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Influence of environmental, 
geographic, socio‑demographic, 
and epidemiological factors 
on presence of malaria 
at the community level in two 
continents
Oswaldo C. Villena 1*, Ali Arab 2, Catherine A. Lippi 3,4, Sadie J. Ryan 3,4,5 & Leah R. Johnson 6,7,8

The interactions of environmental, geographic, socio-demographic, and epidemiological factors in 
shaping mosquito-borne disease transmission dynamics are complex and changeable, influencing 
the abundance and distribution of vectors and the pathogens they transmit. In this study, 27 years 
of cross-sectional malaria survey data (1990–2017) were used to examine the effects of these factors 
on Plasmodium falciparum and Plasmodium vivax malaria presence at the community level in Africa 
and Asia. Monthly long-term, open-source data for each factor were compiled and analyzed using 
generalized linear models and classification and regression trees. Both temperature and precipitation 
exhibited unimodal relationships with malaria, with a positive effect up to a point after which a 
negative effect was observed as temperature and precipitation increased. Overall decline in malaria 
from 2000 to 2012 was well captured by the models, as was the resurgence after that. The models also 
indicated higher malaria in regions with lower economic and development indicators. Malaria is driven 
by a combination of environmental, geographic, socioeconomic, and epidemiological factors, and in 
this study, we demonstrated two approaches to capturing this complexity of drivers within models. 
Identifying these key drivers, and describing their associations with malaria, provides key information 
to inform planning and prevention strategies and interventions to reduce malaria burden.
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MODIS	� Moderate resolution imaging spectroradiometer
NASA	� National aeronautics and space administration
NetCDF	� Network common data form
GRUMP	� Global Rural–Urban Mapping Project
MAP	� Malaria Atlas Project
RQRs	� Randomized quantile residuals

Malaria is the deadliest vector-borne disease worldwide, causing 249 million infections and taking the lives of 
608,000 people in 2022 alone1. The overwhelming majority (94%) of malaria cases occur in Africa, where Plas‑
modium falciparum is the most prevalent malaria parasite, accounting for 99.5% of cases versus the 0.5% caused 
by P. vivax1. Asia also has considerable malaria burden, where 50.9% of cases are caused by P. vivax and 49.1% 
are caused by P. falciparum2. Despite a 14-year decline in global malaria cases and deaths following continued 
intervention efforts, a major resurgence of malaria has occurred worldwide since 20141,3,4. One of the biggest 
challenges to reducing malaria burden is understanding the complex interaction of factors that drive and shape 
malaria transmission dynamics.

Transmission dynamics of mosquito-borne diseases (MBDs), like malaria, can be difficult to describe and 
predict due to multiple levels of complexity arising from interactions between vectors, pathogens, hosts, and the 
environment5,6. Transmission of MBDs is directly impacted by climate, particularly temperature and precipita-
tion, and to a lesser degree humidity and wind patterns7,8. Yet, there are many other factors that can mediate the 
spatial and temporal distribution, intensity, and duration of MBDs5,6,9. There is evidence to support that malaria 
occurrence, transmission, and seasonality are influenced by environmental (e.g., isothermality), socio-economic 
(e.g., human population density), and health factors (e.g., access to health services)10. Yet, the influence of these 
interacting elements on malaria transmission dynamics is often not well understood, or are highly variable 
across regions.

The effects of temperature and rainfall on malaria dynamics are probably the most well studied because these 
two factors are believed to have the greatest direct impact on mosquito-borne diseases9. Mosquitoes are ecto-
therms, and temperature affects their physiology, behavior, and development11. Furthermore, temperature also 
affects the development of Plasmodium parasites inside the mosquito (e.g., the extrinsic incubation period,12). 
Therefore, malaria transmission dynamics are highly constrained by temperature11,13–16. Precipitation and related 
factors (e.g., evaporation rates, presence of breeding habitat, irrigation, etc.) also play vital roles in MBD transmis-
sion dynamics by creating habitats necessary for the aquatic stages of mosquito development9, thereby impacting 
vector abundance and distribution17–19.

Although temperature and precipitation are key drivers of MBDs, additional factors affect malaria trans-
mission dynamics, but are less well-studied. These include heterogeneous human population density linked 
to urbanization, economic development (e.g., measured as gross domestic product per capita, GDPPC, or the 
human development index, HDI or habitat which can be measured as variables such as normalized difference 
vegetation index (NDVI) or elevation). For example, prior studies found human population density to be a reli-
able metric to define patterns of malaria risk, with moderately populated areas typically having high malaria 
prevalence20,21. In Africa, malaria was not historically considered a public health problem in urban centers, 
compared to rural areas, because urbanization is associated with the reduction of suitable breeding habitats 
and vegetation cover for the primary malaria vectors, Anopheles gambiae, An. arabiensis, An. coluzzii, and An. 
Funestus22,23,24]. In contrast, An. stephensi, An. minimus, and An. dirus are the main malaria vectors in southern 
and western Asia, where urban and coastal malaria outbreaks are more common24. However, the recent expansion 
of An. stephensi from Asia into Africa25 poses a major potential health risk for densely populated urban areas in 
Africa, as this malaria vector is well adapted to reproduce in built environments26. Changes in temperature and 
precipitation patterns due to climate change has significant implications for malaria vectors and the transmission 
dynamics of malaria such as vector survival and development, parasite development, range expansion, length of 
transmission season, availability of breeding sites, and insecticide resistance, etc.27–29.

