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Abstract—Solar flare prediction presents a significant challenge
in space weather forecasting. Currently, existing solar flare
prediction tools heavily rely on the GOES classification system.
These tools commonly use the maximum X-ray flux measurement
within a specific prediction window, often set at 24 hours, as a
basis for labeling instances. However, the background X-ray flux
experiences considerable fluctuations throughout the solar cycle,
leading to misleading outcomes during solar minimum and an
increase in false alarms. To address this issue, we propose a new
set of solar flare intensity labels computed from GOES X-ray
flux, with the aim of enhancing the accuracy of flare prediction
methods. Our approach involves innovative labeling methods that
take into account relative increases and cumulative measurements
across prediction windows. In this paper, we introduce the
concept of the ’relative X-ray flux increase’ and provide an
explanation of how this metadata is derived. Additionally, we
present new cumulative indices and data-driven categorical labels
specifically designed for active region-based and full-disk flare
prediction models. We also assess the feasibility of integrating
our new labels into established solar flare prediction models. Our
findings demonstrate that these data-driven labels can be valuable
supplements to existing techniques and their integration has the
potential to enhance the effectiveness of solar flare prediction
tools.

Index Terms—Solar Flares, Metadata, Space Weather Analyt-
ics

I. INTRODUCTION

Space weather encompasses various environmental condi-
tions in the geospace, including the Sun, solar wind, magne-
tosphere, ionosphere, and thermosphere. Among these space
weather events, solar flares play a crucial role and can have
significant consequences on Earth and its surrounding envi-
ronment, particularly when combined with other phenomena
such as coronal mass ejections (CMEs). The impacts of solar
flares extend to power grid outages, disruption of navigation
and increased radiation levels, posing health risks to astronauts
during space missions. Therefore, accurate prediction of solar
flares and associated events is of utmost importance in order
to provide timely alerts and mitigate the negative impacts
resulting from severe space weather events.

Solar flares are typically identified using X-ray flux data
collected by the Geostationary Operational Environmental
Satellites (GOES). Solar flare detection involves a heuristic
method that relies on a sustained and substantial increase in
the average X-ray flux over time. This increase eventually
levels off, and the flux measurements typically return to their

background levels. These flares are classified based on their
highest X-ray flux (peak X-ray flux) readings within specific
wavelength bands, between 1 and 8 Angstroms (0.1-0.8 nm).
There are five main classes, denoted as A, B, C, M, and X,
according to the GOES classification system. Each class is
further divided into subclasses with values ranging from 1.0
to 9.9.

The current GOES flare index, however, has some limi-
tations. Firstly, quantifying the magnitude of X-ray flux for
individual active regions, which are areas on the sun with
high magnetic flux, is not currently feasible. X-ray flux mea-
surements are obtained globally from the Sun [1]. Relying
solely on global X-ray flux values, particularly when using
only the maximum (peak) values within a specific period,
can be misleading since they do not accurately represent the
radiation emitted from individual active regions. Moreover, the
background X-ray flux fluctuates over the solar cycles, and
the GOES classification system cannot reflect the variation
of the Sun. For example, during solar maximum when solar
activity is intense, the background X-ray flux is high due to
the increased number of active regions. Solar flares are more
likely to be categorized into higher classes (M- or X- classes)
than flares during solar minimum. To address this issue,
we propose a more comprehensive approach that takes into
account background conditions and cumulative indices. This
includes considering the sum of relative X-ray flux increase
values and the absolute GOES subclass, thereby enhancing the
predictive capabilities of traditional models.

In this study, we aim to enhance the current flare labeling
methods by introducing innovative data-driven techniques that
incorporate additional sources of metadata. These include the
relative X-ray flux increase compared to background X-ray
flux, as well as the active region-based cumulative flare index
and full-disk cumulative flare index. The cumulative flare
indices are derived from both absolute X-ray flux and relative
X-ray flux increase values. To generate the new flare labels,
we utilized a validated solar flare list from the SWAN-SF
benchmark dataset [2]. These new labels complement the ex-
isting ones and provide a more comprehensive understanding
of flare activity. Additionally, we developed and assessed new
prediction models that can estimate flare intensities relative
to background flux, moving beyond the reliance solely on
absolute X-ray flux measurements and classifications.



