
Computer Physics Communications 299 (2024) 109129

Available online 21 February 2024
0010-4655/© 2024 Published by Elsevier B.V.

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computational Physics

Quasi-optimal domain decomposition method for neural network-based 

computation of the time-dependent Schrödinger equation✩

Emmanuel Lorin a,b,∗, Xu Yang c

a School of Mathematics and Statistics, Carleton University, Ottawa, K1S 5B6, Canada
b Centre de Recherches Mathématiques, Université de Montréal, Montréal, H3T 1J4, Canada
c Department of Mathematics, University of California, Santa Barbara, CA 93106, USA

A R T I C L E I N F O A B S T R A C T

Keywords:
Schrödinger equation
Schwarz waveform relaxation
Dirichlet-to-Neumann operator
Pseudo-differential calculus
Physics-informed neural networks

In this paper, we derive and analyze the performance of optimal/quasi-optimal Schwarz Waveform Relaxation 
(SWR) domain decomposition methods (DDM) for the time-dependent Schrödinger equation when implement 
with neural network-based Partial Differential Equations (PDE) solvers. Optimal SWR methods, which are based 
on Dirichlet-to-Neumann operators, are known to have a higher convergence rate than classical or optimized 
SWR methods. However, they are usually considered prohibitive due to their computational costs with standard 
PDE solvers. Thanks to Physics Informed Neural Network acceleration within the Schwarz waveform relaxation 
process and an efficient computation of Dirichlet-to-Neumann transmission operators, we demonstrate that 
optimal and quasi-optimal SWR methods can be performed almost as efficiently as classical or optimized SWR 
methods while maintaining a faster convergence rate. We present a few numerical examples to illustrate the 
performance and convergence of the proposed method.

1. Introduction

In this paper, our focus is on computing the time-dependent 
Schrödinger equation (TDSE) using the optimal or quasi-optimal 
Schwarz Waveform Relaxation (SWR) domain decomposition method 
(DDM) [1], which relies on Dirichlet-to-Neumann-like transmission con-
ditions. At the PDE level, optimal and quasi-optimal SWR methods 
are known to converge much faster than classical (based on Dirich-
let transmission conditions) or optimized (based on Robin transmis-
sion conditions) SWR methods. However, the approximation of the 
corresponding local initial boundary value problems with standard 
Schrödinger equation solvers is i) more computationally complex (ill-
conditioned linear systems), ii) requires large data storage due to the 
nonlocality of Dirichlet-to-Neumann (DtN) operators, and iii) may lead 
to numerical instabilities. For these reasons, classical SWR or Optimized 
SWR methods are usually preferred, even if they provide a slower con-
vergence rate than optimal SWR methods. Additional details can be 
found in [2–5]. Here, we show that, thanks to Physics Informed Neural 
Networks (PINN) [6], optimal and quasi-optimal Schwarz Waveform 
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Relaxation (SWR) methods can be numerically performed almost as 
efficiently as classical and optimized SWR methods. PINN algorithms 
offer two main advantages: i) they introduce learning into the Schwarz 
waveform relaxation process, as observed in [7], and ii) they enable the 
efficient computation of Dirichlet-to-Neumann transmission operators 
through automatic differentiation (and possibly integration, currently 
under investigation) of neural networks. It is important to note that the 
term learning refers to the acceleration of the optimization algorithms 
within the Schwarz process, specifically to the initialization of the op-
timization algorithms within the Schwarz algorithm. We should also 
mention that other types of neural network-based algorithms for solv-
ing Partial Differential Equations (PDEs) can be considered instead of 
PINN [8–11]. To clarify this concept, we provide some preliminary in-
formation about the SWR method and PINN algorithms. We insist on 
the fact the although PINN methods enable the efficient performance 
of optimal SWR methods, in general and particularly in low dimen-
sions, standard PDE solvers usually remain much more computationally 
efficient. The central idea of this paper is to demonstrate that within 
the PINN framework, unlike standard Schrödinger equation solvers, 
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optimal and quasi-optimal SWR methods can be performed almost as 
efficiently as classical or Robin SWR methods while maintaining a faster 
convergence rate.

