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We derive numerical stability conditions and analyze convergence to analytical nonlocal solutions of 1D 
peridynamic models for transient diffusion with and without a moving interface. In heat transfer or oxidation, for 
example, one often encounters initial conditions that are discontinuous, as in thermal shock or sudden exposure 
to oxygen. We study the numerical error in these models with continuous and discontinuous initial conditions 
and determine that the initial discontinuities lead to lower convergence rates, but this issue is present at early 
times only. Except for the early times, the convergence rates of models with continuous and discontinuous initial 
conditions are the same. In problems with moving interfaces, we show that the numerical solution captures the 
exact interface location well, in time. These results can be used in simulating a variety of reaction-diffusion type 
problems, such as the oxidation-induced damage in zirconium carbide at high temperatures.
1. Introduction

Discontinuities are difficult to handle in classical models involving 
partial differential equations (PDEs). Nonetheless, discontinuities take 
place in many physical phenomena in nature, such as fracture, thermal 
shock in heat transfer, or oxidation-induced damage. For problems with 
moving interfaces, classical theories do require special treatment to gov-

ern the motion of the interface, such as the Stefan condition [1–4]. The 
peridynamic theory has been proven to effectively solve these types 
of problems without any ad-hoc conditions at the interface: the mo-

tion of the interface is implicitly determined by the diffusion and phase 
properties of the involved materials, as shown in, for example, [3,5]. 
Another important problem in which moving interfaces are involved 
in conjunction with fracture is the problem of oxidation-induced frac-

ture in high temperature zirconium-carbide [6,7]. To study these types 
of problems, one needs numerical approximations of transient diffusion 
with moving interfaces. In this work we analyze the stability of the 
so-called “meshfree method” for discretizing peridynamic models, the 
influence of discontinuous initial conditions (due to, for example, sud-
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den exposure of the body to a non-zero temperature/concentration), 
and the accuracy of the numerical solution for transient diffusion prob-

lems with a moving interface.

Peridynamics (PD) is a non-local continuum theory able to model 
discontinuities in a mathematically consistent way [8,9]. In the peridy-

namic formulation, the spatial derivatives of the PDEs are replaced by 
integrals over a sphere of radius 𝛿 > 0. The so-called horizon size 𝛿 is 
the measure of nonlocality of the theory, i.e., the maximum distance at 
which two points interact with each other. This PD interaction is named 
bond.

It is well-known that in peridynamic models the behavior in that 
region is different from the behavior in the bulk since points close to 
the boundary of the domain have an incomplete horizon region. This 
phenomenon is known as the PD surface effect [10–15]. The proper-

ties of the interactions of the points near the boundary can be modified 
to mitigate the PD surface effect with several methods [10,16–20,13]. 
However, the results obtained with these methods may still exhibit 
some residual fluctuations, depending on how the PD boundary con-

ditions are applied.
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Boundary conditions in local models are applied at the domain 
boundary, whereas nonlocal boundary conditions need to be speci-

fied over a boundary layer of finite thickness. This is the reason why 
the nonlocal boundary conditions are sometimes called volume con-

straints [21]. However, since experiments provide only local measure-

ments at the boundary of the domain, it is often desirable to impose 
local boundary conditions in a nonlocal model. To do so, several meth-

ods have been developed. For instance, the interior of the body could 
be modeled with PD and the layer near the external surface of the 
body with a classical model, but only if discontinuities do not arise 
in this layer of material. To do so, a coupling method is required (see, 
e.g., [22–30]), which may lead to spurious effects at the interface of 
the coupling region due to the different (local and nonlocal) formula-

tions [31]. Another approach is reducing the nonlocal radius 𝛿 with 
the variable horizon method (see, e.g., [32,11,33–37]), so that 𝛿 → 0
at the boundary. However, in this case, for transient problems, for 
example, material length-scales may not be matched (e.g., wave dis-

persion will be different near the surface compared to in the bulk in 
elasto-dynamic problems). The fictitious node method is the most com-

monly used to impose local boundary conditions in a nonlocal model 
(see, e.g., [38,16,17,39–44,13,36,45,37,14,46,15,47]): a fictitious layer 
is added all around the body, to complete the horizon region for nodes 
in the PD boundary layer, and is used to impose the PD boundary con-

ditions. Among all these methods, here we employ the “surface node” 
method (SNM) [14,15,47] because it provides a problem-independent, 
accurate way to impose local boundary conditions in a PD model for 
any loading conditions and (even complex) geometry.

The peridynamic theory has been already successfully applied to 
simple diffusion problems [48,49] and more complex phenomena (for 
instance, diffusion coupled with corrosion mechanisms [3,5]). How-

ever, some numerical aspects have not been studied yet:

• a stability criterion for time-integration of PD diffusion equations 
accounting for the boundary conditions applied; existing stability 
results were limited to von Neumann analysis which assumes infi-

nite domain;

• the influence of discontinuities in initial conditions on the accuracy 
of the numerical solution;

• the accuracy of numerical solutions for diffusion-type problems 
with moving interfaces.

To investigate these issues in a simple framework, we analyze sev-

eral 1D examples, but the obtained conclusions may be generalized to 
higher-dimension problems. Moreover, for the first time, we apply the 
SNM to a time-dependent problem, and for discontinuous initial con-

ditions. The stability of numerical methods has been observed to be 
considerably affected by the behavior of the system near the bound-

aries due to the high gradients imposed by the boundary conditions 
(such as in the case of no-slip boundary conditions in Navier-Stokes 
equations [50,51], for example). Therefore, including the effect of the 
surface node method near the boundaries of the body is critically im-

portant for deriving an accurate stability criterion.

The paper is structured as follows. Section 2 gives a brief review 
of the peridynamic theory applied to diffusion problems with or with-

out moving interfaces, and their discretized equations. In Section 3, we 
derive the stability criterion for peridynamic diffusion problems by in-

cluding the influence of boundary conditions. Section 4 presents the 
numerical results of a 1D diffusion problem for a homogeneous ma-

terial with no phase changes and, for the first time, the surface node 
method for enforcing nonlocal boundary conditions is applied to a tran-

sient problem. We then analyze the numerical convergence to an exact 
nonlocal solution of a PD model for initial conditions with and without 
discontinuities. Section 5 shows an example of a diffusion-type model 
with a moving interface problem in which the motion of the interface 
is controlled by local concentration values, similar to diffusion in a 
bi-material enhanced with a phase-change model in [3], as some PD 
385
Fig. 1. Neighborhood 𝑥 of a point in a peridynamic body Ω in 1D: red lines 
represent the PD interactions (bonds) between points.

Fig. 2. Example of a bond involved in the computation of the peridynamic flux 
in a point 𝑥: for the limits of integration in equation (2), 𝑥′ and 𝑥′′ are points 
respectively in the intervals [𝑥 −𝛿, 𝑥] and [𝑥, 𝑥′ +𝛿], therefore each bond between 
𝑥′ and 𝑥′′ intersects the surface passing through point 𝑥.

models of corrosion have employed. The results are compared with an 
analytical solution (obtained via the manufactured solution method) for 
a moving interface problem. Section 6 discusses extensions of the ob-

tained results in 1D problems to the 2D and 3D cases. Section 7 draws 
some conclusions and discusses future work.

2. Brief review of PD model of diffusion

In peridynamics, points in a body Ω interact with each other up to a 
finite distance 𝛿, called the horizon size [8,9]. The interaction between 
two points is called bond. This means that a point 𝑥 interacts with the set 
of points 𝑥 =

{
𝑥′ ∈ Ω ∶ |𝑥′ − 𝑥| < 𝛿

}
, which is called the neighborhood

of point 𝑥. Therefore, the neighborhood is the set [𝑥 − 𝛿, 𝑥 + 𝛿], as shown 
in Fig. 1. The peridynamic equation governing diffusion phenomena is 
given as in [3,5]:

𝜕𝐶(𝑥, 𝑡)
𝜕𝑡

= ∫
𝑥

𝑑(𝑥,𝑥′)𝜇(|𝑥′ − 𝑥|)[𝐶(𝑥′, 𝑡) −𝐶(𝑥, 𝑡)
]
d𝑥′

= ∫
𝑥

j(𝑥,𝑥′, 𝑡) d𝑥′ ,
(1)

where 𝐶 is the concentration of the species, 𝜇 is the kernel function, and 
𝑑 is the micro-diffusivity (that can be calibrated to the classical diffusiv-

ity). The integrand in equation (1) is called the micro-flux j(𝑥, 𝑥′, 𝑡). We 
choose the kernel function 𝜇(|𝑥′ −𝑥|) = |𝑥′ −𝑥|−2, which ensures that the 
convergence to the classical theory does not depend on the refinement 
of the nodal grid [41].

Each bond can be thought as a pipe into which the monitored species 
is allowed to flow. The peridynamic flux at a point is defined as the sum 
of the micro-fluxes of the bonds crossing the surface passing through 
that point [52]. Therefore, in 1D the PD flux at a point 𝑥 is computed 
as [14]:

𝐽 (𝑥, 𝑡) = −

𝑥

∫
𝑥−𝛿

𝑥′+𝛿

∫
𝑥

j(𝑥′, 𝑥′′, 𝑡) d𝑥′′ d𝑥′ . (2)

Fig. 2 shows the limits of integration accounting for each bond inter-

secting the surface passing through point 𝑥.