Poverty is historically associated with malaria since families in areas with lower GDPPC usually have less 
access to quality housing, health services, and municipal water and sanitation services30,31. In the past, environ-
mental and socio-economic changes contributed to malaria eradication in the USA and Europe, and improved 
control in most of Central and South America32,33. However, the relationship between GDPPC and malaria may 
be bi-directional: GDPPC could affect malaria prevalence and/or malaria prevalence could affect countries’ 
GDPPC. Similarly, lower values of HDI are associated with high malaria34. Measures of environmental conditions 
can also serve as predictors of malaria activity. While there is consensus that high malaria prevalence occurs in 
areas of moderate elevation, the utility of other indicators, like NDVI, can vary across studies21. Some studies 
have found that NDVI is positively associated with mosquito abundance, mosquito community assembly, and 
malaria cases35,36. However, other studies found that NDVI is negatively associated with malaria cases37. These 
discrepancies could be due to the differences in the underlying habitat preferences of the mosquitoes, perhaps 
making NDVI useful in more nuanced modeling applications37.

In this study, an integrated modeling framework for evaluating impacts of environmental, geographic, socio-
demographic, and epidemiological factors on malaria in Sub-Saharan Africa and Southeast Asia is presented 
and implemented. Additionally, the association of P. falciparum and P. vivax malaria survey data with the basic 
reproductive number (R0), defined as the number of secondary cases that on average an infected individual will 
cause in a susceptible population, was assessed. To our knowledge, this is the first study to incorporate R0 as a 
factor to assess for its association with malaria survey data.
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Methods
Malaria survey data
Data on P. falciparum and P. vivax malaria at the community level in 46 countries in Africa and 21 countries in 
Asia from 1990 to 2017 (Figure S1; supplemental material) were obtained from the Malaria Atlas Project (MAP), 
https://​malar​iaatl​as.​org/ 38,39. The survey-data collected by MAP followed the General Data Protection Regulation 
(GDPR) and associated data protection legislation, https://​malar​iaatl​as.​org/​priva​cy-​policy/. The survey data is 
publicly available and consist of the number of individuals at each sampled location (i.e., longitude, latitude) 
observed to have P. falciparum and P. vivax parasites in their blood, together with the total number of individu-
als sampled, respectively. Data was aggregated from multiple malaria survey studies which number varies by 
community, country, and continent. The malaria survey data were converted to presence/absence of malaria 
at the community level (i.e., 1 was assigned if malaria was present and 0 is malaria was absent). Plasmodium 
vivax malaria in Africa was not assessed due to insufficient data (718 records of which only 155 showed malaria 
presence; Table 1).

Environmental and geographic variables
Temperature and precipitation
Monthly temperature and precipitation data from 1990 to 2017 were obtained from the WorldClim Global 
Climate Data Project using the raster package in R40, at a 5-min spatial resolution (17.3 km2). Aggregated mean 
temperature was calculated for the two quarters (three calendar months) prior to the start month of each sur-
vey study (Table 2). Isothermality (bio3), a bioclimatic variable from the WorldClim project which quantifies 
how much day-to-night temperatures oscillate relative to the summer-to-winter annual oscillations, was also 
considered41. Average monthly precipitation (mm) was aggregated to mean precipitation for two quarters prior 
to the start month of each survey study. Two additional bioclimatic variables were also considered: precipitation 
of the wettest quarter (bio16), which is the total precipitation for all three months with the highest cumulative 
precipitation; and the precipitation of the driest quarter (bio17)40.

Table 1.   Absence and presence of malaria by parasite and by continent at the community level aggregated 
from the Malaria Atlas Project. Note that these data are aggregated from multiple survey studies, many of 
which were designed specifically to capture malaria incidence. They are not distributed equally in space or 
time, and often exclude sampling from areas with a priori low expected malaria.

Parasite Continent Number of communities Absence (0) Presence (1)

P. falciparum Africa 5376 1970 5810

P. vivax Africa 574 563 155

P. falciparum Asia 2276 1314 1453

P. vivax Asia 2438 1604 1281

Table 2.   List of the factors used to assess the effect of environmental, geographic, socio-demographic, and 
epidemiological factors on malaria. Two dependent variables: (1) Plasmodium falciparum survey data and (2) 
Plasmodium vivax survey data and 15 predictor variables. The spatial resolution for all these variables is at the 
community level.

Variable Unit Temporal resolution Source

Plasmodium falciparum survey data Individuals 2 Months frame Malaria Atlas Project (MAP)

Plasmodium vivax survey data Individuals 2 Months frame Malaria Atlas Project (MAP)

Average temperature of previous quarter °C Quarter—yearly WorldClim project

Average temperature before previous quarter °C Quarter—yearly WorldClim project

Average precipitation of previous quarter mm Quarter—yearly WorldClim project

Average precipitation before previous quarter mm Quarter—yearly WorldClim project

Isothermality (bio3) % Yearly WorldClim project

Precipitation of wettest quarter (bio16) mm Quarter-yearly WorldClim project

Precipitation of driest quarter (bio17) mm Quarter-yearly WorldClim project

Year of the survey study Year Yearly Malaria Atlas Project (MAP)

Gross domestic product per capita (GDPPC) Dollars  Yearly (Kummu et al.47)

Human development index (HDI) 0 to 1 Yearly (Kummu et al.47)

Population density People/Km2 Yearly Global Rural–Urban Mapping Project (GRUMP)

Elevation Meters 30arc-seconds United States Geological Survey—USGS

Normalized Difference Vegetation Index (NDVI) 0 to 1 Monthly EARTHDATA project, NASA and USGS

Basic reproductive number of previous quarter (R0q1) 0 to 1 Two months frame (Villena et al.15)

Basic reproductive number before previous quarter (R0q2) 0 to 1 Two months frame (Villena et al.15)

https://malariaatlas.org/
https://malariaatlas.org/privacy-policy/
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Elevation and normalized difference vegetation index
For topographical data, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) from the U.S. 
Geological Survey (USGS), with a horizontal grid spacing of 30 arc-seconds (approximately 1 km) was used. 
Normalized Difference Vegetation Index (NDVI) data, a greenness measure estimating chlorophyll density in 
vegetation cover, were obtained from the Famine Early Warning Systems Network (FEWS-NET). FEWS-NET 
NDVI data were generated from the collection of Moderate Resolution Imaging Spectroradiometer (MODIS) 
instruments flown aboard the Aqua satellite from July 2002 to current times42. Real-time and historical NDVI 
data are composited in 10-day (dekadal) intervals at 250 m spatial resolution43. For the studies conducted from 
2000 to July 2002, we used MODIS vegetation indices (MOD13A3) collection 6 at 1 km (km) spatial resolution 
from the EARTHDATA project from USGS and NASA, available from 2000 onward. For malaria survey data 
prior to 2000, a monthly average NDVI derived from EARTHDATA from 2000 to 2004 was calculated using the 
“Cell Statistics” function in ArcGIS 10.8.144.

