating how much time has passed, and yet know little about the brain mech-
anisms through which this process occurs. In this pilot study, we evaluated so-called subjective time estimation
with the temporal bisection task, while recording brain activity from electroencephalography (EEG).
Methods: Nine adult participants were trained to distinguish between two durations of visual stimuli as either
‘‘short’’ (400 msec) or ‘‘long’’ (1600 msec). They were then presented with stimulus durations in between the
long and short stimuli. EEG data from 128 electrodes were examined with a novel analytical method that iden-
tifies segments of sustained cortical activity during the task.
Results: Participants tended to categorize intermediate durations as ‘‘long’’ more frequently than ‘‘short’’
and were thus experiencing time as moving faster while overestimating the amount of time passing. Their
mean bisection point (during which frequency of selecting short vs. long is equal) was closer to the geo-
metric mean of task stimuli (800 msec) rather than the arithmetic mean (1000 msec). In contrast, sustained
brain activity occurred closer to the arithmetic mean. The recurrence rate of this activity was highly related
to the bisection point, especially when analyzed within naturally occurring theta oscillations (4–8 Hz)
(r =�0.90).
Discussion: Sustained activity across the cortex within the theta range may reflect temporal durations, whereas
its repeated appearance relates to the subjective feeling of time passing.
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Impact Statement

In this study, we identify sustained and recurring cortical activity while evaluating the amount of time passing.
These findings enhance our understanding of neural processes we use to calculate and estimate how much time
we feel has passed.

Introduction

Our brains are constantly traveling in time, either when
thinking about the past or predicting the future, as well as

when bringing back memories of our life (e.g., Eichenbaum,
2014; Tulving 1983). As such, we are always estimating
time, both real (i.e., objective) time and the amount of time

we feel has elapsed. The later form, referred to as ‘‘subjec-
tive’’ time, is more fluid than real time and changes with inter-
nal states. For example, time can feel as if it is moving slower
while paying attention (Liu et al., 2015), when depressed
(Angrilli et al., 1997; Droit-Volet and Gil, 2009; Droit-Volet
and Meck, 2007; Droit-Volet et al., 2013), or when comparing
memories from the distant past (Levy et al., 2015).
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Subjective time estimation is often examined with the
temporal bisection task (Allan and Gibbon, 1991). In a typi-
cal experiment, participants are presented with two anchor
stimuli (which can be auditory or visual) that differ in tempo-
ral duration and are easily perceived as distinct. After learning
to distinguish the two anchor durations as ‘‘short’’ or ‘‘long,’’
participants are then presented with probes at durations in be-
tween the anchors as well as the anchors themselves, and
asked to classify each probe stimulus as ‘‘short’’ or ‘‘long’’
with a button press (Fig. 1). As the probes become closer to-
gether in time, it is more difficult to tell them apart.

Subjective time is inferred from the point of subjective
equality or ‘‘bisection point,’’ which is the duration when a
person is responding ‘‘short’’ or ‘‘long’’ with equal fre-
quency. This point varies across individuals but is presumed
to correspond to a person’s internal clock, as described by
various models of timing (Ghaderi et al., 2018; Gibbon,
1977; Karmarkar and Buonomano, 2007).

In this study, we present a novel procedure for analyzing
electroencephalography (EEG) data during the temporal bi-
section task. This procedure, known as temporal segmenta-
tion, relies on a source-informed segmentation algorithm to
detect changes in the spatial distribution of cortical activity,
using information acquired from all EEG channels simulta-
neously (Haddad and Najafizadeh, 2019). It is hypothesized
that changes in sustained activity reflect changes in func-
tional networks across brain regions. The procedure seg-
ments the EEG data into time intervals during which the
spatial distribution of cortical activity remains quasistation-
ary. Importantly, this procedure does not detect changes in
specific regions, but rather identifies changes within and
across the cortex.

We hypothesized that sustained neurophysiological activ-
ity would relate to the subjective sense of time passing, as es-
timated by an individual’s bisection point. We further

hypothesized that sustained activity would occur most
often when it was most difficult to categorize the probe stim-
uli as either short or long.

