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Abstract—Space weather events can have a significant impact
on electric systems and health, with solar flares being one of the
central events in space weather forecasting. However, existing
solar flare prediction tools heavily rely on the Geostationary
Operational Environmental Satellites (GOES) classification sys-
tem, using maximum X-ray flux measurements as proxies to
label instances. This approach becomes problematic during solar
minimum, where background X-ray flux fluctuations lead to false
alarms and inaccurate predictions. To address this issue, we
propose a new collection of solar flare intensity labels computed
from GOES X-ray flux, introducing innovative labeling regimes
that incorporate relative increases and cumulative measurements
over prediction windows. Our goal is to improve the accuracy of
flare prediction methods by reducing false positives and enhanc-
ing overall prediction performance. Throughout this paper, we
introduce the concept of relative X-ray flux increase and explain
how to derive relative X-ray flux increase metadata for generating
new labels. Additionally, we present new cumulative indices
and data-driven categorical labels designed for active region-
based and full-disk flare prediction models. We then evaluate the
effectiveness of our new labels when applied to established solar
flare prediction models, demonstrating that they significantly
enhance prediction capabilities and complement existing efforts.
With our innovative data-driven labels, we aim to enhance flare
forecasting capabilities and provide more accurate and reliable
predictions for space weather phenomena.

Index Terms—Solar Flares, Metadata, Space Weather Analyt-
ics

I. INTRODUCTION

Space weather often refers to conditions and events occur
in the geospace environment includes the area surrounding
Earth and the Sun’s magnetosphere, ionosphere, and ther-
mosphere. Among these events, solar flares hold significant
importance, especially when combined with other eruptions
like coronal mass ejections (CMEs). The impacts of such
events on Earth and near-Earth space are diverse and can
range from power grid outages to disruption of navigation and
positioning satellites. Additionally, increased radiation levels
at high altitudes or during space missions pose health risks
to astronauts. Consequently, accurate prediction of solar flares
and associated events becomes crucial to mitigate potential
negative effects caused by severe space weather events.

Solar flares are commonly identified using X-ray flux data
obtained from Geostationary Operational Environmental Satel-
lites (GOES). A heuristic approach is employed to detect
such flares, triggered by a continuous and significant increase
in the average X-ray flux series. This increase eventually

reaches a plateau, and the flux measurements then return to
background levels. The peak X-ray flux (pxf) of a flare is
defined as the maximum X-ray flux measured between the
start and end time of the event. The classification of the flares
is based on their observed peak X-ray flux, measured in the
1-8A passbands. Solar flares are categorized into five major
classes based on GOES classification: X, M, C, B, and A [1].
These classes are defined in a logarithmic manner, with X
representing the highest flare intensity and corresponding to
GOES flux in excess of 107*Wm~2 at Earth. These classes
are further divided into sub-classes, which are ranked from 1.0
to 9.9. For instance, a C5.7 flare corresponds to approximately
5.7 x 1075Wm =2 X-ray flux.

Solar active regions are areas of the Sun with high con-
centrations of magnetic flux, and they play a crucial role
in driving Earth-impacting events such as flares or coronal
mass ejections [2]] [3]]. The active region-based categorical flare
predictions often involve assigning one of two labels to each
instance based on a user-defined threshold such as “flaring”
or “non-flaring.” Commonly, active regions associated with
M- or X-class flares are considered as flaring, while regions
with lower intensity flares or flare-quiet regions are considered
non-flaring. While there are some extensions and alternatives
[4], the most commonly adopted flare prediction schema uses
discretized labels derived from maximum intensity flares and
considers the flare productivity of individual active regions [J5].

