
P4CGO: Control Plane Guided P4 Program Optimization
Chenan Wen

Purdue University
West Lafayette, Indiana, USA

wen163@purdue.edu

Zhuocong Li
Purdue University

West Lafayette, Indiana, USA
li3975@purdue.edu

Syed Usman Jafri
Purdue University

West Lafayette, Indiana, USA
jafri3@purdue.edu

Xiaokang Qiu
Purdue University

West Lafayette, Indiana, USA
xkqiu@purdue.edu

Sanjay Rao
Purdue University

West Lafayette, Indiana, USA
sanjay@purdue.edu

Abstract
Software-defined networking (SDN) in conjunction with programm-
able switches revolutionizes network management, yet crafting
optimal switch configurations remains complex. Traditional P4
optimizations rely on data plane level tuning. In this paper, we argue
an essential piece for such optimizations is the control plane itself.
We present P4CGO, a P4 compilation framework which focuses on
realizing specifications based on control policies. P4CGO leverages
user-defined objective functions and control plane policies to guide
P4 program optimization through table merging and splitting. We
have prototyped P4CGO and applied it solving real-world policy
optimization problems.

CCS Concepts
• Mathematics of computing → Network optimization; • Net-
works→ Programmable networks; Programming interfaces; •
Software and its engineering → Domain specific languages.

Keywords
Programmable Switch, Control Plane, Optimization, Formal Meth-
ods

ACM Reference Format:
Chenan Wen, Zhuocong Li, Syed Usman Jafri, Xiaokang Qiu, and Sanjay
Rao. 2024. P4CGO: Control Plane Guided P4 Program Optimization. In
SIGCOMM Workshop on Formal Methods Aided Network Operation (FMANO
’24), August 4–8, 2024, Sydney, NSW, Australia. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3672199.3673892

1 Introduction
The wide-spread adoption of Software-Defined Networking (SDN)
has revolutionized the way networks are managed and operated.
Originating from OpenFlow [11], SDN separates the control plane
from the data plane to allow for centralized control, simplified
network management and efficient policy deployment. P4 [2] as
a domain-specific language for programming packet processing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FMANO ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0714-8/24/08
https://doi.org/10.1145/3672199.3673892

pipelines, complements these capabilities by offering fine-tuning
data plane managements.

With the help of P4, Programmers can implement complex packet
handling logic by setting policy tables, match-keys, actions and ta-
ble sizes. However, as a hardware-specific language, programmers
need to manually optimize resource usage and ensure compatibility
with the underlying hardware resources. Researchers are actively
exploring techniques to enhance P4 programs’ packet processing
efficiency while guaranteeing the resource capabilities. However,
most optimizations focus solely on the program level without con-
sidering the control policy content. We argue that a crucial piece for
such optimization is the control plane itself. Given typical control
planes, we may wish to make very different decisions about the
number and sequence of tables. In studies altering table contents
[9, 20], a lack of vision in the control plane often leads to worst-case
assumptions.

To bridge the gap between specification and optimal realization,
we present P4CGO that takes both control plane and data plane
as input. It leverages control policies and uses formal approaches
to guide the automatic optimization by table merging and table
splitting. This process generates optimal equivalent data plane
tables along with corresponding optimized control plane policies,
ensuring efficient resource utilization and adherence to specified
network policies.

2 Motivation
In this section, we motivate our work through two examples.

2.1 Why current work falls short?
Pipeleon [20] bridges the gap between P4 programs and their per-
formance on SmartNICs by contributing an automated SmartNIC
optimization framework with profile-guided, performance-oriented
P4 optimizations. It uses table reordering, table caching and table
merging methods to optimize the P4 program on SmartNICs. It en-
ables merging two tables into one TCAM table using cross product
to shorten the table lookup pipeline. Since they do such optimiza-
tion at data plane level, agnostic to the control plane policies, they
generate the merged TCAM with worst case size.

Similar to Pipeleon’s table merging, Cetus [9] also tries to merge
tables. Since Cetus focuses on optimizing programs on switches in-
stead of SmartNICs, it aims to to shorten the critical path on switch
pipeline by removing dependencies. Since the dependencies could
be caused by WAW, WAR, RAW in key match and RAW in action,

https://orcid.org/0009-0003-7352-7233
https://orcid.org/0009-0003-3152-2151
https://orcid.org/0009-0000-8692-1414
https://orcid.org/0000-0001-9476-7349
https://orcid.org/0000-0003-4825-4352
https://doi.org/10.1145/3672199.3673892
https://doi.org/10.1145/3672199.3673892

FMANO ’24, August 4–8, 2024, Sydney, NSW, Australia Chenan Wen, Zhuocong Li, Syed Usman Jafri, Xiaokang Qiu, and Sanjay Rao

Table 1: Tables in An Example P4 Program

(a) ACL Table

Protocol Action
ip allow
tcp allow
udp allow
* drop

(b) QoS Table

SrcIP DstIP Action
192.168.1.2 10.0.0.1 forward
131.5.23.* 10.0.0.1 forward
131.196.*.* 10.0.0.1 forward

* * drop

(c) NAT Table

SrcIP SrcPort Action
192.168.1.2 8080 translate
192.168.1.3 8080 translate
172.16.*.* 8080 translate

* * drop

Table 2: Merged Table

Protocol SrcIP SrcPort DstIP Action
ip 192.168.1.2 8080 10.0.0.1 forward&translate
tcp 192.168.1.2 8080 10.0.0.1 forward&translate
udp 192.168.1.2 8080 10.0.0.1 forward&translate
* * * * drop

Cetus implements a merging agenda to modify the match-keys and
action assignments. Considering the limited stage memory size and
PHV capacity, Cetus encodes hardware resource size constraints by
building a binary decision tree for optimization strategy and prunes
the branches that violate basic memory and stage constraints with
the help of SMT solvers [4]. It also provides a control plane API for
tables to be deployed.

