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This paper is devoted to the derivation and analysis of a simple pseudospectral computa-

tional method for a two-dimensional time-dependent Schrödinger equations with periodic 
coefficients, modeling electromagnetic waves propagating in photonic graphene with sym-

metry breaking. In particular, we are interested in the propagation of edge states along a 
wall, modeling a defect/heterogeneity in the optical set-up. Perfectly matched layers are 
here combined with the derived pseudospectral method in order to absorb wavefunctions 
in the direction orthogonal to the wall. We numerically and analytically exhibit the possible 
trapping of wavefunctions.

 2023 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The dynamical phenomena on photonic graphene and more generally photonic topological insulators are become a very 
active research field [27] with recent and unexpected discoveries. The study of photonic graphene allows to explore op-
toelectronic devices and more generally the fundamental topological properties of optical systems with application to 
topological lasers (allowing protected transport, edge state propagation) singular optical beams, and spin-orbit coupling. 
Let us mention a recent work [20], where thermalized states and topological edge flow in two-dimensional nonlinear topo-
logical insulators on Haldane lattices are described by a normalized discrete nonlinear Schrödinger equation. Long range 
interactions were also analyzed in [23]. In practice, photonic graphene sets-up coupled waveguides, microwave resonators, 
nonlinear crystals, atomic vapor cells, see [33] for references. The dynamics of electromagnetic waves on photonic graphene 
is primarily modeled using Maxwell’s equations, but some standard hypotheses (paraxial approximation, slowly varying en-
velop approximation, etc.) often lead to simple nonlinear Schrödinger equations on honeycomb lattices. Paraxial discrete 
Schrödinger equation can also be used, see [26]. In this present paper, we will consider more accurate linear Schrödinger’s 
models with non-constant coefficients, derived from Maxwell’s equations.

In this paper, we are interested in the propagation of electromagnetic waves in photonic graphene [19,21,24–26,32], in 
particular when some symmetry properties in the material are broken. For instance in this case, it is well-known that the 
so-called edge states can be captured and propagate “along” walls or domain boundaries [22]. In general, photonic graphene 
is geometrically modeled by a honeycomb lattice �, defined by

* Corresponding author.
E-mail addresses: elorin@math.carleton.ca (E. Lorin), xuyang@math.ucsb.edu (X. Yang).

https://doi.org/10.1016/j.apnum.2023.05.022

0168-9274/ 2023 IMACS. Published by Elsevier B.V. All rights reserved.



E. Lorin and X. Yang Applied Numerical Mathematics 199 (2024) 85–104

� = Zv1 ⊕ Zv2 ,

generated by two vectors v1 = (
√
3, 1)T /2, v2 = (

√
3, −1)T /2, and with dual lattice vectors k1 = 2π(1, 

√
3)T /

√
3, k2 =

2π(1, −
√
3)T /

√
3 (see [22]):

�∗ = Zk1 ⊕ Zk2 .

The so-called fundamental cell is defined by

� :=
{
τ1v1 + τ2v2 : τi ∈ [0,1), i = 1,2

}
.

For � := R2/Zv1 , we define the domain

�� := {τ1v1 + τ2v2 : τ1 ∈ [0,1], τ2 ∈ R},

and a truncated version, for some L > 0,

��;L := {τ1v1 + τ2v2 : τ1 ∈ [0,1], τ2 ∈ [−L, L]}.

The evolution of wavefunctions in this material is modeled by a time-dependent Maxwell equations, which can be rewritten 
as a Schrödinger-like equation (see again [22] for details):

i∂tψ = L
δψ, where L

δ := −∇ ·
(
W (x)∇

)
, (1)

where the medium is described by a matrix valued function W ∈ L2(�; C2×2), and where δ is some “perturbative” real pa-
rameter which will be specified hereafter. In the case of non-perturbed/structured photonic graphene (δ = 0), the lattice 
possesses several symmetries and we then denote the material weight by W = A, where A ∈ L2(�; C2×2) is Hermi-

tian, positive definite, and uniformly elliptic. The non-perturbated material satisfies the CRP -invariance: A(−x) = A(x), 
A(R∗x) = R∗A(x)R and A(x+ v) = A(x), for v ∈ � and where the rotation matrix R is defined by

R =
1

2

(
−1

√
3

−
√
3 −1

)
.

Hereafter, we will choose A(x) = a(x)I2×2 . Practically, A, W will be assumed continuously differentiable. We refer to [19,22]
for some more detailed properties. Notice that the Fermi velocity is defined from the first eigenfunction of L0(δ = 0), where

L
0 = −∇a(x) · ∇ − a(x)� .

The electromagnetic wave dynamics in that case is hence modeled by

i∂tψ = a(x)�ψ + ∇a(x) · ∇ψ .

Unlike the computation of the edge-states which may require a transformation of the operator under consideration (for 
instance due to dissolution in continuum [14] or spectral pollution [18]), the computation of the time-dependent solution 
can be “directly” performed.

1.1. Perturbed photonic graphene

In the case of perturbed photonic graphene (δ �= 0), we rewrite

W (x) := A(x) + M(x) ,

where x = (x, y), and M models to a PC-symmetry breaking. We again refer to [22] for details. Let us recall that the edge 
states are the eigenfunctions associated to the point spectrum of the following eigenvalue problem, for k‖ ∈ [0, 2π):

⎧
⎪«
⎪¬

L
δψδ

e (x;k‖) = Eδ
e(k‖)ψ

δ
e (x;k‖),

ψδ
e (x + v1;k‖) = eik‖ψδ

e (x;k‖),

ψδ
e (x;k‖) → 0 as |x · k2| → +∞,

where ψδ
e is a so-called edge state and Eδ

e the corresponding energy. In this paper, we will be particularly interested in 
PC-symmetry breaking, thanks to the wall function η having a shape determined by a smooth function F , the wall-shape

function. We assume hereafter that F (0) = 0, and that η is a smooth function, such that

η′(0) = 1, η(x) ∼ x as x → 0,

η(x) → ±1, η′(x) → ±0 as x → ±∞.
(2)
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Following [18], we will take η(x) = tanh(x). For the P-symmetry breaking case, we then consider

W (x) := a(x)I2×2 + δη
(
k2 · F (x)

)
b(x)I2×2 , (3)

and for the C-symmetry breaking

W (x) := a(x)I2×2 + δη
(
k2 · F (x)

)
b(x)σ , (4)

where σ the following Pauli matrix

σ =
(

0 −i
i 0

)
.