Endogenous oscillations are implicated in mechanisms of time
estimation (e.g., Buhusi and Meck, 2005; Buzsáki, 2006; Gu
et al., 2015) although not necessarily the feeling of time passing.
In this pilot study, we analyzed sustained activities from the EEG
response in different frequency bands and then related those
changes to an individual’s subjective estimation of time, as mea-
sured with the temporal bisection task. We selected theta and
delta bands because both are associated with learning temporal
characteristics and stimulus order (Crivelli-Decker et al., 2018;
Fuentemilla et al., 2014; Johnson et al., 2019; Ranganath and
Hsieh, 2016; Roberts et al., 2018; Roberts et al., 2013).

Beta oscillations are associated with the estimation of tem-
poral durations in the minutes range (Ghaderi et al., 2018),
but because our stimuli were much shorter, we did not in-
clude them in our analyses. Alpha waves (8–12 Hz) have
not been associated with the subjective estimation of time,
at least to our knowledge and as such, were used to determine
the selectivity of one range versus another.

Materials and Methods

Participants

Twelve right-handed young adult women were recruited
for the research study (n= 12, Mage = 22 years, range 18–33
years). Data from three subjects were omitted due to noise,
leaving a final sample size of nine for analyses. After provid-
ing informed consent, participants completed the temporal
bisection task during EEG recordings. The study was carried
out in accordance with the Declaration of Helsinki and ap-
proved by the Institutional Review Board at Rutgers Univer-
sity. Experiments were undertaken with the understanding
and written consent of each participant.

FIG. 1. (A) Schematic of the temporal bisection task (adapted from Allan and Gibbon, 1991). During the task, participants
were initially trained with two anchor durations (400 msec or ‘‘short,’’ and 1600 msec or ‘‘long’’). They were then probed
with five intermediate durations (spaced every 200 msec), while recording EEG. Participants classified durations as
‘‘short’’ or ‘‘long’’ with a button press on a keyboard. Anchor stimuli were presented 12 times and intermediate probes
were each presented 6 times per block for 11 blocks (594 total trials). (B) Representational behavioral data of one participant
from the temporal bisection task. Behavioral data were plotted as the proportion of long responses (measured as a percentage)
by probe durations (400–1600 msec). A fourth-degree polynomial curve was fitted to the data. The point of subjective equal-
ity, marked with a gray X, was calculated as the time point when a person responded ‘‘short’’ (closer in time to 400 msec) or
‘‘long’’ (closer in time to 1600 msec) with equal frequency, or at the point of 50% long responses. The just noticeable dif-
ference is a measure of temporal sensitivity and was calculated as the proportion of long responses at 75% minus the pro-
portion of long responses at 25% over the proportion of long responses at 50%. EEG, electroencephalography.



Behavioral bisection point task

The temporal bisection task was constructed in E-Prime
(Psychology Software Tools, USA). Participants were
trained to discriminate between two different time durations
presented as a bright blue square on a black computer screen
(Fig. 1A). The durations were ‘‘short’’ (400 msec) or ‘‘long’’
(1600 msec), and the participants were instructed to press
‘‘z’’ or ‘‘m,’’ respectively, following each presentation.
(The letter is irrelevant and purposely meaningless.) Each
button press was followed by feedback as to whether the
choice was correct. There were 12 training trials, 6 per an-
chor. After learning to distinguish the intervals, 54 random-
ized trials were presented of intermediate probe durations
(600, 800, 1000, 1200, and 1400 msec) and the short and
long anchors for 11 blocks or 594 total test trials. (Three par-
ticipants were presented with 540 test trials during a prior
version of the experimental procedure.)

The anchor stimuli were presented 12 times along with 6
presentations of each intermediate probe duration per
block. The interstimulus interval was generated randomly
between 3 and 4.5 sec. Participants were not informed
about the length of the probes and did not receive feedback
during test trials.

Behavioral analyses

Individual behavioral data from the temporal bisection
task were plotted as the proportion of long responses (y-
axis) across stimuli durations (400–1600 msec, on the
x-axis) and fitted to a fourth-degree polynomial curve. A
prior pilot study (n = 99) of the temporal bisection task indi-
cated that the fourth-degree polynomial curve was the best fit
as determined by minimum mean squared error (data unpub-
lished). Each person’s point of subjective equality (or bisec-
tion point) and just noticeable difference (measure of
temporal sensitivity) were calculated from the curve of
best fit (see Fig. 1B for representational data from one partic-
ipant). The bisection point was calculated as the time when a
person responded ‘‘short’’ (closer in time to 400 msec) or
‘‘long’’ (closer in time to 1600 msec) with equal frequency,
that is, 50% (Wearden, 1991).

