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coefficients, modeling electromagnetic waves propagating in photonic graphene with sym-
metry breaking. In particular, we are interested in the propagation of edge states along a
wall, modeling a defect/heterogeneity in the optical set-up. Perfectly matched layers are
here combined with the derived pseudospectral method in order to absorb wavefunctions
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1. Introduction

The dynamical phenomena on photonic graphene and more generally photonic topological insulators are become a very
active research field [27] with recent and unexpected discoveries. The study of photonic graphene allows to explore op-
toelectronic devices and more generally the fundamental topological properties of optical systems with application to
topological lasers (allowing protected transport, edge state propagation) singular optical beams, and spin-orbit coupling.
Let us mention a recent work [20], where thermalized states and topological edge flow in two-dimensional nonlinear topo-
logical insulators on Haldane lattices are described by a normalized discrete nonlinear Schrédinger equation. Long range
interactions were also analyzed in [23]. In practice, photonic graphene sets-up coupled waveguides, microwave resonators,
nonlinear crystals, atomic vapor cells, see [33] for references. The dynamics of electromagnetic waves on photonic graphene
is primarily modeled using Maxwell’s equations, but some standard hypotheses (paraxial approximation, slowly varying en-
velop approximation, etc.) often lead to simple nonlinear Schrédinger equations on honeycomb lattices. Paraxial discrete
Schrédinger equation can also be used, see [26]. In this present paper, we will consider more accurate linear Schrodinger’s
models with non-constant coefficients, derived from Maxwell’s equations.

In this paper, we are interested in the propagation of electromagnetic waves in photonic graphene [19,21,24-26,32], in
particular when some symmetry properties in the material are broken. For instance in this case, it is well-known that the
so-called edge states can be captured and propagate “along” walls or domain boundaries [22]. In general, photonic graphene
is geometrically modeled by a honeycomb lattice A, defined by
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A=7Zvi®Zvy,

generated by two vectors v = (+/3,1)7/2, vo = (+/3, —=1)T/2, and with dual lattice vectors k; = 2w (1,+/3)T/v/3, ky =
2 (1, —/3)T /4/3 (see [22]):

A* =7k ®Zk;.
The so-called fundamental cell is defined by
Q:={nvi+nv, : 5€[0,1),i=1,2}.
For ¥ :=R?/Zv, we define the domain
Qy :={t1vi+1Vv2 : 71 €[0,1], 1 € R},

and a truncated version, for some L > 0,

Qyp:={n1vi+nvy : 11 €[0,1], 2 € [-L, L]}.
The evolution of wavefunctions in this material is modeled by a time-dependent Maxwell equations, which can be rewritten
as a Schrodinger-like equation (see again [22] for details):

idy = L%, where £°:=-V.(W@®V), 1)

where the medium is described by a matrix valued function W € L%(A; C2*2), and where § is some “perturbative” real pa-
rameter which will be specified hereafter. In the case of non-perturbed/structured photonic graphene (§ = 0), the lattice
possesses several symmetries and we then denote the material weight by W = A, where A € L2(A; C?*?) is Hermi-
tian, positive definite, and uniformly elliptic. The non-perturbated material satisfies the CRP-invariance: A(—x) = A(x),
A(R*X) = R*A(X)R and A(x+ v) = A(x), for v € A and where the rotation matrix R is defined by

(% )

Hereafter, we will choose A(x) = a(x)I,«>. Practically, A, W will be assumed continuously differentiable. We refer to [19,22]
for some more detailed properties. Notice that the Fermi velocity is defined from the first eigenfunction of £°(8 = 0), where

£0=—va®x) -V —a®)A.
The electromagnetic wave dynamics in that case is hence modeled by

10y =a(®) Ay + Va®) - Vi .

Unlike the computation of the edge-states which may require a transformation of the operator under consideration (for
instance due to dissolution in continuum [14] or spectral pollution [18]), the computation of the time-dependent solution
can be “directly” performed.

1.1. Perturbed photonic graphene

In the case of perturbed photonic graphene (8 # 0), we rewrite

W) :=AKx) +M®x),

where x = (x, y), and M models to a PC-symmetry breaking. We again refer to [22] for details. Let us recall that the edge
states are the eigenfunctions associated to the point spectrum of the following eigenvalue problem, for kj € [0, 277):

Loy k) = Ei(lfu)wﬁ(x;k”),
Y X+ vk =efiyl(x k),
Yo k) — 0 as |x-ky| — +oo,
where 1//(2S is a so-called edge state and Eg the corresponding energy. In this paper, we will be particularly interested in

PC-symmetry breaking, thanks to the wall function n having a shape determined by a smooth function F, the wall-shape
function. We assume hereafter that F(0) =0, and that 7 is a smooth function, such that
nO0)=1, nx ~x as x—0, @
nx) — *£1, n'(x) > £0 as x— Foo.
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Following [18], we will take 7(x) = tanh(x). For the 7P-symmetry breaking case, we then consider
W (X) :=a®)I2x2 + 8n(kz - F®))b®) 252, (3)
and for the C-symmetry breaking
W (%) :=a®)I2x2 + 6n(kz - F(x))b(x)0 , (4)
where ¢ the following Pauli matrix
o — 0 —1i
=i o )

Let us recall that kj is orthogonal to v,. We then propose to apply a Bloch transformation of the operator, which allows us
to simplify the analysis and approximation of the Schrédinger operator. Setting

k
8 — N A Y
Ve (%, k|) = exp (1 anl x)¢e (*,ky)
we easily see that ¢§ satisfies the following system
S (x; ki) = ED (k)3 (x; k),
Po (X + Vi ky) = 92 (x; k),
P2 (% k) — 0, as |x-ky| — +oo,

where we have denoted

§ = -(v+ izk—jntkl) W(V+ izk—j”rk]).