Let us recall that k2 is orthogonal to v1 . We then propose to apply a Bloch transformation of the operator, which allows us 
to simplify the analysis and approximation of the Schrödinger operator. Setting

ψδ
e (x,k‖) = exp

(
i

k‖

2π
k1 · x

)
φδ
e (x,k‖) ,

we easily see that φδ
e satisfies the following system

⎧
⎪⎪«
⎪⎪¬

S
δφδ

e (x;k‖) = Eδ
e(k‖)φ

δ
e (x;k‖),

φδ
e (x + v1;k‖) = φδ

e (x;k‖),

φδ
e (x;k‖) → 0, as |x · k2| → +∞ ,

where we have denoted

Sδ = −
(
∇ + i

k‖

2π
k1

)
· W (x)

(
∇ + i

k‖

2π
k1

)
.

We next denote by ψk‖ the solution to the following time-dependent Schrödinger equation
⎧
⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪¬

i∂tψk‖(x, t) = S
δψk‖(x, t) , on � × (0, T ),

ψδ
k‖

(x,0) = φδ
e (x;k‖), on �,

ψδ
k‖

(x + v1, t) = ψδ
k‖

(x, t), on � × (0, T ),

ψδ
k‖

(x, t) → 0, as |x · k2| → +∞ .

(5)

In particular, when W = A + M with A(x) = a(x)I2×2 and M(x) = δη
(
k2 · F (x)

)
b(x)σ (resp. M(x) = δη

(
k2 · F (x)

)
b(x)I2) for 

C-symmetry (resp. P-symmetry) breaking, we get

Sδ = −∇ · (A + M)∇ +
k2‖
4π2

k1 · (A(x) + M(x))k1

−i
( k‖

2π
∇ · (A(x) + M(x))k1 +

k‖

2π
k1 · (A(x) + M(x))∇

)
.

Notice that as the function a is real, the dynamical equation contains in particular a transport and a reaction term. More-

over when M is null the spectrum of S0 is discrete E1(k) � · · · � En(k) � · · · for k in the first Brillouin zone, and the 
corresponding eigenvalues are such that �(x + v) = eik·v�(x), for all v ∈ �; see [22].

1.2. Examples of material functions

As an illustration of the above introduction, we propose in this paragraph to report the graph of some functions modeling 
different materials under consideration in this paper. Let us set

w(x) := a(x) +m(x) ,

where

a(x) = ³ + ´

3∑

i=1

cos(ki · x), m(x) = δη(δk2 · F (x))

3∑

i=1

sin(ki · x) , (6)

where the wall function is given by η = tanh and with the following constants: δ = 1, ³ = 0.3, ´ = 0.1, and where F (x) is 
the wall-shape function. We report the graph of a, ax(= ∂xa) and ay(= ∂ya) in Fig. 1.

In Fig. 2 (Top)(resp. 2 (Bottom)), we report for F (x) = (x, y)T (resp. F (x) =
(
x, y/2 + sin(y)/2

)T
) the graphes of w , wx , 

and w y , illustrating the effect of the wall perturbation on the material structure.
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Fig. 1. Graph of a, ax and ay . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Graph of w , wx and w y . (Top) F (x, y) = (x, y)T . (Bottom) F (x, y) =
(
x+ y/2+ sin(y/2)

)T
.

1.3. Choice of the computational method

The mathematical model under consideration is a two-dimensional (2D) time-dependent Schrödinger equation with 
non-constant coefficients; and which are periodic in the direction v1 . Due to this periodicity it is natural to use a Fourier-
based method. The chosen method is an IMEX pseudospectral method based on the pseudodifferential representation of 
the Schrödinger Hamiltonian, which was originally developed in [2,5]. Alternatively, a higher order finite element methods 
could have been used in order to benefit from the variational structure of the equation. However, considering the complexity 
of the equation, the simple pseudospectral method allowing for approximating PDE with non-constant coefficients, is here 
preferred. Let us mention that among several existing techniques for approximating the Schrödinger equation under consid-
eration, numerical techniques such as Generalized Finite Difference Methods which can easily be coupled with PML, allow 
for a large flexibility and simplicity of implementation while keeping a good accuracy and nice mathematical properties 
[10,28].

In this paper, we are in particular interested in edge states, which are eigenstates to the Schrödinger operator. The latter 
are known [22] to be local in the direction k2 , which is orthogonal to v1 . Moreover, as the solution is not periodic in that 
direction, it is then necessary to avoid the periodicity naturally induced by the Fourier transform. In this goal, we propose to 
combine our pseudospectral method with perfectly matched layers [11] in the direction k2 . Interestingly, this combination 
does not complexify the structure of the overall algorithm. Some mathematical and numerical properties of the derived 
algorithm will be proposed in Section 3.
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1.4. Organization of the paper

This paper is organized as follows. In Section 2, we discuss some mathematical properties of the proposed model in 
particular regarding the dynamics of the wavefunction in the neighborhood of the wall. Section 3 is dedicated to the deriva-
tion and properties of a computational pseudospectral method for solving the time-dependent Schrödinger equation under 
consideration. In Section 4, we present several numerical experiments illustrating the properties of the derived method and 
simulating some physical phenomena. We conclude in Section 5.

2. Some mathematical properties

In this section, we present some simple but important mathematical properties of the studied model, in particular, 
regarding the evolution of the wavefunctions in the neighborhood of the wall.

2.1. Basic information

Due to the complexity of the equation, the analysis of the wavefunction dynamics and possible capture of edge states 
by the wall, may require to work on a simplified model. In this goal, we will derive below equivalent equations in the 
case of symmetry-breaking. For the sake of simplicity, we will consider infinite spatial domain R2 , which is a reasonable 
assumption, since we will mainly be interested in localized solutions. In particular, we assume that the initial condition has 
compact support in the space domain. From

i∂tψ = −∇ ·
(
W (x)∇

)
,

we multiply by ψ ∈ L2(R2) leading to

1

2

d

dt
‖ψ‖22 = −Im

∫
W (x)|∇ψ(x, t)|2dx .

P-symmetry breaking. In this case,

W (x) := a(x)I2×2 + δη
(
k2 · F (x)

)
b(x)I2×2 .

Hence as W is real, the L2-norm of the wavefunction ψ is trivially conserved. Interestingly, we also get the following 
identity

Im

∫
ψψtdx =

∫
a(x)|ψ(x, t)|2 + δη

(
k2 · F (x)

)
b(x)|∇ψ(x, t)|2dx .

C-symmetry breaking. In this case,

W (x) := a(x)I2×2 + δη
(
k2 · F (x)b(x)

)
σ ,

and the L2-norm conservation also holds. Indeed

1

2

d

dt
‖ψ‖22 = Re

∫
b(x)γ ∇ψ(x) · ∇ψ(x)dx = 0 .

where

γ =
(

0 1

−1 0

)
.