The geometric mean of the stimulus durations was
800 msec and the arithmetic mean was 1000 msec with the
probe trials spaced every 200 msec between 400 and
1600 msec. The just noticeable difference was computed
according to Weber’s ratio as the proportion of long re-
sponses at 75% minus the proportion of long responses at
25% over the proportion of long responses at 50% (bisection
point). Smaller difference thresholds indicate greater tempo-
ral sensitivity.

EEG data acquisition and preprocessing

EEG data were collected at a sampling rate of 1000
samples/sec, with a 128-channel ActiCap (Brain Vision,
Morrisville, NC, USA) arranged in accordance with an ex-
tended version of the 10–20 international system. Electri-
cally conductive gel was applied to 128 electrodes attached
to a skull cap fitted to the participant’s head circumference.
Before analysis, the raw signal was processed using
EEGLAB (Delorme and Makeig, 2004). EEG data were
downsampled to 500 samples/sec and filtered using a band-

pass finite impulse response filter with low and high cutoff
frequencies of 1 and 50 Hz, respectively. EEG trials were
then epoched by extracting [0–2000] msec poststimulus
onset intervals. Major artifacts related to eye blinks and mus-
cle activities were removed using independent component
analysis (Hyvarinen and Inki, 2002). Noisy channels were vi-
sually identified and their activity was substituted by spatial
interpolations of the neighboring channels using EEGLAB.

Each EEG signal was decomposed into frequency bands of
delta (0.5–4 Hz), theta (4–8 Hz), and alpha (8–16 Hz) with
6-level stationary wavelet transform and reconstructed in
the three lowest bands. We used the orthogonal Daubechies
tap 4 (Db4) kernel to best-tune the wavelet decomposition
to the underlying cortical activity patterns, while permitting
perfect subband reconstruction (Glassman, 2005). In addition,
we probed the brain response captured by the nondecomposed
EEG data, spanning the entire 0.5–50 Hz spectrum.

EEG data processing

EEG trials were temporally segmented using the source-
informed segmentation algorithm, separately for each fre-
quency band, as well as for the nondecomposed signal (Haddad
and Najafizadeh, 2019). Briefly, the source-informed segmen-
tation algorithm identifies segments in EEG data during which
the spatial distribution of cortical activity remains quasistation-
ary. We begin with the known EEG model,

Y =G � SþN, (1)

where Y is the EEG data matrix; S is the source matrix rep-
resenting the activity in the cortex; G is the gain (lead field)
matrix representing the linear relationship between the corti-
cal nodes and the EEG electrodes; and N is the additive
noise. Taking into account that active cortical regions consist
of subsets of cortical nodes with common activity patterns,
we can formulate the activity seen by the EEG electrodes
during a given segment, Yseg, as

Yseg =F � AT þBþN, (2)

where A contains the normalized common activity patterns
of the subset cortical nodes, F is the gain matrix weighted
by the intensities of the cortical activities of these nodes,
and B corresponds to the residual cortical activity expected
to be of relatively low intensity and low intercorrelation.
Columns of F spatially characterize the active cortical re-
gions during the segment. Using this knowledge, and follow-
ing a minimum mean square error (MMSE) approach, the
column space of F can be estimated as the rank-R approxi-
mation, UR, to the left singular space of the EEG data seg-
ment Yseg, by using singular value decomposition (SVD) as

svd Yseg

� �
=UR � DR � VT

R � F � AT : (3)

The algorithm monitors the changes in the most significant
left singular space of the EEG data matrix, Y. When a statis-
tically significant change is identified by the algorithm, the
segment boundary is indicated.

Segmentation analyses

The source-informed segmentation was applied to EEG
data for each participant, which yielded temporal segments
for each stimulus and each trial. This was achieved using
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the Source-Informed Segmentation Plugin for Brainstorm
(Haddad, 2020). The algorithm identifies segments in EEG
data during which the spatial distribution of cortical activity
remains quasistationary. We hypothesized that theta and
delta, but not alpha, would correlate with behavioral indices
of time estimation (measured as the bisection point).