Socio‑demographic variables
The socio-demographic variables used were population density, gross domestic product per capita (GDPPC), 
and the human development index (HDI) at the community level (e.g., where the individual survey studies 
took place).

Population density was estimated at the site level where malaria surveys occurred. Population density data 
were obtained from the Gridded Population of the World (GPW) collection from the Global Rural–Urban Map-
ping Project—(GRUMP) project45. We used GRUMP global population density at five-year intervals from 1990 
to 2015 (i.e., 1990, 1995, 2000) with a resolution of 30 arc-seconds (1 km). We extracted population density data 
in intervals of 5 years (e.g., from the 1990 raster data set we extracted approximate population density from 1990 
to 1994). Due to high variability in population density across survey study locations, in our models, we scaled 
population density using the “scale” function in R46 where the vector mean is subtracted from each xi value and 
divided by the standard deviation of the vector.

Gross Domestic Product per capita (GDPPC) and HDI data from 1990 to 2015 were obtained from the Grid-
ded Global Datasets47. The GDPPC data indicate the purchasing power parity in constant 2011 international US 
dollars. The HDI data represent key aspects of development, namely life expectancy, education expressed as years 
of schooling, and per capita income indicators. The GDPPC and the HDI data are available at the sub-national 
level for the whole world at 5 arc-min resolution and WGS84 projection47. GDPPC and HDI data were in the 
form of network common data form (NetCDF), which were converted to raster using the “Make NetCDF Raster 
Layer” tool from ArcGIS 10.8.1.

The raster data sets (i.e., temperature, precipitation, elevation, NDVI, population density, GDPPC, HDI) 
which spans different spatial and temporal resolutions were imported into ArcGIS version 10.8.1 and resampled 
if needed and synchronized to the timing of the response variable. We resampled the raster datasets using either 
the nearest method for variables like NDVI or the bilinear method for layers with continuous data48,49. Next, 
data for each survey study site was extracted using geographic coordinates (latitude and longitude) as a merging 
points employing the “extract values to points” tool from the spatial analysis toolset in ArcMap50. For NDVI, 
we used bilinear interpolation which means that the value of the cell was calculated from the adjacent cells51.

Epidemiological component
The basic reproductive number R0 of each malaria species (i.e., P. falciparum) and region (i.e., Africa) was also 
used as a predictor variable. R0, the average number of secondary cases that one infected individual generates 
during an infectious period in a susceptible population, was estimated for each Anopheles-pathogen pairing in a 
previous study by Villena et al.15. They used the most common parameterization of R0 for vector-borne infections 
which is based on the Ross-MacDonald model of malaria transmission52. More specifically, they incorporated 
multiple temperature dependent mosquito and parasite traits11,13,14,53 into the following equation:

where a is the mosquito biting rate; bc is vector competence, which is a combination of b, the probability of a 
person becoming infected by a bite of an infected mosquito, and c, the probability of a vector becoming infected 
by feeding on an infectious person; µ is the mosquito mortality rate; PDR is the parasite development rate; EFD 
is the mosquito fecundity expressed as the number of eggs per female per day; PEA is the proportion of eggs 
surviving to adulthood; MDR is the mosquito development rate15. All mosquito and malaria parasite traits were 
obtained under laboratory conditions and at constant temperatures14,15. R0 data were matched with aggregated 
mean temperatures for each of the two quarters prior to the start month of each malaria prevalence study, using 
temperature as a merging variable. Thus, R0, unlike many of the other predictors, corresponds to a study/loca-
tion in both space and time.

Data analysis with CART and GLMs
Malaria presence/absence data and its relationship to multiple predictors was analyzed (Table 2) separately for P. 
falciparum and P. vivax for Africa and Asia (four subsystems). To do this, two different approaches were used: a 
classification and regression tree (CART) and a generalized linear model (GLM). The CART approach is a non-
parametric statistical model applicable to both numerical and categorical data54. A GLM is a flexible generaliza-
tion of ordinary linear regression that can be used to model data that are not normally distributed55,56. These two 

(1)S(T) =





a(T)2bc(T)e
−µ(T)
PDR(T) EFD(T)PEA(T)MDR(T)

µ(T)3





1
2
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methods are widely used to assess the relationship between a continuous or categorical response variable and 
predictor variables57. Each method has its own advantages and disadvantages. For example, GLMs allow the use 
of the Bayes Information Criterion (BIC) and stepwise regression to automatically find the “best” model, can have 
non-linear model specifications, and can handle different response distributions. Some disadvantages of GLMs 
are the assumptions around the chosen statistical distribution of the response data (which can be restrictive), 
difficulty in finding a global best model for large predictor dimension, and sensitivity to outliers. Conversely, 
CART models make few assumptions about the nature of relationships, have no parametric assumptions, and 
allow for the analysis of many data types (e.g., continuous, binary, ordinal, nominal). Disadvantages of CART 
models include the lack of variables combinations in each split, potentially unstable tree structures (e.g., change 
in the sample may give different trees), and focus of optimization at each split (e.g., solutions may not be glob-
ally optimal)57,58.