2.2. Equivalent equation in symmetry breaking

Let us discuss the equivalent equation in the case of symmetry breaking. More specifically, we are interested in the 
equivalent equation close and away from the wall.

C-symmetry breaking. We first discuss the dynamics along the wall in the case of C-symmetry breaking. We assume that 
the Bloch transform has not been applied yet, i.e. we consider Equation (1)

i∂tψ = −∇ · (W (x) · ∇)ψ ,

where W = aI2×2 +mσ and with

m(x) = δη(δk2 · F (x))b(x) .
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Notice first that

W (x)∇ · ∇ = a(x) +m(x)σ∇ · ∇ = a(x)� ,

as σ∇ · ∇ = 0. Next

∇W (x) · ∇ = ∇a(x) + ∇m(x)σ · ∇
= ∇a(x) + ∇m(x) · (−i∂y,i∂x)

T .

Denoting F = (Fx, F y)
T we then get

∇W (x) · ∇ = ∇a(x) + δη(δk2 · x)∇b(x) · (−i∂y,i∂x)
T

= δ2b(x))η′(δk2 · F (x)
)
k2 ·

(
∂xFx(x), ∂y F y(x)

)
· (−i∂y,i∂x)

T .

Then

∇W (x) · ∇ = ∇a(x) + iKx(x)∂x + iK y(x)∂y + iLx(x)∂x + iL y(x)∂y ,

where

Kx(x) = −δ2b(x)η′(δk2 · F (x)
)
k
y
2 (∂y F y(x) ,

K y(x) = δ2b(x)η′(δk2 · F (x)
)
kx2(∂xFx(x) ,

and

Lx(x) = −δη
(
δk2 · F (x)

)
∂yb(x),

L y(x) = δη
(
δk2 · F (x)

)
∂xb(x) .

Denoting the vector fields K = (Kx, K y)
T and L = (Lx, L y)

T , the equation then reads

∂tψ = i(a(x) +m(x))�ψ + i∇a(x) · ∇ψ + K (x) · ∇ψ + L(x) · ∇ψ . (7)

We now analyze the contribution of this velocity fields K , L close and away from the wall.

Close to the wall. Thanks to the assumption (2), close to the wall we have η(x) ∼ x and η′ ∼ 1. More specifically, denoting 
by NW a neighborhood of the wall defined as

NW =
{
x/k2 · F (x) = o(1)

}
, (8)

where o(1) refers to δ → 0. In particular, we have, for x ∈NW ,

η(k2 · F (x)) ∼x∈NW k2 · F (x) = o(1) . (9)

Hence

Kx(x) ∼x∈NW −δ2b(x)k
y
2∂y F y(x),

K y(x) ∼x∈NW δ2b(x)kx2∂xFx(x) ,

and

Lx(x) ∼x∈NW −δ2k2 · F (x)∂xb(x) = δ∂xb(x)o(δ),

L y(x) ∼x∈NW δ2k2 · F (x)∂yb(x) = δ∂yb(x)o(δ) .

In other words, close to the wall the transport is mainly driven by the vector field K (as L is negligible compared to K ). 
More specifically, we observe that, close to the wall, the direction of the propagation is given by the following velocity field:

V (x) = δ2b(x)
(
− k

y
2∂y F y(x),k

x
2∂xFx(x)

)T
,

where F (x) = (x, f (y))T , we get

V (x) = δ2b(x)k2 · (− f ′(y),1)T .

Regarding m, we also have in the neighborhood of the wall:

m(x) ∼x∈NW δb(x)o(δ) .

Based on the above discussion, the model behaves as follows.
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Fig. 3. (Left) Graph of b in logscale. (Middle) Graph of bη + 10−6 for F (x) = (x, y/2)T (Right) Graph of bη + 10−6 for F (x) = (x, y/2+ sin(2y)/2)T .

Definition 2.1. The equivalent equation to (7) close to the wall in the case of C-symmetry is defined as:

∂tψ = i
(
a(x) + δb(x)o(δ)

)
�ψ + i∇a(x) · ∇ψ + V (x) · ∇ψ . (10)

The initial and boundary conditions are the same as in (5).

We make several important remarks as below.

• There is in general, no guarantee that m is negligible compared to a, so that we keep its contribution in the equivalent 
equation.

• The amplitude of the propagation velocity is mainly given by the term δ2b(x). As b is an oscillatory function, we then 
expect a non-constant velocity, which can essentially vanish when b is null (or practically close to 0). Considering 
b(x) =

∑3
i cos(ki · x) (or sin), and we denote

Cb :=
{
x ∈ �/b(x) = 0

}
. (11)

In this case Cb is the union ∪kCk of circles Ck where some of these circles are truncated by the boundary of �. In this 
case, we observe that the vector field V is null (in fact even L would be null in this case). We now denote

W :=
{
x ∈ �/k2 · F (x) = 0} .

At the intersection of Cb and W , the wavefunction will no more be driven by V . See Fig. 4, where the wall is identified 
as a curved line crossing some circles Ck .

• On Cb , notice that m in (10) will also be null. That is the kinetic contribution along the wall also vanishes on Cb .

• If a is small, the wavefunction (including edge states) with initial position inside a disc Dk with boundary Ck , will be 
trapped inside Dk .

Away from the wall. In this case, we define

Na :=
{
x/η(δk2 · F (x))| = 1− o(δ)

}
,

with this time, η′(x) ∼x∈Na
0, so that Kx(x) ∼x∈Na

0 and K y(x) ∼x∈Na
0. Away from the wall, L is no more negligible, and 

m(x) ∼x∈Na
±1. Hence, the equivalent equation can be defined as follows.

Definition 2.2. The equivalent equation to (7) far from the wall in the C-symmetry case is defined as:

∂tψ = i
(
a(x) + δb(x)sgn(k2 · x)

)
�ψ − i∇a(x) · ∇ψ + L(x) · ∇ψ , (12)

where sgn is the sign function. The initial and boundary conditions are the same as in (5).

In this paper, b will be typically taken as b : x �→
∑3

i=1 cos(ki · x) (or sin) where k1 = 2π(1, 
√
3)T /

√
3, k2 =

2π(1, −
√
3)T /

√
3 and k3 = −k1 − k2 . Let us report the graph of b over the domain [0, 2π ]2 in Fig. 3 (Left) and in Fig. 3

(Middle), (resp. (Right)) the graph of x �→ log
(
10−6 + tanh(δk2 · F (x)) 

∑3
i=1 sin(ki · x

)
for δ = 1 and F (x) = (x, y/2)T (resp. 