The micro-diffusivity function 𝑑 is calibrated to the classical diffu-

sivity 𝐷. To do so, for example, one equates the classical flux with the 
peridynamic flux for a linear distribution of concentration 𝐶 [48,49,3]. 
The peridynamic flux at a point 𝑥 with a complete neighborhood (away 
from the boundaries of the domain) for a homogeneous concentration 
gradient is computed as [15,48]:

𝐽 (𝑥, 𝑡) = −

𝑥+𝛿

∫
𝑥

(
𝑥′ − 𝑥

)
j(𝑥,𝑥′, 𝑡) d𝑥′ . (3)

Therefore, by choosing a constant micro-diffusivity function over the 
neighborhood [48,49,3], the micro-diffusivity of a PD bond is given as:
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Fig. 3. In order to complete the neighborhoods of the points near the boundary 
(a), a fictitious layer Γ = Γ0 + Γ𝓁 surrounding the body Ω is introduced (b).

𝑑(𝑥,𝑥′) = 𝐷

𝛿
. (4)

Since equation (4) is computed for points with a complete neighbor-

hood, the properties of the points near the boundary of the body (with 
an incomplete neighborhood) turn out to be different from those of the 
points in the bulk (see Fig. 3a). This phenomenon is called PD surface 
effect [13–15]. In order to mitigate this surface effect, a fictitious layer, 
of thickness 𝛿, surrounding the body is introduced as first suggested 
in [38] (see Fig. 3b). Furthermore, nonlocal models require the imposi-

tion of nonlocal boundary conditions, also known as volume constraints. 
However, experiments provide only measurements at the boundary of 
the domain, so the imposition of local boundary conditions is desirable. 
In order to enforce a set of local boundary conditions into a nonlocal 
model, several methods have been developed (see, e.g., [17,19,37,45]). 
However, all these methods do not guarantee the accuracy of the results 
near the boundaries for any loading condition or complex geometry. On 
the other hand, the surface node method (see, e.g., [14,15,47]) provides 
an accurate way to impose local boundary conditions in a nonlocal 
model for any loading condition and geometry (for any domain with 
sufficiently smooth boundary). According to this method, concentra-

tions of the fictitious nodes are determined by a Taylor series expansion 
about the closest point on the external surface of the body. Then, the 
flux at points on the external surface of the body is imposed via the 
equation of the peridynamic flux:

𝐽 (𝑥,n, 𝑡) = 𝐽 (𝑥, 𝑡) ⋅ n , (5)

where n = ±1 is the unit vector normal to the external surface. Thanks to 
this equation, the points on the boundary represent the nonlocal behav-

ior of the entire fictitious layer; this aspect will be explained in detail 
in the discretized model in Section 2.2.

2.1. Modeling of diffusion with moving interface/phase-change

Diffusion-controlled or reaction-controlled problems are involved in 
many physical phenomena. Oxidation of zirconium carbide at high tem-

peratures is one such example [6,7]. The diffusion of oxygen within 
the high-temperature zirconium carbide triggers oxidation, the final 
products of which are carbon dioxide and zirconium oxide. The car-

bon dioxide is dispersed in the external environment (through cracks or 
porosities). The interface between zirconium oxide and carbide moves 
according to the diffusivities of the two phases. This phenomenon can 
be described as a diffusion problem in a bi-material enhanced with a 
phase-change model, which was analyzed in [3].

The phase of each peridynamic point depends on its current concen-

tration. Let us denote the concentration of phase change by 𝐶𝑖, where 
𝑖 stands for “interface”. The micro-diffusivity of a bond is determined 
as [3]:

𝑑(𝑥,𝑥′, 𝑡) =
⎧⎪⎨⎪⎩
𝑑1 if 𝐶(𝑥, 𝑡) < 𝐶𝑖 and 𝐶(𝑥′, 𝑡) < 𝐶𝑖 ,

𝑑2 if 𝐶(𝑥, 𝑡) > 𝐶𝑖 and 𝐶(𝑥′, 𝑡) > 𝐶𝑖 ,

𝑑 if 𝐶(𝑥, 𝑡) ≤ 𝐶 ≤ 𝐶(𝑥′, 𝑡) or 𝐶(𝑥′, 𝑡) ≤ 𝐶 ≤ 𝐶(𝑥, 𝑡) .
(6)
3 𝑖 𝑖
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Fig. 4. Three possible types of bonds for diffusion in a two-phase material 
separated by a material interface: each type of bond may have different micro-

diffusivity properties.

Fig. 5. Discretization of a 1D body by means of the meshfree method: the neigh-

borhood 𝑝 of a node 𝑝 (or 𝑗 of a node 𝑗) is constituted by the nodes with 
a portion of their cell within the neighborhood. The quadrature coefficient 𝛽𝑝𝑞
is the volume fraction of the cell of node 𝑞 lying inside the neighborhood of 
node 𝑝 [62]. The fictitious nodes (empty dots) are added near the boundary of 
the body to complete the neighborhoods of all the nodes within the body (solid 
dots). Moreover, the boundary of the body is represented by the surface nodes 
(solid squares).

Fig. 4 shows the three possible types of bonds that may have differ-

ent micro-diffusivities properties. Therefore, in a peridynamic diffusion 
model, it suffices to know the threshold concentration for phase change 
and the micro-diffusivities in equation (6) in order to determine the 
motion of the interface. With this, the motion of the interface is au-

tonomous, and determined by the “constitutive model” itself. Note that 
this model does not require any special conditions at the interface, such 
as Stefan condition (that is instead required in classical models [1,2,4]). 
Moreover, a damage mechanism can be easily introduced in this PD 
model (see for instance [3,53,5,54–58]). This will be investigated in a 
future work [59].

2.2. The “meshfree method” discretization of the PD diffusion equations

Many different methods can be used to discretize peridynamic dif-

fusion equations, such as the “meshfree method” [60–62], the Finite El-

ement Method (FEM) [63,64], and the Fast Convolution-Based Method 
(FCBM) [65,66]. When using the FEM, remeshing would be required to 
model the moving interface. The FCBM allows to considerably reduce 
the computational cost of finding PD solutions by utilizing the convolu-

tional structure of PD integral operators and the Fast Fourier Transform 
(FFT). However, since in this work we consider stability and conver-

gence of numerical algorithms in the 1D setting for which the cost is 
less of an issue, for the sake of simplicity we here adopt the mesh-

free method of discretization of the PD equations, and we use uniform 
grids. Therefore, the body is discretized in cells (segments), at the cen-

ter of each of which there is a node representing that cell. To mitigate 
the PD surface effect, we add the fictitious nodes around the body up 
to a distance 𝛿 from the boundary (see Fig. 5). The concentrations of 
the fictitious nodes can be determined via the Taylor-based extrapola-

tion [14,15,47] or some other type of extrapolation (see, e.g., [37,45]). 
In this work, we use the Taylor-based method with linear extrapolation 
for its simplicity.

The integrals in the peridynamic equations (equations (1) and (2)) 
can be numerically approximated by splitting them into a summation 
of integrals over cells and applying a midpoint quadrature rule in each 
cell [60–62]. Therefore, the micro-flux in a bond between the nodes 𝑝
and 𝑞 can be computed as:

j(𝑥𝑝, 𝑥𝑞, 𝑡) = 𝑑(𝑥𝑝, 𝑥𝑞)𝜇(|𝑥𝑞 − 𝑥𝑝|)[𝐶(𝑥𝑞, 𝑡) −𝐶(𝑥𝑝, 𝑡)
]
, (7)

where 𝑥𝑝 and 𝑥𝑞 are the coordinates respectively of nodes 𝑝 and 𝑞, and 
𝜇(|𝑥𝑞 − 𝑥𝑝|) = |𝑥𝑞 − 𝑥𝑝|−2.

As shown in Fig. 5, the cells of some nodes are contained only 
partially within the neighborhood. In order to properly “weight” their 
contribution, the quadrature coefficients 𝛽 are computed as the fraction 
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Fig. 6. Example of the linear Taylor-based extrapolation applied to an arbitrary 
concentration field.

of the nodal cell lying inside the neighborhood using the algorithms 
presented in [11]. Hence, a node 𝑝 within the body is governed by the 
following discretized equation [48,49,3]:

𝜕𝐶(𝑥𝑝, 𝑡)
𝜕𝑡

=
∑
𝑞∈𝑝

j(𝑥𝑝, 𝑥𝑞, 𝑡)𝛽𝑝𝑞Δ𝑥+ j𝑠𝑡(𝑥𝑝, 𝑡)Δ𝑥 , (8)

where Δ𝑥 is the grid spacing, the index 𝑞 stands for any node within 
the neighborhood 𝑝 of node 𝑝, and j𝑠𝑡 is the so-called self-transfer

micro-flux. This self-transfer term appears in equation (8) due to the 
discretization of the body. In fact, the “discretized” neighborhood 𝑝

lacks the central portion because the node 𝑥𝑝 does not interact with the 
two halves of its own cell. As shown in Fig. 5, the self-transfer is added 
to take into account these lacking contributions. The self-transfer micro-

flux of node 𝑝 can be approximated as the average of the micro-fluxes 
of the two adjacent nodes [41]:

j𝑠𝑡(𝑥𝑝, 𝑡) =
1
2

[
𝑑(𝑥𝑝, 𝑥𝑝+1)𝜇(|𝑥𝑝+1 − 𝑥𝑝|)(𝐶(𝑥𝑝+1, 𝑡) −𝐶(𝑥𝑝, 𝑡)

)
+ 𝑑(𝑥𝑝, 𝑥𝑝−1)𝜇(|𝑥𝑝−1 − 𝑥𝑝|)(𝐶(𝑥𝑝−1, 𝑡) −𝐶(𝑥𝑝, 𝑡)

)]
,

(9)

where the sequential numbering of the nodes is assumed, so that nodes 
𝑝 − 1 and 𝑝 + 1 are the two nodes adjacent to node 𝑝.