For the CART approach the rpart function from the rpart (Recursive partioning and regression trees) pack-
age was used59 in R46. The rpart function constructs a CART by splitting the dataset and fitting a constant model 
(here, estimated proportion) within each subset (i.e., at each leaf). Splits are recursive, so that the subsets resulting 
from a split are further split until a predetermined termination criterion is reached. More specifically, at each 
step, the split is chosen to occur on the independent variable that results in the largest possible reduction of 
heterogeneity of the dependent variable, until an impurity state of zero (i.e., the class is homogeneous) or close 
to zero is reached60. The Gini index was used to quantify the level of impurity in our CART model fits, where the 
Gini index reaches maximum value when all classes in the table have equal probability60. The trees generated in 
this study were built using the following process: first a single variable is found which best splits the data in two 
groups (i.e., child nodes). The process is then applied separately to each subgroup, and so on recursively until the 
subgroups either reach a minimum size (100 for these data) or until no improvement can be made.

For the GLM approach, each observation at each location in our dataset was categorized with a binary 
response variable to indicate whether or not malaria had been observed in sampled individuals in our malaria 
survey dataset. That is, the response yi,j was defined for the jth individual in location i as

The general logistic GLM is defined by the mean equation:

where ηi is the linear predictor, with β0 as the intercept, β1,…., βn are regression parameters, and x1, . . . , xn are 
the location and time dependent explanatory variables. Observations at data point i, j are then Binomial random 
variables with “success” probability θi and sample size Ni at each location. We implemented the GLMs using the 
function glm in R46.

A null model, which estimated an intercept only (in effect estimating a single proportion for all sites) was 
fit, and a full model was also fit including the linear effects of: mean temperature for the two quarters prior to 
the start of the survey study; mean precipitation for the two quarters prior to the start of the survey study; iso-
thermality (bio3); precipitation of the wettest (BIO 16) and driest (BIO 17) quarter; gross domestic product per 
capita (GDPPC); the human development index (HDI); population density; the temperature dependent basic 
reproductive number (R0) for the two previous quarters of the start of the survey study; year in which the survey 
study started (year); elevation (elev); and the normalized difference vegetation index (NDVI). A quadratic term 
for isothermality (BIO 3), temperature, and precipitation was also included in order to capture the non-linear 
response of these factors.

Next, forward stepwise variable selection was performed using the step function in R46 to choose a final best 
fitting model for comparison. Finally, to assess if model assumptions were adequately met, the randomized 
quantile residuals (RQRs) were computed and plotted, using the statmod package61 for each of the Null, full, 
and stepwise chosen models. RQRs are the residuals of choice for GLM models in large dispersion situations62.

Model assessment
CART and GLM performance were assessed by estimating the accuracy, precision, recall, and F1-score for each 
model63–65. Model accuracy is defined as the total correctly classified samples divided by the total number of 
classified samples. Model precision refers to the positive patterns that are correctly predicted from the total 
number of positive classified samples (true and false positives). Model recall is a measure of the fraction of posi-
tive patterns that are correctly classified. The F1-score is the weighted mean of the precision and the recall (See 
formulas in the section B.1.1; supplemental material)64,66,67. To estimate these performance metrics, the dataset 
was divided into a training and test dataset, using a stratified random sampling method which divides the dataset 
into smaller subgroups called strata. Strata are formed based on samples that share attributes or characteristics68. 
Our study dataset was grouped by malaria type (P. falciparum and P. vivax), continent, country, and the survey 
study year, then 70% of the data were randomly divided into the training set and remaining 30% to the testing set.

(2)yi,j =

{

c1, if an observed community at location i presents malaria cases
0, otherwise

(3)Pr
(

yi,j = 1
)

= θ = logit−1
(

ηi,j
)

(4)ηi,j = β0 + β1x1,i + β2x2,i + ...+ βnxn,I
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Results
Plasmodium falciparum malaria in Africa
Figure 1 shows the fitted marginal relationships between P. falciparum malaria in Africa and environmental and 
bioclimatic factors in the quarter before each survey study period. Additional marginal predictions for earlier 
quarters are in supplementary material (Figure S2). Marginal predictions for P. falciparum malaria showed 
qualitatively similar responses for both GLM and CART models (Figs. 1 and 2), although the CART model 
had better accuracy, precision, and F1-score than the GLM (Table S7; supplemental material). For example, the 

Figure 1.   Marginal predictions based on particular environmental and bioclimatic predictors for P. falciparum 
in Africa. (A) Temperature 1st quarter prior to the start of the survey study, (B) Precipitation 1st quarter prior to 
the start of the survey study, (C) Elevation, (D) NDVI, (E) Isothermality, (F) Precipitation of the wettest quarter, 
and (G) Precipitation of the driest quarter.
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temperature in the quarter prior to the P. falciparum malaria survey study at which presence is predicted to be 
maximized is 24.9 °C (GLM model) and 24.8 °C (CART model), decreasing on either side. The thermal range 
where predicted malaria presence is non-negligible, is between approximately 12 °C and 36 °C for both models 
(Fig. 1A). In contrast, marginal predictions for precipitation variables are not as consistent. Precipitation of the 
prior quarter and P. falciparum malaria showed a positive relationship up to approximately 150 mm of precipita-
tion. After this point, the predicted relationship levels off in the GLM model, but decreases in the CART model 
(Fig. 1B). Isothermality (BIO 3) is unusual, showing a potentially higher order nonlinear relationship with P. 
falciparum malaria presence (e.g., possibly cubic, Fig. 1E).