F (x) = (x, y/2 + sin(2y)/2)T ). We have added the coefficient 10−6 to better visualize the zone where the vector field V
vanishes (or is small). As expected, along the wall the velocity field actually vanishes. These zones correspond to the inter-
section to the wall function F with the zeros of b.

In Fig. 4, we report the graph in logscale of w := a +m and wx , w y , illustrating the intersection point of Cb and W for

a(x) = 0.1
∑

i=1

sin(ki · x), m(x) = δ tanh(δ(k2 · F (x)))
∑

i=1

sin(0.5ki · x) ,
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Fig. 4. Graph of log |w|, log|wx| and log |w y |.

and δ = 2 and F (x) = (x, 0.25 sin(y))T . The use of the logscale allows to more clearly identify Cb (union of circles) as well 
as the domain W . The claim is that, in the C-symmetry case, at the intersection points between Cb and W a wavefunc-

tion would stop propagating. More generally, the wavefunction will be trapped inside the disc of contour Ck , as we will 
numerically observe in Section 4.

P-symmetry breaking. A similar discussion is proposed in the case of P-symmetry breaking.

Close to the wall. In the neighborhood of the wall, that is in NW the equivalent equation reads as follows.

Definition 2.3. The equivalent equation to (7) close to the wall in the P-symmetry case is defined as:

∂tψ = i
(
a(x) + δb(x)o(δ)

)
�ψ + i∇a(x) · ∇ψ + iZ(x) · ∇ψ , (13)

where

Z(x) = δ2b(x)
(
kx2∂y F y(x),k

y
2∂y F y(x)

)T
.

The initial and boundary conditions are the same as in (5).

Interestingly in this case the wall does not make appear a transport term, but a “coupling” term instead.

Away from the wall. Away from the wall, that in the set Na , we define:

Definition 2.4. The equivalent equation to (7) far to the wall in the P-symmetry case is defined as:

∂tψ = i
(
a(x) + δb(x)sgn(k2 · x)

)
�ψ + i∇a(x) · ∇ψ + δη(δk2 · x)∇b(x) · ∇ψ , (14)

where sgn is the sign function. The initial and boundary conditions are the same as in (5).

3. PML-based pseudospectral computational method

In this section, we derive a pseudospectral method which naturally imposes periodic boundary conditions. As periodicity 
is only necessary in the direction v1 , PML will be introduced for absorbing the wavefunction in the direction v⊥

1 .

We first describe the spatial discretization of the Schrödinger equation under consideration. For efficiency reasons and 
as the solution is periodic only in the direction k2 , it is natural to use a Fourier-based method for solving the Schrödinger 
equation. However, as the coefficients of the equation are non-constant, and as we need to impose Dirichlet or radiative con-
ditions it is also necessary to design a computational method that could take these constraints into account. The method we 
propose is a pseudospectral method allowing i) to easily take into account non-constant coefficients, and ii) a natural com-

bination with Perfectly Matched Layers in order to address the null Dirichlet boundary conditions (or radiative conditions) 
in the direction v⊥

1 . We refer to [2,5] for details about the proposed approach in the framework for quantum physics.

3.1. Pseudospectral method

The proposed computational method was used in different frameworks, linear and nonlinear Schrödinger equations [5,7], 
Dirac equations [1,2,8] or fractional PDE [3]. Throughout this section, we assume that the equation is solved on a generic 
truncated domain [−L1, L1] × [−L2, L2] � R2 . We define two sets of grid-points in real and Fourier spaces labeled by the 
multi-indices k = (k1, k2) and p = (p1, p2):

92



E. Lorin and X. Yang Applied Numerical Mathematics 199 (2024) 85–104

D
(x)
N =

{
xk := xk1,k2 = (x1k1 , x

2
k2

)
}
k∈O(x)

N
,

D
(ξ)
N =

{
ξ p := ξ p1,p2

= (ξ1
p1

, ξ2
p2

)
}
p∈O(ξ)

N

,

where N := (N1, N2), with Ni ∈ 2N∗ the number of points in each dimension, and with

O
(x)
N =

{
k ∈ N

2/ (ki = 0, · · · ,Ni − 1)i=1,2

}
,

O
(ξ)
N =

{
p ∈ N

2/

(
pi = −

Ni

2
, · · · ,

Ni

2
− 1

)

i=1,2

}
.

The set D(x)
N defines a mesh with equidistant positions in each dimension with sizes (for i = 1, 2)

xiki+1 − xiki = hi = 2Li/Ni .

One can deduce that the discrete wavenumbers in Fourier space are given by (for i = 1, · · · , D)

ξ i
pi

= piπ/Li .

The wavefunction ψ(x, t) is discretized spatially by a projection onto the spatial mesh while ψ̃ denotes the wavefunction in 
Fourier space. We denote by ψn

k
the approximate wavefunction at time tn and position xk , and by ψ̃n

p the wavefunction in 
momentum (Fourier) space at time tn and momentum ξ p . The discrete wavefunctions ψn

k
and ψ̃n

p are related by the discrete 
Fourier transform pair:

ψ̃n
p = F(ψn

k ) :=
N−1∑

k=0

ψn
ke

−iξ p ·(xk+L),

ψ̂n
k = F

−1(ψ̃n
p) :=

1

N

N/2−1∑

p=−N/2

ψ̃n
pe

iξ p ·(xk+L) ,

where L = (L1, L2). We also define the partial discrete Fourier coefficients in each dimension as:

ψ̃n
k|ki→pi

= Fi(ψ
n
k ) :=

Ni−1∑

ki=0

ψn
ke

−iξ i
pi

(xi
ki

+Li)
,

ψ̂n
k = F

−1
i (ψ̃n

k ) :=
1

Ni

Ni/2−1∑

pi=−Ni/2

ψ̃n
k|ki→pi

e
iξ i

pi
(xi

ki
+Li)

,

where the notation k|ki → pi means that the index ki in the set k is replaced by the index pi and where the partial DFT 
operator in the ith coordinate is denoted by Fi(·). In practice, all of these Fourier transforms are performed using the 
Fast Fourier Transform (FFT). In order to approximate the partial derivative, we use pseudospectral approximations of the 
pseudodifferential representation of the derivative operators. That is, we introduce the pseudodifferential operator [[ ∂i ]]
defined as follows

∂iψ(xk, tn) ≈
{
[[∂i]]ψn

}
k
:=

1

Ni

∑Ni/2−1
pi=−Ni/2

iξ i
pi

ψ̃n
k|ki→pi

e
iξ i

pi
(xi

ki
+Li)

,

∂2
i ψ(xk, tn) ≈

{
[[∂2

i ]]ψn
}
k
:= −

1

Ni

∑Ni/2−1
pi=−Ni/2

|ξ i
pi

|2ψ̃n
k|ki→pi

e
iξ i

pi
(xi

ki
+Li)

.