To test these hypotheses, first, we identified when in time
the segments occurred for each stimulus presentation in the
absence of stimulus change (i.e., following stimulus onset
and before stimulus offset). Second, we identified the longest
segments of sustained activity. Third, we determined the
extent to which the longest segments were recurrent across
trials (defined here as the recurrence rate). Finally, we mea-
sured the association between the timing and recurrence rate
of the longest segments with respect to the behavioral bisec-
tion point.

The timing (onset and midpoint) and duration of the seg-
ments were calculated to determine whether the longest seg-
ments related to subjective timing within individual
participants. In addition, we assessed the stability of those re-
sponses across trials for each stimulus presentation. The EEG
response during the 1200 msec stimulus was chosen for fur-
ther analyses because it was not contaminated by the visually
evoked response to the offset of the stimulus, which would
occur with the shorter stimuli. A time window of 500 to
1500 msec, again only for trials of the 1200 msec stimulus,
captured a range of segments across stimulus presentations.
The segments varied in length, with the boundaries of the
segments occurring across time and representing shifts in
the brain’s functional state.

The recurrence rates of the onset and the midpoint of the
longest segment across all trials were calculated as the num-
ber of times a segment onset or midpoint, respectively, oc-
curred within a specific time bin over total number of
trials. These rates were calculated for the nondecomposed
signal as well as for each frequency band. The recurrence
rate was normalized and represented as a percentage. Recur-
rence rates of the onset and midpoint of the longest segment
corresponding to the 1200 msec stimulus for the nondecom-
posed signal, as well as for each frequency band individually,
were plotted as histograms.

Statistical analyses

The Shapiro–Wilk test for normality is recommended for
small sample sizes (Patrı́cio et al., 2016; Shapiro and Wilk,
1965). Results from this test indicated that data on the bisec-
tion point ( p = 0.48) and just noticeable difference ( p = 0.58)
were not significantly different from normality, nor were re-
currence rates for 600 msec ( p= 0.83), 1000 msec ( p = 0.94),
or 1400 msec ( p = 0.92) significantly different from normal-
ity. Thus, parametric tests were considered appropriate.

Statistical tests were performed using IBM SPSS Statis-
tics. Pearson’s correlations were performed between the be-
havioral bisection point and the segment characteristics
(onset, midpoint, and duration). Analyses of variance
(ANOVAs) were performed with the recurrence rate as the
dependent variable and time bin and frequency band
(alpha, theta, and delta) as independent variables. ANOVAs
were applied to data from three time bins: 500–700 msec
(centered on 600 msec), 900–1100 msec (centered on
1000 msec), and 1300–1500 msec (centered on 1400 msec).

In this way, we were able to estimate the number of times
that the longest segments (indicating a longer state of sus-
tained activity) occurred during the time intervals: around
the task midpoint (1000 msec) compared with the beginning
(600 msec) or end (1400 msec) of the intermediate stimulus
durations.

A corrected alpha threshold of 0.003 (0.05/15) was applied
to account for multiple comparisons across time bins and fre-
quency bands.

Results

Behavioral measures of subjective timing

The bisection point was estimated by calculating the time
point when a participant indicated the stimulus was ‘‘long’’
for 50% and ‘‘short’’ for the other 50% of the trials. The
mean bisection point was 784 msec (SE = 48 msec, n = 9),
and ranged from 579 to 985 msec. It was thus closer to
the geometric mean of the stimulus durations (i.e.,
800 msec) than the arithmetic mean (i.e., 1000 msec), sug-
gesting a tendency to respond ‘‘long’’ rather than ‘‘short’’
(Kopec and Brody, 2010). Participants with a bisection
point shorter than 800 msec (the geometric mean) overesti-
mated the length of temporal durations more frequently
(responding ‘‘long’’ more than ‘‘short’’) compared with
participants with a bisection point longer than 800 msec,
who experienced time as moving slower. Means and stan-
dard errors of temporal estimates were calculated for each
probe duration.