The relationship between socio-demographic and epidemiological factors and P. falciparum malaria in Africa 
are shown in Fig. 2. While some predictions of the two models are again similar, they are less consistent than 
the patterns seen with the environmental predictors. For example, high P. falciparum malaria presence is seen 
from 1990 to 2000, and both the GLM and CART models capture the constant decline of P. falciparum from 
2000 to 2012 well. However, after 2012, the GLM model continues to predict that P. falciparum malaria declines 
and whereas the CART model showed a resurgence of P. falciparum malaria (Fig. 2A). This is likely due to the 
additional flexibility available in the CART model (we only considered up to quadratic terms for the GLM). 
Predictions for malaria presence with per capita log GDP are similarly disparate between the two models. This 
may be because these predictors are correlated with each other, and the models separate out the effects of these 
correlated variables in different ways.

The pruned tree for P. falciparum malaria in Africa from the CART model is given in Supplemental Material 
(See section A.2), along with the coefficients, standard errors, and P-values from the GLM model (Table S1), a 
graph of the magnitude and uncertainty of the fitted parameter estimates of each variable of the GLM model 

Figure 2.   Marginal predictions based on socio-demographic and epidemiological predictors for P. falciparum 
in Africa. (A) Year at which the survey study started, (B) Gross domestic product per capita, (C) Population 
density, (D) Human development index, and (E) Basic reproductive number (R0) 1st quarter prior to the start of 
the survey study.
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(Figure S9), and the graphs for the randomized quantile residuals and the density plot from the GLM Model 
(Figures S12-A and S12-B).

Plasmodium falciparum malaria in Asia
Figure 3 shows the fitted marginal relationships between P. falciparum malaria in Asia and environmental and 
bioclimatic factors in the quarter before each survey study period. Results from marginal predictions two quar-
ters prior to the survey study are in the supplementary materials (Figure S3). Similar to P. falciparum malaria in 

Figure 3.   Marginal predictions based on particular environmental and bioclimatic predictors for P. falciparum 
in Asia. (A) Temperature 1st quarter prior to the start of the survey study, (B) Precipitation 1st quarter prior to 
the start of the survey study, (C) Elevation, (D) NDVI, (E) Isothermality, (F) Precipitation of the wettest quarter, 
and (G) Precipitation of the driest quarter.
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Africa, marginal predictions for P. falciparum malaria in Asia showed similar responses for both GLM and CART 
(Figs. 3 and 4). For example, the normalized difference vegetation index (NDVI) showed a unimodal response: 
increasing P. falciparum malaria up to a NDVI ∼ 0.53 followed by a decrease (Fig. 3D). Similarly, Isothermal-
ity (BIO 3) is unimodal with a predicted peak in P. falciparum malaria when bio3 is around 62% (Fig. 3E). In 
contrast, marginal predictions related to temperature and elevation are not as consistent. The temperature in 
the quarter prior to the P. falciparum malaria survey study in Asia at which malaria presence is predicted to be 
maximal is 21 °C (GLM) and 19.5 °C (CART) (Fig. 3A), but the decline at higher temperatures is much less in 
the GLM than the CART fit. For elevation, the models predict maximum malaria presence when elevation is 
752 m (GLM) versus 1,010 m (CART), with malaria decreasing at higher elevations, although again, at different 
rates (Fig. 3C).

In Fig. 4, the relationship between socio-demographic and epidemiological factors with P. falciparum malaria 
in Asia are shown. Again, predictions of the two models are similar, except for the predictions by year and the 
human development index. Similar to P. falciparum malaria predictions in Africa, high P. falciparum malaria from 
1990 to 2001 is observed. After that, both the GLM and CART models capture a constant decline of P. falciparum 
malaria well until 2009 and 2011 for GLM and CART model respectively, then P. falciparum malaria shows a 
resurgence, although this effect is larger in the GLM (Fig. 4A). In the GLM model, the relationship between 
human development index (HDI) and P. falciparum malaria is hump-shaped, with a peak at ∼0.44. However, 
the relationship in the CART model is instead higher order, showing an initial decline in malaria presence up 
to a HDI ∼ 0.265, then increasing until ∼0.49, then decreasing again as the HDI increases further (Fig. 4D).

The pruned tree for P. falciparum malaria in Asia from the CART model is given in Supplemental Material 
(See section A.3), along with the coefficients, standard errors, and p-values from the GLM model (Table S2), a 
graph of the magnitude and uncertainty of the fitted parameter estimates of each variable of the GLM model 

Figure 4.   Marginal predictions based on socio-demographic and epidemiological predictors for P. falciparum 
in Asia. (A) Year at which the survey study started, (B) Gross domestic product per capita, (C) Population 
density, (D) Human development index, and (E) Basic reproductive number (R0) 1st quarter prior to the start of 
the survey study.
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(Figure S10), and the graphs for the randomized quantile residuals and the density plot from the GLM Model 
(Figures S12-C and S12-D).

Plasmodium vivax malaria in Asia
Figure 5 shows the fitted marginal relationships between P. vivax malaria in Asia and environmental and biocli-
matic factors in the quarter before each survey study period. Additional results for marginal predictions in earlier 
quarters are in the supplementary materials (Figure S4). The CART model showed better accuracy, recall, and 
F1-score compared to the GLM model; although the GLM model showed a slightly better precision (Table S10; 

Figure 5.   Marginal predictions based on particular environmental and bioclimatic predictors (A) Temperature 
1st quarter prior to the start of the survey study, (B) Precipitation 1st quarter prior to the start of the survey 
study, (C) Elevation, (D) NDVI, (E) Isothermality, (F) Precipitation of the wettest quarter, and (G) Precipitation 
of the driest quarter for P. vivax in Asia.
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supplemental material). Similar to the two previous subsystems, both models GLM and CART showed similar 
trends for predicted P. vivax malaria presence in Asia (Figs. 5 and 6). For example, the temperature in the quarter 
prior to the P. vivax malaria survey study at which malaria presence is predicted to meet maximal is 24 °C (GLM 
model) and 24.4 °C (CART model) and the thermal range where malaria presence is non-negligible, for both 
models is between approximately 3 °C and 35 °C (Fig. 5A). In contrast, precipitation of the prior quarter showed 
slightly different peaks in the unimodal relationship with P. vivax malaria, peaking at 150 mm and 200 mm of 
precipitation for the GLM and CART models respectively (Fig. 5B). The normalized difference vegetation index 
(NDVI) is one of the only predicted relationships that is not fully or mostly unimodal in both models. In the 
GLM model, the relationship between P. vivax malaria presence and NDVI seems to be monotonically increasing, 
although not with a constant slope, whereas the CART model exhibits a unimodal pattern with a peak at ∼0.5 
(Fig. 5D). The precipitation of the wettest quarter (BIO 16) is also different between the two models, with the 
GLM fit exhibiting a unimodal relationship, but the CART model predicting a similar initial peak, but higher 
malaria at the wettest locations (Fig. 5F).