We next denote by yr, the solution to the following time-dependent Schrédinger equation
10, (%, 1) = S’ Yy (*. 1), on 2 x (0, T),
Ve, (x.0) = 93 (x: k), on €,
Vi, @+ V1,0 =y ®,0), onQx (0,T),

w,f"(x,t)—>0, as |x-ky| - +oo.

(5)

In particular, when W = A+ M with A(%) =a(*)I5, and M(x) =n(k - F(%))b(x)a (resp. M(x) = én(kz - F(x))b(x)I>) for
C-symmetry (resp. P-symmetry) breaking, we get
k2
S = _V.(A+ M)V + ﬁkl (A(X) + M(x)k;
(ki ki
—i( ==V - (AX) + M(x)k + ——k1 - (A(x) + M(x))V ).
21 27

Notice that as the function a is real, the dynamical equation contains in particular a transport and a reaction term. More-
over when M is null the spectrum of SO is discretel E1(k) < --- < Ep(k) < --- for k in the first Brillouin zone, and the
corresponding eigenvalues are such that ®(x + v) =e*Vd(x), for all v € A; see [22].

1.2. Examples of material functions

As an illustration of the above introduction, we propose in this paragraph to report the graph of some functions modeling
different materials under consideration in this paper. Let us set

w(x) :=a(x) + m(x),

where

3 3
aX) =a+p Y cos(k;-x), mx)=0sn(sky- F(x))) sin(k; %), (6)
i=1 i=1
where the wall function is given by n = tanh and with the following constants: § =1, « = 0.3, 8 =0.1, and where F(x) is
the wall-shape function. We report the graph of a, ax(= 9xa) and ay (= 9ya) in Fig. 1.

In Fig. 2 (Top)(resp. 2 (Bottom)), we report for F(x) = (x, y)T (resp. F(x) = (x, y/2 + sin(y)/Z)T) the graphes of w, wy,
and wy, illustrating the effect of the wall perturbation on the material structure.
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Fig. 1. Graph of a, ay and ay. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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1.3. Choice of the computational method

The mathematical model under consideration is a two-dimensional (2D) time-dependent Schrédinger equation with
non-constant coefficients; and which are periodic in the direction v¢. Due to this periodicity it is natural to use a Fourier-
based method. The chosen method is an IMEX pseudospectral method based on the pseudodifferential representation of
the Schrédinger Hamiltonian, which was originally developed in [2,5]. Alternatively, a higher order finite element methods
could have been used in order to benefit from the variational structure of the equation. However, considering the complexity
of the equation, the simple pseudospectral method allowing for approximating PDE with non-constant coefficients, is here
preferred. Let us mention that among several existing techniques for approximating the Schrédinger equation under consid-
eration, numerical techniques such as Generalized Finite Difference Methods which can easily be coupled with PML, allow
for a large flexibility and simplicity of implementation while keeping a good accuracy and nice mathematical properties
[10,28].

In this paper, we are in particular interested in edge states, which are eigenstates to the Schrodinger operator. The latter
are known [22] to be local in the direction k;, which is orthogonal to vi. Moreover, as the solution is not periodic in that
direction, it is then necessary to avoid the periodicity naturally induced by the Fourier transform. In this goal, we propose to
combine our pseudospectral method with perfectly matched layers [11] in the direction k,. Interestingly, this combination
does not complexify the structure of the overall algorithm. Some mathematical and numerical properties of the derived
algorithm will be proposed in Section 3.
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14. Organization of the paper

This paper is organized as follows. In Section 2, we discuss some mathematical properties of the proposed model in
particular regarding the dynamics of the wavefunction in the neighborhood of the wall. Section 3 is dedicated to the deriva-
tion and properties of a computational pseudospectral method for solving the time-dependent Schrédinger equation under
consideration. In Section 4, we present several numerical experiments illustrating the properties of the derived method and
simulating some physical phenomena. We conclude in Section 5.

2. Some mathematical properties

In this section, we present some simple but important mathematical properties of the studied model, in particular,
regarding the evolution of the wavefunctions in the neighborhood of the wall.

2.1. Basic information

Due to the complexity of the equation, the analysis of the wavefunction dynamics and possible capture of edge states
by the wall, may require to work on a simplified model. In this goal, we will derive below equivalent equations in the
case of symmetry-breaking. For the sake of simplicity, we will consider infinite spatial domain R2, which is a reasonable
assumption, since we will mainly be interested in localized solutions. In particular, we assume that the initial condition has
compact support in the space domain. From

1y =-V- (W®x)V),

we multiply by ¥ € L?(R?) leading to
1d
2dt

‘P-symmetry breaking. In this case,

I3 =—Im/W(x>|w<x, £)%dx.

W (x) = a@®)l2.2 +8n(kz - FX)b@®)I2x3 .

Hence as W is real, the L?-norm of the wavefunction v is trivially conserved. Interestingly, we also get the following
identity

Im[Ewtdx:/a(x)W(x, 0% + 8n(kz - F(®))b®) |V (x,0)[%dx.
C-symmetry breaking. In this case,

W (x) :=a(®) 122 + 8n(k2 - F®)b(%))0

and the L%-norm conservation also holds. Indeed
1d

2dt

where

r=(5 o)

2.2. Equivalent equation in symmetry breaking

I¥1l5=Re [b@y VY () - Vi @)dx=0.

Let us discuss the equivalent equation in the case of symmetry breaking. More specifically, we are interested in the
equivalent equation close and away from the wall.