Coefficients of variation (ratio of standard deviation to the
mean) were calculated to determine the relative standard
deviation of estimates for each probe duration. Coefficients
of variation ranged from 1.40 for 400 msec to 0.18 for
1000 msec to 0.03 for 1600 msec, indicating a greater degree
of relative variability at shorter versus longer durations. Par-
ticipants were highly likely to categorize the longer durations
as ‘‘long’’ (mean: 96%, standard error: 1%) and fairly likely
to categorize the shorter durations as ‘‘short’’ (mean: 78%,
standard error: 5%). As expected, variance was highest for
the intermediate durations (600, 800, and 1000 msec) be-
cause these were more difficult to discriminate as either
‘‘short’’ or ‘‘long.’’

The mean just noticeable difference, which is a mea-
sure of temporal sensitivity, was 451 msec (SE = 20 msec)
and ranged between 361 and 534 msec. That is, on aver-
age, the minimum duration of time necessary for partici-
pants to perceive two durations as distinct was 451 msec.
The bisection point did not relate to the just noticeable
difference thresholds within individuals, p > 0.05, indicat-
ing that subjective time was not associated with temporal
sensitivity.

Neural correlates of subjective timing

EEG data were segmented into intervals of sustained spa-
tial patterns of cortical activity (Fig. 2). The onset, midpoint,
and duration of the longest segments were calculated for
each participant, focusing on the 66 trials of the 1200 msec
stimuli. The mean onset of the longest segments was
916 msec (SD = 26 msec), the midpoint was 999 msec (SD =
26 msec), and the duration was 166 msec (SD= 19 msec).
Pearson correlations were performed between the onset and



midpoint of the longest segment (in milliseconds) and behav-
ioral bisection point. Neither the onset nor the midpoint of
the long segment correlated with the behavioral bisection
point across individuals, p> 0.05.

We tested whether the longest segments were more likely
to occur around the arithmetic mean (1000 msec) compared
with earlier (600 msec) or later (1400 msec) time bins, and
concurrently, whether the timing of the long segment was re-
current across trials using ANOVAs. There was a significant
main effect of time, F(2,48) = 96.52, p< 0.0001, which indi-
cated the recurrence rates at 600, 1000, and 1400 msec for
the nondecomposed signal differed from one another
(Fig. 3A). Post hoc analyses revealed that the recurrence
rate at 1000 msec (M= 15.96, SE= 0.50) significantly dif-

fered from the recurrence rate at 600 msec (M = 8.30,
SE= 0.47, p < 0.001) and the recurrence rate at 1400 msec
(M= 7.19, SE = 0.40, p < 0.001). Recurrence rates at 600
and 1400 msec did not significantly differ from each other
( p> 0.05).

These results suggest that the longest segment of cortical
activity arose *1000 msec after stimulus onset, which was
the midpoint of all stimulus durations (arithmetic mean).

Endogenous oscillations and behavioral bisection point

We tested for interactions between subjective time estima-
tion (the bisection point) and sustained activity during three
frequency bands. A significant interaction [F(4,48)= 16.63,

FIG. 2. Representative data from three subjects indicating individual differences in temporal segmentation of ERPs for
theta oscillations during the 1200 msec stimulus of the temporal bisection task during the longest identified segment (shaded
in gray) (at left), and corresponding brain maps of segment-wise average activity during the longest segment (at right). At the
center, behavioral data plotted as the proportion of long responses (calculated as a percentage) by stimulus duration (400–
1600 msec). (A) The participant with a longer bisection point exhibited sustained and recurrent neural responses closer to
the geometric mean (800 msec). (B) The participant with a bisection point closer to 800 msec exhibited sustained and recur-
rent neural responses closer to the arithmetic mean (1000 msec). (C) The participant with a shorter bisection point exhibited
sustained and recurrent neural responses slightly later than the arithmetic mean (1000 msec). ERPs, event-related potentials.



p < 0.0001] suggested that the recurrence rate across time
depended on the frequency band. Post hoc analyses revealed
that within the theta band, the recurrence rate around
1000 msec significantly differed from both the recurrence
rate around 600 msec ( p< 0.001) and the recurrence rate
around 1400 msec ( p < 0.001) (Fig. 3C). Within the alpha
band, the recurrence rate around 1000 msec also significantly
differed from the recurrence rate around 1400 msec
( p = 0.001), but not from the recurrence rate around
600 msec ( p = 0.05). Within the delta band, the recurrence
rate around 1000 msec significantly differed from both the
recurrence rate around 600 msec ( p< 0.001) and the recur-
rence rate around 1400 msec ( p < 0.001).