In Fig. 6, the relationship between socio-demographic and epidemiological factors with P. vivax malaria 
in Asia are shown. Trends and values at which P. vivax malaria meet maximal values are very similar between 
the two modeling approaches. For example, high P. vivax malaria occurs before 2000, then both GLM and 
CART models showed a constant decline after 2001 (Fig. 6A). Gross domestic product per capita (GDPPC) 
showed a unimodal response where P. vivax malaria peaks around $3,294.5/year (Fig. 6B). Population density 
showed a positive relationship with P. vivax malaria which increases as population density increases (Fig. 6C). 
Interestingly, the marginal relationship between the relative temperature dependent basic reproductive number 
(R0) and P. vivax malaria shows a relationship that is flat or ambiguous at low values, but then increases as R0 

Figure 6.   Marginal predictions based on socio-demographic and epidemiological predictors (A) Year at 
which the survey study started, (B) Gross domestic product per capita, (C) Population density, (D) Human 
development index, and (E) Basic reproductive number (R0) 1st quarter prior to the start of the survey study for 
P. vivax in Asia.
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increases towards one (Fig. 6E). The pruned tree for P. vivax malaria in Asia from the CART model is given in 
Supplemental Material (See section A.4), along with the coefficients, standard errors, and P-values from the 
GLM model (Table S3), a graph with the magnitude and uncertainty of the effects of each variable of the GLM 
model (Figure S11), and the graphs for the randomized quantile residuals and the density plot from the GLM 
Model (Figures S12-E and S12-F). Furthermore, in Figure S8 we are showing the correlation between variables 
included in this study.

Discussion
Assessing the long-term effects of environmental, geographic, socio-demographic, and epidemiological factors 
on malaria is essential for public health planning, risk mitigation, and vector control, especially in the context 
of malaria resurgence4,69–71. This study examined spatially and temporally resolved predictors on Plasmodium 
falciparum and Plasmodium vivax malaria presence for a period of 27 years (1990–2017) at the community level 
for two continents, Africa and Asia. We applied two common methods to analyze binary (presence/absence) data, 
GLMs and CART​72–75, and examined the similarities and dissimilarities in the prediction of malaria. Predicted 
malaria and its marginal association with the suite of factors showed similar responses with both approaches, 
but the CART model had better out of sample performance in terms of accuracy, precision, and F1-scores. Other 
studies have found similar results when comparing GLM and CART models76. Three key features of the models 
and data may have impacted our discussion and interpretation of results. First, because the data are aggregated 
from multiple studies, often focused on finding malaria, rather than designed to estimate underlying prevalence 
within either continent, we would expect that overall incidence is likely biased upward in this sample. Second, 
adjustments to spatial and temporal resolution could have introduced some distortion to the results, however 
we assumed these distortions are very small since the model results are very similar to other studies or are in the 
range of expected values. Third, all results are conditional on the inclusion of other aspects of the model, and 
many factors covary. Thus, we focus primarily on qualitative patterns (shapes, relative factors, etc.) rather than 
quantitative predictions such as specific prevalence estimates in a region.

The role of temperature
A variety of previous work in the thermal biology of vector-borne diseases has posited that we expect to see 
unimodal relationships between temperature and transmission14,77. In our study here, across both types of fit-
ting approaches, and a variety of temperature metrics, we found that this general pattern held, even with the 
presence of covarying factors, such as temperature and elevation. For example, the relationship between average 
temperature of the prior quarter and P. falciparum malaria presence in Africa was observed to be unimodal, with 
a predicted optimum temperature for malaria presence of 24.9 °C (GLM model) and 24.8 °C (CART model), with 
lower and upper thermal limits of 12 °C and 36 °C respectively. Similarly, the optimum temperature two quarters 
before the time the survey study took place was also hump shaped and the estimated optimum temperatures were 
25.4 °C (GLM model) and 25.1 °C (CART model) for P. falciparum malaria in Africa. These temperatures are very 
similar to published optimum temperatures for the transmission of P. falciparum by Anopheles gambiae (25 °C) 
and by An. stephensi (24.8 °C)11,15. The native An. gambiae mosquito is the main malaria vector in Africa78 and 
An. stephensi is a recent invasive species in Africa25 with a greater thermal range than the native vector15, so we 
may find that these predictions would shift in the future as An. stephensi becomes more established.

In the models for data from Asia, similar unimodal patterns between temperature variables and malaria pres-
ence were observed. The relationship between average temperature of the 1st quarter prior to the studies showed 
a unimodal response for P. vivax malaria, with a predicted optimum temperature of 24.7 °C (CART model) and 
24 °C (GLM model). These temperatures are slightly lower than the optimum transmission temperature suggested 
in Villena et al.15 which is 25 °C, and lower than the optimum in Africa for the same period. This could be pos-
sible because in Asia, malaria is transmitted by multiple vectors (e.g., An. dirus, An. culicifacies, An. maculatus) 
whose thermal performance curves could be different than An. stephensi79, while in Africa An. gambiae is the 
main vector4. The optimum temperature two quarters prior to the survey study for P. falciparum and P. vivax 
malaria in Asia was in average 4 °C lower than these other studies. These last results highlight the potential dif-
ferences between mechanistically driven models, and correlational models (such as the ones we explore here). 
Although the correlational study can also capture other factors that might be related to the presence of malaria 
besides temperature, a signal may not be as clear especially in the presence of correlated predictors. Similarly, 
the mechanistic approaches could over-simplify by examining only one or a few vector species, for example.