C-symmetry breaking. We first discuss the dynamics along the wall in the case of C-symmetry breaking. We assume that
the Bloch transform has not been applied yet, i.e. we consider Equation (1)

iy ==V -(WR)-V)y,

where W =al;,«; +mo and with
m(x) = én(Sk, - F(x))b(x) .
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Notice first that

W&V -V =ax)+m@x)oV-V =a®)A,
as oV -V =0. Next

VW (x)-V = Vax) +Vm(x)o -V
= Va®) + Vm(x) - (—1idy, 1dx)7.

Denoting F = (Fx, Fy)T we then get

VW (X) -V = Va(x) + 5n(3ky - ) Vb(x) - (—1dy, 197
= 82b(x))n'(8ky - F(X))Kz - (3xFx(%), 3y Fy (%)) - (—1dy, 13,7 .

Then

VW (X) -V =Va(x) + 1Kx(x)0x + 1Ky (%)dy + 1Lx(X)dx + iLy(x)0y,
where

Kx(®) = —62b @)1 (5ka - F(0))K3 (9 Fy ),

Ky (@) = 82b(x)n’ (ks - F())K3 (3 Fu(2)
and

Ly(x) = —8n(5ky - F(x))dyb(x),
Ly(x) = 8n(Sky - F(x))db(X).

Denoting the vector fields K = (K, Ky)T and L = (Ly, Ly)T, the equation then reads
oy =i(a(x) +m@x)AY +1iVax) -V + K(X) - Vi + L(x) - V. (7)
We now analyze the contribution of this velocity fields K, L close and away from the wall.

Close to the wall. Thanks to the assumption (2), close to the wall we have n(x) ~ x and n’ ~ 1. More specifically, denoting
by Nw a neighborhood of the wall defined as

Nw ={x/ky- Fx)=0(1)}, (8)
where o(1) refers to § — 0. In particular, we have, for x € Ny,
n(kz - F(X)) ~xenry k2 - F(x) =0(1). (9)
Hence
K(X) ~xeniy —82D(®)kydy Fy (),
Ky(®) ~xeniy 82b@)K30xFx(X),
and

Lx(®) ~xeniy —6°k2 - F(X)3xb(x) = 83xb(%)0(8),
Ly (%) ~xeny 8%k - F(%)0yb(x) = 80,b(%)0(5) .

In other words, close to the wall the transport is mainly driven by the vector field K (as L is negligible compared to K).
More specifically, we observe that, close to the wall, the direction of the propagation is given by the following velocity field:

V(x) = 62bx)(— kS, Fy(x), KoxFy(®)) ",

where F(x) = (x, f(y))T, we get
V@®) =8*b@kz- (—f' (). D'

Regarding m, we also have in the neighborhood of the wall:
M(X) ~xeniy 8b(X)0(3).

Based on the above discussion, the model behaves as follows.
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Definition 2.1. The equivalent equation to (7) close to the wall in the case of C-symmetry is defined as:

Y =1i(a(®) +sbx)0(8)) Ay +iVa®) -V + V(x) - V. (10)

The initial and boundary conditions are the same as in (5).
We make several important remarks as below.

e There is in general, no guarantee that m is negligible compared to a, so that we keep its contribution in the equivalent
equation.

e The amplitude of the propagation velocity is mainly given by the term §2b(x). As b is an oscillatory function, we then
expect a non-constant velocity, which can essentially vanish when b is null (or practically close to 0). Considering
b(x) = Z? cos(k; - x) (or sin), and we denote

Cp:={xe A/b(x)=0}. (11)

In this case Cp is the union U,Cy of circles C, where some of these circles are truncated by the boundary of A. In this
case, we observe that the vector field V is null (in fact even L would be null in this case). We now denote

W:={xeA/ky F(x)=0}.

At the intersection of C, and W, the wavefunction will no more be driven by V. See Fig. 4, where the wall is identified
as a curved line crossing some circles Cg.

e On Cp, notice that m in (10) will also be null. That is the kinetic contribution along the wall also vanishes on Cp.

e If a is small, the wavefunction (including edge states) with initial position inside a disc Dy with boundary C, will be
trapped inside Dj.

Away from the wall. In this case, we define
Na = {x/n(kz- F®)| =1-0)},
with this time, 1/(x) ~xen, 0, so that Kx(x) ~xen;, 0 and Ky (X) ~xen, 0. Away from the wall, L is no more negligible, and

m(x) ~xe N, 1. Hence, the equivalent equation can be defined as follows.

Definition 2.2. The equivalent equation to (7) far from the wall in the C-symmetry case is defined as:

Y = i(a®) + sb(x)sgn(ky - X)) Ay — iVaX) - Vi + LX) - Vi, (12)

where sgn is the sign function. The initial and boundary conditions are the same as in (5).

In this paper, b will be typically taken as b : x +— 2,3:1 cos(k; - x) (or sin) where k; = 2w (1,/3)T/V/3, k; =
2 (1, —/3)T/+/3 and ks = —k; — ky. Let us report the graph of b over the domain [0, 2712 in Fig. 3 (Left) and in Fig. 3
(Middle), (resp. (Right)) the graph of x — log (10_6 + tanh(Sk; - F(x)) Zle sin(k; ~x) for =1 and F(x) = (x,y/2)7 (resp.
F(x) = (x,y/2 +sin(2y)/2)T). We have added the coefficient 10~ to better visualize the zone where the vector field V

vanishes (or is small). As expected, along the wall the velocity field actually vanishes. These zones correspond to the inter-
section to the wall function F with the zeros of b.