Although merging tables for P4 programs can be beneficial for
table latency since it reduces the memory lookups and required
stages, improving cache efficiency, it also introduces memory over-
head by applying entry multiplications. In certain cases, the act
of merging tables may necessitate a shift in memory types from
SRAM to TCAM. When evaluating the trade-offs, the table’s policy
content needs to be taken into consideration. However, Pipeleon
and Cetus calculate only the worst-case memory usage due to their
obliviousness of control planes.

2.2 Why control-plane guided optimization?
As shown in Table 1, a P4 program comprising three tables is under-
going optimization. Our goal is to merge tables to use less stages.
Assuming there are no dependencies among these actions, if we
are unaware of the control plane policy, the size of the merged
table is determined by multiplying the sizes of all the tables being
merged. Any two of these table will be merged into a 9-entry table
(excluding the default entry). All three tables will be merged into a
27-entry table. However, if we have the vision in control plane, we
will find out that only certain flow can be forwarded and translated.
If we merge Tables 1a, 1b, and 1c all together, we can obtain Table 2
with only 3 entries. While Pipeleon also noted that all merged tables
would be TCAM tables due to the introduction of wildcards in the
merging process, in this particular example, we can utilize SRAM
to store the merged table instead.

When previous works attempted to merge tables, if the table size
exceeds the memory limit, they will discard the merging option by
pruning the decision tree [9, 20], hence losing the opportunity of
global optimization for the entire program. Now consider a data
plane policy represented as an ACL table shown in Table 3. This
table is to permit traffic from four specific source IP addresses, each
with permission for four source ports: 10, 20, 30 and 40. Therefore,
the comprises 16 entries (excluding the default entry) which may
exceed the TCAMmemory limit. By observing the table content, it is

Table 3: ACL Table

SrcIP SrcPort Action
192.168.1.0 10 allow
192.168.1.0 20 allow
192.168.1.0 30 allow
192.168.1.0 40 allow
131.5.23.* 10 allow
131.5.23.* ... allow

198.51.100.1 ... allow
172.31.255.2 ... allow

* * drop

Table 4: Splitted Tables

(a) Sub-Table 1

SrcIP Action
192.168.1.0 Flag=F0
131.5.23.* Flag=F0

198.51.100.1 Flag=F0
172.31.255.2 Flag=F0

* Flag=F1

(b) Sub-Table 2

Flag SrcPort Action
F0 10 allow
F0 20 allow
F0 30 allow
F0 40 allow
* * drop

notable that themultiplication between SrcIP and SrcPort causes the
memory blowup. However, one may decouple the table by splitting
the ACL table into two sub-Tables 4a and 4b. The two sub-tables
consume approximately 34% of the original table’s memory.

The goal of this paper is to automate this process and discover
optimal table merging and splitting algorithmically.

3 System Design
In this section, we present the design of P4CGO, a control plane
guided optimization framework. It takes multi-table control policies
corresponding to a P4 program as input and first merges them
into a single big policy table. Then it tries to split the merged
policy table to accommodate the target hardware capacity through
a process based on automaton minimization. By the merging and
splitting steps P4CGO transforms the input control plane into a
provably optimal implementation for target hardware based on
a given cost function. Figure 1 shows the entire workflow that
consists of following phases:

• First, generate a merged policy table from input control plane
policies. The merging process involves combining multiple
tables through multiplication and checking reachability for
each branch.

• Second, expand the generated policy table from first step
into a non-overlapped table and further transform into a
regular-expression representation.

• Third, build a deterministic automaton to accept the RegEx
and perform automaton minimization.

• Last, enumerate all possible ways to split the automaton into
sub-automata by cutting from the states. Each split yields
a candidate flow of tables through SMT solving. P4CGO
returns the one with the minimal cost as the optimal solution.