The current flare labeling techniques rely mainly on the
peak X-ray flux of the largest flare in the prediction window,
and they suffer from three main limitations. Firstly, quan-
tifying the magnitude of X-ray flux for each active region
is not feasible, as X-ray flux measurements are global [1].
This global representation can be misleading, as it does not
accurately reflect the emitted radiation from individual active
regions. Consequently, in a common binary flare prediction
scheme, this misrepresentation may lead to active regions
being misclassified. Secondly, relying solely on the maximum
intensity of a flare in the prediction window disregards es-
sential factors such as the background X-ray flux, integrated
flux, and information on smaller flares. This approach over-
looks critical contextual information that could significantly
improve prediction accuracy. Furthermore, the use of empirical
thresholds, such as >M1.0 or >C5.0 [6], to differentiate
between flaring and non-flaring instances can further diminish
the generalization capabilities of prediction models.



To address these issues, we expand upon the existing flare
labeling methods by introducing novel, data-driven techniques
that incorporate additional information, including the relative
X-ray flux increase in relation to background X-ray flux, active
region-based cumulative flare index, and full-disk cumulative
flare index. The cumulative flare indices are generated based
on absolute X-ray flux and relative X-ray flux increase values.
Relative X-ray flux increase allows us to consider background
X-ray flux, while cumulative indices enable us to take the
effect of small flares (which can be shadowed by large flares)
into consideration. These new labels are expected to reduce the
number of false positives in our operational predictions, boost
the existing forecasts, and improve the overall performance.
To test the feasibility of the new flare labels, we trained
and evaluated prediction models for active region-based and
full-disk flare prediction approaches. We demonstrate that the
novel labels complement the existing ones and provide a more
comprehensive view of flare activity.

The rest of the paper is organized as follows: In Sec. I, we
present related work in solar flare prediction and demonstrate
existing approaches. In Sec. we present our methodology
and describe in detail the process of generating new solar flare
labels based on GOES X-ray flux data. In Sec. we present
a case study that demonstrates the feasibility of using these
newly introduced labels in solar flare prediction tasks. We
discuss the results obtained from the case study and analyze
the performance of our proposed approach. Finally, in Sec.
we conclude the paper with a summary of our findings and
discuss potential avenues for future research in the field of
solar flare prediction using data-driven labels.

II. RELATED WORK

The National Oceanic and Atmospheric Administration
(NOAA)/GOES has maintained a comprehensive catalog of
detected flares since 1975, providing valuable features such
as the GOES class, peak X-ray flux, spatial location on the
solar disk (when available), NOAA active region number, and
temporal information (start, peak, and end times) related to
the flares [[7]. When creating datasets for data-driven solar
flare forecasting methods, a fixed-size interval known as the
prediction window is often used to determine future flare
events. Within this window, typically, the maximum intensity
flare is selected and labeled, or if no flares are detected, a flare-
quiet label is assigned. Binary classification tasks use flaring
thresholds such as >M1.0 (or >C5.0) to differentiate between
flaring (M- and X-class flares) and non-flaring instances (B-
and C-class flares or flare-quiet instances).

In the field of solar flare forecasting, two main approaches
are commonly used. The first one is referred to as active
region-based models, which focus on data from active re-
gions, represented as point-in-time vectors [8], time series [9],
or images [10]. In this approach, time series classification
techniques are often employed, and flares are labeled based
on their association with specific active regions [11]. The
second approach involves full-disk models, which provide
predictions for the entire solar disk. In full-disk models, all

flares are considered, regardless of their association with active
regions [6]. Hybrid approaches also exist in the literature
[12]. In these approaches, the primary objective is to predict
the occurrence of significant flaring events within a defined
prediction window, typically spanning 12, 24, or 48 hours.

In both active region-based [11]] or full-disk [6] predictions,
each instance is labeled with the maximum intensity flare
in the prediction window, and previous studies in solar flare
prediction primarily focus on labels derived from GOES
classification, which can overlook pertinent information within
the prediction windows. In [13]], we presented a framework
to create data-driven flare indices and introduced an extended
dataset of flares with their associated data-driven labels. In this
study, we employ these labels to predict flaring activity under
both active region-based and full-disk flare prediction modes
with different threshold settings. As part of our methodology,
we integrate new machine learning-ready datasets and create
new individual and cumulative labels associated with both
active regions and full-disk data instances. We explore the
performance and operational feasibility of these new labels
with active region-based and full-disk predictions, considering
a wide spectrum of threshold values and class weights.