In Fig. 4, we report the graph in logscale of w :=a+m and wy, wy, illustrating the intersection point of C;, and W for

a(x) =0.1) " sin(k; - x), m(x) =5 tanh(s(kz - F(x))) Y _sin(0.5k; - x),
i=1 i=1
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Graph of log(w) araph of log(w,) Graph of log(w,)

L T S S

Fig. 4. Graph of log|w|, log|w| and log|wy|.

and § =2 and F(x) = (x,0.25sin(y))”. The use of the logscale allows to more clearly identify C, (union of circles) as well
as the domain W. The claim is that, in the C-symmetry case, at the intersection points between C, and W a wavefunc-

tion would stop propagating. More generally, the wavefunction will be trapped inside the disc of contour Cg, as we will
numerically observe in Section 4.

‘P-symmetry breaking. A similar discussion is proposed in the case of P-symmetry breaking.

Close to the wall. In the neighborhood of the wall, that is in Ay the equivalent equation reads as follows.

Definition 2.3. The equivalent equation to (7) close to the wall in the P-symmetry case is defined as:

dy =1i(a(®) +8bx)0(8)) Ay +iVa@®) -V +iZ(x) -V, (13)

where

Z(x) = 8%b(x)(k3dy Fy (%), kgayFy(x))T )

The initial and boundary conditions are the same as in (5).

Interestingly in this case the wall does not make appear a transport term, but a “coupling” term instead.

Away from the wall. Away from the wall, that in the set A, we define:

Definition 2.4. The equivalent equation to (7) far to the wall in the P-symmetry case is defined as:

Oy = i(ax) + sb(x)sgn(ky - X)) Ay + iVa(x) - Vi + 8n(Sky - ) Vb(x) - Vi, (14)

where sgn is the sign function. The initial and boundary conditions are the same as in (5).
3. PML-based pseudospectral computational method

In this section, we derive a pseudospectral method which naturally imposes periodic boundary conditions. As periodicity
is only necessary in the direction v, PML will be introduced for absorbing the wavefunction in the direction vf.

We first describe the spatial discretization of the Schrodinger equation under consideration. For efficiency reasons and
as the solution is periodic only in the direction kj, it is natural to use a Fourier-based method for solving the Schrédinger
equation. However, as the coefficients of the equation are non-constant, and as we need to impose Dirichlet or radiative con-
ditions it is also necessary to design a computational method that could take these constraints into account. The method we
propose is a pseudospectral method allowing i) to easily take into account non-constant coefficients, and ii) a natural com-
bination with Perfectly Matched Layers in order to address the null Dirichlet boundary conditions (or radiative conditions)
in the direction v{-. We refer to [2,5] for details about the proposed approach in the framework for quantum physics.

3.1. Pseudospectral method

The proposed computational method was used in different frameworks, linear and nonlinear Schrédinger equations [5,7],
Dirac equations [1,2,8] or fractional PDE [3]. Throughout this section, we assume that the equation is solved on a generic
truncated domain [—Lqy, L1] x [—L2, L] & R2. We define two sets of grid-points in real and Fourier spaces labeled by the
multi-indices k = (k1, k2) and p = (p1, p2):

92



E. Lorin and X. Yang Applied Numerical Mathematics 199 (2024) 85-104

Dﬁ‘) = (X =%k, = (Xk1 sz)}k€o<x>»
&) _ ._ —_
Dy’ = {gp =&y p = (SPI’EPZ)}pGO}VE)’

where N := (N1, N3), with N; € 2N* the number of points in each dimension, and with

O(X) {k eN?/(ki=0,---,N; — 1)i—1. }

) _ _Ni Ni
Oy N —, e, — =1 .
{pe /( 2 2 >i1,2}

The set DI(\;() defines a mesh with equidistant positions in each dimension with sizes (for i =1, 2)
i i h. —9[:/N:
X1 — X, = hi =2Li/N;.

One can deduce that the discrete wavenumbers in Fourier space are given by (fori=1,---,D)

&p, = pir /Li.
The wavefunction v (x, t) is discretized spatially by a projection onto the spatial mesh while J denotes the wavefunction in
Fourier space. We denote by vy, the approximate wavefunction at time t, and position X, and by 1//"} the wavefunction in

momentum (Fourier) space at time t, and momentum §,. The discrete wavefunctions Y and {Z"; are related by the discrete
Fourier transform pair:

N—-1
Up =Ty = e r D,
k=0
N N 1 N/2-1 o
=TTy D et
p=—N/2

where L = (L1, Ly). We also define the partial discrete Fourier coefficients in each dimension as:

Ni—1
e +L)
Vitgosps = FiU) 1= Y Ve i,
ki=0
1 Nij2- o L)
1 i X +
up =F W : =N Z 1pk\kﬂh P
" pi=—Ni/2

where the notation k|k; — p; means that the index k; in the set k is replaced by the index p; and where the partial DFT
operator in the ith coordinate is denoted by J;(:). In practice, all of these Fourier transforms are performed using the
Fast Fourier Transform (FFT). In order to approximate the partial derivative, we use pseudospectral approximations of the
pseudodifferential representation of the derivative operators. That is, we introduce the pseudodifferential operator [[d;]]
defined as follows

Ni/2—1

1 _ L~
0y @ tn) ~ {[1B1Y" ], = —Zp;z_N,. PELR 7

ig;;i (x;(i +L;)
£h (d +L) (15)
N;/2—1 i 25 1&), (%, +Li
01y (i tw) ~ {17117}, o= ——Z 2 P
In other words, for any o € R c(x)ai"‘u is approximated using its symbol c(x)(i&;)“ of the operator c(x)d¥; that is by
approximating c¢(X)F 1 ((1£)*F (u)(x)).