P4CGO: Control Plane Guided P4 Program Optimization FMANO ’24, August 4–8, 2024, Sydney, NSW, Australia

Figure 1: P4CGOWorkflow

3.1 Transforming Policy into RegEx
Representation

Users can provide the control plane as an input to P4CGO. The
provided policy table usually contains multiple rules. Each rule
contains multiple key fields and a corresponding action. After re-
ceiving a policy table, P4CGO will use a set of symbols to encode
these rules’ non-overlapped part and transform the ruleset into a
regular expression. When a key has multiple values, the compiler
will find all distinct areas in Venn Diagram and encode each area
into a symbol 𝑆𝑟𝑐𝐼𝑃𝑖 . For example, if there are two overlapped value
A and B in key 𝑆𝑟𝑐𝐼𝑃 , P4CGO encodes all distinct areas (𝐴∧𝐵), (𝐴∧
¬𝐵), (¬𝐴 ∧ 𝐵), (¬𝐴 ∧ ¬𝐵) into 𝑆𝑟𝑐𝐼𝑃0, 𝑆𝑟𝑐𝐼𝑃1, 𝑆𝑟𝑐𝐼𝑃2, 𝑆𝑟𝑐𝐼𝑃3, re-
spectively. We call each distinct area virtual value since it represents
a set of distinct ternary entries and sometimes can’t be represented
by one ternary value, e.g., (0 ∗ ∗ ∗ ∧¬0000). After encoding, each
ternary value in the table is encoded into a set of symbols. In previ-
ous example, 𝐴 = {𝑆𝑟𝑐𝐼𝑃0, 𝑆𝑟𝑐𝐼𝑃1}, 𝐵 = {𝑆𝑟𝑐𝐼𝑃0, 𝑆𝑟𝑐𝐼𝑃2}. If we use
∗ to represent all 𝑆𝑟𝑐𝐼𝑃 then ∗ = {𝑆𝑟𝑐𝐼𝑃0, 𝑆𝑟𝑐𝐼𝑃1, 𝑆𝑟𝑐𝐼𝑃2, 𝑆𝑟𝑐𝐼𝑃3}.

After we encode each distinct combination, each rule can be
expressed by the Cartesian product of all its symbol sets. For a rule
𝐸𝑛 : 𝑆𝑟𝑐𝐼𝑃 = 𝐴, {𝑆𝑟𝑐𝑃𝑜𝑟𝑡 = 𝑃, 𝐴𝑐𝑡𝑖𝑜𝑛 = 𝐷}, if we have encoding
𝐴 = {𝑆𝑟𝑐𝐼𝑃0, 𝑆𝑟𝑐𝐼𝑃1}, 𝑃 = {𝑆𝑟𝑐𝑃𝑜𝑟𝑡0}, 𝐷 = {𝐴𝑐𝑡0}, then we can
generate RegEx

𝐸𝑛 = (𝑆𝑟𝑐𝐼𝑃0 𝑆𝑟𝑐𝑃𝑜𝑟𝑡0 𝐴𝑐𝑡0) | (𝑆𝑟𝑐𝐼𝑃1 𝑆𝑟𝑐𝑃𝑜𝑟𝑡0 𝐴𝑐𝑡0) (3.1)

to represent 𝐸𝑛 .
If we apply same RegEx generation for every rule in the table, we

can transform the original policy table into a RegEx. However, rules
in policy tables are ordered in priority. If two rules 𝐸𝑚 and 𝐸𝑛 are
overlapped and 𝐸𝑚 occurs earlier in the table, for the overlapped
part, the action is decided by rule with higher priority, i.e., 𝐸𝑚 . Since
we want the generated regex to be equivalent, we need to respect
the original priority and remove the overlapped part from 𝐸𝑛 . For ex-
ample, for previous generated rule (Eq 3.1), if there is another higher
priority rule 𝐸𝑚 = (𝑆𝑟𝑐𝐼𝑃0 𝑆𝑟𝑐𝑃𝑜𝑟𝑡0 𝐴𝑐𝑡1), we need to remove the
overlapped key part and make 𝐸𝑛 = (𝑆𝑟𝑐𝐼𝑃1 𝑆𝑟𝑐𝑃𝑜𝑟𝑡0 𝐴𝑐𝑡0).

3.2 Splitting DFA
After we transform the policy table into equivalent regex, we can
further transform it to an automaton representation. Given the
RegEx, we can build a deterministic finite automaton (DFA) to
accept the policy. Through standard DFA minimization, we can
obtain an automaton with minimal number of states. Figure 2 is
such a minimized DFA example. This merged policy table has four
keys: 𝑆𝑟𝑐𝐼𝑃, 𝑆𝑟𝑐𝑃𝑜𝑟𝑡, 𝐷𝑠𝑡𝐼𝑃, 𝐷𝑠𝑡𝑃𝑜𝑟𝑡 and one 𝐴𝑐𝑡𝑖𝑜𝑛. If we use