III. METHODOLOGY
A. Relative Increase of Background X-ray Flux

Relative X-ray flux increase (rxfi) refers to the relative
enhancement of X-ray flux with respect to the background X-
ray flux. This index is created for a flare event and represents
the ratio between the peak (maximum) X-ray flux (Pxrf and
background X-ray flux (bgxf). To generate the rxfi index
for solar flares, we use 1-minute averaged GOES X-ray flux
data collected from multiple GOES missions and define the
background X-ray flux for a specific flare. We consider the
X-ray flux measurements from the previous 24 hours prior to
the flare’s start time. The calibrated background X-ray flux is
calculated as the mean of the 24-hour X-ray flux measurements
before the flare’s start time. The formulas for calculating the
background X-ray flux and rxfi are as follows:

ts.t.
_ Zts_i,—24h ar f(t;)

bgr f(tss.) = N (1)
. Parf
rofi= borft) (2)

In Figure |1, we compare the distributions of rxfi values for
major GOES-classes (C, M and X) in Solar Cycle 24 (between
2010 to 2019). Majority of the C-class flares have relatively
lower rxfi values (1-30). We observe a shift towards higher
rxfi values for M-, and especially, X-class flares as expected.

B. Data-driven Labeling for Solar Flares

As mentioned earlier, we define relative X-ray flux increase
(rxfi) as the ratio between the peak X-ray flux to background
X-ray flux. For each C-, M-, and X-class flare in our list,
we generated new rxfi labels from their peak X-ray flux
and developed cumulative indices for absolute X-ray flux
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Fig. 1: Distribution of relative X-ray flux increase values in each GOES class.

measurements and relative X-ray flux increase. We did not
include A or B-class flares as they are severely under-detected
due to the background X-ray flux in solar maximum. For each
instance, using a 24h prediction window, we integrate relevant
flare events and define our labels for data instances as follows:

1) GCM*: The GOES class of the flare with the maximum
intensity within a given prediction window.

2) rxfi ™. The flare with the highest rxfi value within the
prediction window.

3) GC2: The weighted sum of the GOES subclass values
within the prediction window, calculated as » . C; 410 x
STM; 4100 x Yy Xp.

4) rxfi ~: The sum of the rxfi values within the prediction
window.

GCM gerves as a baseline and represents the traditional
labels, while rxfi M, GC 2, and rxfi 2 are the new labels
introduced in this study. To calculate the cumulative GOES
class flare indices, we apply a multiplication factor of 10 or
100 to the subclass values of M- or X-class flares, respectively.
This adjustment is based on the fact that an M-class flare is
10 times stronger than a C-class flare (for the same subclass),
while an X-class flare is 10 times stronger than an M-class
flare. Consequently, we multiply the numeric subclass values
of X-, M-, and C-class flares by 100, 10, and 1, respectively,
and then combine them to obtain the cumulative indices.
The cumulative indices serve as valuable indicators of solar
activity, taking into account multiple smaller flares. We also
note that the label integration is performed for both active
region instances and full-disk instances. For full-disk, all flares
are considered, while for active region-based predictions, we
only consider the associated flares.

IV. CASE STUDY: FLARE PREDICTION WITH NEW LABELS
A. Data collection

To assess the impact of the newly introduced labels, we
conducted a thorough analysis using both the active region-
based and full-disk approaches for solar flare forecasting. For
the active region-based approach, we employed the SWAN-
SF dataset [7]. The SWAN-SF dataset consists of 24 magnetic
field parameters, covering the period from 2010 to 2018. In our