1.1. Introductory remarks

Optimal and quasi-optimal SWR methods are domain decomposi-
tion methods for evolutionary PDEs, which are based on transparent 
transmission operators (typically such as Dirichlet-to-Neumann-like op-
erators), and which are known to provide a very fast convergence of the 
Schwarz process [1,12,13], as less as two Schwarz iterations at the con-
tinuous level, and in the most simple configuration. Optimal Schwarz 
waveform relaxation methods are more generally constructed using 
Nirenberg’s factorization of the Schrödinger operator (and more gen-
erally evolution wave operators) at the subdomain interfaces [1,14]. In 
one dimension, it simply consists of the following factorization,

ÿý − ÿÿýý = (
√

ÿý + ÿÿÿ∕4ÿý)(
√

ÿý − ÿÿÿ∕4ÿý) ,

and allowing an incoming∕outgoing wave decomposition at the subdo-
main interface. The pseudo-differential (fractional operator) ÿ1∕2ý is a 
nonlocal operator which is, for instance, defined by Riemann-Liouville 
integrals [3]. More specifically, for a real integrable function ÿ , we de-
fine

ÿ
1∕2
ý ÿ (ý) =ÿý

ý

∫
0

ÿ (ÿ)
√

ÿ(ý− ÿ)
ýÿ ,

where ÿÿ
ý is the so-called ÿ−derivative with respect to ý. It is well-

known that the approximation of Dirichlet-to-Neumann operators is 
far from trivial, and often leads to numerical stability, ill-posed linear 
systems with accuracy and storage issues, as observed in the frame-
work of absorbing boundary conditions [15,2,4] or Schwarz waveform 
relaxation [12,13]. Hence for TDSE, even if the optimal Schwarz wave-
form relaxation method allows for an “optimal” convergence, much 
faster than classical Schwarz (based on Dirichlet transmission condi-
tions) or even Optimized Schwarz (based on optimized Robin trans-
mission conditions), they are often considered as prohibitive from 
the computational point of view. Practically, an optimized Robin 
transmission operator usually provides the best compromise between 
computational efficiency, accuracy, and SWR convergence rate. We 
summarize the difficulties related to standard discretizations (finite 
element∕difference∕volume methods) of the DtN-like transmission con-
ditions (see [2,16,17]):

• Storage of the solution at any time at the subdomain interfaces;
• Stability and accuracy issues;
• Loss of efficiency due to the numerical computation of ill-posed 
linear systems.

PINN algorithms are a “new” type of PDE solvers which consist in 
i) searching the PDE solution in the form of a neural network (that 
is a parameterized given function), ii) optimizing the neural network 
(NN) parameters by minimizing a loss function written as a continu-
ous PDE residual and iii) including (experimental or numerical) data. 
The space-and-time approximate solution is then given by a neural net-
work evaluated at a set of optimized parameters. This approach benefits 
in particular from i) the use of automatic differentiation which allows 
for exact computation of partial derivatives (no differential operator 
approximation), and ii) the use of efficient stochastic methods for op-
timizing a loss function constructed as the norm of PDE residuals at 
randomly chosen space&time points. On the other hand, as far as we 
know, automatic integration is not rigorously treated in the literature, 
and as a consequence, as in this paper, fractional time-derivatives will 
be computed using appropriate quadratures. We do not delve into the 
discussion of the interest/relevance of using NN-based algorithms for 

solving PDEs, but rather, we refer to [6,18,19]. Also, note that neural 
networks are now widely used in quantum chemistry for solving high-
dimensional eigenvalue problems in connection with the energy states 
of large molecules [9,20].

In this paper, we are interested in the consequences of using optimal 
SWR-DDM in combination with PINN algorithms:

1. At Schwarz iteration ý, we initiate the optimization algorithm 
using the set of converged parameters obtained at the previous 
Schwarz iteration ý − 1, corresponding to the approximate solu-
tion at iteration ý − 1. Consequently, we anticipate an acceleration 
of the convergence of the optimization algorithm as ý increases. 
In comparison, achieving a similar acceleration with standard nu-
merical solvers involving time-stepping would require storing the 
approximate solutions at every time step.