𝑞0start

𝑞1

𝑞2

𝑞3

𝑞4

𝑞5

𝑞6

𝑞7

𝑞8

𝑞9

𝑞10

𝑞11

𝑆𝑟
𝑐𝐼
𝑃 1

𝑆𝑟𝑐𝐼𝑃0

𝑆𝑟
𝑐𝑃
𝑜𝑟
𝑡 0

𝑆𝑟𝑐𝑃𝑜𝑟𝑡0

𝑆𝑟𝑐
𝑃𝑜
𝑟𝑡0

𝑆𝑟𝑐𝑃𝑜𝑟𝑡1

𝐷𝑠𝑡𝐼𝑃0,2

𝐷
𝑠𝑡𝐼𝑃1

𝐷𝑠𝑡𝐼𝑃2
𝐷
𝑠𝑡𝐼𝑃0,1

𝐷
𝑠𝑡
𝐼𝑃
0

𝐷𝑠𝑡𝐼𝑃1,2

𝐷
𝑠𝑡
𝐼𝑃
0,1
,2

𝐷𝑠𝑡𝑃𝑜𝑟𝑡0,2
𝐷
𝑠𝑡𝑃𝑜𝑟𝑡1

𝐷
𝑠𝑡
𝑃𝑜
𝑟𝑡 0

𝐷𝑠𝑡𝑃𝑜𝑟𝑡1,2

𝐴𝑐𝑡𝑖𝑜𝑛0

𝐴𝑐
𝑡𝑖𝑜
𝑛 1

Figure 2: DFA Split

RegEx 11000 to represent

𝐸0 = (𝑆𝑟𝑐𝐼𝑃1 𝑆𝑟𝑐𝑃𝑜𝑟𝑡1 𝐷𝑠𝑡𝐼𝑃0 𝐷𝑠𝑡𝑃𝑜𝑟𝑡0 𝐴𝑐𝑡𝑖𝑜𝑛0)
for simplicity, from top to bottom the RegEx this DFA accepts can
be written as

11000 | 11020 | . . . | 01221
The number of terms of this representation is the total number of
paths from the initial state to a final state.

The automaton effectively represents a non-overlapping, virtual-
value policy table with each entry representing an accepting path
of the automaton. As mentioned in §2.2, the merged policy ta-
ble size can exceed the hardware capacity. To address this issue,
P4CGO splits the DFA between key fields and generates multiple
sub-tables. As shown in Figure 2, if we cut vertically between𝐷𝑠𝑡𝐼𝑃
and 𝐷𝑠𝑡𝑃𝑜𝑟𝑡 , the DFA will be split into two sub-DFAs. We further
convert the sub-DFAs to virtual value tables as shown in Tables 5a
and 5b, respectively. The generated sub-tables follow a sequential
order, as each table uses the flag from the previous table as a key,
representing the end state of the previous sub-DFA. If there are 𝑛
key fields in the policy, the number of possible cuts is 2𝑛−1. In our
implementation we enumerate all possible cuts of up to 𝑛 sub-DFAs
where 𝑛 is the stage number limited by hardware.

3.3 Generating Control Plane Tables
The sub-tables generated from DFA splitting may contain non-
overlapping virtual entries which are not necessarily legal ternary
or exact entries. So the next step is to convert them back to standard
overlapping policy tables with priorities. As mentioned in §3.1,
each key’s virtual values can be generated by finding all value

FMANO ’24, August 4–8, 2024, Sydney, NSW, Australia Chenan Wen, Zhuocong Li, Syed Usman Jafri, Xiaokang Qiu, and Sanjay Rao

Table 5: Tables Generated from Split DFAs

(a) Sub-Table 1

SrcIP SrcPort DstIP Action
𝑆𝑟𝑐𝐼𝑃1 𝑆𝑟𝑐𝑃𝑜𝑟𝑡1 𝐷𝑠𝑡𝐼𝑃0 Flag=𝑞7
𝑆𝑟𝑐𝐼𝑃1 𝑆𝑟𝑐𝑃𝑜𝑟𝑡1 𝐷𝑠𝑡𝐼𝑃2 Flag=𝑞7

...
𝑆𝑟𝑐𝐼𝑃0 𝑆𝑟𝑐𝑃𝑜𝑟𝑡1 𝐷𝑠𝑡𝐼𝑃2 Flag=𝑞8

(b) Sub-Table 2

Flag SrcIP Action
𝑞7 𝐷𝑠𝑡𝑃𝑜𝑟𝑡0 𝐴𝑐𝑡𝑖𝑜𝑛0
𝑞7 𝐷𝑠𝑡𝑃𝑜𝑟𝑡2 𝐴𝑐𝑡𝑖𝑜𝑛0
...
𝑞8 𝐷𝑠𝑡𝑃𝑜𝑟𝑡2 𝐴𝑐𝑡𝑖𝑜𝑛1

combinations. In the worst case in which all value combinations
are satisfiable, if there are𝑚 different values in a key, the number
of non-overlapped virtual values for the same key can be 2𝑚 , due to
the Cartesian product of all keys’ virtual value sets. Consequently,
a naïve conversion can experience an exponential blowup in the
number of entries, which leads to unsatisfactory tables as output.

To address this problem, P4CGO takes the following steps to
convert the raw, non-overlapped table to a minimal, overlapped
tables. First, it groups non-overlapping entries by flag keys. Then
for each group, it uses a reduction algorithm to merge the 𝑣𝑖𝑟𝑡𝑢𝑎𝑙
entries. The reduction algorithm is a special case of the Quine
McCluskey Method (QMC) [10, 14].