study, we focused on six magnetic field parameters: USFLUX,
TOTUSJZ, TOTUSJH, ABSNJZH, SAVNCPP, and TOTPOT,
which are relevant for solar flare prediction. We use a 12-
hour observation window that moves in 1-hour steps over the
multivariate time series. During each iteration, we check if
there is a group of flares associated with the active region
within the upcoming 24-hour prediction window. We label
each slice with maximum or cumulative indices based on
the observation. Regarding the full-disk approach, we utilized
twenty-four HMI solar magnetogram images per day, selected
hourly, spanning from May 1, 2010, to Dec 30, 2018. Each
image is labeled by the subsequent twenty-four hour window.
The 24-hour prediction windows are marked by four different
labels. To ensure a robust evaluation, we divided our data
into four partitions using the tri-monthly partitioning technique
introduced in [[I4]. Each partition covers three months of
data over the entire dataset. Specifically, Partition 1 contains
data from January to March, Partition 2 from April to June,
Partition 3 from July to September, and Partition 4 from
October to December. In our study, we used Partition 4 for
testing our models, while the other partitions were used for
training. The sliced time series dataset and full-disk labels are
both available in the data repository [15].

B. Classification

1) Active-region based approach: Time series forest (TSF)
approach employs a random forest ensemble technique [16].
TSF trains multiple decision trees with a subset of statistical
features derived from randomly selected intervals, including
measures like mean, standard deviation, and slope. By utilizing
this method, high dimensional feature spaces are effectively
reduced, enabling efficient classification of time series data.
Originally designed as a univariate classifier, TSF constructs
a random forest for each parameter independently. However,
in our case of analyzing multivariate time series from active
region patches, we utilize a column ensemble technique to
work with multiple parameters simultaneously. This involves
fitting each parameter individually with a TSF classifier, and
then aggregating the outputs of classifiers using equal voting
based on prediction probabilities to form a final prediction.



2) Full-disk approach: The Vision Transformer (ViT) is a
deep learning architecture used to analyze full-disk images. It
treats the image as a sequence of fixed-size non-overlapping
patches, which are then transformed into a 1D vector for
input to the Transformer [17]. Unlike traditional convolutional
neural networks (CNNs), ViT does not use convolutional
layers or pooling operations. Instead, it relies on self-attention
mechanisms in the Transformer [[18] to capture relationships
between different patches and understand the global context
of the image. To exploit the pre-trained ViT models and
map the magnetogram images (original size — 512x512), a
convolutional layer is added to reduce their resolution to
224x224. Additionally, a final linear layer with two output
values is appended to the last layer of ViT for binary clas-
sification purposes. Additionally, in our ViT-based model, we
use Stochastic Gradient Descent (SGD) as the optimizer and
focal loss as the loss function. Focal loss is a modified version
of cross-entropy loss that puts more emphasis on learning
from hard misclassified examples [19]]. This setup allows
ViT to efficiently analyze and classify full-disk images. For
further implementation details, readers can refer to our project
repository [20].

C. Model evaluation

To evaluate the models, we utilized a 2x2 confusion matrix
and computed forecast skill scores commonly used in solar
flare prediction: the True Skill Statistics (TSS, shown in Eq.
(3)) and the Heidke Skill Score (HSS, shown in Eq. (4)).

TP 7 FP
TP+FN FP+TN

TP xTN —-FN x FP

ASS =2} PN+ TN) + (TP + FP) x ) P
where P = TP + FN and N = FP + TN. In these equations,
P represents instances of strong flaring classes, while N
represents relatively smaller and flare-quiet regions. TP, FP,
FN, and TN correspond to true positive, false positive, false
negative, and true negative, respectively. To address the class
imbalance issue, we explored ten different class weights (e.g.,
1:1, 1:10, 1:15, ..., and 1:50) and ten thresholds (e.g., 10, 20,
..., 100) for new labels to optimize the models’ performance.
For GC Y% we used a step size based on the subclass value
of 2.5. The imbalance ratios present in our experiments are
shown in Table [Il

TSS =

3)

TABLE I: Imbalance ratio of the labels

THR(>) rmfiM™ GCEX  pxfi = THR(>) GC Mex
10 62 79 6 Cl 13
20 122 156 92 C25 32
30 187 213 137 C5.0 59
40 229 230 192 C75 80
50 331 328 263 MT.0 104
60 394 419 296 M25 239
70 620 657 405 M5.0 406
80 674 933 494 M7.5 1156
90 711 1030 565 X1.0 1622
100 909 1216 645 X2.5 8374

1) AR-based Models: The results of the AR-based models
using four different labels are visualized as a set of heatmaps
in Figure 2| Our findings indicate that using GC ¥ leads to
slightly higher TSS and HSS scores compared to using rxfi /**.
As the class weight increases, the TSS scores increase, but
the HSS scores decrease for all the labels. This is because
an increase in true positives boosts the TSS scores, while an
increase in false positives lowers the HSS scores. Moreover,
larger thresholds for labeling create higher imbalance ratios,
making the prediction tasks more challenging and causing
overall skill scores to drop.