Typically, when neglecting the high modes we get the following aliasing error estimates: for ¥ (-,t) € H', there exists
¢ > 0 such that

¥ — ¥lls <c(NIN2) " |1¥|lar
for some r > s > 1 (in 2-d) and ¢ € L' N H"-periodic.

As discussed above, in the framework of photonic graphene, the material function (as well as the solution) is periodic in
the direction vq (orthogonal to ky) [18,22], for all t > 0
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Y(E+v, ) =v(&1),

while for |x - ky| — 400 the solution tends to zero. In order to circumvent this issue in the direction v,, we propose to use
Perfectly Matched Layers (PML), allowing for absorbing the wavefunction in the direction v,, while using a Fourier-based
method. Typically, the idea consists in introducing an absorbing function S in the direction v,. For the sake of simplicity, we
could assume that v (resp. v3) is aligned with ey (resp. ey). Alternatively, a simple change of coordinates (corresponding
to a rotation of angle 71 /6) can be applied as discussed below.

3.2. Survival kit on Perfectly Matched Layers (PML)

Let us recall the basics of PML [6,11,30]. The presentation is proposed on an one-dimensional bounded physical domain
denoted by Dpyy, as within the framework of this paper the PML will only be applied in one direction. We first add a layer
which is called Dpyy, surrounding Dppys, stretching the x-coordinate. The overall computational domain is then defined
by: D = Dppy U Dpmr. For the one-dimensional case, D =[—L, L] and Dpnys = [—L*, L*], with L* < L and stretching. PMLs
require a complex stretching of the real spatial coordinate x such as

X
X(x) =x+e19/5(s)ds, (16)
L*
where the absorbing function S : D — R is defined as (o € N*)

S0 = { s(x| = L), L*<|x| <L,

0, x| < L*. (17)

The rotation angle 6 is usually fixed by the problem under study. For example, 6§ = 71 /2 is often considered for (integer
order) time harmonic Helmholtz-type problems [12,29,30] while 6 = 7t /4 is more adapted to Schrédinger problems [4,6,31,
34]. Hence, we define first order damped operator as follows

x> Oy, := (1 +eS(x)) 1oy,

modifying hence the initial PDE. The same way for second order operator, we get

O = (1+eS(0)  ox((1+e*sx)0y) .
The choice of absorbing function is rather flexible. Typically for some §y > 0,
Type I: op(x + 8x)2, Typell: og(x + 8,)%, Typelll: — %2, (18)

Typelv:%, Type V: —%—g—f, TypeVI:i—S—‘;—é’.

We refer to [9] for details on PML.
3.3. The space-time discretization

In the following, we consider symmetry breaking functions of the form W (x) = w(x)I,«;. This typically corresponds
to a P-symmetry breaking, where, for instance, w(x) = a(x) + §n(k, - X)b(x). The adaption to C-symmetry breaking is
straightforward. We set

5 ki 2 ki ki
S’=—-w&xA-VwKx) -V + W(X)—2||k1 1“4+ i( — —Vwk)- ki) — wkx)—k; - V) .
47 2 2

As we impose radiative condition in one direction (say ey ), and periodic boundary conditions in the orthogonal one (ey),
we propose to modify the equation under consideration introducing PML as discussed above.
We denote by As =32 + (1+e)S(y)719,((1 +e**S(y))~1dy) and Vs = (3, (1 +e?S(x))~13,)T. Hence the operator
&9 is transformed as follows
5 Koo ki ki
S i=—wX)As — Vsw(X) - Vs + w(x)—2||k1 1<+ 1( — —Vw(E) ki) —wx)—k; - Vs) .
47 2 2
Using the above notations and denoting by ¥, = {w;?} j:n the approximate solution, we solve

k2
L0 = { — w1451 = Vw(x) - [[VsT]+ wxn) 25l 1P
1= 2wy k) = wotn) 2y -[19511) |9
2 2 h
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The issue with the above approach is that it does not satisfy the periodicity in the correct direction imposed by the photonic
graphene model (v1); but in the direction ey instead. In order to fix this problem, we can simply apply a change of variables
as described below.

3.4. Change of coordinates

In order to include the periodic boundary conditions in the direction vq, it may be convenient to make the following
change of variables obtained thanks to a rotation matrix R’ corresponding to the angle between ey and vi. We denote by
R’ the rotation matrix of angle 7 /6:

R,:l V31
2\ -1 V3)°
Hence ey = R'v{. We set X' = (+/3x+ y)/2 and ¥’ = (—x + +/3y)/2. Then
V3 1 1 V3
BX = 78)(/ + an’, 8y = —Eax’ + 78y/ N
and
3 1 V3 1 3 V3
2_2a2 2 2_ a2 2
0y = Zax, + Zay, + 78,(/),/, 9y = Zax, + Zay, - 78,(/),/ .

Moreover, x = (v/3x' — y')/2 and y = (' + +/3y’)/2. We then denote A’ := 32 + 3}2,, and
W) = w((3x —y)/2, X ++3y)/2),
VW) = Vw((v/3x = y)/2, (X +~/3¥)/2).

Regarding the PML, we simply take S(y’). Similarly, we get from Vg

Vyim (Lo + 2oy (146%500) 7 (= 2+ o))

Finally, we define A% as follows

3,1
/A V) a2
Ay = (4ax,+4ay/)

, 1, 1 J3 . -1, 1 V3
(1 e7500) (= oo P {1 500) (= oo T}
2 2 2 2
and
8= —WE)A, — VWE) - Vi + W(x/)ﬁnlq I + i( - k—”vvv(x/) k) — Vv(x/)kikl : v/)
s S S 472 27 27 S)

Alternatively, we can consider a transformation mapping (v1, v2) to (ex, ey).