The paper is structured as follows: Section II provides an
overview of related work and discusses the the current labeling
system. In Section III, we introduce our methodology and
explain the process of generating new solar flare labels. Sec-
tion IV presents a case study that evaluates the effectiveness
of utilizing these novel flare labels. Lastly, Section V offers
concluding remarks and outlines potential future work.

II. RELATED WORK

The National Oceanic and Atmospheric Administration
(NOAA)/GOES has maintained a comprehensive record of
detected flares since 1975. This record includes various at-
tributes like the GOES class, peak X-ray flux, spatial location
on the solar disk, NOAA active region number, and temporal
details (start, peak, and end times) related to the flares [2].
The NOAA’s method for detecting flares can be found in their
historical documentation [3]. In the development of datasets
for data-driven solar flare prediction methods, a fixed time
period, often referred to as the prediction window or forecast
horizon, is frequently used for labeling. If multiple flares occur
within this prediction window, we typically select the flare
with the highest intensity and label it. In situations where
no flares are detected within this window, we assign a label
of ”flare-quiet.” For binary classification tasks in solar flare
prediction, we apply one or more thresholds to categorize the
labels. Typically, a threshold of ≥ M1.0 (or ≥ C5.0) is applied,
classifying M- and X-class flares as flaring instances, while
considering the relatively weaker flares and instances labeled
as ”flare-quiet” as non-flaring instances.

In the field of solar flare forecasting, two main approaches
are commonly utilized. The first approach is known as active
region-based models, which focus on data from active regions
and can represent them as point-in-time vectors [4], time
series [5], or images [6]. This approach often employs time
series classification techniques and labels flares based on
their association with specific active regions [7]. The second
approach is the full-disk models, which provide predictions
for the entire solar disk. In full-disk models, all flares are
considered, regardless of their association with active regions
[8]. It’s worth noting that hybrid approaches, which combine
elements of both active region-based and full-disk models, also
exist in the literature [9]. In these approaches, the primary goal
is to predict the occurrence of significant flaring events within
a defined prediction window, which typically spans 12, 24, or
48 hours

In both active region-based [7] and full-disk [8] prediction
methods, each data instance is assigned the most intense flare
observed within the prediction window. Previous research in
solar flare prediction has primarily focused on labels generated
from the GOES classification, potentially overlooking valuable
information within these prediction windows. In our work
[10], we introduced a framework for creating data-driven flare
indices and expanded the dataset to include flares labeled using
data-driven criteria. In this study, we integrate new machine
learning-compatible datasets and create relative X-ray flux

increase and cumulative labels for both active regions and full-
disk approaches. We evaluate the performance and practicality
of these novel labels within active region-based models across
a wide range of threshold values and class weight settings.
Additionally, we introduce a model aggregation technique for
predicting numerical solar indices.

III. METHODOLOGY

A. Relative Increase of Background X-ray Flux

In order to generate labels for the relative X-ray flux
increase (rxfi) of solar flares, we utilize 1-minute averaged
GOES X-ray flux data obtained from multiple GOES missions
within the 0.1-0.8 nm passband. The determination of the
background X-ray flux for a specific flare involves examining
the preceding 24-hour period leading up to the flare’s start
time. This period spans from the flare start time to 24 hours
before the start time. The background X-ray flux is computed
as the mean of the X-ray flux measurements collected during
that previous day. To ensure the accuracy and reliability of the
data, we apply exclusion criteria to the intervals representing
the background X-ray flux in three cases: (1) Intervals that fall
between the start and end times of other flares are omitted. (2)
X-ray flux measurements exceeding the initial X-ray flux at
the start time of the flares are excluded. (3) Measurements
identified as low quality by the instrument are also disre-
garded. These exclusion rules primarily aim to enhance the
authenticity and veracity of the data. An example of this is
the exclusion of increased X-ray flux measurements during
flare occurrences, as they can significantly deviate, typically
by 1-3 magnitudes, from the actual background.