This case study highlights the challenge of class imbalance
in solar flare prediction. Note that direct comparison between
the data instances and labels used in this study may not
be entirely appropriate. The evaluation metrics used suggest
that the proposed labels can enhance the performance of
flare forecasting models. Moreover, with optimal thresholds
and class weights, the models trained with the new labels
have the potential to outperform existing labeling techniques.
Therefore, the findings suggest that the proposed labels can
be valuable additions to existing techniques, and their combi-
nation can improve the capabilities of flare prediction .

2) Full-disk classification: The results of the full-disk
models are shown in Figure This figure presents the
TSS and HSS scores at the last epoch for models trained
with four different labels. In all labels, there is a consistent
trend where HSS scores decrease as thresholds increase, as
higher thresholds lead to more false positives. We observe the
highest nominal TSS scores with GC . However, cumulative
labels (specifically the GC b)) provide an overall more flexible
prediction performance, where we see a more robust set of
forecast skills as the threshold is increasing. Note that, with
higher thresholds in GC 2 we capture either a very large
event or multiple large events or a combination of the two.
In addition, while there are some plausible results, for full-
disk models with rxfi-based indices, the overall results show
relatively lower performance. This is even more evident for
the rxfi index as we observe fluctuating TSS performance and
consistently low HSS.

Considering full-disk models makes use of all visible active
regions, the overall higher performance of cumulative indices
are expected and they can be used for full-disk predictions.
Nevertheless, we note that the results from different labels are
not directly comparable, due to background flux fluctuations
across different phases of solar cycles.

V. CONCLUSION AND FUTURE WORK

In this research, we introduced a novel set of flare labels,
including relative X-ray flux increase (rxfi), maximum relative
X-ray flux value (rxfi ¥*), sum of X-ray flux increase values
(rxfi Z:), and weighted sum of GOES subclass values (GC Z:).
These labels serve as valuable additions to existing ones
in solar flare prediction. We integrated these new labels to
both active region-based and full-disk classification models.
Through a preliminary case study, we evaluated the effective-
ness of these new labels in solar flare prediction. Our findings
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0.0

0.8

0.6

Score
(=]
E

0.2

0.0

0.6

—— TSS
—¥— HSS
0.44
£
S
@
0.2
—o— TSS
—¥— HSS
T T T T 0.0
C1.0 C75 Ms.0 X2.5 10 40 70 100
Threshold Threshold
(a) GC Maz (b) rafi Mo
0.6
—o— TSS —o— TSS
—¥— HSS —%¥— HSS
\\/DW 041
£
=3
<9
@
0.24
T T T T 0.0+ T T T
10 40 70 100 10 40 70 100
Threshold Threshold
(c) GC = (d) refi ®

Fig. 3: Full-disk model results

indicate that these new labels produce plausible skill scores to

well

-established techniques, demonstrating their potential as

an alternative approach in solar flare forecasting.
Moving forward, there are several avenues for future re-
search. Firstly, we plan to investigate multi-class classifica-

tion

and regression tasks using new indices. Furthermore,

understanding eruptive flares, which are flares associated with
coronal mass ejections, will be a crucial aspect of our future
work. Additionally, we aim to delve deeper into our models,
understanding their behavior in specific cases rather than
treating them as black boxes. This will enable us to improve
model interpretability and make more informed decisions in
space weather forecasting. Overall, by extending our research
in these directions, we aim to enhance the accuracy and
robustness of space weather forecasting systems, creating more
reliable predictions for space weather phenomena.
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