The response of life history traits (e.g., mosquito and parasite development rate) to different constant tem-
peratures under laboratory conditions were used in Villena et al. and Mordecai et al.11,15 to estimate the optimum 
temperature for malaria transmission. However, climatic factors do not typically have instantaneous effects on 
transmission; rather they may have delayed effects80–82. In contrast, in the field, environmental temperatures 
that influence parasite and vector development are rarely constant. Here we included isothermality as a factor to 
try to capture the separate relationship of this variability. In the fitted models here, we found that the marginal 
relationship of P. falciparum malaria in Africa with isothermality increased when temperature oscillations were 
up to 58%, but did not increase substantially for higher levels of variation. In Asia, both P. falciparum and P. vivax 
malaria showed a bell-shaped response with isothermality, highest malaria presence at oscillations around 62%. 
It is known that daily temperature fluctuations affect vector biology, as well as parasite development and infec-
tion rates83,84. Temperature oscillations also impact the abundance and age structure of Anopheles mosquitoes85. 
The relationships identified in this study between malaria transmission and isothermality reflect the findings of 
other studies. Paaijmans et al.83 showed that temperature fluctuations around low mean temperatures speed up 
biological processes, while fluctuations around high mean temperatures slow down biological processes of the 
vector and the parasite84. Zhao et al.84 found that large daily temperature oscillations speed up malaria incidence 
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in cooler environmental conditions, but in warmer regions large daily temperature oscillations will slow down 
malaria incidence.

The role of precipitation
In this study, the four precipitation variables (i,e., precipitation one and two quarters prior to the survey study 
start and precipitation of the wettest and driest quarters) showed a curve-like response with a positive relation-
ship with P. falciparum malaria in Africa up to a certain level of cumulative precipitation and then a decline. 
For example, precipitation of the wettest quarter (BIO16) positively impacts P. falciparum malaria, to a peak of 
1350 mm and 930 mm of quarterly cumulative rainfall for the GLM and CART models respectively; and greater 
amounts of rainfall have a negative effect on malaria. Similar patterns were observed with precipitation one and 
two quarters prior to the survey study, and for precipitation of the driest quarter (BIO17). It is well established 
that precipitation plays a major role in the availability of habitat for immature stages (i.e., eggs, larvae, pupae) of 
Anopheles mosquitoes, however excess precipitation can flush away immature life stages from these habitats86. 
Most of the African continent is classified as semi-arid, with an average annual precipitation of 469.9 mm in a 
single summer wet season (December—March), except countries located near the equator where two wet seasons 
occur, with increased rainfall87. Countries located between 10 N and 10 S latitudes have optimal amounts of 
precipitation (< 1350 mm) for Anopheles mosquito development, with the exception of small areas that experience 
more than 1350 mm rainfall for at least three months of the year, such as in Gambia, Guinea-Bissau, Guinea, 
Sierra Leone, Liberia, Nigeria, Cameroon, Equatorial Guinea, Gabon, and Madagascar87. Yet, outside these peri-
ods of heavy rains, these areas are also optimal for mosquito development in terms of precipitation87. Changes 
in rainfall patterns due to global climate change can have profound consequences on mosquito development 
and transmission of vector-borne diseases7,88,89. Rainfall trends have already been changing, such as decreases 
in East Africa and increases in Southern Africa89,90.

In Asia, the models revealed counterintuitive relationships between P. falciparum malaria presence and pre-
cipitation. Increases in mean precipitation one and two quarters prior to the survey study corresponded with a 
constant decline in malaria. Precipitation of the driest quarter (BIO 17) also had a strong negative correlation with 
malaria presence, where despite a peak at 210 mm of rainfall (GLM and CART models), malaria activity sharply 
decreases with increased precipitation. Similar relationships were found for Plasmodium vivax malaria presence, 
wherein the precipitation of the driest quarter (BIO17), and the mean precipitation of the second quarter prior 
the survey study show strong negative relationships. As with P. falciparum, precipitation of the driest quarter 
showed peak P. vivax presence when precipitation is around 210 mm (GLM and CART models), after which 
malaria decreases with increased precipitation. Plasmodium vivax presence also increases with precipitation of 
the wettest quarter (BIO16) until an optimum (900 mm) is reached, after which malaria presence decreases with 
continued rainfall. These findings align with those presented in91, which showed that 60 to 80 mm of monthly 
rainfall is enough to increase availability of breeding sites for mosquitoes and indirectly drive malaria transmis-
sion. This echoes findings in Africa, where locally intense rain events that exceed optima can decrease early-stage 
larvae and pupae through the flushing of ovipositional habitats92.

The role of normalized difference vegetation index – NDVI
NDVI relates to malaria in Asia with a bell-shaped response, where malaria presence of both P. falciparum and 
P. vivax was rise up to an optimum value (P. falciparum: 0.52 (GLM) and 0.54 (CART); P. vivax: 0.4 (GLM) and 
0.5 (CART)), beyond which malaria was predicted to decrease. Multiple studies have shown higher numbers 
of malaria cases in areas with low to medium density of vegetation. For example, the number of malaria cases 
increases when forested areas are deforested, which results in NDVI values similar to those that favor malaria 
presence in this study93. The study of Nihei et al.94 also found a positive correlation with P. falciparum malaria 
when NDVI values are of 0.4 + for at least 6 months. The GLM model for P. vivax showed a constant increase of 
malaria as NDVI increases up to 0.8 index; however, between 0.4 and 0.8 the rate of increase is minimal.