After applying the aforementioned cleaning steps, the back-
ground X-ray flux is calculated by averaging the valid X-
ray flux values within a given period. Subsequently, the
relative X-ray flux increase (rxfi) is calculated by dividing the
peak X-ray flux (Pxrf ) by the background X-ray flux. The
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Fig. 1: The graph displays the GOES 1-8 Å Solar X-ray flux
for the M1.7 flares, which occurred in active regions NOAA
’12381’. The duration for the M1.7 flare on 2015-07-06 is
[20:32 to 20:50].



specific equations for calculating the background X-ray flux
and relative X-ray flux increase can be found in equation 1
and equation 2, respectively.

bgxf(ts.t.) =

∑︁ts.t.
ts.t.−24h xrf(ti)

N ′ (1)

rxfi =
Pxrf

bgxf(ts.t.)
(2)

To illustrate this process, we provide a running example
in Figure 1, showcasing an M-class flare with a respective
start time of 2015-07-05T20:32. The dotted blue line displays
the filtered X-ray flux based on three rules. The cleaned and
calibrated background X-ray flux is represented by the solid
blue line. Please note that this example excludes Rule 3, which
targets invalid values due to instrumental issues and removes
them. The background X-ray flux is calculated by averaging
the valid data points, as indicated by the blue line in Figure 1.
In this particular example, we obtain a background X-ray flux
of 8.8× 10−7Wm−2 for the M1.7 flare. With the peak X-ray
flux of the M1.7 flare at 1.7× 10−5Wm−2, we calculate the
relative X-ray flux increase (rxfi) as rxfi = 1.7×10−5

8.8×10−7 = 19.32.
These updated relative X-ray flux increase values are applied
to augment the solar flare catalog from NOAA, and the rxfi
values are utilized in our new labeling approaches.

B. Data-driven Labeling for Solar Flares

We have implemented a set of aggregated indices to create
our data-driven labels. These indices include:

1) GC Max: The GOES class of the flare with the maximum
intensity within a given prediction window (24 hours in
our study).

2) rxfi Max: The flare with the highest rxfi value within the
prediction window.

3) GC
∑︁

: The weighted sum of the GOES subclass values
within the prediction window, calculated as

∑︁
Ci+10×∑︁

Mj + 100×
∑︁

Xk.
4) rxfi

∑︁
: The sum of the rxfi values within the prediction

window.
GC Max represents the existing labels that we aim to en-

hance. Each time point or time series is assigned labels based
on the four different criteria mentioned above. We employ
the sliding window technique to create data instances and
generate labels by iterating over the time series with a specified
step size. In Figure 2, we present a diagram illustrating the
sliding window with a 12-hour observation period and a 24-
hour prediction window. The observation window stores a
time series, and the prediction window is used to label the
time series within the observation window. We generate new
indices for both individual active regions (ARs) and the full
disk. In the active region-based approach, for each time point
(ti), we check if there is a set of flares occurring within the
prediction window (from ti to ti + 24 hours). Based on this
set of flares, each time point is then labeled using either the
maximum or cumulative indices. It’s important to note that
we use a 12-hour observation window in our case study (as

presented in Section IV). This means that for a time point
ti, we obtain multivariate time series instances from the time
interval [ti−12 hours, ti]. The sliding windows iterate through
the time series with a step size of 1 hour. To illustrate our new
labels, we provide an example of a sliding window in Figure
2, encompassing three flares occurring between T + 14h and
T+25h. In this example, we generate three distinct labels. For
rxfi Max, the first sequence is labeled with the highest value of
250.31 (derived from the M2.0 flare). Regarding GC

∑︁
, there

is one M-class flare and one C-class flare in the prediction
window; thus, the index for GC

∑︁
is 27.1 (20×10 + 1.6×1 =

21.6). Finally, for rxfi
∑︁

at Seq 1, the calculated value is 262
(250.3 + 11.7). Moreover, the sliding window moves in 1-hour
steps and labels the time intervals or points. We further utilized
10 different thresholds for binary classification. The thresholds
for numerical labels rxfi Max, GC

∑︁
, and rxfi

∑︁
are listed in

Table 1, with a step size of 10. For GC Max, we used a step size
based on the subclass value of 2.5. The purpose of varying
thresholds is to identify the optimal ones and understand
their impact on our models. These three distinct labels are
applicable to either a time series of 12-hour observations or
a solar full-disk image at a specific time point. The sliced
time series dataset and full-disk labels are available in the
data repository [11].