2. The discretization of time-derivatives in standard evolution PDE 
solvers is usually the source of numerical linear instabilities. While 
automatic differentiation applied to time-derivatives may, at first 
sight, circumvent this issue (see, for instance, [21] for the Dirac 
equation), the discretization and minimization of the loss function 
by Monte Carlo integration may potentially introduce some numer-
ical instability. As far as we know, this interesting question has not 
been rigorously addressed in the literature.

3. The minimization of the loss functions may be complexified due to 
the nonlocal operator involved in the residual.

In theory, we expect an improvement for Points 1. and 2. using PINN 
compared to standard Real Space Methods (RSM). The key point is 
then to study the overall efficiency of the optimization with nonlocal 
(DtN-type) boundary conditions, Point 3. Let us mention that domain 
decomposition in the framework of PINN algorithms has been studied in 
several recent works, such as [22], where space-time decomposition is 
directly implemented in the minimization of the loss function. In [23], 
Schwarz domain decomposition is proposed for stationary equations, 
and evolution PDEs are considered in [24].

For the sake of simplicity, in this paper, we will mainly work in 
a one-dimensional framework, although the concepts, algorithms, and 
implementations discussed in Subsections 2.3 and 3.2 are identical in 
higher dimensions.

1.2. PINN for the time-dependent Schrödinger equation

In this paper, we consider the following TDSE:

ÿÿýÿ+ ÿýýÿ+ ý (ý)ÿ = 0, ý ∈ℝ, ý ⩾ 0 ,

|ÿ(ý, ý)|→ý→±∞ 0, ý ⩾ 0 ,

ÿ(ý,0) = ÿ0(ý), ý ∈ℝ ,

(1)

where ÿ0 denotes the Cauchy data, and ý is a smooth, real-valued po-
tential that depends on space and is positive (respectively negative) for 
attractive (respectively repulsive) interactions. To solve the Schrödinger 
equation using PINN, we first consider a bounded spatial domain de-
noted by Ω, which is assumed to contain the support of ÿ0. We impose 
the boundary conditions ýÿ = 0 at Γ ∶= ÿΩ, where ý is a boundary 
operator. Therefore, we consider the following TDSE on Ω × [0, ÿ ], for 
some ÿ > 0,

ÿÿýÿ+ ÿýýÿ+ ý (ý)ÿ = 0 in Ω× [0, ÿ ] ,

ýÿ = 0 in Γ × [0, ÿ ],

ÿ(⋅,0) = ÿ0 in Ω.

(2)

In practice, ý is often chosen as the DtN-like operator (absorbing or 
transparent conditions) to avoid artificial wave reflections; alternatively 
the Robin operator or the identity operator (for Dirichlet conditions) 
can be used for large enough domains.

PINN algorithms generalize Lagaris’ work [25] on differential equa-
tion computation and involve approximating the solution to (2) using 
a parameterized neural network denoted by ý(ÿ, ý, ý). The parameters 
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of the network are optimized by minimizing a discrete version of the 
following loss function:

(ÿ) = ÿ‖
(
ÿÿý + ÿýý + ý (ý)

)
ý(ÿ, ⋅, ⋅)‖ÿ2(Ω×[0,ÿ ])

+ ÿ‖ýý(ÿ, ⋅, ⋅)‖ÿ2(Γ×[0,ÿ ]) + ÿ‖ý(ÿ, ⋅,0) − ÿ0‖ÿ2(Ω) ,

where ÿ, ÿ and ÿ are positive parameters and ÿ ∈ Θ ∈ ℝÿ for some 
“large” ÿ . The notation ‖ ⋅ ‖ÿ2(Ω×[0,ÿ ]) (resp. ‖ ⋅ ‖ÿ2(Γ×[0,ÿ ])) denotes the 
ÿ2-norm over Ω × [0, ÿ ] (resp. Γ × [0, ÿ ]). To numerically construct the 
loss function by Monte Carlo integration, a large number of space-time 
input data points {(ýÿ , ýÿ)}ÿ,ÿ are randomly chosen. Karniadakis et al. 
have developed numerous techniques to improve of PINN algorithms 
for direct and inverse PDEs problems; see [6,18,19] for more details.