Table 6 shows an example raw table that covers all combinations
of ternary matches 𝐴, 𝐵 and 𝐶 . The table shows only the portion
that starts from flag 𝑞7. Note that the negation of a ternary value
(e.g., ¬𝐴) cannot be directly matched using a single entry. To this
end, we depict all combinations involving negative values using a
conjunction of literals such that all but the last one is a positive one.
Intuitively, the conjunction will be matched through a sequence of
entries, each negative literal for an unmatched entry and the last,
positive literal for the matched entry. Below are several examples:

(¬𝐴𝐵𝐶) ≡ ¬(𝐴𝐵𝐶) ∧ (𝐵𝐶) (3.2)

(¬𝐴¬𝐵𝐶) ≡ ¬(𝐴𝐶) ∧ ¬(𝐵𝐶) ∧ (𝐶) (3.3)
(¬𝐴¬𝐵¬𝐶) ≡ ¬(𝐴) ∧ ¬(𝐵) ∧ ¬(𝐶) ∧ ⊤ (3.4)

Based on the representation above, we construct a layered decision
diagram as depicted in Figure 3. In this diagram, each node repre-
sents a condition combination and labeled with the corresponding
action. Note that lower level nodes have more values to match
(e.g., node 𝐴𝐵𝐶 at the bottom has to match all three ternary values)
and have higher priority than upper level nodes. In other words,
every node excludes the values of all its descendants (e.g., node 𝐴𝐵
represents (𝐴𝐵) − (𝐴𝐵𝐶), or (𝐴𝐵¬𝐶)). Consequently, every node
is equivalent to a combination shown in Table 6, and can be labeled
with the corresponding action from Table 6. The crux of the com-
pression algorithm is based on the fact that if a node shares the
same action as its parent, it can be integrated into the parent node
by removing one negation term from the parent’s expression. Con-
sequently, we can perform a reduction on the diagram. For example,
as nodes 𝐴𝐵𝐶 , 𝐴𝐶 , and 𝐴𝐵 are all labeled with action 𝑞0, they can
be merged into their ancestor node 𝐴. Similarly, Node 𝐵𝐶 can be
merged into node 𝐵 as they both trigger action 𝑞1. The remaining
four nodes still effectively cover all condition combinations:

Node ⊤ ≡ ¬(𝐴) ∧ ¬(𝐵) ∧ ¬(𝐶) ∧ ⊤ (3.5)

Node 𝐴 ≡ (𝐴) (3.6)
Node 𝐵 ≡ ¬(𝐴𝐵) ∧ (𝐵) (3.7)

Table 6: Non-Overlapped Table before Compression (only
entries starting with flag 𝑞7 shown)

Flag Key Action
.

𝑞7 𝐴𝐵𝐶 Flag=𝑞0
𝑞7 ¬𝐴𝐵𝐶 Flag=𝑞1
𝑞7 𝐴¬𝐵𝐶 Flag=𝑞0
𝑞7 𝐴𝐵¬𝐶 Flag=𝑞0
𝑞7 ¬𝐴¬𝐵𝐶 Flag=𝑞1
𝑞7 ¬𝐴𝐵¬𝐶 Flag=𝑞1
𝑞7 𝐴¬𝐵¬𝐶 Flag=𝑞0
𝑞7 ¬𝐴¬𝐵¬𝐶 Flag=𝑞2
.

⊤ 𝑞2

Prt: 2

𝐵 𝑞1

Prt: 1

𝐴 𝑞0

Prt: 0

𝐶 𝑞1

Prt: 1

𝐵𝐶 𝑞1 𝐴𝐶 𝑞0 𝐴𝐵 𝑞0

𝐴𝐵𝐶 𝑞0

Figure 3: Reduction Diagram

Table 7: Overlapped Table after Compression (cf. Table 6)

Node Priority Flag Key Action
𝐴 0 𝑞7 𝐴 Flag = 𝑞0
𝐵 1 𝑞7 𝐵 Flag = 𝑞1
𝐶 1 𝑞7 𝐶 Flag = 𝑞1
⊤ 2 𝑞7 ∗ Flag = 𝑞2

Node 𝐶 ≡ ¬(𝐴𝐶) ∧ (𝐶) (3.8)

Finally, from the four-node reduced diagram (nodes in Figure 3
with red marks), or equivalently Formulae (3.5)(3.6)(3.7)(3.8), we
introduce priorities and construct the final overlapped table with
priorities. The priority follows two rules:

• Nodes at lower level take precedence over nodes at upper
level.

• For same-depth nodes with a common child, prioritize nodes
sharing the child’s action over others.

After introducing overlaps and removing negated terms, Table 7
is the final minimal policy table equivalent to Table 6 . After we
did reduction for each snippet, for each key we can combine every
snippet together to get the corresponding output sub-table.

For tables with multiple key-fields we can do reduction following
the same steps outlined in this section. When we build reduction
diagram, each node contains multiple fields.

P4CGO: Control Plane Guided P4 Program Optimization FMANO ’24, August 4–8, 2024, Sydney, NSW, Australia

4 Evaluation
Our evaluation aims to answer whether P4CGO can optimize P4
program for a given objective function and how effective our ap-
proach is.

We have implemented a prototype of P4CGO System in Java.
The system takes generated control plane merged policy table as
input, transforms the merged policy table into equivalent RegEx
and builds DFA to accept the RegEx. It then enumerates all possible
table splits on DFA and perform reduction algorithm to generate
output tables. Finally, P4CGO finds the best table split by given
objective function and output optimized control plane tables.

We obtained access control lists from Purdue network topol-
ogy [18] as P4CGO policy inputs. Our sample includes 1592 ac-
cess control list (ACL) tables. While the original rule tables are
already small, we are not aware of other publicly available real-
world datasets with a larger number of rules. In the future we
plan to explore scalability using synthetic rule generators. We run
P4CGO on a machine with Intel Xeon 3.10 GHz, 36-core CPU and
188 GB RAM.