3.5. Time discretization and properties

The proposed approach will allow us to i) benefit from the accuracy and simplicity of Fourier-based methods, and ii) to
absorb the wavefunction at the domain boundary when required. We denote by ¥} the approximate solution at time t;. We
first introduce the following approximate pseudodifferential operator (we consider below the case of P-symmetry breaking
Schrédinger operator)

k

2
where the discrete operators [[As]] and [[Vs]] were introduced in the previous subsections. The time derivative can be
treated using an backward Euler method, such as

{In — 1At[SO YT =y},

or a Crank-Nicolson based approximation

k? k k
[S81) = —w(I[As]) = Vw ) - (V51 + wn) sl 2+ 1 (= -V wen) -y = w5 Lk - [1V5]1)
74 2

A

(242 e

In
N - S n+1 _ J 7N .
2 712 [[55]]}'/”1 [ 2 2

It is easy to show the following result.
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Proposition 3.1. For yo € L?>(A), we have the following stability results. The backward Euler scheme

{In = iAt[SO}yit =y, (19)
and the Crank-Nicolson scheme

{'7” [ssn}v/"“ [%”— i [SS]]]'/’h’ (20)

approximating (5) are unconditionally £2-stable.

Proof. We denote [[S?]] = w(xp)[[A]]l + Vw(xp)[[V]] for k) = 0. We consider the continuous case in L%(R?) and denote
by F and F~! the Fourier transform of a function v € L?(R?). We denote & = (&, &y) the Fourier variables associated to
x=(x, y). Denoting by (-, -) the L?-inner product, we have

(v, v) = (WEFH(—[EPFW), FHF W) + (WxR)F 1 1&F (v)), F~H(F(v)))
+HwyR)F 1 1EyF(v), FH(F W)

(W@)IZV, V) + (WE)DZV, V) + (Wx(®)DxV, BxV) + (W) (X)dy V. Dy V)

= —(0x(W(X)0)V, v) — (3y(W(X)Dy)V, dyV)

—(W@F N LEF W), FTHAEF (V) — (W@ F (18, F(v), F (16, F(V))) .

Similarly at the discrete level, denoting v, € £2 and (-.-), the ¢2-inner product, we get

(S NVh. vidn = (W@ F;, (= 1&4 2 Fh(vi), Fp  (Fh (Vi)
+<wx<xh>f;‘(isx;hfhm)),fh‘l(fh(vh)))h
+<wy<xh)r (1&y:nFh (Vi) F (Fn(VR))n

= —(wxp)F, " (1$xh-7:h("h)) Fy (l$xh]:h(vh)))
—(W@R)Fy (18 ynFrn(Vh)). Fy (L& yenFh (V) h -

Considering the Crank-Nicolson-based algorithm, and assuming [|¥} 2 < CHl/Ith, we multiply by q[rh and integrate to get

<{17N_l_[[55]]}'/,n+1 ,/,n+1> = <{ +1—[[56]]}¢hv'ﬁn+1> .

Then
W — LAdUSIIYR W) = R T+ LALIISIIYE ¥
From the above computation and taking the real part of the equation, we get
R + Atm{[[SENY T, ¥h), = Re wh,w”l
—W”“ ;Mﬁ-
Then, we easily deduce that
Wi R < YRR+ 0(Ar).
Hence, at any time T,

[Yr2 < [WpI2+ O(ThAD),

which concludes the proof. O
3.6. Feit-Fleck method for edge state computation

It is simple to adapt the time-dependent solver developed above for constructing eigenfunctions (edge-states) to the
operator —V - (W (x)V). A standard Feit-Fleck-like algorithm [16] is proposed hereafter. The computation of edge state
energies are non-trivial as they are usually located in a spectral gap which is usually analytically unknown. Hence a direct
minimization of the Rayleigh coefficient, the use of Galerkin method, or even finite difference approximation usually leads
to spectral pollution or/and dissolution in the continuum [14,15]. Feit-Fleck methods allow to avoid this type of issues. Let
us introduce an arbitrary trial function

Yo®) =) (), (21)
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where {c,}, is a sequence of unknown complex numbers, and {¢;}, is the sequence of unknown orthogonal “eigenfunctions”
(including edge states). If we denote . the exact solution to the corresponding time-dependent Schrédinger equation, we
get

Ve(®, 1) =) cpexp(—1Ent)gn(X). (22)
n
We next denote the exact autocorrelation function by

Ce(t) = (Yre(, 1), Yo} = Y _ |cn|* exp(—1Ent).

We now denote by - the Fourier transform in time. Hence the exact Fourier transform provides the power spectrum of the
operator:

Ce(E)=Y _ lcnl?80(E — En).

n

When apply to say x € C*°(R), we then get

(Ce. X)E=Y_lcnl* X (En) .

n

Hence, the edge state energies will correspond to the peaks in the graph of the |fe|2. Denoting v, the approximate solution
and Cy, the corresponding approximate auto-correlation function. For any x € C3°(R) (C* with compact support functions),
we get

|(Cer x)E = (Ch XVE| < | Jp X(E) [ €27 (Ce(t) — Ch(t)dtdE]|
Jr X (E) [ e*E o, Yre(, 1) — Y (-, D) dedE|

supg [[Ve (-, E) — Yn (-, E)l 2 %ol 2 1 ) -

This estimate is not very sharp and in order to determine f(E). the wavefunction should be evolved to infinite time
which is practically difficult. Hence, instead of computing C. for all t, we will solve the time-dependent Schrédinger equation
on a finite interval [0, T] and compute the FFT of C™WT)(¢t) := C(t)wr(t) for some window function wr, in order to obtain
the power spectrum by fitting the peaks with the lineshape. Practically, Hanning’s functions are often chosen (see also
[13,17] in the case of the Dirac operator)