Analyses indicated a main effect of frequency band,
F(2,24)= 7.95, p < 0.01. Post hoc analyses revealed that the
recurrence rate in the delta band (M= 9.19, SE= 0.40) signif-
icantly differed from the recurrence rate in the alpha
(M = 11.15, SE = 0.40, p < 0.01) and theta (M= 11.11,
SE = 0.40, p < 0.01) bands, regardless of the temporal dura-
tion of the stimulus. The recurrence rate for alpha and
theta bands did not significantly differ from each other
( p > 0.05).

The bisection point was highly correlated with the recurrence
rate of the longest segments at the midpoint (1000 msec) within
theta frequencies r=�0.90, p= 0.001 (Fig. 3B). These data
suggest that individuals who had shorter bisection points and
were overestimating the duration of the stimuli produced
more long EEG segments around the arithmetic mean
(1000 msec) and these segments were associated with theta
rhythms. In contrast, the behavioral bisection point did not cor-
relate with the recurrence rates of the longest segments around
600 or 1400 msec, p> 0.05. Moreover, the bisection point did
not correlate significantly with the recurrence rate of the lon-
gest segment at the midpoint within alpha (r=�0.43,
p> 0.05) or delta (r=�0.20, p> 0.05) frequencies.

Just noticeable difference values and the recurrence rates at
600, 1000, and 1400 msec across all three oscillatory bands
(alpha, theta, and delta) were also analyzed. None of the rela-
tionships was significant ( p> 0.05), indicating that temporal
sensitivity did not relate to the segmentation properties of os-
cillatory responses. The relationship between just noticeable
difference values and the recurrence rate within the alpha
band at 1000 msec approached significance but did not
meet corrected threshold criteria, 0.003 (r = 0.67, p = 0.05).

FIG. 3. (A) The longest segment occurred significantly more frequently in the 1000 msec time bin than the 600 and
1400 msec time bins for the decomposed signal. Asterisk indicates p < 0.001. Recurrence rates (as a percentage) around
600 and 1400 msec did not significantly differ from each other ( p > 0.05). These results indicate that there is a relatively in-
creased likelihood of the longest segments to coincide around the arithmetic mean of the task stimulus durations (1000 msec
after stimulus onset). (B) The recurrence rate at 1000 msec (as a percentage) and the behavioral bisection point for the theta
frequency band showed negative correlation with high magnitude, r =�0.90, p= 0.001. (C) Bar graph with superimposed
scatterplot indicating recurrence rates (as a percentage) corresponding to time bins and frequency bands for each person.



Individuals who tended to overestimate time had a shorter
bisection point and their brains tended to elicit more and lon-
ger segments of sustained activity, especially concentrated
around 1000 msec and especially within theta oscillations
(Fig. 3B). Specifically, the recurrence of these segments of
activity were highly correlated (r = 0.90) with the bisection
point. Thus, individuals who were overestimating the dura-
tion of the stimuli produced more long segments of cortical
activity around the arithmetic mean of all stimuli
(1000 msec). One might predict that segments of sustained
activity would occur closer to the bisection point
(*784 msec). However, the onset and midpoint of the lon-
gest segments were not directly associated with the bisection
point within individuals; rather the timing of recurrent sus-
tained segments was associated with the bisection point.

Sustained activity at the arithmetic mean might be one
way the brain monitors stimulus duration. Once the probe in-
terval passes the midpoint in duration, the person can esti-
mate and in many cases, simply guess that the 1200 msec
stimulus duration is ‘‘long.’’ Those participants who were
overestimating how much time had passed were producing
more of these sustained activities, suggesting that they
were relying more on this information to make the decision
about whether the stimulus was short or long. Figure 2 illus-
trates the striking differences among participants, first with
an overestimator (579 msec), who felt as if time were moving
faster, compared with an underestimator (922 msec), who
felt as if time were moving slower. We also present a partic-
ipant who was in between and bisected closer to the geomet-
ric mean (800 msec). Sustained EEG activity occurred
frequently and early in time for the overestimator
(Fig. 2A), while occurring more often later in time for the
underestimator (Fig. 2C).