Let us call interior nodes the nodes within the body (solid dots in 
Fig. 5). To apply the surface node method (with the linear Taylor-based 
extrapolation) for imposing the boundary conditions, we introduce new 
nodes at the boundary of the body, called surface nodes (solid squares 
in Fig. 5). The surface nodes do not have cells as the interior nodes, but 
they are used to discretize the external surface of the body. In 1D the 
surface nodes are the points at the ends of the body, as shown in Fig. 5, 
and lie at a distance of Δ𝑥∕2 from the closest interior node.

In order to complete the neighborhoods of the interior nodes near 
the boundaries, a 𝛿-thick layer of fictitious nodes is introduced, as 
shown in Fig. 6. The concentration of these nodes is determined by 
extrapolating the concentrations of the real nodes. Different extrapo-

lation methods may be employed, but the Taylor-based extrapolation 
method is straightforward and applicable to any (even complex) ge-

ometry [14,15,47]. Therefore, here we show how to extrapolate the 
concentrations of the fictitious nodes with a linear Taylor series expan-

sion. Consider a fictitious node 𝑓 and its closest surface node 𝑠 and 
interior node 𝑏 and respectively denote their coordinates by 𝑥𝑓 , 𝑥𝑠 and 
𝑥𝑏, as shown in Fig. 6. The concentration of the fictitious node 𝑓 is 
computed as:

𝐶(𝑥𝑓 , 𝑡) ≈ 𝐶(𝑥𝑠, 𝑡) +
(
𝑥𝑓 − 𝑥𝑠

) 𝜕𝐶(𝑥𝑠, 𝑡)
𝜕𝑥

≈ 𝐶(𝑥𝑠, 𝑡) +
(
𝑥𝑓 − 𝑥𝑠

) 𝐶(𝑥𝑠, 𝑡) −𝐶(𝑥𝑏, 𝑡)
𝑥𝑠 − 𝑥𝑏

≈
𝑥𝑓 − 𝑥𝑏

𝑥𝑠 − 𝑥𝑏
𝐶(𝑥𝑠, 𝑡) −

𝑥𝑓 − 𝑥𝑠

𝑥𝑠 − 𝑥𝑏
𝐶(𝑥𝑏, 𝑡) ,

(10)

where the derivative 𝜕𝐶(𝑥𝑠,𝑡)
𝜕𝑥

is approximated by the finite difference 
method. Note that the concentrations of the fictitious nodes are deter-

mined as functions of the concentrations of the real (both interior and 
surface) nodes of the body, which are often the unknowns of the prob-

lem. Fig. 6 shows an example of the linear Taylor-based extrapolation.

The surface nodes do not interact directly with other nodes. In other 
words, no PD bonds are connected to surface nodes. The degrees of 
freedom of the surface nodes are governed by new equations based on 
387
Fig. 7. Representation of the equation of a surface node 𝑠: (a) the flux 𝐽𝑠 =
𝐽 (𝑥𝑠, n𝑠, 𝑡) is computed as (b) the sum of the fluxes 𝐽𝑝𝑞 = −j(𝑥𝑝, 𝑥𝑞, 𝑡) ⋅ n𝑠 𝛽𝑝𝑞 Δ𝑥2

of the bonds intersecting node 𝑠.

the concept of peridynamic flux. Therefore, the equation of a surface 
node 𝑥𝑠 with normal n𝑠 is given as [47]:

𝐽 (𝑥𝑠,n𝑠, 𝑡) = −
∑
𝑠

j(𝑥𝑝, 𝑥𝑞, 𝑡) ⋅ n𝑠 𝛽𝑝𝑞Δ𝑥2 , (11)

where 𝑠 is the set of all the bonds such that 𝑥𝑝 < 𝑥𝑠 < 𝑥𝑞 , i.e., all the 
bonds crossing the boundary. These bonds are depicted in Fig. 7. Thus, 
the boundary conditions can be imposed directly on the surface nodes 
as one would do in a local model [47]: a constrained concentration 𝐶(𝑡)
at a surface node 𝑠 is imposed as 𝐶(𝑥𝑠, 𝑡) = 𝐶(𝑡) and a flux 𝐽 (𝑡) through 
the cell of a surface node 𝑠 is imposed as 𝐽 (𝑥𝑠, n𝑠, 𝑡) = 𝐽 (𝑡).

Thanks to equation (11), the surface nodes are affected by all the 
bonds connected to fictitious nodes (see Fig. 7). In fact, the bond fluxes 
that should be applied to the fictitious nodes, are instead applied to 
the surface node. Therefore, the surface nodes represent the nonlocal 
behavior of the whole fictitious layer. This is why the local boundary 
conditions imposed at the surface nodes can be seen as similar to vol-

ume constraints (nonlocal boundary conditions).

For the time integration, the forward Euler (first-order explicit) 
method is employed:

𝐶𝑛+1
𝑝 = 𝐶𝑛

𝑝 +Δ𝑡
𝜕𝐶𝑛

𝑝

𝜕𝑡
, (12)

where the subscript and superscript stand respectively for the cor-

responding position of the node and time-step so that, for instance, 
𝐶𝑛
𝑝 = 𝐶(𝑥𝑝, 𝑡𝑛). Therefore, the time integration is carried out by com-

bining equations (7), (8) and (12) as:

𝐶𝑛+1
𝑝 = 𝐶𝑛

𝑝 + 𝑑Δ𝑡
∑
𝑞∈𝑝

𝜇𝑝𝑞
(
𝐶𝑛
𝑞 −𝐶𝑛

𝑝

)
𝛽𝑝𝑞Δ𝑥

+ 1
2
𝑑 𝜇(Δ𝑥)

(
𝐶𝑛
𝑝+1 − 2𝐶𝑛

𝑝 +𝐶𝑛
𝑝−1

)
Δ𝑥

(13)

where 𝑑 is computed with equation (4) and 𝜇𝑝𝑞 = 𝜇(|𝑥𝑞 − 𝑥𝑝|). This sys-

tem of equations can also be written in the matrix form as:

𝐂𝑛+1 =𝐀𝐂𝑛 , (14)

where 𝐂𝑛 and 𝐂𝑛+1 are the concentration vectors at time-steps 𝑛 and 
𝑛 + 1, respectively.

3. Stability analysis

The stability analysis in peridynamic models has been carried out 
via the Von Neumann stability analysis for hyperbolic equations dis-

cretized with the meshfree method in [60,67] and for parabolic equa-
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tions considering the fast convolution-based method in [65,66]. Note 
that this type of analysis considers only pure initial value problems 
and completely neglects the influence of the boundary conditions [68]. 
In [69,70] the stability condition of the forward Euler scheme applied to 
parabolic equations discretized in space with the finite element method 
is discussed. Here we follow the general analysis (that also includes the 
treatment of boundary conditions), known as the eigenvalue technique

for stability analysis, to find the restriction on the time-step Δ𝑡 for peri-

dynamic parabolic equations discretized with the meshfree method.

A numerical method is semi-stable if the numerical errors do not 
grow as the solution progresses in time. According to the eigenvalue 
technique for stability analysis, the numerical method in equation (14)

is semi-stable if the largest eigenvalue 𝜆𝑚𝑎𝑥 of the matrix 𝐀 is such 
that |𝜆𝑚𝑎𝑥| ≤ 1. In this work we consider a body under Dirichlet bound-

ary conditions at both ends, i.e., at the surface nodes. Therefore, since 
the values of the concentrations at those nodes are known, the surface 
nodes do not contribute to the numerical errors. In order to bound the 
eigenvalues of matrix 𝐀 with entries 𝑎𝑖𝑗 , we use the Gershgorin Theo-

rem which states that each eigenvalue of 𝐀 lies within at least one of the 
circles centered in 𝑎𝑖𝑖 with a radius ∑𝑗≠𝑖 |𝑎𝑖𝑗 | (the so-called Gershgorin 
discs in the complex plane):

|𝜆− 𝑎𝑖𝑖| ≤∑
𝑗≠𝑖

|𝑎𝑖𝑗 | , (15)

where 𝑎𝑖𝑖 and 𝑎𝑖𝑗 are the diagonal and off-diagonal entries of matrix 𝐀.

The stability criterion without considering the influence of the 
boundary conditions and the self-transfer term is given as:

Δ𝑡 ≤ 1
𝑑

∑
𝑞∈𝑝

𝜇𝑝𝑞 Δ𝑥
. (16)

This inequality is obtained by applying the Gershgorin Theorem to the 
rows of matrix 𝐀 corresponding to a generic node 𝑝 lying in the bulk of 
the body, i.e. a node without fictitious nodes in its neighborhood (see 
the following proof). Note that, for simplicity’s sake, the quadrature co-

efficient 𝛽 is neglected in the determination of the upper bound for the 
time-step size. However, the entries of the rows of 𝐀 corresponding to 
the nodes near the boundary of the body are different from those consid-

ered to obtain equation (16), due to the presence of the fictitious nodes 
inside the neighborhood of those nodes. In fact, some of the entries of 𝐀
are modified according to the linear Taylor-based extrapolation (equa-

tion (10)). The tighter upper bound for the time-step size is found by 
applying the Gershgorin Theorem to the row of 𝐀 corresponding to the 
interior node closest to the boundary, as shown in the following.