TABLE I: Imbalance ratio of the labels

THR(≥) rxfi Max GC
∑︁

rxfi
∑︁

10 62 79 46
20 122 156 92
30 187 218 137
40 229 280 192
50 331 328 263
60 394 419 296
70 620 657 405
80 674 938 494
90 711 1030 565
100 909 1216 645

THR(≥) GC Max

C1 13
C2.5 32
C5.0 59
C7.5 80
M1.0 104
M2.5 239
M5.0 406
M7.5 1156
X1.0 1622
X2.5 8374

IV. CASE STUDY: FLARE PREDICTION WITH DATA-DRIVE
LABELS

A. Data collection

To assess the impact of the newly introduced labels, we
conducted an analysis using an interval-based time series clas-
sifier called Time Series Forest (TSF). Our baseline approach
is active region-based and is implemented using the SWAN-
SF dataset [2], which is a multivariate time series dataset
comprising 24 magnetic field parameters, covering the period
from 2010 to 2018. For our solar flare prediction case study,
we selected six magnetic field parameters, namely USFLUX,
TOTUSJZ, TOTUSJH, ABSNJZH, SAVNCPP, and TOTPOT.
To ensure robust evaluation, we partitioned the SWAN-SF
dataset using the tri-monthly partitioning technique introduced
in [12]. This led to the creation of four partitions, with each
partition covering three months of data from the entire dataset:
Partition 1 (January to March), Partition 2 (April to June),
Partition 3 (July to September), and Partition 4 (October to
December). In our study, we used Partition 4 for testing and
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Fig. 2: Diagram of the sliding window method

the other partitions for training the TSF classifier (details of
dataset preparation can be found in [7]).

B. Classification

Interval-based time series classification algorithms employ
descriptive features, often in the form of statistical measures,
derived from fixed or random intervals within each time series.
These features, calculated over specific intervals, can capture
crucial characteristics of the series. However, considering all
possible intervals becomes impractical as the feature space
grows exponentially, leading to computational challenges. To
address this issue, Deng et al. [13] proposed the time series
forest (TSF) approach, which employs a random forest ensem-
ble to train multiple decision trees using a subset of statistical
features from randomly selected intervals. These features
include simple yet effective measures like mean, standard
deviation, and slope. This approach reduces the high feature
space, enabling efficient classification for time series data.
Originally designed as a univariate classifier, TSF constructs
random forests for each parameter individually. In our case,
where we analyze multivariate time series from active region
patches, we adopted a column ensemble technique to handle
multiple parameters. Each parameter is independently fitted
with a TSF classifier, and the outputs from these classifiers
are aggregated to make the final prediction using equal voting
based on prediction probabilities. Notably, we set the number
of estimators to 50 and the maximum tree depth to 3 for each
univariate time series forest. Further implementation details
can be found in our project repository [14].

C. Model evaluation

To assess the performance of the models, we employed a
2x2 confusion matrix and utilized widely used forecast skill
scores in solar flare prediction: True Skill Statistics (TSS,

shown in equation 3) and Heidke Skill Score (HSS, shown
in equation 4).

TSS =
TP

TP + FN
− FP

FP + TN
(3)

HSS = 2× TP × TN − FN × FP

((P × (FN + TN) + (TP + FP )×N))
(4)

, where P = TP + FN and N = FP + TN. In this scenario,
P refers to strong flaring classes, while N refers to relatively
small and flare quiet regions. TP, FP, FN, and TN stand for
true positive, false positive, false negative, and true negative,
respectively. To address the class imbalance issue, we explored
ten different class weights (e.g., 1:1, 1:10, 1:15, ..., and 1:50)
and 10 thresholds (e.g., 10, 20, ..., 100) to optimize the model’s
performance.