4.1 Optimization
While developing P4 programs, programmer want to consider mul-
tiple optimization aspects such as a stage’s SRAM and TCAM mem-
ory, number of stages, ALU usage, registers, etc. We want to support
user defined objective function but do optimizations by restructur-
ing control plane and data plane instead of reordering tables or
reusing data structures in data plane. Given a merged policy table
and objective function, P4CGO can perform an exhaustive search
to find best splitting strategy.

To explore the optimizations that P4CGO can perform, we use
ACL policy tables as input and apply user-defined objective func-
tions to generate the desired control plane tables and data plane
table sizes. Figure 4a illustrates a compression objective function
where the objective value is defined as 𝑂𝑏 𝑗 = 𝑇𝐶𝐴𝑀 + 𝑆𝑅𝐴𝑀 .
Under this objective we achieved an average compression rate of
63.83%. Users can also define custom objective functions such as
𝑂𝑏 𝑗 = 𝑥 × 𝑇𝐶𝐴𝑀 + 𝑦 × 𝑆𝑅𝐴𝑀 + 𝑧 × 𝑆𝑇𝐴𝐺𝐸, or set constraints
𝑆𝑇𝐴𝐺𝐸 < 𝑛 to emphasize different aspects of optimization.

If we give TCAM a higher weight and set an objective function
as 𝑂𝑏 𝑗 = 0.25 × 𝑆𝑅𝐴𝑀 + 𝑇𝐶𝐴𝑀 , intuitively, we can focus more
on saving TCAM memory when P4CGO aims to minimize the
𝑜𝑏 𝑗 value. Table 8 demonstrates this idea by applying different
optimizationmetrics to the same input ACL table. For this input ACL
table, all 𝑃𝑜𝑟𝑡𝑠 and 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝑠 are exact matches while 𝐼𝑃𝑠 contain
ternary values. As illustrated, emphasizing TCAM optimization
leads to offloading as many keys as possible to SRAM, thereby
minimizing the usage of TCAM memory.

4.2 Performance
P4CGO’s effectiveness is significant because many networking sys-
tems require frequent policy updates and deploy tables on hardware.
The effectiveness of P4CGO is decided by the number of key fields
and number of entries of the merged policy table. Figure 4b demon-
strates the effectiveness of our algorithm. For all input policy tables
in §4.1 we have most of the tables optimized in 37 secs.

0 2000 4000 6000 8000 10000
Original Size (Bits)

0

500

1000

1500

2000

2500

3000

Co
m

pr
es

se
d

Si
ze

 (B
its

)

Obj = SRAM + TCAM

Input Tables
No Compression
2x Compression
4x Compression

(a) Compression Rate

0 10 20 30 40 50
Compression Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(b) Compression time

Figure 4: Compression Rate and Time of the ACLs on the
Purdue Router Configuration Dataset

Table 8: Optimizations under Difference Objectives

Objective
Func-
tion

Original
Table
Size/bit

Keys in
SRAM
Table

SRAM
Table

Number

SRAM
Table
Size/bit

Keys in
TCAM
Table

TCAM
Table

Number

TCAM
Table
Size/bit

SRAM +
TCAM 8840 NA 0 0

SrcIP,
SrcPort,
DstIP,
DstPort,
Protocol

2 1495

0.25SRAM
+ TCAM 8840

Protocol,
SrcPort,
DstPort

3 653 SrcIP,
DstIP 2 925

5 Related Work
Ever since OpenFlow introduced a new opportunity to the re-
search community of computer networks and opened up the era of
software-defined networks (SDN), it enabled software to control net-
works while also exploiting the fast process rate of switching hard-
ware [11]. Although SDNs provided opportunities to deploy soft-
ware on the control plane and make the data plane programmable,
memory shortage issues remain, even with the widespread use
of TCAM memory. Much previous work has focused on optimiz-
ing tables for performances while fitting within limited hardware
capabilities. In recent years, optimization approaches have bifur-
cated into two directions: one direction is to introduce higher-level,
more abstract languages paired with user-friendly programming
tools [6, 8, 15, 16]; the other direction emphasizes the development
of advanced optimization techniques that require user-provided

FMANO ’24, August 4–8, 2024, Sydney, NSW, Australia Chenan Wen, Zhuocong Li, Syed Usman Jafri, Xiaokang Qiu, and Sanjay Rao

guidance [1, 17, 19]. Previous work [7] investigated a solution to
reconfigure and compress the policies based on readability. More
recently, researchers constructed geometric models for the policy
compression problem [3].

SPliT [12] performs table compression by decomposing a 𝑑-
dimensional table into 𝑘 ≤ 𝑑 smaller tables stored into a pipeline of
𝑘 smaller TCAM chips. By 𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔 the policy they can overcome
the multiplicative effect hence reduce the total required TCAM
space. Different from P4CGO using symbolic encoding, SPliT trans-
forms the policy table into a decision tree using ternary key’s
𝑛𝑢𝑚𝑒𝑟𝑖𝑐 values and cut the tree into 𝑘 fields. It performs table
merging by allowing multiple rules from different TCAM tables to
co-reside in the same TCAM entry [13]. When rules between two
tables co-reside, the compression depends on the level of commonal-
ity detected among the rules across both tables. In SPliT’s working
cases all overlapped 𝑙𝑝𝑚 entries can be safely co-resided due to
the contained relationship inherent in these overlaps. However
when considering more general cases such as ternary or exact rules,
guiding the compression by commonality might be misleading.