Theorem. For the peridynamic equation of transient diffusion discretized in 
space with the meshfree method and in time with the forward Euler scheme, 
in which the boundary conditions are imposed via the surface node method 
with a linear Taylor-based extrapolation, the stability condition is given as

Δ𝑡 ≤ 1

𝑑

( ∑
𝑞∈𝑏

𝜇𝑏𝑞 +
1
2

∑
𝑓∈𝑏

𝜇𝑏𝑓

(
𝑥𝑓 − 𝑥𝑠

𝑥𝑠 − 𝑥𝑏
− 1

))
Δ𝑥

(17)

when the self-transfer term is not considered, and

Δ𝑡 ≤ 1

𝑑

( ∑
𝑞∈𝑏

𝜇𝑏𝑞 +
1
2

∑
𝑓∈𝑏

𝜇𝑏𝑓

(
𝑥𝑓 − 𝑥𝑠

𝑥𝑠 − 𝑥𝑏
− 1

)
+ 1

2
𝜇(Δ𝑥)

)
Δ𝑥

(18)

when the self-transfer term is considered.

Proof. For simplicity and conciseness, we prove the stability condition 
in equation (17) without considering the self-transfer term. The upper 
bound for the time-step size, when the self-transfer term is considered, 
can be found following the same steps. For simplicity’s sake, we also 
neglect the quadrature coefficients 𝛽 in all the following formulas. If 
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𝛽 was included in the analysis, the upper bound for the time-step size 
would slightly increase.

The concentration at a node 𝑝 in the bulk of the body, i.e., a node 
without fictitious nodes within its neighborhood, at the time-step 𝑛 + 1, 
is given as (see equation (13)):

𝐶𝑛+1
𝑝 =

⎡⎢⎢⎣1 − 𝑑Δ𝑡
∑
𝑞∈𝑝

𝜇𝑝𝑞Δ𝑥
⎤⎥⎥⎦𝐶𝑛

𝑝 + 𝑑Δ𝑡
∑
𝑞∈𝑝

𝜇𝑝𝑞𝐶
𝑛
𝑞Δ𝑥 , (19)

where 𝜇𝑝𝑞 = 𝜇(|𝑥𝑞 − 𝑥𝑝|). The Gershgorin Theorem applied to the rows 
of 𝐀 corresponding to node 𝑝 yields:

|||||𝜆− 1 + 𝑑Δ𝑡
∑
𝑞∈𝑝

𝜇𝑝𝑞Δ𝑥
||||| ≤

∑
𝑞∈𝑝

|||𝑑Δ𝑡𝜇𝑝𝑞Δ𝑥||| . (20)

Note that the terms within the summation on the right-hand side of this 
equation are always positive. Therefore, equation (20) becomes:

−𝑑Δ𝑡
∑
𝑞∈𝑝

𝜇𝑝𝑞Δ𝑥 ≤ 𝜆− 1 + 𝑑Δ𝑡
∑
𝑞∈𝑝

𝜇𝑝𝑞Δ𝑥 ≤ 𝑑Δ𝑡
∑
𝑞∈𝑝

𝜇𝑝𝑞Δ𝑥 . (21)

According to the eigenvalue technique, the stability of the numerical 
method is achieved when −1 ≤ 𝜆 ≤ 1. The right inequality yields 𝜆 ≤ 1, 
whereas the left inequality is:

𝜆 ≥ 1 − 2𝑑Δ𝑡
∑
𝑞∈𝑝

𝜇𝑝𝑞Δ𝑥 . (22)

Thus, one obtains 𝜆 ≥ −1 if the following condition holds:

Δ𝑡 ≤ 1
𝑑

∑
𝑞∈𝑝

𝜇𝑝𝑞Δ𝑥
. (23)

This is the stability criterion for the choice of a stable time-step when 
no correction methods for the PD surface effect or the imposition of the 
nonlocal boundary conditions are used.

We consider now a node 𝑝 having one or more fictitious nodes 
within its neighborhood. In equation (19), we subdivide the last sum-

mation over the nodes within the neighborhood of node 𝑝 as the sum 
of the summations of the real (denoted with 𝑟) and fictitious (denoted 
with 𝑓 ) nodes within the neighborhood of node 𝑝:

𝐶𝑛+1
𝑝 =

⎡⎢⎢⎣1 − 𝑑Δ𝑡
∑
𝑞∈𝑝

𝜇𝑝𝑞Δ𝑥
⎤⎥⎥⎦𝐶𝑛

𝑝 + 𝑑Δ𝑡
∑
𝑟∈𝑝

𝜇𝑝𝑟𝐶
𝑛
𝑟Δ𝑥+ 𝑑Δ𝑡

∑
𝑓∈𝑝

𝜇𝑝𝑓𝐶
𝑛
𝑓
Δ𝑥 .

(24)

As shown in Fig. 8, consider a surface node, named 𝑠, and the real node 
closest to it, named 𝑏. As dictated by the surface node method with a 
linear Taylor-based extrapolation [14,15,47], the concentration 𝐶𝑛

𝑓
of 

the fictitious nodes is computed with a linear Taylor series expansion 
as in equation (10). However, since there are no numerical errors at the 
surface nodes (where Dirichlet boundary conditions are imposed), we 
neglect the contributions to matrix 𝐀 of the concentrations 𝐶𝑛

𝑠 of the 
surface nodes. Hence, we obtain:

𝐶𝑛+1
𝑝 =

⎡⎢⎢⎣1 − 𝑑Δ𝑡
∑
𝑞∈𝑝

𝜇𝑝𝑞Δ𝑥
⎤⎥⎥⎦𝐶𝑛

𝑝 +𝑑Δ𝑡
∑
𝑟∈𝑝

𝜇𝑝𝑟𝑒
𝑛
𝑟Δ𝑥−𝑑Δ𝑡

∑
𝑓∈𝑝

𝜇𝑝𝑓 𝑐𝑓𝐶
𝑛
𝑏
Δ𝑥 ,

(25)

where 𝑐𝑓 = 𝑥𝑓−𝑥𝑠
𝑥𝑠−𝑥𝑏

is a positive scalar value derived from equation (10).

When 𝑝 ≠ 𝑏 (i.e., node 𝑝 is not the interior node closest to the bound-

ary):
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Fig. 8. Notation used for the indices of the nodes for the stability analysis: 𝑟 are 
the real nodes, 𝑓 are the fictitious nodes, 𝑠 is the surface node, and 𝑏 is the real 
node closest to node 𝑠.

𝐶𝑛+1
𝑝 =

⎡⎢⎢⎣1 − 𝑑Δ𝑡
∑
𝑞∈𝑝

𝜇𝑝𝑞Δ𝑥
⎤⎥⎥⎦𝐶𝑛

𝑝 + 𝑑Δ𝑡
∑

𝑟∈𝑝−{𝑏}
𝜇𝑝𝑟𝐶

𝑛
𝑟Δ𝑥

+ 𝑑Δ𝑡
⎡⎢⎢⎣𝜇𝑝𝑏Δ𝑥−

∑
𝑓∈𝑝

𝜇𝑝𝑓 𝑐𝑓Δ𝑥
⎤⎥⎥⎦𝐶𝑛

𝑏
,

(26)

The Gershgorin Theorem applied to this case yields:

|||||𝜆−1+𝑑Δ𝑡
∑
𝑞∈𝑝

𝜇𝑝𝑞Δ𝑥
||||| ≤ 𝑑Δ𝑡

⎛⎜⎜⎝
∑

𝑟∈𝑝−{𝑏}
𝜇𝑝𝑟 +

|||||𝜇𝑝𝑏 −
∑
𝑓∈𝑝

𝜇𝑝𝑓 𝑐𝑓

|||||
⎞⎟⎟⎠Δ𝑥 . (27)

Following the same steps as before, the first inequality deriving from 
equation (27) is given as:

𝜆 ≤ 1 + 𝑑Δ𝑡
⎛⎜⎜⎝−

∑
𝑞∈𝑝

𝜇𝑝𝑞 +
∑

𝑟∈𝑝−{𝑏}
𝜇𝑝𝑟 +

|||||𝜇𝑝𝑏 −
∑
𝑓∈𝑝

𝜇𝑝𝑓 𝑐𝑓

|||||
⎞⎟⎟⎠Δ𝑥 . (28)

Since the set of nodes in the neighborhood 𝑝 is the sum of the dis-

jointed sets of real and fictitious nodes, the inequality is rewritten as:

𝜆 ≤ 1 + 𝑑Δ𝑡
⎛⎜⎜⎝−

∑
𝑓∈𝑝

𝜇𝑝𝑓 − 𝜇𝑝𝑏 +
|||||𝜇𝑝𝑏 −

∑
𝑓∈𝑝

𝜇𝑝𝑓 𝑐𝑓

|||||
⎞⎟⎟⎠Δ𝑥 . (29)

We have that 𝜆 ≤ 1 if the following condition holds:

−
∑
𝑓∈𝑝

𝜇𝑝𝑓 − 𝜇𝑝𝑏 +
|||||𝜇𝑝𝑏 −

∑
𝑓∈𝑝

𝜇𝑝𝑓 𝑐𝑓

||||| ≤ 0 , (30)

which leads to:

−
∑
𝑓∈𝑝

𝜇𝑝𝑓 − 𝜇𝑝𝑏 ≤ 𝜇𝑝𝑏 −
∑
𝑓∈𝑝

𝜇𝑝𝑓 𝑐𝑓 ≤ ∑
𝑓∈𝑝

𝜇𝑝𝑓 + 𝜇𝑝𝑏 . (31)

The right inequality is always true, whereas the left inequality becomes:

𝜇𝑝𝑏 ≥ 1
2

∑
𝑓∈𝑝

𝜇𝑝𝑓
(
𝑐𝑓 − 1

)
. (32)

Note that here no term depends on the time-step size Δ𝑡, but this in-

equality depends on the kernel 𝜇 and on how many fictitious nodes are 
present in the neighborhood of node 𝑝. Therefore, to satisfy the condi-

tion in equation (32), an appropriate kernel can be chosen or one can 
make use of a preconditioner to modify accordingly the entries of ma-

trix 𝐀. If neither of the above options is adopted, the stability criterion 
still provides a good first guess for the time-step size.