The algorithm detects segments in EEG data during which
the spatial distribution of cortical activity remains relatively
stable. It is ‘‘source-informed,’’ meaning theoretically, seg-
ment boundaries in EEG are determined based on the shifts
in the location of activities that take place in the cortex
(i.e., the source). These sustained activities, although consis-
tent across participants, did not consistently appear in one re-
gion of the cortex versus another. For example, subject 1
(Fig. 2A) expressed sustained activity across midline cortical
regions, whereas subject 2 (Fig. 2B) expressed sustained ac-
tivity across temporal and frontal lobes, and subject 3
(Fig. 2C) expressed activity in a combination of cortical re-
gions. Because the recurrence of these segments corre-
sponded to subjective time estimation, we presume that
they reflect different networks used by one person versus an-
other when they are trying to estimate how much time has
passed. These differences depend not only on task parame-
ters but also on previous experience, memories, and mood,
to name a few (e.g., Droit-Volet and Meck, 2007).

Endogenous oscillations and subjective time

Temporal information is often associated with naturally
occurring brain oscillations. As just discussed, recurrence
rates of the longest EEG segments were highly related to
the bisection point. This relationship was especially evident
for activity that occurred in the theta range (4–8 Hz), but not
delta (1–4 Hz) or alpha (8–16 Hz) (Fig. 3B). Recurrence rates
that occurred around 1000 msec were statistically different

Discussion

In this pilot study, we identified a potential neural marker for 
both objective and subjective time estimations. Participants 
were presented with stimuli of varying lengths and asked to es-
timate the durations as ‘‘long’’ or ‘‘short’’ while we recorded 
cortical EEG activity with 128 electrodes. In general, partici-
pants tended to have relatively short bisection points and 
thus tended to overestimate how much time had passed.

The mean bisection point was 784 msec, which was closer 
to the geometric mean of task stimuli (800 msec) than to the 
arithmetic mean (1000 msec). It is reported that humans tend 
to bisect closer to the geometric mean with logarithmically 
spaced probes, while bisecting closer to the arithmetic 
mean with linearly spaced probes (Allan and Gibbon, 
1991; Grondin, 2012; Wearden et al., 2008). Even so, the 
probes used here were spaced every 200 msec. However, it 
is also reported that humans tend to bisect closer to the geo-
metric mean when the anchors are close together in time 
(Kopec and Brody, 2010) as ours were (i.e., spread over mil-
liseconds rather than seconds).

There was no relationship between the just noticeable dif-
ference values and the bisection point, and thus, temporal 
sensitivity did not relate to subjective timing. As expected, 
coefficients of variation (ratio of standard deviation to the 
mean) indicated that participants had more difficulty estimat-
ing the duration of the intermediate probes, and the shorter 
durations in particular.

Neural correlates of subjective time

The EEG data were analyzed with temporal segmentation, 
a novel method that can identify time points when the spatial 
distribution of cortical activity remains quasistationary. This 
procedure was initially developed for a modified oddball 
task, during which three stimuli (one being the target or odd-
ball) are presented with different frequencies. During this 
task, the ‘‘oddball’’ typically elicits a slow positive-going 
evoked response around 300 msec after stimulus onset, 
known as the P300. The segmentation approach identified 
sustained activity in the parietal and frontal cortices during 
the 230–360 msec segment (Haddad and Najafizadeh, 
2019). These segment boundaries thus corresponded to the 
canonical P300 wave in parietal and frontal cortical regions, 
suggesting that the source-informed segmentation algorithm 
can detect relevant network activity while engaging in a cog-
nitive task.