The results from the AR-based models using four different
labels are presented in Figure 3. Our observations indicate
that the utilization of GC;Max results in slightly higher TSS
and HSS scores in comparison to using rxfi;Max, as illustrated
in Figure 3. As the class weight increases, we observe an
increment in the TSS scores, but a simultaneous decrease
in the HSS scores across all labels. This phenomenon arises
because the rise in true positives enhances the TSS scores,
whereas the surge in false positives diminishes the HSS scores.
Moreover, when we apply larger thresholds for labeling, it
amplifies the imbalance ratio, rendering the prediction tasks
more demanding and subsequently leading to a reduction in
the overall skill scores.

In Figure 4, we present a comparison of models using four
different labels. Unlike the traditional ROC curve, where each
point represents a model, our representation includes four
hundred points, each associated with specific class weights
and thresholds. Models that utilize cumulative indices, such
as GC

∑︁
and rxfi

∑︁
, appear to deliver superior overall perfor-

mance. However, making a direct comparison between the four



1:1 1:10 1:15 1:20 1:25 1:30 1:35 1:40 1:45 1:50
Class weight (1:x)

C
1.

0
C

2.
5

C
5.

0
C

7.
5

M
1.

0
M

2.
5

M
5.

0
M

7.
5

Th
re

sh
ol

ds

0.19 0.72 0.71 0.69 0.64 0.61 0.59 0.58 0.57 0.57

0 0.67 0.72 0.73 0.73 0.74 0.74 0.74 0.74 0.73

0 0.66 0.73 0.76 0.77 0.78 0.79 0.78 0.77 0.76

0 0.68 0.82 0.83 0.84 0.85 0.85 0.85 0.86 0.85

0 0.54 0.74 0.82 0.82 0.83 0.83 0.83 0.84 0.85

0 0.18 0.45 0.5 0.56 0.62 0.73 0.76 0.78 0.81

0 0.14 0.22 0.22 0.34 0.47 0.58 0.68 0.72 0.74

0 0 0 0 0.01 0.04 0.06 0.09 0.13 0.14

TSS: GCMax

1:1 1:10 1:15 1:20 1:25 1:30 1:35 1:40 1:45 1:50
Class weight (1:x)

C
1.

0
C

2.
5

C
5.

0
C

7.
5

M
1.

0
M

2.
5

M
5.

0
M

7.
5

Th
re

sh
ol

ds

0.28 0.36 0.32 0.27 0.22 0.2 0.18 0.18 0.17 0.16

0 0.37 0.34 0.29 0.26 0.25 0.24 0.23 0.22 0.21

0 0.37 0.32 0.29 0.27 0.25 0.23 0.22 0.2 0.19

0 0.39 0.3 0.25 0.22 0.21 0.2 0.19 0.19 0.18

0 0.36 0.31 0.26 0.23 0.21 0.19 0.19 0.18 0.18

0 0.23 0.38 0.31 0.26 0.23 0.21 0.2 0.18 0.16

0 0.22 0.27 0.23 0.28 0.31 0.31 0.24 0.2 0.18

0 0 0 0 0.02 0.06 0.1 0.14 0.19 0.2

HSS: GCMax

1:1 1:10 1:15 1:20 1:25 1:30 1:35 1:40 1:45 1:50
Class weight (1:x)

10
20

30
40

50
60

70
80

90
10

0
Th

re
sh

ol
ds

0 0.61 0.72 0.75 0.77 0.78 0.77 0.76 0.75 0.74

0 0.35 0.44 0.68 0.73 0.72 0.76 0.77 0.79 0.8

0 0.05 0.42 0.49 0.58 0.72 0.75 0.76 0.77 0.78

0 0.05 0.16 0.29 0.45 0.62 0.71 0.77 0.82 0.82

0 0 0.08 0.23 0.31 0.47 0.5 0.62 0.72 0.76

0 0 0 0.04 0.27 0.34 0.53 0.66 0.69 0.7

0 0 0 0.01 0.1 0.17 0.31 0.34 0.41 0.44

0 0 0 0.03 0.03 0.07 0.22 0.39 0.42 0.47

0 0 0 0.03 0.07 0.16 0.15 0.28 0.37 0.39

0 0 0 0 0 0 0 0.01 0.08 0.19

TSS: rxfiMax

1:1 1:10 1:15 1:20 1:25 1:30 1:35 1:40 1:45 1:50
Class weight (1:x)