The NDVI also showed a bell-shaped response with P. falciparum malaria which was positively impacted up 
to an optimum value of NDVI = 0.73, beyond which malaria decreased. However, this variable is not determinant 
for P. falciparum malaria presence in Africa. This could be because of the difference in vegetation cover and its 
variation from country to country in Africa. For example, In Uganda, malaria incidence was greater when the 
average NDVI = 0.7295 while in Kenya the overall effect of NDVI was highest when NDVI was below 0.496.

The role of socio‑economic and demographic factors
Gross domestic product per capita (GDPPC) is associated with increased P. falciparum in Africa, and both 
P. falciparum and P. vivax in Asia. Malaria increases with GDPPC to a certain point, after which it decreases. 
Notably, in Asia most countries have a GDPPC greater than the thresholds identified in this study ($2,322 for P. 
falciparum; $3,294.5 for P. vivax). In contrast, many countries in Africa have a GDPPC well below the regional 
threshold ($2,250) for high malaria prevalence97. Multiple studies have shown a strong correlation between high 
malaria burden and low GDPPC98, or low per capita income97,99. For example, the Sarma et al. study99 found 
a 10% decrease in malaria incidence with an increase of 0.3% in average income per capita. This is important, 
as malaria endemic countries also show some of the lowest rates of economic growth globally100. This could be 
worse in coming years if we consider that current and projected annual gross domestic product growth is smaller, 
particularly for regions in Africa100,101.

Population density had a weakly positive relationship with P. falciparum malaria in Africa. Increase in popula-
tion density was associated with increasing malaria until a density of about 898 people per square kilometer; then 
malaria decreased as population density increased. Multiple studies have found similar results where malaria 
transmission increases as population density increases, up to a peak of around 1000 pp/km2, and then malaria 
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transmission decreases in populated areas with densities greater than 1000 pp/km220. Malaria has been consid-
ered as less of a problem in urban areas compared to rural areas in Africa102. However, the relationship between 
population density and malaria burden may drastically change in the future if the invasive mosquito An. stephensi 
became established in Africa, due to its proclivity for reproducing in urban and highly populated areas25,103. In 
southeast Asia, malaria is also more of a problem in rural areas than in very dense cities104. Economic devel-
opment and environmental changes (e.g. drainage of mosquito breeding sites, improved housing) during the 
twentieth century have reduced the incidence of malaria in urban contexts105.

Other factors driving malaria
The year that malaria survey studies took place and the human development index showed a strong and weak 
negative relationship with P. falciparum malaria respectively. Both the GLM and the CART model showed a 
sharp decline in malaria from 2000 to 2010. However, after 2010, the GLM model showed a slowdown in the 
decline of P. falciparum malaria while the CART model showed a constant increase of P. falciparum malaria. We 
need to take into account that our P. falciparum malaria survey data comes mostly from the east part of Africa 
(Ethiopia, Somalia, Kenya, Tanzania, Mozambique, Zimbabwe, and Madagascar) where presence of malaria is 
higher and less from the west coast of Africa (The Gambia, Guinea-Bissau, Nigeria, Cameroon, and Sao Tome 
and Principe). Our models capture well the start of the malaria decline which started around 2000 when there 
was increased funding for malaria control106. Also, our models capture the resurgence of malaria in the last 8 to 
10 years. The last malaria report from the World Health Organization (WHO) showed that the number of malaria 
cases and deaths had been increasing globally since 20164 and in Africa since 20144,107. Multiple studies found 
that the resurgence of malaria in Africa is related to multiple factors such as the rebound or delayed malaria108, 
insecticide resistance or ineffective new insecticides109,110, the effects of climate change15, and the presence of 
a new vector, the invasive An. stephensi103. Both of our models showed that P. falciparum malaria is higher in 
countries with low human development index (HDI), a summary of health, education, and income indicators, 
and malaria decreases as the HDI increases. Multiple studies had found similar results where malaria incidence 
rates are higher in countries with lower values of HDI111.

Similarly to the results for the African continent, both the GLM and CART models captured the start of P. 
falciparum malaria decline in the 2000s in Asia well. Both of the models captured a slowing down in the decline 
of malaria around 2010 and a resurgence following this, especially the GLM model. The last malaria report from 
the World Health Organization (WHO) showed that the number of malaria cases and deaths had been increas-
ing globally since 20164. Similarly to Africa, the causes of malaria resurgence are multiple such as insecticide 
resistance or ineffective new insecticides109,110 and the effects of climate change15. Both models showed a gentle 
decrease of P. vivax malaria from 1990 to 2003, followed by a rapid decrease of P. vivax malaria after 2003. Finally, 
P. falciparum malaria in Africa was positively correlated with the basic reproductive number (R0). The basic 
reproductive number is an important and widely used indicator of the dynamics of malaria112,113.

Conclusions
This study presents important progress in understanding the long-term influence of environmental, geographic, 
socio-demographic, and epidemiological factors on malaria in Africa and Asia. This provides key information on 
the relative roles of climate driver timing, key demographic features of affected populations, and geographies, that 
can inform planning strategies and interventions to reduce malaria burden in these two continents. While a ’one 
model fits all’ approach may not be globally appropriate for predictive frameworks, a CART framing allows us to 
see how continental differences in responses to this suite of variables arise, and captures the changing dynamics 
of malaria throughout the time-frame of the data.

Data availability
Malaria survey data was collected by the Malaria Atlas Project following the General Data Protection Regulation 
(GDPR) and associated data protection legislation, https://​malar​iaatl​as.​org/​priva​cy-​policy/. Malaria survey data 
used in this study is publicly available online (https://​malar​iaatl​as.​org/) as well as all environmental, geographic, 
and socio-demographic raster layers used in this study as described within the paper. R Code for creating model 
outputs is available publicly on Zenodo at https://​doi.​org/​10.​5281/​zenodo.​11194​470.
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