The second inequality deriving from equation (27) is given as:

𝜆 ≥ 1 − 𝑑Δ𝑡
⎛⎜⎜⎝
∑
𝑞∈𝑝

𝜇𝑝𝑞 +
∑

𝑟∈𝑝−{𝑏}
𝜇𝑝𝑟 +

|||||𝜇𝑝𝑏 −
∑
𝑓∈𝑝

𝜇𝑝𝑓 𝑐𝑓

|||||
⎞⎟⎟⎠Δ𝑥 . (33)

Since 𝜆 ≥ −1, the following condition holds:

𝑑Δ𝑡
⎛⎜⎜⎝
∑
𝑞∈𝑝

𝜇𝑝𝑞 +
∑

𝑟∈𝑝−{𝑏}
𝜇𝑝𝑟 +

|||||𝜇𝑝𝑏 −
∑
𝑓∈𝑝

𝜇𝑝𝑓 𝑐𝑓

|||||
⎞⎟⎟⎠Δ𝑥 ≤ 2 . (34)

This inequality becomes:
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−2
𝑑Δ𝑡Δ𝑥

+
∑
𝑞∈𝑝

𝜇𝑝𝑞 +
∑
𝑟∈𝑝

𝜇𝑝𝑟 − 𝜇𝑝𝑏

≤ 𝜇𝑝𝑏 −
∑
𝑓∈𝑝

𝜇𝑝𝑓 𝑐𝑓 ≤ 2
𝑑Δ𝑡Δ𝑥

−
∑
𝑞∈𝑝

𝜇𝑝𝑞 −
∑
𝑟∈𝑝

𝜇𝑝𝑟 + 𝜇𝑝𝑏 .

(35)

The right inequality yields:

𝑑Δ𝑡
⎛⎜⎜⎝2

∑
𝑞∈𝑝

𝜇𝑝𝑞 −
∑
𝑓∈𝑝

𝜇𝑝𝑟
(
𝑐𝑓 + 1

)⎞⎟⎟⎠Δ𝑥 ≤ 2 , (36)

or, more simply:

Δ𝑡 ≤ 1

𝑑

⎛⎜⎜⎝
∑
𝑞∈𝑝

𝜇𝑝𝑞 −
1
2

∑
𝑓∈𝑝

𝜇𝑝𝑟
(
𝑐𝑓 + 1

)⎞⎟⎟⎠Δ𝑥
. (37)

This restriction on the time-step size is always verified if equation (23)

holds. On the other hand, the left inequality yields:

𝑑Δ𝑡
⎛⎜⎜⎝2

∑
𝑞∈𝑝

𝜇𝑝𝑞 +
∑
𝑓∈𝑝

𝜇𝑝𝑓
(
𝑐𝑓 − 1

)
− 2𝜇𝑝𝑏

⎞⎟⎟⎠Δ𝑥 ≤ 2 , (38)

which leads to:

Δ𝑡 ≤ 1

𝑑

⎛⎜⎜⎝
∑
𝑞∈𝑝

𝜇𝑝𝑞 +
1
2

∑
𝑓∈𝑝

𝜇𝑝𝑓
(
𝑐𝑓 − 1

)
− 𝜇𝑝𝑏

⎞⎟⎟⎠Δ𝑥
. (39)

If the inequality in equation (32) holds, then the restriction on the time-

step size given in equation (23) is tighter than the one in equation (39).

The last case to analyze is the row of matrix 𝐀 corresponding to the 
interior node closest to the boundary (𝑝 = 𝑏 in equation (25)):

𝐶𝑛+1
𝑏

=

[
1 − 𝑑Δ𝑡

( ∑
𝑞∈𝑏

𝜇𝑏𝑞Δ𝑥+
∑
𝑓∈𝑏

𝜇𝑏𝑓 𝑐𝑓Δ𝑥

)]
𝐶𝑛
𝑏
+ 𝑑Δ𝑡

∑
𝑟∈𝑏

𝜇𝑏𝑟𝐶
𝑛
𝑟Δ𝑥 .

(40)

In this case the Gershgorin Theorem yields:|||||𝜆− 1 + 𝑑Δ𝑡

( ∑
𝑞∈𝑏

𝜇𝑏𝑞 +
∑
𝑓∈𝑏

𝜇𝑏𝑓 𝑐𝑓

)
Δ𝑥

||||| ≤ 𝑑Δ𝑡
∑
𝑟∈𝑏

𝜇𝑏𝑟Δ𝑥 , (41)

which leads to:

−𝑑Δ𝑡
∑
𝑟∈𝑏

𝜇𝑏𝑟Δ𝑥 ≤ 𝜆− 1 + 𝑑Δ𝑡

( ∑
𝑞∈𝑏

𝜇𝑏𝑞 +
∑
𝑓∈𝑏

𝜇𝑏𝑓 𝑐𝑓

)
Δ𝑥

≤ 𝑑Δ𝑡
∑
𝑟∈𝑏

𝜇𝑏𝑟Δ𝑥 .
(42)

On the one hand, to ensure that 𝜆 ≤ 1, the right inequality becomes:

−
∑
𝑓∈𝑏

𝜇𝑏𝑓
(
𝑐𝑓 + 1

) ≤ 0 , (43)

which is always true. On the other hand, to have 𝜆 ≥ −1, we obtain from 
the left inequality:

𝑑Δ𝑡

(
2

∑
𝑞∈𝑏

𝜇𝑏𝑞 +
∑
𝑓∈𝑏

𝜇𝑏𝑓
(
𝑐𝑓 − 1

))
Δ𝑥 ≤ 2 , (44)

Note that this inequality is more restrictive than the one in equa-

tion (23). From here, equation (17) is straightforwardly derived. □

It is worth noting that the stability condition in equation (17) is 
more restrictive than the one in equation (16). Hence, neglecting the 
boundary conditions (as in the Von Neumann analysis) may lead to a 
poor guess of the time-step size to obtain the stability of the method. 
Furthermore, when the self-transfer term is considered, the upper bound 
for time-step size is even tighter than the one provided in equation (17).
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To simplify the formula of the stability criterion for quicker imple-

mentation, the symmetry of the neighborhood is employed. We denote 
the bond length by 𝑚Δ𝑥 with 𝑚 = 1, 2, … , 𝑚, where 𝑚= 𝛿∕Δ𝑥 is assumed 
to be a positive integer for simplicity. If this is not the case, 𝑚 can be 
replaced with the integer number 𝑀 such as 𝑀Δ𝑥 is the maximum 
distance from node 𝑝 of a node with a portion of its cell within the 
neighborhood of node 𝑝 itself. In peridynamic models, the value of 𝑚
is often referred to as 𝑚-ratio. Hence, the stability criterion when the 
influence of the boundary conditions and the self-transfer term are not 
considered is given as:

Δ𝑡 ≤ 1

𝑑

𝑚∑
𝑚=1

𝜇(𝑚Δ𝑥)Δ𝑥

. (45)

A tighter upper bound for the time-step size is found by considering the 
influence of the boundary conditions (see equation (17)):

Δ𝑡 ≤ 1

𝑑

⎛⎜⎜⎝2
𝑚∑

𝑚=1
𝜇(𝑚Δ𝑥) + 1

2

𝑚∑
𝑚=1

𝜇(𝑚Δ𝑥) (2𝑚− 2)
⎞⎟⎟⎠Δ𝑥

, (46)

where, given the symmetry of the neighborhood, here we considered 
only one half of it and multiply the summations by 2. This stability 
criterion can be further simplified as:

Δ𝑡 ≤ 1

𝑑

𝑚∑
𝑚=1

𝜇(𝑚Δ𝑥) (𝑚+ 1)Δ𝑥

. (47)

The time-step size is bounded even more tightly when the self-transfer 
term is considered:

Δ𝑡 ≤ 1

𝑑

⎛⎜⎜⎝
𝑚∑

𝑚=1
𝜇(𝑚Δ𝑥) (𝑚+ 1) + 1

2
𝜇(Δ𝑥)

⎞⎟⎟⎠Δ𝑥
. (48)

The derived stability condition is analogous to the Courant-

Friedrichs-Lewy (CFL) condition in classical convection equations, but 
it is intrinsically different: a stable Δ𝑡 is not limited by (Δ𝑥2) (as in 
models based on classical diffusion equations) but depends only weakly 
on Δ𝑥 for a fixed value of 𝛿. By analyzing the right-hand side of equa-

tion (47), one can see that the upper bound for a stable time-step is 
given by (𝛿2) instead. For instance, choosing the kernel 𝜇(|𝜉|) = |𝜉|−2
(for which 𝑑 =𝐷∕𝛿) yields:

Δ𝑡 ≤ 𝛿

𝐷

𝑚∑
𝑚=1

(𝑚+ 1)
𝑚2Δ𝑥

+ 1
2Δ𝑥

= 𝛿

(1∕𝛿) =(𝛿2) . (49)

Remark 1. For the case of bi-material diffusion (as used in, for exam-

ple, PD modeling of corrosion damage [3,53,5,54–58], and ZrC oxi-

dation [59]), the stability criterion derived above can still be used to 
determine the time-step size by employing the highest diffusivity/dis-

solvability between the two phases.