10
20

30
40

50
60

70
80

90
10

0
Th

re
sh

ol
ds

0 0.29 0.24 0.21 0.2 0.18 0.17 0.15 0.14 0.13

0 0.31 0.2 0.2 0.17 0.14 0.13 0.12 0.12 0.11

0 0.09 0.34 0.23 0.18 0.17 0.15 0.13 0.12 0.11

0 0.09 0.21 0.23 0.22 0.19 0.16 0.14 0.13 0.12

0 0 0.14 0.28 0.26 0.2 0.15 0.14 0.14 0.13

0 0 0 0.07 0.31 0.27 0.24 0.21 0.17 0.15

0 0 0 0.03 0.17 0.22 0.32 0.32 0.32 0.26

0 0 0 0.05 0.06 0.11 0.27 0.36 0.33 0.27

0 0 0 0.06 0.13 0.24 0.2 0.29 0.31 0.26

0 0 0 0 0 0 0 0.02 0.14 0.27

HSS: rxfiMax

1:1 1:10 1:15 1:20 1:25 1:30 1:35 1:40 1:45 1:50
Class weight (1:x)

10
20

30
40

50
60

70
80

90
10

0
Th

re
sh

ol
ds

0 0.68 0.8 0.82 0.83 0.84 0.85 0.85 0.85 0.85

0 0.42 0.55 0.64 0.73 0.81 0.83 0.84 0.85 0.86

0 0.28 0.47 0.52 0.61 0.7 0.76 0.79 0.82 0.82

0 0.28 0.34 0.52 0.56 0.64 0.71 0.74 0.76 0.82

0 0.24 0.33 0.42 0.51 0.58 0.65 0.75 0.77 0.78

0 0.17 0.28 0.36 0.4 0.45 0.54 0.65 0.73 0.77

0 0 0.11 0.18 0.2 0.27 0.35 0.39 0.45 0.51

0 0 0.01 0.13 0.16 0.22 0.28 0.32 0.32 0.32

0 0 0 0.04 0.12 0.14 0.19 0.24 0.28 0.3

0 0 0 0.02 0.16 0.17 0.19 0.21 0.24 0.26

TSS: GC

1:1 1:10 1:15 1:20 1:25 1:30 1:35 1:40 1:45 1:50
Class weight (1:x)

10
20

30
40

50
60

70
80

90
10

0
Th

re
sh

ol
ds

0 0.44 0.36 0.31 0.27 0.26 0.25 0.24 0.24 0.23

0 0.43 0.36 0.31 0.27 0.25 0.23 0.21 0.2 0.19

0 0.34 0.41 0.31 0.28 0.24 0.23 0.2 0.18 0.17

0 0.33 0.33 0.38 0.29 0.26 0.23 0.2 0.17 0.16

0 0.29 0.32 0.32 0.33 0.29 0.23 0.22 0.19 0.16

0 0.23 0.31 0.34 0.31 0.31 0.32 0.31 0.28 0.23

0 0 0.16 0.23 0.24 0.27 0.31 0.31 0.31 0.31

0 0 0.01 0.19 0.23 0.27 0.32 0.32 0.3 0.29

0 0 0 0.08 0.18 0.21 0.26 0.28 0.29 0.3

0 0 0 0.04 0.23 0.24 0.25 0.27 0.29 0.29

HSS: GC

1:1 1:10 1:15 1:20 1:25 1:30 1:35 1:40 1:45 1:50
Class weight (1:x)