P4All [8] also aims to enhance the flexibility and efficiency of
programming network switches under limited resource conditions.
It emphasizes a modular design for P4 programs, allowing for the
reusable data structures such as hash tables and hash-based matri-
ces. To achieve this, P4All employs symbolic primitives to param-
eterize the size and shape of these structures and uses objective
functions to quantify their values. While our approach also utilizes
objective functions to guide optimizations, it does not focus on
reusing data structures.

Researchers have also developed languages to program thewhole
distributed system. Frenetic [5] utilized a declarative query lan-
guage to build a distributed network switch system that classi-
fies and manages network traffic. Other functions of Frenetic in-
cluded describing packet-forwarding policies and passing on packet-
processing rules to its run-time.

6 Future Work
As a preliminary work, P4CGO has several limitations that could be
addressed in the future to enhance its capability and applicability.
The first one is scalability. In §3.1, P4CGO expands entries into
disjoint 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 entries and this expansion is exponential. Although
the expansion is handled in §3.3 by merging disjoint entries back
into TCAM entries, the intermediate step (DFA Splitting in §3.2)
still experiences exponential expansion. Another problem is that
P4CGO optimizes control plane in a static criterion—a dynamically
changed policy could result in a redeploy of generated optimal
data and control plane. How to efficiently produce large scale table
layouts that can accommodate the frequent updates is a key focus
for future work.

7 Conclusion
We have presented P4CGO, a system using control plane to guide
the data plane optimization. By performing table merging and enu-
merating table splitting, P4CGO can transform input policies into a
provably optimal implementation for target hardware. We further

perform experiments to show P4CGO’s effectiveness in achiev-
ing optimal performance while maintaining policy compliance in
practical network scenarios.

Acknowledgments
This material is based upon work supported by the National Sci-
ence Foundation under Award Nos. CCF-1837023, CCF-2046071,
CCF-2319425. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation.

References
[1] Anubhavnidhi Abhashkumar, Jeongkeun Lee, Jean Tourrilhes, Sujata Banerjee,

Wenfei Wu, Joon-Myung Kang, and Aditya Akella. 2017. P5: Policy-driven
optimization of P4 pipeline. In Proceedings of the Symposium on SDN Research
(Santa Clara, CA, USA) (SOSR ’17). Association for Computing Machinery, New
York, NY, USA, 136–142. https://doi.org/10.1145/3050220.3050235

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: programming protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95. https://doi.org/10.
1145/2656877.2656890

[3] Yuzhu Cheng, Weiping Wang, Jianxin Wang, and Haodong Wang. 2019. FPC: A
new approach to firewall policies compression. Tsinghua Science and Technology
24 (02 2019), 65–76. https://doi.org/10.26599/TST.2018.9010003

[4] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: an efficient SMT solver. In
Proceedings of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340.

[5] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. 2011. Frenetic: a network programming
language. SIGPLAN Not. 46, 9 (sep 2011), 279–291. https://doi.org/10.1145/
2034574.2034812

[6] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou, Bingchuan Tian,
Chen Sun, Dennis Cai, Ming Zhang, and Minlan Yu. 2020. Lyra: A Cross-Platform
Language and Compiler for Data Plane Programming on Heterogeneous ASICs.
In Proceedings of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM ’20). Association for ComputingMachinery,
New York, NY, USA, 435–450. https://doi.org/10.1145/3387514.3405879

[7] Mohammad Hajjat, Xin Sun, Yu-Wei Eric Sung, David Maltz, Sanjay Rao, Kun-
wadee Sripanidkulchai, and Mohit Tawarmalani. 2010. Cloudward bound: plan-
ning for beneficial migration of enterprise applications to the cloud. SIGCOMM
Comput. Commun. Rev. 40, 4 (aug 2010), 243–254. https://doi.org/10.1145/1851275.
1851212

[8] Mary Hogan, Shir Landau-Feibish, Mina Tahmasbi Arashloo, Jennifer Rexford,
and David Walker. 2022. Modular Switch Programming Under Resource Con-
straints. In 19th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 22). USENIX Association, Renton, WA, 193–207. https:
//www.usenix.org/conference/nsdi22/presentation/hogan

[9] Yifan Li, Jiaqi Gao, Ennan Zhai, Mengqi Liu, Kun Liu, and Hongqiang Harry
Liu. 2022. Cetus: Releasing P4 Programmers from the Chore of Trial and
Error Compiling. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22). USENIX Association, Renton, WA, 371–385.
https://www.usenix.org/conference/nsdi22/presentation/li-yifan

[10] Edward J. McCluskey. 1956. Minimization of Boolean Functions. The Bell System
Technical Journal 35, 5 (1956), 1417–1444. https://doi.org/10.1002/j.1538-7305.
1956.tb03835.x