4. Convergence studies for diffusion problems with continuous 
and discontinuous initial conditions

To begin with, we consider the diffusion problem in a homogeneous 
bar without any phase change. In this section, we will focus on the 
role of discontinuities in initial conditions in peridynamic problems. 
Some phenomena require to be modeled with discontinuous initial con-

ditions, such as the oxidation of a zirconium carbide sample which is 
suddenly exposed to an oxidizing environment [6,7]. To simulate these 
experimental conditions, we assume that the two ends of the bar are 
maintained at the maximum concentration of oxygen 𝐶 and that the 
390
Fig. 9. Different initial conditions for the 1D diffusion problem without phase 
change.

initial oxygen concentration is equal to 0 in the whole bar (except the 
two ends), as depicted in Fig. 9b. However, the surface node method has 
never been used in a problem evolving in time, let alone with discontin-

uous initial conditions at the boundary. Therefore, we also analyze the 
same problem with continuous (quadratic) initial conditions, as shown 
in Fig. 9a. The analytical solutions to the problem with the initial con-

ditions with and without discontinuities are determined via the method 
of separation of variables [71]. Thus, we analyze the convergence be-

haviors in space (with 𝛿 fixed) and time to the exact nonlocal solution 
of the problem with continuous and discontinuous initial conditions.

In what follows, we will use specific units because of the direct ap-

plicability of these derivations and results to oxidation-induced damage 
in the ZrC problem [6,7,72]. The results, however, are independent of 
these units and the conclusions remain valid for non-dimensionalized 
form of the problem.

4.1. Analytical solutions

The 1D problem with continuous initial conditions, i.e., a quadratic 
function (Fig. 9a), is given as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝐶(𝑥, 𝑡)
𝜕𝑡

= ∫
𝑥

j(𝑥,𝑥′, 𝑡) d𝑥′ for − 𝓁∕2 < 𝑥 < 𝓁∕2 , 0 < 𝑡 <∞ ,

𝐶(−𝓁∕2, 𝑡) = 𝐶(𝓁∕2, 𝑡) = 𝐶 for 0 < 𝑡 <∞ ,

𝐶(𝑥,0) = 4𝐶
𝓁2 𝑥2 for − 𝓁∕2 < 𝑥 < 𝓁∕2 ,

(50)

where 𝓁 is the length of the rod. The peridynamic solution of this prob-

lem is obtained via the method of separation of variables [71]:

𝐶(𝑥, 𝑡)
𝐶

= 1 −
∞∑
𝑚=1

32 sin(𝑘𝑚𝓁∕2)
𝑘3𝑚𝓁

3 cos(𝑘𝑚𝑥) exp(−𝐷𝜓𝑡) , (51)

where 𝑘𝑚 = (2𝑚 − 1)𝜋∕𝓁 and 𝜓 = 𝜓(𝛿) is the nonlocal factor computed 
as:

𝜓(𝛿) =

𝛿

∫
−𝛿

cos
(
𝑘𝑚𝜉

)
− 1

𝛿𝜉2
d𝜉

= 2
𝛿

[
𝑘𝑚Si(𝑘𝑚𝛿) +

cos(𝑘𝑚𝛿) − 1
𝛿

]
,

(52)

where 𝜉 = 𝑥′ − 𝑥 and Si(𝑦) = ∫ 𝑦

0
sin𝑧
𝑧

d𝑧 is the sine integral function. Note 
that in the computation of the nonlocal factor the assumption of an 
infinite body is made, i.e., the integral is computed assuming a com-

plete horizon region. Therefore, the analytical solution in equation (51)

is valid outside of the body as well. This is equivalent to choosing an 
extrapolation of the unknowns over the fictitious layer that is antisym-

metric with respect to the boundary, as shown in Fig. 10a.

Similarly, the 1D problem with discontinuous initial conditions, i.e., 
the constant zero-valued function (Fig. 9b), is given as:



F. Scabbia, C. Gasparrini, M. Zaccariotto et al. Computers and Mathematics with Applications 151 (2023) 384–396
Fig. 10. Antisymmetric extrapolation over the fictitious layer assumed to derive 
the nonlocal analytical solution for different initial conditions.

Table 1

Properties of the rod.

Property Value

Length of the rod 𝓁 = 1 cm

Horizon size 𝛿 = 0.05 cm

Classical diffusivity 𝐷 = 1 cm2/s

Maximum concentration 𝐶 = 1 mol/cm3

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝐶(𝑥, 𝑡)
𝜕𝑡

= ∫
𝑥

j(𝑥,𝑥′, 𝑡) d𝑥′ for − 𝓁∕2 < 𝑥 < 𝓁∕2 , 0 < 𝑡 <∞ ,

𝐶(−𝓁∕2, 𝑡) = 𝐶(𝓁∕2, 𝑡) = 𝐶 for 0 < 𝑡 <∞ ,

𝐶(𝑥,0) = 0 for − 𝓁∕2 < 𝑥 < 𝓁∕2 .

(53)

The peridynamic solution of this problem can be computed as [71]:

𝐶(𝑥, 𝑡)
𝐶

= 1 −
∞∑
𝑚=1

4 sin(𝑘𝑚𝓁∕2)
𝑘𝑚𝓁

cos(𝑘𝑚𝑥) exp(−𝐷𝜓𝑡) , (54)

where 𝑘𝑚 = (2𝑚 − 1)𝜋∕𝓁 and 𝜓 = 𝜓(𝛿) is the same nonlocal factor of 
equation (52). As shown in Fig. 10b, the antisymmetric extrapolation 
over the fictitious layer is assumed to compute the nonlocal factor 𝜓(𝛿).

4.2. Numerical results

The values for the model parameters are shown in Table 1. The same 
parameters are used for both the continuous and discontinuous initial 
conditions. These parameters are not realistic, but are used to verify the 
numerical model. Since the problem is symmetric, we consider only half 
of the domain and enforce a zero-flux at 𝑥 = 0 by imposing symmetric 
boundary conditions as described in [73].

The numerical results, compared to the analytical solution, for the 
continuous and discontinuous initial conditions are shown in Figs. 11

and 12, respectively. These plots are obtained for a value of the 𝑚-

ratio equal to 4 (Δ𝑥 = 125 μm) and the time-step size equal to 0.1 ms. 
This value of the time-step meets the requirement of equation (48) for 
numerical stability. Moreover, no qualitative differences are visible in 
the plots if smaller time-steps are chosen. The numerical results are in 
excellent agreement with their corresponding analytical solutions. This 
is also observed in the case of discontinuous initial conditions.

Nonetheless, analyzing in more detail the early times of the simula-

tion, we observed that the errors for the discontinuous initial conditions 
are localized near the boundary and are non-negligible only at the early 
times of the simulation, as shown for instance in Fig. 13. Furthermore, 
since the analytical solution is given in the form of an infinite summa-

tion of Fourier terms, some inaccuracies arise due to the truncation of 
higher-order terms, especially when there is a discontinuity in the so-

lution. Therefore, in the following convergence analysis, we study the 
influence of ignoring the initial time interval of the simulation in the 
computation of the error for the case with discontinuous initial condi-

tions.

The errors can be computed by averaging the concentration errors 
in space and taking the maximum error in time:
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Fig. 11. Numerical results (for Δ𝑥 = 125 μm and Δ𝑡 = 0.1 ms) and corresponding 
analytical solution at different times 𝑡 for the problem with continuous initial 
conditions.

Fig. 12. Numerical results (for a grid spacing Δ𝑥 = 125 μm and a time-step size 
Δ𝑡 = 0.1ms) and corresponding analytical solution at different times 𝑡 for the 
problem with discontinuous initial conditions.

Fig. 13. Example of the behavior of the analytical and numerical solutions near 
the boundary of the body in the initial time-steps of a simulation with Δ𝑥 = 125
μm and Δ𝑡 = 0.1 ms.

𝑒 = max
𝑡0≤𝑡≤𝑡𝑓

⎛⎜⎜⎜⎜⎝

√√√√√√∑𝑁
𝑝=1

[
𝐶(𝑥𝑝, 𝑡) −𝐶(𝑥𝑝, 𝑡)

]2
𝑁 𝐶

2

⎞⎟⎟⎟⎟⎠
, (55)

where 𝑡0 and 𝑡𝑓 are respectively the initial and final considered instants 
of time, 𝐶 is the numerical result for the degree of freedom of node 𝑝, 
𝐶 is the analytical solution evaluated at 𝑥𝑝, and 𝑁 is the number of 
degrees of freedom of the model. The error is computed in this way to 
obtain a single value for each simulation and compare them when the 
grid spacing or the time-step size are changed. The analytical solution 
(equation (51) for the continuous initial conditions or equation (54)

for the discontinuous ones) is truncated after 200 terms. For what was 
discussed before, we choose 𝑡0 = 0 s for the problem with continuous 
initial condition and 𝑡0 = 1 ms for the one with discontinuous initial 
condition. On the other hand, 𝑡𝑓 = 0.5 s for both cases.

The first convergence analysis was performed with the peridynamic 
model with the linear extrapolation over the fictitious layer, but the 
results were not good. For instance, the 𝑚-convergence behavior of 
the model with continuous initial conditions shows a low convergence 
rate, whereas the numerical solution of the problem with discontin-

uous initial conditions slightly diverges from the nonlocal analytical 
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Fig. 14. 𝑚-convergence (for Δ𝑡 = 5 × 10−8 s) for continuous and discontinuous 
initial conditions (discontinuous case skips over the first 1 ms).

solution. These poor results are due to the different assumptions that 
the analytical solution and the numerical model use to extrapolate the 
concentrations over the fictitious layer: the former one employs an an-

tisymmetric extrapolation, while the latter one a linear extrapolation. 
Therefore, to obtain reasonable convergence behaviors for the peridy-

namic diffusion models, we need to use the same type of extrapolation 
in both analytical and numerical solutions.