(15)

In other words, for any ³ ∈ R c(x)∂α
i u is approximated using its symbol c(x)(iξi)

α of the operator c(x)∂α
i ; that is by 

approximating c(x)F−1
(
(iξi)

αF(u)(x)
)
.

Typically, when neglecting the high modes we get the following aliasing error estimates: for ψ(·, t) ∈ Hr , there exists 
c > 0 such that

‖˜̂ψ − ψ‖H s � c(N1N2)
s−r‖ψ‖Hr ,

for some r > s > 1 (in 2-d) and ψ ∈ L1 ∩ Hr-periodic.

As discussed above, in the framework of photonic graphene, the material function (as well as the solution) is periodic in 
the direction v1 (orthogonal to k2) [18,22], for all t � 0
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ψ(x+ v1, t) = ψ(x, t) ,

while for |x · k2| → +∞ the solution tends to zero. In order to circumvent this issue in the direction v2 , we propose to use 
Perfectly Matched Layers (PML), allowing for absorbing the wavefunction in the direction v2 , while using a Fourier-based 
method. Typically, the idea consists in introducing an absorbing function S in the direction v2 . For the sake of simplicity, we 
could assume that v1 (resp. v2) is aligned with ex (resp. ey). Alternatively, a simple change of coordinates (corresponding 
to a rotation of angle π/6) can be applied as discussed below.

3.2. Survival kit on Perfectly Matched Layers (PML)

Let us recall the basics of PML [6,11,30]. The presentation is proposed on an one-dimensional bounded physical domain 
denoted by DPhy , as within the framework of this paper the PML will only be applied in one direction. We first add a layer 
which is called DPML , surrounding DPhys , stretching the x-coordinate. The overall computational domain is then defined 
by: D = DPhy ∪DPML . For the one-dimensional case, D = [−L, L] and DPhys = [−L∗, L∗], with L∗ < L and stretching. PMLs 
require a complex stretching of the real spatial coordinate x such as

x̃(x) = x+ eiθ

x∫

L∗

S(s)ds, (16)

where the absorbing function S :D → R is defined as (³ ∈ N∗)

S(x) =
{
s(|x| − L), L∗ � |x| < L,

0, |x| < L∗.
(17)

The rotation angle θ is usually fixed by the problem under study. For example, θ = π/2 is often considered for (integer 
order) time harmonic Helmholtz-type problems [12,29,30] while θ = π/4 is more adapted to Schrödinger problems [4,6,31,
34]. Hence, we define first order damped operator as follows

∂x �→ ∂xs := (1+ eiθ S(x))−1∂x,

modifying hence the initial PDE. The same way for second order operator, we get

∂2
xs

= (1 + eiθ S(x))−1∂x
(
(1 + eiθ S(x))−1∂x

)
.

The choice of absorbing function is rather flexible. Typically for some δx > 0,

Type I: σ0(x+ δx)
2, Type II: σ0(x+ δx)

3, Type III: − σ0
x

,

Type IV: σ0

x2
, Type V: − σ0

x
− σ0

δx
, Type VI: σ0

x2
− σ0

δ2x
.

(18)

We refer to [9] for details on PML.

3.3. The space-time discretization

In the following, we consider symmetry breaking functions of the form W (x) = w(x)I2×2 . This typically corresponds 
to a P-symmetry breaking, where, for instance, w(x) = a(x) + δη(k2 · x)b(x). The adaption to C-symmetry breaking is 
straightforward. We set

S
δ = −w(x)� − ∇w(x) · ∇ + w(x)

k2‖
4π2

‖k1‖2 + i

(
−

k‖

2π
∇w(x) · k1) − w(x)

k‖

2π
k1 · ∇

)
.

As we impose radiative condition in one direction (say ey), and periodic boundary conditions in the orthogonal one (ex), 
we propose to modify the equation under consideration introducing PML as discussed above.

We denote by �S = ∂2
x + (1 + eiθ )S(y))−1∂y

(
(1 + eiθ S(y))−1∂y

)
and ∇S = (∂x, (1 + eiθ S(x))−1∂y)

T . Hence the operator 
Sδ is transformed as follows

S
δ
S := −w(x)�S − ∇Sw(x) · ∇S + w(x)

k2‖
4π2

‖k1‖2 + i

(
−

k‖

2π
∇w(x) · k1) − w(x)

k‖

2π
k1 · ∇S

)
.

Using the above notations and denoting by ψh = {ψn
j } j;n the approximate solution, we solve

i∂tψh =
{

− w(xh)[[�S ]] − ∇w(xh) · [[∇S ]] + w(xh)
k2‖
4π2

‖k1‖2

+ i

(
−

k‖

2π
∇w(xh) · k1) − w(xh)

k‖

2π
k1 · [[∇S ]]

)}
ψh .
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The issue with the above approach is that it does not satisfy the periodicity in the correct direction imposed by the photonic 
graphene model (v1); but in the direction ex instead. In order to fix this problem, we can simply apply a change of variables 
as described below.

3.4. Change of coordinates

In order to include the periodic boundary conditions in the direction v1 , it may be convenient to make the following 
change of variables obtained thanks to a rotation matrix R ′ corresponding to the angle between ex and v1 . We denote by 
R ′ the rotation matrix of angle π/6:

R ′ =
1

2

( √
3 1

−1
√
3

)
.

Hence ex = R ′v1 . We set x′ = (
√
3x + y)/2 and y′ = (−x +

√
3y)/2. Then

∂x =
√
3

2
∂x′ +

1

2
∂y′ , ∂y = −

1

2
∂x′ +

√
3

2
∂y′ ,

and

∂2
x =

3

4
∂2
x′ +

1

4
∂2
y′ +

√
3

2
∂x′ y′ , ∂2

y =
1

4
∂2
x′ +

3

4
∂2
y′ −

√
3

2
∂x′ y′ .

Moreover, x = (
√
3x′ − y′)/2 and y = (x′ +

√
3y′)/2. We then denote �′ := ∂2

x′ + ∂2
y′ and

w̃(x′) := w
(
(
√
3x′ − y′)/2, (x′ +

√
3y′)/2

)
,

∇ w̃(x′) := ∇w
(
(
√
3x′ − y′)/2, (x′ +

√
3y′)/2

)
.

Regarding the PML, we simply take S(y′). Similarly, we get from ∇S

∇ ′
S :=

(√
3

2
∂x′ +

1

2
∂y′ ,

(
1+ eiθ S(y′)

)−1(
−

1

2
∂x′ +

√
3

2
∂y′

))T

.