10
20

30
40

50
60

70
80

90
10

0
Th

re
sh

ol
ds

0 0.7 0.76 0.77 0.78 0.78 0.77 0.76 0.77 0.77

0 0.43 0.7 0.76 0.77 0.79 0.81 0.82 0.83 0.82

0 0.32 0.51 0.67 0.77 0.78 0.79 0.82 0.83 0.84

0 0.08 0.26 0.45 0.59 0.75 0.8 0.82 0.82 0.82

0 0.05 0.18 0.34 0.46 0.56 0.64 0.74 0.8 0.82

0 0.01 0.12 0.33 0.55 0.6 0.63 0.66 0.71 0.75

0 0 0.02 0.16 0.28 0.41 0.54 0.57 0.64 0.63

0 0 0 0.1 0.21 0.34 0.34 0.51 0.62 0.67

0 0 0.01 0.11 0.22 0.25 0.28 0.35 0.39 0.48

0 0 0 0.01 0.1 0.21 0.25 0.31 0.36 0.45

TSS: rxfi

1:1 1:10 1:15 1:20 1:25 1:30 1:35 1:40 1:45 1:50
Class weight (1:x)

10
20

30
40

50
60

70
80

90
10

0
Th

re
sh

ol
ds

0 0.36 0.3 0.27 0.25 0.22 0.2 0.19 0.18 0.17

0 0.31 0.31 0.25 0.22 0.21 0.2 0.19 0.18 0.17

0 0.36 0.27 0.23 0.2 0.17 0.16 0.15 0.14 0.13

0 0.13 0.26 0.25 0.21 0.19 0.17 0.15 0.13 0.12

0 0.09 0.27 0.29 0.23 0.19 0.17 0.16 0.15 0.14

0 0.02 0.19 0.33 0.28 0.19 0.15 0.13 0.12 0.12

0 0 0.04 0.22 0.29 0.29 0.25 0.2 0.16 0.13

0 0 0 0.15 0.25 0.31 0.27 0.26 0.21 0.18

0 0 0.02 0.17 0.27 0.25 0.24 0.26 0.23 0.2

0 0 0 0.03 0.15 0.25 0.25 0.27 0.29 0.3

HSS: rxfi
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Fig. 3: The results of time series classifiers trained with different labels. Within each label, there are 10 different thresholds
and class weights. From the score matrices, we select candidate models highlighted by blue squares. The geometric mean is
used to choose the candidate models among different class weights.
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Fig. 4: A plot of the true positive and false positive rates for
all the models. Each model, characterized by different labels,
thresholds, and class weights, is represented by a single data
point.

labels is challenging due to their differing imbalance ratios and
threshold criteria. In the case of GC;Max, its threshold range
spans 250, as X2.5 is 250 times larger than C1. On the other
hand, the other labels have a threshold range of 10, from 10
to 100. This results in the right side of Figure 4 showcasing
GC;Max with relatively high false positive rates. Models trained
with GC;Max that use a threshold of C1.0 exhibit a high false
positive rate. This is primarily because the threshold of C1.0
has a lower imbalance ratio, leading to a greater number of
positive instances.

The problem of class imbalance is a common issue in solar
flare prediction. Nevertheless, the evaluation metrics utilized in
this study demonstrate that the introduced labels can improve
the performance of flare prediction models beyond random
chance. Furthermore, when equipped with suitable thresholds
and class weights, models trained with these new labels
could potentially surpass current labeling methods. Thus, the
results indicate that these proposed labels can be valuable
supplements to existing techniques and their integration has the
potential to enhance the effectiveness of solar flare prediction
tools.

V. CONCLUSION AND FUTURE WORK

In this study, we introduced a novel set of flare labels,
which includes relative X-ray flux increase (rxfi), maximum
relative X-ray flux value (rxfi Max), sum of X-ray flux increase
values (rxfi

∑︁
), and weighted sum of GOES subclass values

(GC
∑︁

). These new labels were applied to active region-based
classification models, and in a preliminary case study, we
assessed their effectiveness in solar flare prediction. Our results
show that these new labels yield skill scores comparable to
well-established techniques, demonstrating their potential as
an alternative approach in solar flare forecasting.

Looking ahead, our future research will focus on several
areas. Firstly, we aim to investigate the relationship between

these labels and features of coronal mass ejections. Addition-
ally, we plan to gain deeper insights into our models, moving
beyond treating them as black boxes to understand their be-
havior in specific scenarios. This approach will enhance model
interpretability and enable more informed decision-making in
space weather forecasting. Overall, by expanding our research
in these directions, we aim to improve the accuracy and
reliability of space weather forecasting systems, leading to
more dependable predictions for space weather phenomena.
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