Thus, only in the following convergence analyses are the concen-

trations of the fictitious nodes in the discretized model imposed to be 
antisymmetric with respect to the concentration of the surface node:

𝐶(𝑥𝑓 , 𝑡) = 2𝐶(𝑥𝑠, 𝑡) +𝐶(𝑥𝑚, 𝑡) , (56)

where 𝑥𝑓 , 𝑥𝑠, and 𝑥𝑚 are the coordinates of the fictitious node, the 
surface node, and the node symmetric to node 𝑓 with respect to the 
boundary, respectively. Note that the stability criterion derived in Sec-

tion 3 is not valid in this case due to the different extrapolations that 
are assumed. However, following the same steps as shown for the lin-

ear extrapolation, one could easily derive the stability criterion also in 
the case of antisymmetric extrapolation.

We perform a 𝑚-convergence analysis (grid refinement keeping the 
value of the horizon 𝛿 fixed) for a time-step size Δ𝑡 = 5 × 10−8 s. We 
chose a very small time-step size to reduce the errors related to the 
time-integration compared to those related to the space discretization. 
The values of the 𝑚-ratio are varied as 𝑚 = 2𝑘, with 𝑘 = 1, 2, … , 6. Fig. 14

shows the results of the 𝑚-convergence studies, which highlight larger 
errors in the case discontinuous initial conditions compared to the case 
with continuous initial conditions. Nevertheless, the errors are consider-

ably small also when a discontinuity is present in the initial conditions. 
Furthermore, the rate of convergence is not affected by the presence of 
a discontinuity (when the early times of the simulation are ignored).

Fig. 15 shows the convergence behaviors for different time intervals 
skipped at the beginning of the simulation. When early times are con-

sidered, the maximum errors in time are found in the first time-steps. 
This is due to the fact that the representation of the discontinuity in 
the initial conditions is only approximated in the numerical model. On 
the other hand, when a sufficiently long time interval is ignored, the 
convergence rate is approximately the same as for the numerical model 
with continuous initial conditions.

Similarly, we analyze the convergence behavior due to the refine-

ment of the time-step size Δ𝑡 for a fixed value of grid spacing Δ𝑥 = 50
μm, shown in Fig. 16. As in the case of 𝑚-convergence, the numeri-

cal results for the problem with discontinuous initial conditions exhibit 
the same rate of convergence as those for the problem with continuous 
initial conditions. However, the numerical errors are higher when a dis-

continuity is present in the initial conditions. As shown in Fig. 17, the 
discontinuity in the initial conditions influences only the early times of 
the simulation.

Several parameters may affect the size of the initial time interval 
that has to be skipped in the computation of the error to obtain the 
same convergence rate as the model with continuous initial conditions. 
Among those parameters, the value of the diffusivity is arguably the 
392
Fig. 15. Influence of initial skipped time interval on the 𝑚-convergence prop-

erties to the analytical solution to the nonlocal problem (all results are for 
Δ𝑡 = 5 × 10−8 s).

Fig. 16. Time-convergence (for Δ𝑥 = 50 μm) for continuous and discontinuous 
initial conditions (discontinuous case skips over the first 1 ms).

Fig. 17. Influence of initial skipped time interval on the time-convergence prop-

erties to the analytical solution to the nonlocal problem (all results are for 
Δ𝑥 = 50 μm).

most influential. Increasing the diffusivity leads to a reduction of the 
time interval mentioned above. More precisely, the size of the initial 
time interval ignored to obtain the “expected” convergence behavior is 
inversely proportional to the diffusivity value.

5. Diffusion problem with moving interface

In this section, the peridynamic model for a bi-material body with a 
moving interface is analyzed. As pointed out before, the motion of the 
interface is not related to a condition imposed at the interface itself, 
but it is part of the peridynamic solution of the problem. Therefore, we 
are interested in monitoring the accuracy of the numerical results for 
the position of the interface at each instant of time. Since the analytical 
solution to this type of nonlocal problem is difficult (if not impossible) 
to obtain, we use the solution of a manufactured problem instead.

5.1. Manufactured solution

We assume that the manufactured solution is given as:

𝐶(𝑥, 𝑡) = 1 +
(

4
𝓁2 𝑥2 − 1

)(
1 − 𝑡

𝑡

)
, (57)
𝐶 𝑓
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Fig. 18. Numerical results (for a grid spacing Δ𝑥 = 0.003125 cm and a time-step size Δ𝑡 = 1 × 10−5 s) and corresponding analytical solution at different times 𝑡 for the 
manufactured problem with phase change.
where 𝑡𝑓 is the final instant of time in which the solution is equal to 
𝐶(𝑥, 𝑡) = 𝐶 . The manufactured solution is plotted in Fig. 18 at different 
instants of time. Note that equation (57) does not describe the “natural” 
evolution of the concentration, but the verification of a manufactured 
problem does not require physically realistic solutions [74]. The manu-

factured solution is chosen to be symmetric with respect to the origin of 
the axis, thus we consider only the positive part of the coordinate axis.

The motion of the interface can be described by equalizing equa-

tion (57) with the concentration of phase change 𝐶𝑖:

𝐶𝑖

𝐶
= 1 +

(
4
𝓁2 𝑥2𝑖 − 1

)(
1 − 𝑡

𝑡𝑓

)
, (58)

where 𝑥𝑖 is the interface position. By solving the previous equation for 
𝑥𝑖, the position of the interface in time is given as:

𝑥𝑖 = ±𝓁
2

√
1 +

(
𝐶𝑖

𝐶
− 1

)(
𝑡𝑓

𝑡𝑓 − 𝑡

)
, (59)

in which we consider only the positive solution for symmetry reasons.

Since the manufactured solution is not the “natural” evolution of the 
concentration, an external flux has to be “pushed into” the body. This 
flux can be computed as the remainder of equation (1) as:

𝐽 (𝑥, 𝑡) = 𝜕𝐶(𝑥, 𝑡)
𝜕𝑡

− ∫
𝑥

j(𝑥,𝑥′, 𝑡) d𝑥′

= − 𝐶

𝑡𝑓

(
4
𝓁2 𝑥2 − 1

)
− ∫
𝑥

𝑑(𝑥,𝑥′, 𝑡) 𝐶(𝑥′, 𝑡) −𝐶(𝑥, 𝑡)
(𝑥′ − 𝑥)2

d𝑥′ .
(60)

The integral on the right-hand side of the equation depends on the 
value of the micro-diffusivities obtained with equation (6). Note that 
the concentration distribution (and, therefore, the phase of each point) 
is known in each instant of time from the manufactured solution. Hence, 
the integral can accordingly be split into a sum of integrals with a con-

stant micro-diffusivity 𝑑(𝑥, 𝑥′, 𝑡) = 𝑑𝑘, where 𝑘 = 1, 2, 3 (see equation (6)). 
Here we solve the indefinite integral that can be used to compute the 
external flux in equation (60):

∫ 𝑑𝑘
𝐶(𝑥′, 𝑡) −𝐶(𝑥, 𝑡)

(𝑥′ − 𝑥)2
d𝑥′

= 𝑑𝑘 ∫
𝐶
[(

4
𝓁2

𝑥′ 2 − 1
)
−
(

4
𝓁2

𝑥2 − 1
)](

1 − 𝑡

𝑡𝑓

)
(𝑥′ − 𝑥)2

d𝑥′

=
4𝑑𝑘 𝐶
𝓁2

(
1 − 𝑡

𝑡𝑓

)
∫

𝑥′ 2 − 𝑥2

(𝑥′ − 𝑥)2
d𝑥′ (61)

=
4𝑑𝑘 𝐶
𝓁2

(
1 − 𝑡

𝑡

)
∫

𝜉 (𝜉 + 2𝑥)
𝜉2

d𝜉

𝑓

393
=
4𝑑𝑘 𝐶
𝓁2

(
1 − 𝑡

𝑡𝑓

)[
𝜉 + 2𝑥 𝜉|𝜉| log(|𝜉|) + const.

]
,

where 𝜉 = 𝑥′ − 𝑥.

5.2. Numerical results

The data used is the same as in Table 1, except for the diffusivity that 
is chosen to be different in each phase. The following data is thought 
to be applied in the case of the zirconium carbide oxidation, but the 
model of the diffusion-reaction phenomenon in a bi-material enhanced 
with a phase-change mechanism is also applicable to other phenomena 
with similar characteristics. Since no diffusion occurs in the carbide 
region (in fact, no concentration of oxygen is present in the carbide), 
the diffusivity of the carbide phase is 𝐷𝑐 = 0 cm2/s. On the other hand, 
the diffusivities of the oxide phase and at the interface are arbitrarily 
chosen to be 𝐷𝑜 = 1 cm2/s and 𝐷𝑖 = 0.8 cm2/s, respectively. Therefore, 
the three micro-diffusivities of equation (6) are respectively 𝑑1 = 0, 𝑑2 =
𝐷𝑖∕𝛿, and 𝑑3 = 𝐷𝑜∕𝛿. The concentration of phase change is arbitrarily 
chosen to be 𝐶𝑖 = 0.9𝐶 . The grid spacing and the time-step size are 
respectively Δ𝑥 = 0.003125 cm (𝑚 = 16) and Δ𝑡 = 1 × 10−5 s. The value 
for the time-step size is chosen on the basis of the stability criterion in 
equation (48) by using the diffusivity of the oxide phase in the formula 
(see Remark 1).