Finally, we define �′
S as follows

�′
S =

(3

4
∂2
x′ +

1

4
∂2
y′

)

+
(
1+ eiθ S(y′)

)−1(
−

1

2
∂x′ +

√
3

2
∂y′

){(
1+ eiθ S(y′)

)−1(
−

1

2
∂x′ +

√
3

2
∂y′

)}
,

and

S
δ
S = −w̃(x′)�′

S − ∇ w̃(x′) · ∇ ′
S + w̃(x′)

k2‖
4π2

‖k1‖2 + i

(
−

k‖

2π
∇ w̃(x′) · k1) − w̃(x′)

k‖

2π
k1 · ∇ ′

S

)
.

Alternatively, we can consider a transformation mapping (v1, v2) to (ex, ey).

3.5. Time discretization and properties

The proposed approach will allow us to i) benefit from the accuracy and simplicity of Fourier-based methods, and ii) to 
absorb the wavefunction at the domain boundary when required. We denote by ψn

h the approximate solution at time tn . We 
first introduce the following approximate pseudodifferential operator (we consider below the case of P-symmetry breaking 
Schrödinger operator)

[[Sδ
S ]] := −w(x)[[�S ]] − ∇w(xh) · [[∇S ]] + w(xh)

k2‖
4π2

‖k1‖2 + i

(
−

k‖

2π
∇w(xh) · k1 − w(xh)

k‖

2π
k1 · [[∇S ]]

)
,

where the discrete operators [[�S ]] and [[∇S ]] were introduced in the previous subsections. The time derivative can be 
treated using an backward Euler method, such as

{
IN − i�t[[Sδ

S ]]
}
ψn+1

h
= ψn

h ,

or a Crank-Nicolson based approximation

{ IN

2
+ i

�t

2
[[Sδ

S ]]
}
ψn+1

h
=

{ IN

2
− i

�t

2
[[Sδ

S ]]
}
ψn

h .

It is easy to show the following result.
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Proposition 3.1. For ψ0 ∈ L2(�), we have the following stability results. The backward Euler scheme

{
IN − i�t[[Sδ

S ]]
}
ψn+1

h
= ψn

h , (19)

and the Crank-Nicolson scheme

{ IN

2
+ i

�t

2
[[Sδ

S ]]
}
ψn+1

h
=

{ IN

2
− i

�t

2
[[Sδ

S ]]
}
ψn

h , (20)

approximating (5) are unconditionally �2-stable.

Proof. We denote [[Sδ]] = w(xh)[[�]] + ∇w(xh)[[∇]] for k‖ = 0. We consider the continuous case in L2(R2) and denote 
by F and F−1 the Fourier transform of a function v ∈ L2(R2). We denote ξ = (ξx, ξy) the Fourier variables associated to 
x = (x, y). Denoting by 〈· , ·〉 the L2-inner product, we have

〈Sδv, v〉 = 〈w(x)F−1(−|ξ |2F(v)),F−1(F(v))〉 + 〈wx(x)F
−1(iξxF(v)),F−1(F(v))〉

+〈w y(x)F
−1(iξyF(v)),F−1(F(v))〉

= 〈w(x)∂2
x v, v〉 + 〈w(x)∂2

y v, v〉 + 〈wx(x)∂xv, ∂xv〉 + 〈w y(x)∂yv, ∂yv〉
= −〈∂x(w(x)∂x)v, v〉 − 〈∂y(w(x)∂y)v, ∂yv〉
= −〈w(x)F−1(iξ xF(v)),F−1(iξ xF(v))〉 − 〈w(x)F−1(iξ yF(v)),F−1(iξ yF(v))〉 .

Similarly at the discrete level, denoting vh ∈ �2 and 〈· . ·〉h the �2-inner product, we get

〈[[Sδ]]vh, vh〉h = 〈w(xh)F
−1
h

(−|ξh|2Fh(vh)),F
−1
h

(Fh(vh))〉h
+〈wx(xh)F

−1
h

(iξx;hFh(vh)),F
−1
h

(Fh(vh))〉h
+〈w y(xh)F

−1
h

(iξy;hFh(vh)),F
−1
h

(Fh(vh))〉h
= −〈w(xh)F

−1
h

(iξ x;hFh(vh)),F
−1
h

(iξ x;hFh(vh))〉h
−〈w(xh)F

−1
h

(iξ y;hFh(vh)),F
−1
h

(iξ y;hFh(vh))〉h .

Considering the Crank-Nicolson-based algorithm, and assuming ‖ψn
h‖2 � C‖ψ0

h‖2 , we multiply by ψ
n+1

h and integrate to get

〈{ IN

2
− i

�t

2
[[Sδ

S ]]
}
ψn+1

h
,ψn+1

h

〉
h

=
〈{ IN

2
+ i

�t

2
[[Sδ

S ]]
}
ψn

h,ψ
n+1
h

〉
h
.

Then

|ψn+1
h

|2
h
− i�t

〈
[[Sδ

S ]]ψ
n+1
h

,ψn+1
h

〉
h

= 〈ψn
h,ψ

n+1
h

〉h + i�t
〈
[[Sδ

S ]]ψ
n
h,ψ

n+1
h

〉h .

From the above computation and taking the real part of the equation, we get

|ψn+1
h

|2
h
+ �tIm

〈
[[Sδ

S ]]ψ
n+1
h

,ψn
h

〉
h

= Re〈ψn
h,ψ

n+1
h

〉h

�
1

2
|ψn+1

h
|2
h
+

1

2
|ψn

h|
2
h
.

Then, we easily deduce that

|ψn+1
h

|2
h
� |ψn

h|
2
h
+ O (�t2) .

Hence, at any time Tn

|ψn
h|

2
h
� |ψ0

h|
2
h
+ O (Tn�t) ,

which concludes the proof. �

3.6. Feit-Fleck method for edge state computation

It is simple to adapt the time-dependent solver developed above for constructing eigenfunctions (edge-states) to the 
operator −∇ · (W (x)∇). A standard Feit-Fleck-like algorithm [16] is proposed hereafter. The computation of edge state 
energies are non-trivial as they are usually located in a spectral gap which is usually analytically unknown. Hence a direct 
minimization of the Rayleigh coefficient, the use of Galerkin method, or even finite difference approximation usually leads 
to spectral pollution or/and dissolution in the continuum [14,15]. Feit-Fleck methods allow to avoid this type of issues. Let 
us introduce an arbitrary trial function

ψ0(x) =
∑

n

cnφn(x) , (21)
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where {cn}n is a sequence of unknown complex numbers, and {φn}n is the sequence of unknown orthogonal “eigenfunctions” 
(including edge states). If we denote ψe the exact solution to the corresponding time-dependent Schrödinger equation, we 
get

ψe(x, t) =
∑

n

cn exp(−iEnt)φn(x) . (22)

We next denote the exact autocorrelation function by

Ce(t) = 〈ψe(·, t),ψ0〉 =
∑

n

|cn|2 exp(−iEnt) .