<
<
<

t
1 —cos (T)
wr®)=1__ 7 forte(o,T], (23)
T
0, fort € (—00,0) U (T, 0).
Once the egde state energy Ees, is calculated, the corresponding approximate eigenstate s can be obtained by using

T
Vest) = [ drvrx owve B, (24)
0
where ¥ (x, 0) is an arbitrary trial function. This can be justified thanks to the lineshape function 7 [16],
T
T(E—Ep) = / exp (1(E — Ep)t)w(t)dt .
0

Notice that this method is not directly applicable to compute degenerate states. Let us conclude by mentioning that the
energy resolution is given by AEni, =7 /T and the maximum bandwidth AEm.x = 7w /At ([16]).

Experiment 0. Let us consider a simple example to illustrate the construction of edge states with a Feit-Fleck method, for
oL, where o = 0.075. The computational domain is [—7, ] x [—27, 2] and the initial data is

Yo(x) = exp (— 5[|x]|*)/No,

where Ny is a normalization constant (||y|l2 = 1). We choose the following medium function
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Edge state

Power spectrum Feit-Fleck convergence

Amplitude

200 400 600 800

-600 -400 -200 0 % ¥
Energy Time z

Fig. 5. (Left) Power spectrum. (Middle) Feit-Fleck convergence ||y"*! — y|15/|l¥"*1||; as function of time. (Right) Edge state modulus.

3
ax)=5—) cos(ki %), (25)
i=1
and the wall function is defined by

3
w(x) = 81 tanh(82k; - X) > sin(k; - x),
i=1
with §; = 1.5 and 8, = 30. We compute the solution and the correlation function C over [0, T] with T =100, and a time
step given by At =5x 103 and Ny = N, =121. We report in Fig. 5 the spectrum of C and the edge state corresponding to
the energy peak at 40.7. Then we solve a second time the equation in order to approximate the corresponding eigenfunction
as proposed in (24), and denoted 5. Once the rotation is performed (see Subsection 3.4), the wall function is located at
y=0.
In order to illustrate the propagation of edge states along the wall, we perturb the computed edge state, by a Gaussian
function centered at xg = (2.5, 0),

$0(X) = Yres (%) exp ( — 10]|x — x0]|*) /No,

where Ny is a normalization constant. We report the solutions at time t =0, 1.25, 2.5, 3.75, 5 illustrating, as expected the
propagation along the wall (see Fig. 6).

4. Numerical experiments

This section is dedicated to numerical experiments. In the first experiment, we simply check some basic properties of the
computational method. Then we propose some more advanced physical simulations. In particular, we exhibit an edge-state
like behavior along a wall in the photonic graphene and a trapping phenomenon as described in Section 2.

Experiment 1. In the first experiment, we propose a simple illustration of the PML-based pseudospectral method by testing
the absorption of a wavefunction in the absorbing layer. The computational domain is [—7, 7]? and the initial data is

Yo(x) = exp (— ¥ X — xol|* + iko - 8)/No,

where Ny is a normalization constant (||yo|l2 = 1). As a preliminary calculation, we check that the £2-norm of the solution
is properly conserved when there is no interaction with the boundary, using a Crank-Nicolson based algorithm. In this goal,
we first take the center of the Gaussian at xg = (0, 0) and ko = (2,2)T (and @ = 0.1, ¢ =0 in (26)), we compute the solution
for ¢ € [0,4], and we report 1 — [[¥]12 in logscale, as a function of ¢, in Fig. 7 (Top-Left). We observe that the ¢2-norm is
accurately conserved.

Then, we compare the solution with and without PML for ko = (0,20)7, xg = (0, 2.25) and y = 30. We use the PML of
type VI (18), see Section 3, and we consider the following material function

3
a@) =a+ Y cos(cki-x), (26)
i=1
where o = 0.02, 8 =0.004, ¢ = 0.1. The wavefunction function is driven out from the domain through the upper boundary
{y = m}. The PML size is taken equal to 7.5% in the y-direction, and is located in the zone Q\Qpyr = [—m, 7] x [0.9257, 7 ].
We report the ¢2-norm of the overall approximate PML and no-PML solutions ¥y at any time ty, that is [y} [|2 in the zone

excluding the PML, Q\Qpum1 (to get a rigorous comparison). In other words in both cases, we expect the solution ¢2-norm
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Edge state Edge state

T T

Edge state Edge state

Edge state Edge state

Fig. 6. From Top-Left to Bottom-Right: wavefunction propagation from for t =0, 125, 2.5, 3.75, 5, 6.125.

to decrease (as entering the layer); but only in presence of PML is the solution really absorbed. Without PML the solution is
eventually periodically transmitted through the top boundary, and its ¢2-norm will increase and eventually get close to 1. It
is expected in the first case, that the ¢2-norm will go to zero (absorption) unlike the solution without PML. The latter will
allow to mainly avoid the propagation of unphysical waves through periodic boundary conditions. The computation data are
the following Ny = N, =101, and § = 0.025.

We report in Fig. 7 the solution at time T = 2 without PML (standard periodic boundary conditions, Top-Right) and with
PML (Bottom-Left). We plot in Fig. 7 (Bottom-Right) the overall ¢2-norm as a function of time, illustrating the absorption
when using PML.