The analytical solution of the manufactured problem is computed 
by using the interface position determined in equation (59) to change 
the diffusivity of the points. In the discretized model, however, there 
is no clear way to know precisely the position of the interface when it 
lies between two adjacent nodes. Therefore, the position of the interface 
is chosen to be in the middle point between the two adjacent carbide 
and oxide nodes. The obtained interface position is used to compute 
the external flux at each node with equations (60) and (61). The fluxes 
at the nodes can be gathered in the flux vector 𝐉 and the system of 
equations to solve becomes:

𝐂𝑛+1 =𝐀𝐂𝑛 + 𝐉 . (62)

The numerical results are shown at different instants of time in 
Fig. 18, and they are compared with the analytical (manufactured) so-

lution. The numerical and analytical solutions are in good agreement 
throughout the whole timespan. It is also interesting to analyze the 
motion of the interface in the numerical model with respect to the an-

alytical solution in equation (59). Fig. 19 shows that the position of 
the interface in the numerical model and the manufactured solution are 
very close to one another at any instant of time. Therefore, the peridy-

namic model has been shown to be effective in capturing the motion of 
the interface as a result of the diffusivities of the different phases.

An interesting extension of the work shown here is to consider the 
moving interface problem with discontinuities. Such an example is con-

sidered in [59], in which a peridynamic model of zirconium carbide 
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Fig. 19. Numerical results and corresponding analytical solution of the position 
of the interface for the manufactured problem with phase change.

oxidation is used to simulate the effect of cracks induced by the ex-

pansion of the oxide in the outer layer. Comparison of PD results with 
experimental observations shows an excellent agreement between the 
two.

6. Discussion on the extension to 2D and 3D problems

In this work, we considered only 1D transient diffusion problems for 
simplicity’s sake. However, we believe that all the obtained results are 
also valid for 2D and 3D peridynamic diffusion problems. The equations 
for a 2D or 3D peridynamic transient diffusion problem are presented 
in Section 3 of [59], and are very similar to the equation governing 
diffusion in a 1D peridynamic body. In fact, the only difference is that 
the position of the points/nodes is determined by a vector instead of a 
scalar value.

It is common practice to derive the stability criterion for numeri-

cal methods in 1D problems and then extend it to higher-dimension 
problems (see, for instance, [75,60]). We therefore use equation (17)

in Section 3 for the generalization. The linear Taylor-based extrapola-

tion method for the 3D case used to determine the concentration at a 
fictitious node 𝐱𝑓 at time 𝑡 yields [14,15,47]:

𝐶(𝐱𝑓 , 𝑡) ≈ 𝐶(𝐱𝑠, 𝑡) +
(
𝑥𝑓 − 𝑥𝑠

) 𝜕𝐶(𝐱𝑠, 𝑡)
𝜕𝑥

+
(
𝑦𝑓 − 𝑦𝑠

) 𝜕𝐶(𝐱𝑠, 𝑡)
𝜕𝑦

+
(
𝑧𝑓 − 𝑧𝑠

) 𝜕𝐶(𝐱𝑠, 𝑡)
𝜕𝑧

≈
(
1 +

𝑥𝑓 − 𝑥𝑏

𝑥𝑠 − 𝑥𝑏
+

𝑦𝑓 − 𝑦𝑏

𝑦𝑠 − 𝑦𝑏
+

𝑧𝑓 − 𝑧𝑏

𝑧𝑠 − 𝑧𝑏

)
𝐶(𝐱𝑠, 𝑡)

−
(
𝑥𝑓 − 𝑥𝑠

𝑥𝑠 − 𝑥𝑏
+

𝑦𝑓 − 𝑦𝑠

𝑦𝑠 − 𝑦𝑏
+

𝑧𝑓 − 𝑧𝑠

𝑧𝑠 − 𝑧𝑏

)
𝐶(𝐱𝑏, 𝑡)

≈
(
1 + 𝑐𝑓

)
𝐶(𝐱𝑠, 𝑡) − 𝑐𝑓 𝐶(𝐱𝑏, 𝑡) ,

(63)

where node 𝐱𝑠 is the surface node closest to node 𝐱𝑓 , node 𝐱𝑏 is the 
real node closest to node 𝐱𝑠, and the derivatives are approximated 
by the finite difference method as shown in equation (10). Note that 
equation (63) is also valid in 1D with 𝑐𝑓 = 𝑥𝑓−𝑥𝑠

𝑥𝑠−𝑥𝑏
and in 2D with 

𝑐𝑓 = 𝑥𝑓−𝑥𝑠
𝑥𝑠−𝑥𝑏

+ 𝑦𝑓−𝑦𝑠
𝑦𝑠−𝑦𝑏

. Therefore, since the governing equations in 2D or 
3D diffusion problems have the same “structure” as those in 1D prob-

lems, we deduce that the stability criterion generalized for a higher-

dimension transient diffusion problem is as follows:

Δ𝑡 ≤ 1

𝑑

( ∑
𝑞∈𝑏

𝜇𝑏𝑞 +
1
2

∑
𝑓∈𝑏

𝜇𝑏𝑓
(
𝑐𝑓 − 1

))
Δ𝑥

, (64)

where 𝑐𝑓 = 𝑥𝑓−𝑥𝑠
𝑥𝑠−𝑥𝑏

in 1D, 𝑐𝑓 = 𝑥𝑓−𝑥𝑠
𝑥𝑠−𝑥𝑏

+ 𝑦𝑓−𝑦𝑠
𝑦𝑠−𝑦𝑏

in 2D, and 𝑐𝑓 = 𝑥𝑓−𝑥𝑠
𝑥𝑠−𝑥𝑏

+
𝑦𝑓−𝑦𝑠
𝑦𝑠−𝑦𝑏

+ 𝑧𝑓−𝑧𝑏
𝑧𝑠−𝑧𝑏

in 3D. The nodes near the corners of the body, i.e., the 
nodes with the highest number of fictitious nodes inside their neighbor-

hood, are likely to provide the smallest upper bound for the time-step 
size.
394
As shown in Section 4 for a 1D peridynamic transient diffusion prob-

lem, a discontinuity at the boundary in the initial conditions affects the 
numerical convergence rate only at the very early stages of the simula-

tion. This is due to the fact that the discontinuity is quickly “smoothed 
out” by the diffusion phenomenon that tends to reduce the high gradi-

ents of concentration, as shown for example in the analytical solution 
depicted in Fig. 13. This effect of diffusion is obviously independent of 
the considered number of dimensions of the model. Therefore, it is ex-

pected that the same conclusions that were obtained in the 1D case are 
also valid in the 2D and 3D cases.

In this work, we quantitatively evaluated the accuracy of the posi-

tion of the autonomously moving interface in a 1D peridynamic diffu-

sion problem when compared to a manufactured solution. Except for 
the (possibly) slightly higher errors due to the numerical integration of 
the peridynamic operator in 2D and 3D problems, we expect that the 
accuracy of the position of the moving interface should be similar to 
that obtained in the proposed 1D numerical example. Furthermore, the 
2D and 3D peridynamic diffusion models for a bi-material have already 
been used to successfully reproduce complex phenomena, such as corro-

sion [3,53,5,54–58] and zirconium carbide oxidation [59]. These works 
show that the peridynamic modeling in 1D, 2D, and 3D cases is capable 
of accurately predicting the motion of interfaces in excellent agreement 
with experimental observations.

7. Conclusions

In this work, we analyzed several numerical aspects in the peridy-

namic model for a diffusion problem with and without moving inter-

face. To this end, we considered the example of the zirconium carbide 
oxidation for the choice of initial/boundary conditions and material 
properties, but the results may be easily generalized to other physical 
phenomena with similar characteristics. Moreover, the boundary con-

ditions are imposed, for the first time, by means of the surface node 
method in a problem evolving over time.

It is well-known that explicit numerical methods for time integra-

tion of the diffusion equation incur in instability unless the time-step 
size is sufficiently small. The Von Neumann method can provide a first 
guess for the time-step size allowed to obtain the stability of the nu-

merical method, but this method does not consider the influence of the 
boundary conditions. Thanks to the eigenvalue technique for stability 
analysis and the Gershgorin Theorem, we have determined a more gen-

eral stability criterion for peridynamic diffusion models that takes into 
account the numerical method as a whole, including the effect of the 
boundary conditions. In fact, considering the boundary conditions pro-

vides a tighter upper bound for the time-step size to obtain the stability 
of the numerical method.

Then, we showed the numerical results and the convergence to the 
exact peridynamic solution of a diffusion problem with continuous and 
discontinuous initial conditions in a homogeneous body without phase 
change. The presence of a discontinuity in the initial conditions affects 
the numerical approximation only in the early stages of the simulation. 
When a sufficiently long initial time interval is ignored, the conver-

gence rate of the model with discontinuous initial conditions is the same 
as that of the model with continuous initial conditions. This fact has 
been verified for both 𝑚-convergence (grid refinement while keeping 
the horizon size 𝛿 constant) and time-convergence analysis.

Furthermore, we solved a diffusion problem in a bi-material en-

hanced with a phase-change model. This model makes use of the dif-

fusion equation to determine both the concentration of the considered 
species within the body and the position of the interface between dif-

ferent phases. In fact, the phase-change is driven by the concentration 
of the species itself. The numerical results, in terms of concentration 
profile and position of the interface, are in good agreement with the 
analytical (manufactured) solution. These analyses pave the way for 
the modeling of more complex phenomena, including reaction-induced 
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damage mechanisms that can be easily introduced within the peridy-

namic framework.

Data availability

All data is presented in the content of the manuscript.
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