We now denote by ̂· the Fourier transform in time. Hence the exact Fourier transform provides the power spectrum of the 
operator:

Ĉe(E) =
∑

n

|cn|2δ0(E − En) .

When apply to say χ ∈ C∞(R), we then get

〈̂Ce,χ〉E =
∑

n

|cn|2χ(En) .

Hence, the edge state energies will correspond to the peaks in the graph of the |̂Ce |2 . Denoting ψh the approximate solution 
and Ch the corresponding approximate auto-correlation function. For any χ ∈ C∞

0 (R) (C∞ with compact support functions), 
we get

∣∣〈̂Ce,χ〉E − 〈̂Ch,χ〉E
∣∣ �

∣∣ ∫
R

χ(E)
∫
eitτ (Ce(t) − Ch(t))dtdE

∣∣
�

∣∣ ∫
R

χ(E)
∫
eitE 〈ψ0,ψe(·, t) − ψh(·, t)〉dtdE

∣∣
� supE ‖ψ̂e(·, E) − ψ̂h(·, E)‖L2x

‖ψ0‖L2x
‖χ‖L1(R) .

This estimate is not very sharp and in order to determine Ĉ(E), the wavefunction should be evolved to infinite time 
which is practically difficult. Hence, instead of computing Ce for all t , we will solve the time-dependent Schrödinger equation 
on a finite interval [0, T ] and compute the FFT of C (wT )(t) := C(t)wT (t) for some window function wT , in order to obtain 
the power spectrum by fitting the peaks with the lineshape. Practically, Hanning’s functions are often chosen (see also 
[13,17] in the case of the Dirac operator)

wT (t) =

⎧
⎪⎪⎪«
⎪⎪⎪¬

1− cos

(
2πt

T

)

T
, for t ∈ [0, T ],

0, for t ∈ (−∞,0) ∪ (T ,∞) .

(23)

Once the egde state energy Ees , is calculated, the corresponding approximate eigenstate ψes can be obtained by using

ψes(x) =
T∫

0

dtψ(x, t)w(t)eiEest, (24)

where ψ(x, 0) is an arbitrary trial function. This can be justified thanks to the lineshape function T [16],

T (E − En) =
T∫

0

exp
(
i(E − En)t

)
w(t)dt .

Notice that this method is not directly applicable to compute degenerate states. Let us conclude by mentioning that the 
energy resolution is given by �Emin = π/T and the maximum bandwidth �Emax = π/�t ([16]).

Experiment 0. Let us consider a simple example to illustrate the construction of edge states with a Feit-Fleck method, for 
³L, where ³ = 0.075. The computational domain is [−π , π ] × [−2π , 2π ] and the initial data is

ψ0(x) = exp
(
− 5‖x‖2

)
/N0 ,

where N0 is a normalization constant (‖ψ0‖2 = 1). We choose the following medium function
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Fig. 5. (Left) Power spectrum. (Middle) Feit-Fleck convergence ‖ψn+1 − ψn‖2/‖ψn+1‖2 as function of time. (Right) Edge state modulus.

a(x) = 5−
3∑

i=1

cos(ki · x) , (25)

and the wall function is defined by

w(x) = δ1 tanh(δ2k2 · x)
3∑

i=1

sin(ki · x) ,

with δ1 = 1.5 and δ2 = 30. We compute the solution and the correlation function C over [0, T ] with T = 100, and a time 
step given by �t = 5 ×10−3 and Nx = N y = 121. We report in Fig. 5 the spectrum of C and the edge state corresponding to 
the energy peak at 40.7. Then we solve a second time the equation in order to approximate the corresponding eigenfunction 
as proposed in (24), and denoted ψes . Once the rotation is performed (see Subsection 3.4), the wall function is located at 
y = 0.

In order to illustrate the propagation of edge states along the wall, we perturb the computed edge state, by a Gaussian 
function centered at x0 = (2.5, 0),

φ0(x) = ψes(x)exp
(
− 10‖x− x0‖2

)
/N0 ,

where N0 is a normalization constant. We report the solutions at time t = 0, 1.25, 2.5, 3.75, 5 illustrating, as expected the 
propagation along the wall (see Fig. 6).

4. Numerical experiments

This section is dedicated to numerical experiments. In the first experiment, we simply check some basic properties of the 
computational method. Then we propose some more advanced physical simulations. In particular, we exhibit an edge-state 
like behavior along a wall in the photonic graphene and a trapping phenomenon as described in Section 2.

Experiment 1. In the first experiment, we propose a simple illustration of the PML-based pseudospectral method by testing 
the absorption of a wavefunction in the absorbing layer. The computational domain is [−π , π ]2 and the initial data is

ψ0(x) = exp
(
− γ ‖x− x0‖2 + ik0 · x

)
/N0 ,

where N0 is a normalization constant (‖ψ0‖2 = 1). As a preliminary calculation, we check that the �2-norm of the solution 
is properly conserved when there is no interaction with the boundary, using a Crank-Nicolson based algorithm. In this goal, 
we first take the center of the Gaussian at x0 = (0, 0) and k0 = (2, 2)T (and ³ = 0.1, ζ = 0 in (26)), we compute the solution 
for t ∈ [0, 4], and we report 1 − ‖ψn

h
‖2 in logscale, as a function of tn in Fig. 7 (Top-Left). We observe that the �2-norm is 

accurately conserved.
Then, we compare the solution with and without PML for k0 = (0, 20)T , x0 = (0, 2.25) and γ = 30. We use the PML of 

type VI (18), see Section 3, and we consider the following material function

a(x) = ³ + ´

3∑

i=1

cos(ζki · x) , (26)

where ³ = 0.02, ´ = 0.004, ζ = 0.1. The wavefunction function is driven out from the domain through the upper boundary 
{y = π}. The PML size is taken equal to 7.5% in the y-direction, and is located in the zone �\�PML = [−π , π ] ×[0.925π , π ]. 
We report the �2-norm of the overall approximate PML and no-PML solutions ψn

h
at any time tn , that is ‖ψn

h
‖2 in the zone 

excluding the PML, �\�PML (to get a rigorous comparison). In other words in both cases, we expect the solution �2-norm 
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Fig. 6. From Top-Left to Bottom-Right: wavefunction propagation from for t = 0,125,2.5,3.75,5,6.125.

to decrease (as entering the layer); but only in presence of PML is the solution really absorbed. Without PML the solution is 
eventually periodically transmitted through the top boundary, and its �2-norm will increase and eventually get close to 1. It 
is expected in the first case, that the �2-norm will go to zero (absorption) unlike the solution without PML. The latter will 
allow to mainly avoid the propagation of unphysical waves through periodic boundary conditions. The computation data are 
the following Nx = N y = 101, and δ = 0.025.