Experiment 2. In this experiment, we are interested in the capture by a curved wall of a wavefunction in the case of C-
symmetry breaking. We compare the evolution of the wavefunction with or without wall. We propose the following material
function w
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Fig. 7. Experiment 1. (Top-Left) £2-norm conservation as function of time without boundary interaction. (Top-Right) Wavefunction without PML. (Bottom-
Left) Wavefunction with PML in the y-direction. (Bottom-Right) £2-norm as function of time.

w(x) = a—i—bZ?:] sin(k; - x) + 811n(82k> - X) Z?=1 cos(83k; - x)
K k“ K 5 , ]V i 1’ v (27)
ki (W sl 12+ 1 (= oYW k)~ wi) s ki V),

with n =tanh and where a =0.05, b =0.01, §; =3, 8, =2 and 83 =0.22, k; = 0. The choice of these parameters allows for
a larger flexibility to construct relevant benchmarks. In order to exhibit the effect of the perturbation, we will also consider
a low dispersion case. The initial data is given by

Yo(x) = exp (— y X — xol|*)/No,

with y =20 (resp. 10) and x¢ = (7 /2,20 /17). The solution is computed from time 0 to T = 0.02. We consider the
following numerical data At = 0.0001, Ny = Ny, = 151. On Fig. 8, we report the normalized restriction of the solution
Ywall = YA, With € =0.9 (9), as well as in Fig. 9 the solution at times T = 0.01 (Left) and T = 0.02 (Middle). We also
report the propagation of the maximum of the solution as a function of time, see Fig. 9 (Right).

We observe that the wavefunction is mainly trapped in a disc, as it was expected from the discussion proposed in
Section 2. At further times, the wavefunction which propagates along the wall is also eventually stopped, see Fig. 10 where
is reported the solution at T = 0.035. This phenomenon can be interpreted by looking at Fig. 11 (Left): at the intersection
of the wall and the level set (circle) w(x) = 0. More specifically, the boundary of these discs is defined as the following sets

C:={xeA/ Zcos((Sgki -x)=0}. (28)
i=1
That is the wavefunction stops propagating for x € C N W, where
W:={xeA/ky - F(x)=0}.

This also corresponds to a region where wy and wy are close to 0, see (11) (Right) and the velocity vector field is almost null
along the wall. To allow the wavefunction to continue its propagation along the wall, it is necessary to avoid the diffusion
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Fig. 8. Experiment 2. Normalized restriction on the wall of the wavefunction at time T =0.01 (Left) without wall. (Right) with wall.
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Fig. 9. Experiment 2. (Left) Wavefunction at time T = 0.01. (Middle) At time T = 0.02 (Right) Position of wavefunction maximum as function of time.
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Fig. 10. Experiment 2. (Left) Wavefunction at time T = 0.035. (Right) Position of wavefunction maximum as function of time.

zone, or alternatively to take §3 smaller in (27). By continuity arguments, the behavior presented in this experiment is
expected to remain valid for k # 0, at least small.

Experiment 3. In this experiment, we are interested in the propagation of the wavefunction towards the wall again in the
case of C-symmetry breaking. We start with an initial data located far from the wall, with a non-zero momentum

Yo(x) = exp (— y & — xoll* + iko - ) /No

with ko = (0, —5)T, X9 = (4, 3), y = 40. The initial state is then located inside C defined in (28). In (27) we take 7 = tanh
and a=0.1, b=0.1, §1 =6, 8 =2 and §3 = 0.22. We observe that the wavefunction, as expected, remains inside C as
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Fig. 11. Experiment 2. Graph of log|w|, log|wy|.
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Fig. 12. Experiment 3. Wavefunction at final time.

reported in Fig. 12. We refer this phenomenon as a trapping of the wavefunction, and which could have some potential
applications in photonics and optics.

Experiment 4. In this experiment, we are interested in the propagation of wavefunctions in the case of P-symmetry break-
ing. Unlike the C-symmetry breaking case, the propagation along the wall is negligible, see Section 2. We compare the
evolution of a wavefunction with or without wall. In particular, in order to exhibit the effect of the perturbation, we will
again consider a low dispersion case,

w®) = a+bY; sink;-x) +8117(52ks - %) Y5, cos(S3k; - X)
1(x) = tanh (k; - F(x)) where a =0.025, b =0.01, §; =3, 5, =2 and §3 = 0.25. The initial data is given by
Yo(®) =exp (— v [1x —xo|1*)/No,

with ¥ =20 and xp = (3, v/3) (resp. (7r/2, 207 /17)). The solution is computed from time 0 to T = 0.3. We consider the
following numerical data At =0.0001, Ny =N, =151. On Fig. 13 (Left), we report the propagation of the maximum of the
solution as a function of time Fig. 13 (Right). We observe a weak propagation along the wall, which is consistent with the
analysis presented in the P-symmetry case in Section 2.

5. Concluding remarks
In this paper, we have proposed one of the first numerical studies of the dynamics of wavefunctions in photonic graphene
for complex materials. We have developed a pseudospectral method combined with directional perfect matched layers in

this goal. The proposed method allows us to compute edge states (thanks to a Feit-Fleck-like method) and their dynamics,
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Fig. 13. Experiment 4. (Left) Wavefunction at time T = 0.3. (Right) Position of wavefunction maximum as function of time.

and more generally, the dynamics of any wavefunction within photonic graphene. In particular, we have mathematically and
numerically exhibited an interesting trapping phenomenon, and derived equivalent equations in the vicinity and away from
walls. In future work, we plan to explore in more detail the physical properties of edge states in photonic graphene.
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