[11] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev. 38,
2 (March 2008), 69–74. https://doi.org/10.1145/1355734.1355746

[12] Chad R.Meiners, Alex X. Liu, Eric Torng, and Jignesh Patel. 2011. Split: Optimizing
Space, Power, and Throughput for TCAM-Based Classification (ANCS ’11). IEEE
Computer Society, USA, 200–210. https://doi.org/10.1109/ANCS.2011.36

[13] Chad R. Meiners, Jignesh Patel, Eric Norige, Eric Torng, and Alex X. Liu. 2010.
Fast regular expression matching using small TCAMs for network intrusion
detection and prevention systems. In Proceedings of the 19th USENIX Conference
on Security (Washington, DC) (USENIX Security’10). USENIX Association, USA,
8.

[14] Willard V. Quine. 1952. The Problem of Simplifying Truth Functions. Amer. Math.
Monthly 59, 8 (1952), 521–531. https://doi.org/10.2307/2308214

https://doi.org/10.1145/3050220.3050235
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.26599/TST.2018.9010003
https://doi.org/10.1145/2034574.2034812
https://doi.org/10.1145/2034574.2034812
https://doi.org/10.1145/3387514.3405879
https://doi.org/10.1145/1851275.1851212
https://doi.org/10.1145/1851275.1851212
https://www.usenix.org/conference/nsdi22/presentation/hogan
https://www.usenix.org/conference/nsdi22/presentation/hogan
https://www.usenix.org/conference/nsdi22/presentation/li-yifan
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1109/ANCS.2011.36
https://doi.org/10.2307/2308214

P4CGO: Control Plane Guided P4 Program Optimization FMANO ’24, August 4–8, 2024, Sydney, NSW, Australia

[15] John Sonchack, Devon Loehr, Jennifer Rexford, and David Walker. 2021. Lucid: a
language for control in the data plane. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference (Virtual Event, USA) (SIGCOMM ’21). Association for Comput-
ing Machinery, New York, NY, USA, 731–747. https://doi.org/10.1145/3452296.
3472903

[16] Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate Foster.
2020. Composing Dataplane Programs with µP4 (SIGCOMM ’20). Association for
Computing Machinery, New York, NY, USA, 329–343. https://doi.org/10.1145/
3387514.3405872

[17] Nik Sultana, John Sonchack, Hans Giesen, Isaac Pedisich, Zhaoyang Han, Nis-
hanth Shyamkumar, Shivani Burad, André DeHon, and Boon Thau Loo. 2021.
Flightplan: Dataplane Disaggregation and Placement for P4 Programs. In 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
21). USENIX Association, 571–592. https://www.usenix.org/conference/nsdi21/
presentation/sultana

[18] Yu-Wei Eric Sung, Sanjay G. Rao, Geoffrey G. Xie, and David A. Maltz. 2008.
Towards systematic design of enterprise networks. In Proceedings of the 2008 ACM

CoNEXT Conference (Madrid, Spain) (CoNEXT ’08). Association for Computing
Machinery, New York, NY, USA, Article 22, 12 pages. https://doi.org/10.1145/
1544012.1544034

[19] Patrick Wintermeyer, Maria Apostolaki, Alexander Dietmüller, and Laurent
Vanbever. 2020. P2GO: P4 Profile-Guided Optimizations. In Proceedings of the
19th ACM Workshop on Hot Topics in Networks (Virtual Event, USA) (HotNets ’20).
Association for Computing Machinery, New York, NY, USA, 146–152. https:
//doi.org/10.1145/3422604.3425941

[20] Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu, Songyuan Sui, Khalid Manaa, Omer
Shabtai, Yonatan Piasetzky, Matty Kadosh, Arvind Krishnamurthy, T. S. Eugene
Ng, and Ang Chen. 2023. Unleashing SmartNIC Packet Processing Performance
in P4. In Proceedings of the ACM SIGCOMM 2023 Conference (, New York, NY,
USA,) (ACM SIGCOMM ’23). Association for Computing Machinery, New York,
NY, USA, 1028–1042. https://doi.org/10.1145/3603269.3604882

Received 24 May 2024; accepted 7 June 2024

https://doi.org/10.1145/3452296.3472903
https://doi.org/10.1145/3452296.3472903
https://doi.org/10.1145/3387514.3405872
https://doi.org/10.1145/3387514.3405872
https://www.usenix.org/conference/nsdi21/presentation/sultana
https://www.usenix.org/conference/nsdi21/presentation/sultana
https://doi.org/10.1145/1544012.1544034
https://doi.org/10.1145/1544012.1544034
https://doi.org/10.1145/3422604.3425941
https://doi.org/10.1145/3422604.3425941
https://doi.org/10.1145/3603269.3604882

	Abstract
	1 Introduction
	2 Motivation
	2.1 Why current work falls short?
	2.2 Why control-plane guided optimization?

	3 System Design
	3.1 Transforming Policy into RegEx Representation
	3.2 Splitting DFA
	3.3 Generating Control Plane Tables

	4 Evaluation
	4.1 Optimization
	4.2 Performance

	5 Related Work
	6 Future Work
	7 Conclusion
	Acknowledgments
	References