We report in Fig. 7 the solution at time T = 2 without PML (standard periodic boundary conditions, Top-Right) and with 
PML (Bottom-Left). We plot in Fig. 7 (Bottom-Right) the overall �2-norm as a function of time, illustrating the absorption 
when using PML.

Experiment 2. In this experiment, we are interested in the capture by a curved wall of a wavefunction in the case of C-
symmetry breaking. We compare the evolution of the wavefunction with or without wall. We propose the following material 
function w
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Fig. 7. Experiment 1. (Top-Left) �2-norm conservation as function of time without boundary interaction. (Top-Right) Wavefunction without PML. (Bottom-

Left) Wavefunction with PML in the y-direction. (Bottom-Right) �2-norm as function of time.

w(x) = a + b
∑3

i=1 sin(ki · x) + δ1η(δ2k2 · x)
∑3

i=1 cos(δ3ki · x)

+k‖
(
w(x)

k‖

4π2
‖k1‖2 + i

(
−

1

2π
∇w(x) · k1) − w(x)

1

2π
k1 · ∇

))
,

(27)

with η = tanh and where a = 0.05, b = 0.01, δ1 = 3, δ2 = 2 and δ3 = 0.22, k‖ = 0. The choice of these parameters allows for
a larger flexibility to construct relevant benchmarks. In order to exhibit the effect of the perturbation, we will also consider 
a low dispersion case. The initial data is given by

ψ0(x) = exp
(
− γ ‖x− x0‖2

)
/N0 ,

with γ = 20 (resp. 10) and x0 = (π/2, 20π/17). The solution is computed from time 0 to T = 0.02. We consider the 
following numerical data �t = 0.0001, Nx = N y = 151. On Fig. 8, we report the normalized restriction of the solution 
ψWall = ψ|NW

with ε = 0.9 (9), as well as in Fig. 9 the solution at times T = 0.01 (Left) and T = 0.02 (Middle). We also 
report the propagation of the maximum of the solution as a function of time, see Fig. 9 (Right).

We observe that the wavefunction is mainly trapped in a disc, as it was expected from the discussion proposed in 
Section 2. At further times, the wavefunction which propagates along the wall is also eventually stopped, see Fig. 10 where 
is reported the solution at T = 0.035. This phenomenon can be interpreted by looking at Fig. 11 (Left): at the intersection 
of the wall and the level set (circle) w(x) = 0. More specifically, the boundary of these discs is defined as the following sets

C :=
{
x ∈ �/

∑

i=1

cos(δ3ki · x) = 0
}
. (28)

That is the wavefunction stops propagating for x ∈ C ∩ W , where

W :=
{
x ∈ �/k2 · F (x) = 0} .

This also corresponds to a region where wx and w y are close to 0, see (11) (Right) and the velocity vector field is almost null 
along the wall. To allow the wavefunction to continue its propagation along the wall, it is necessary to avoid the diffusion 
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Fig. 8. Experiment 2. Normalized restriction on the wall of the wavefunction at time T = 0.01 (Left) without wall. (Right) with wall.

Fig. 9. Experiment 2. (Left) Wavefunction at time T = 0.01. (Middle) At time T = 0.02 (Right) Position of wavefunction maximum as function of time.

Fig. 10. Experiment 2. (Left) Wavefunction at time T = 0.035. (Right) Position of wavefunction maximum as function of time.

zone, or alternatively to take δ3 smaller in (27). By continuity arguments, the behavior presented in this experiment is 
expected to remain valid for k‖ �= 0, at least small.

Experiment 3. In this experiment, we are interested in the propagation of the wavefunction towards the wall again in the 
case of C-symmetry breaking. We start with an initial data located far from the wall, with a non-zero momentum

ψ0(x) = exp
(
− γ ‖x− x0‖2 + ik0 · x

)
/N0 ,

with k0 = (0, −5)T , x0 = (4, 3), γ = 40. The initial state is then located inside C defined in (28). In (27) we take η = tanh

and a = 0.1, b = 0.1, δ1 = 6, δ2 = 2 and δ3 = 0.22. We observe that the wavefunction, as expected, remains inside C as 
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Fig. 11. Experiment 2. Graph of log |w|, log |wx|.

Fig. 12. Experiment 3. Wavefunction at final time.

reported in Fig. 12. We refer this phenomenon as a trapping of the wavefunction, and which could have some potential 
applications in photonics and optics.

Experiment 4. In this experiment, we are interested in the propagation of wavefunctions in the case of P-symmetry break-
ing. Unlike the C-symmetry breaking case, the propagation along the wall is negligible, see Section 2. We compare the 
evolution of a wavefunction with or without wall. In particular, in order to exhibit the effect of the perturbation, we will 
again consider a low dispersion case,

w(x) = a + b
∑3

i=1 sin(ki · x) + δ1η(δ2k2 · x)
∑3

i=1 cos(δ3ki · x) ,

η(x) = tanh
(
k2 · F (x)

)
where a = 0.025, b = 0.01, δ1 = 3, δ2 = 2 and δ3 = 0.25. The initial data is given by

ψ0(x) = exp
(
− γ ‖x− x0‖2

)
/N0 ,

with γ = 20 and x0 = (3, 
√
3) (resp. (π/2, 20π/17)). The solution is computed from time 0 to T = 0.3. We consider the 

following numerical data �t = 0.0001, Nx = N y = 151. On Fig. 13 (Left), we report the propagation of the maximum of the 
solution as a function of time Fig. 13 (Right). We observe a weak propagation along the wall, which is consistent with the 
analysis presented in the P-symmetry case in Section 2.

5. Concluding remarks

In this paper, we have proposed one of the first numerical studies of the dynamics of wavefunctions in photonic graphene 
for complex materials. We have developed a pseudospectral method combined with directional perfect matched layers in 
this goal. The proposed method allows us to compute edge states (thanks to a Feit-Fleck-like method) and their dynamics, 
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Fig. 13. Experiment 4. (Left) Wavefunction at time T = 0.3. (Right) Position of wavefunction maximum as function of time.

and more generally, the dynamics of any wavefunction within photonic graphene. In particular, we have mathematically and 
numerically exhibited an interesting trapping phenomenon, and derived equivalent equations in the vicinity and away from 
walls. In future work, we plan to explore in more detail the physical properties of edge states in photonic graphene.
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