For the temporal bisection task used here, we focused on 
sustained activity during the 1200 msec probe trial stimulus. 
We chose this temporal duration because participants find it 
difficult to decide whether this stimulus is short or long and 
because the corresponding EEG signal was less likely to be 
contaminated by stimulus offset or other perceptual re-
sponses. Sustained activity during the 1200 msec stimulus 
was most evident around 1000 msec, which corresponded 
to the arithmetic mean of all stimuli in the task (halfway be-
tween 400 and 1600 msec). The sustained responses did not 
reflect the response to stimulus offset, which can be observed 
in Figure 3 as a large peak in the waveform around 
1200 msec. Importantly, sustained activity around the mid-
point was observed across participants and thus could reflect 
an objective response the brain uses to determine whether the 
probe trials are longer or shorter than the midpoint.



from those around 600 and 1400 msec (Fig. 3C). These data
suggest that the recurrence rate is driven, in part, by endog-
enous oscillations between 4 and 8 Hz. Indeed, it is possible
that theta oscillations were used to calculate the onset and
offset of each stimulus while comparing it to the anchor du-
rations held in memory.

It is perhaps not a coincidence that the frequencies inher-
ent to theta rhythms (4–8 Hz) coincide with the temporal
spacing of durations presented in the bisection task (5 Hz
or 200 msec). Thus, it is possible that the stimuli entrain
the brain into theta rhythms, or perhaps theta is inherently
suited to pick up stimuli durations in this range. Alterna-
tively, the segmentation process may capture characteristics
specific to one frequency versus another. For example, lower
frequency bands (such as theta or delta) may result in longer
segments because the signals vary at a slower rate (Haddad
and Najafizadeh, 2020). Nevertheless, the present data sug-
gest that the recurrence rate of sustained neural activity oc-
curs preferentially during theta activity and is highly
associated with the subjective estimation of time.

These data are consistent with numerous studies implicating
theta oscillations in sequence learning (Wallenstein and Has-
selmo, 1997) as well as holding temporal information in work-
ing memory (Cutsuridis and Hasselmo, 2012). One group
observed that theta power was enhanced during the early antic-
ipation of temporal stimuli (Cravo et al., 2011). Thus, the
power of theta oscillations may increase during stimulus
onset and then decrease as the brain processes temporal dura-
tions. In the present study, we did not assess power; however,
sustained and recurrent neural responses in the theta band were
related to shorter bisection points (i.e., overestimation of time).
Overall, these data indicate that theta oscillations potentially
modulate the expectation and estimation of temporal informa-
tion in the millisecond range, potentially serving as an endog-
enous time-keeping mechanism.

Limitations

This pilot study focused on identifying sustained activity
while humans were estimating the feeling of time passing.
As such, we did not assess other psychological states that
could impinge on EEG activity. For example, we did not as-
sess changes in attention that were likely to occur in partic-
ipants presented with multiple stimuli in a relatively short
period of time. We also did not localize segmented activity
to discrete regions in the cortex. This new method is data-
driven and thus does not depend upon a priori hypotheses
about the locations of active regions. Finally, the sample
size was relatively small, as reflected to some extent in the
variability of the responses.

Conclusion

This study establishes a novel method for identifying seg-
ment boundaries in EEG recordings of underlying cortical ac-
tivity, without the need for source localization. This method
revealed a period of sustained cortical activity that may be
used to estimate the amount of time that has elapsed, which
may in turn contribute to a feeling of time passing.

Authors’ Contributions

E.M.M.: Conceptualization, formal analysis, investiga-
tion, methodology, and writing—original draft, review and

editing. A.E.H.: Conceptualization, formal analysis, method-
ology, and writing—review and editing. H.Y.M.C.: Investi-
gation, methodology, and writing—review and editing.
L.N.: Conceptualization, methodology, supervision, funding
acquisition, and writing—review and editing. T.J.S.: Con-
ceptualization, funding acquisition, methodology, supervi-
sion, and writing—review and editing.

Author Disclosure Statement

No competing financial interests exist.

Funding Information

This work was supported by the Brain Health Institute at
Rutgers University (Grant No. 205605) and the National Sci-
ence Foundation (Award No. 2319518).

References

Allan LG, Gibbon J. Human bisection at the geometric mean.
Learn Mot 1991;22(1–2):39–58; doi: 10.1016/0023-
9690(91)90016-2

Angrilli A, Cherubini P, Pavese A, et al. The influence of affec-
tive factors on time perception. Percep Psychophy 1997;
59(6):972–982; doi: 10.3758/bf03205512

Buhusi CV, Meck WH. What makes us tick? Functional and
neural mechanisms of interval timing. Nat Rev Neuro
2005;6(10):755–765; doi: 10.1038/nrn1764
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