1.3. Organization of the paper

In Section 2, we discuss the combination of PINN with (quasi-)opti-
mal SWR methods. We examine some important convergence properties 
of this solver, particularly in comparison with combined Robin-SWR 
methods. In Section 3, we provide additional details on the implementa-
tion of the PINN and SWR algorithms and present a complexity analysis. 
We then present some numerical experiments in Section 4, and in Sec-
tion 5.

2. Optimal and quasi-optimal SWR methods with PINN

The purpose of this paper is to demonstrate the relevance of opti-
mal (or quasi-optimal) SWR methods when used in conjunction with 
PINN algorithms. In this section, we introduce the basics of PINN-SWR 
algorithms.

2.1. Optimal and quasi-optimal SWR methods

We recall here the basics of SWR methods, particularly its optimal 
version based on (transparent or absorbing) Dirichlet-to-Neumann-like 
operators. As this paper focuses on fundamental principles and un-
derstanding, we consider a simple setting of two subdomains with or 
without overlap. We denote these subdomains as Ω+

ÿ = (−ÿ, +ÿ∕2) and 
Ω−

ÿ
= (−ÿ∕2, ÿ) for some ÿ ⩾ 0 and ÿ ∈ℝ∗

+
. We recall that SWR methods 

on two subdomains consist in solving:

ÿÿýÿ
±,(ý) = −ÿýýÿ

±,(ý) − ý (ý)ÿ±,(ý), in Ω±
ÿ × [0, ÿ ],

ÿ±,(ý)(⋅,0) = ÿ±
0
, in Ω±

ÿ ,±(ý, ý)ÿ±,(ý) = ±(ý, ý)ÿ∓,(ý−1), on Γ±ÿ × [0, ÿ ],

ÿ±,(ý) = 0, on Λ±
ÿ × [0, ÿ ] ,

(3)

where ±(ý, ý) is a boundary operator, and where we have denoted 
Γ±ÿ = {±ÿ∕2}, and Λ±

ÿ = ÿΩ±
ÿ ∖Γ

±
ÿ = {∓ÿ}. The well-posedness and the 

convergence of this method and its rate of convergence were established 
in [1,5,12,13] for different types of transmission conditions applied 
to the Schrödinger equation. In this paper, we focus on the optimal 
SWR-methods which rely on transparent∕absorbing transmission oper-
ators obtained by Nirenberg’s factorization at the subdomain interfaces 
[14,12]. Below we recall some fundamental results relative to the con-
struction of optimal and quasi-optimal Schwarz waveform relaxation 
methods. Let us start by recalling the principle of Nirenberg’s factoriza-
tions.

ÿÿý + ÿýý + ý (ý) = (ÿý + ÿÿ−)(ÿý + ÿÿ+) +, (4)

where  ∈ OPS−∞ =
⋂

ÿOPSÿ (with OPSÿ denoting the set of order 
ÿ differential operators) is a smooth pseudo-differential operator and 
ÿ± are pseudo-differential operators of order 1∕2 in time and order 0
in space, which can be constructed by expanding its symbol ÿ± in the 
form

ÿ± ∼

∞∑

ÿ=0

ÿ±
1∕2−ÿ∕2

, (5)

where ÿ±
1∕2−ÿ∕2

are elementary symbols corresponding to operators of 
order 1∕2 − ÿ∕2, ÿ ∈ℕ.

• when ý is constant, ÿ± = ∓
√
−ÿ + ý .

• When ý is not constant, we construct quasi-optimal SWR methods of 
order ý (p-OSWR) involving DtN operators at the subdomain inter-
faces with the following operators:

 ±(ý, ý) = ÿý + ÿÿ±,ý(ý, ý, ÿý, ÿý) , (6)

where for ý = 0, 1, 2, ÿ±,ý is given by

ÿ±,0(ý, ý, ÿý, ÿý)ÿ = ±ÿÿÿ∕4ÿ
1∕2
ý ÿ,

ÿ±,1(ý, ý, ÿý, ÿý)ÿ = ±ÿÿÿ∕4ÿÿý(ý,ý)ÿ
1∕2
ý

(
ÿ−ÿý(ý,ý)ÿ(ý, ý)

)
,

ÿ±,4(ý, ý, ÿý, ÿý)ÿ =ÿ+,1ý(ý, ý) + ±
1

4
ý ′(ý)ÿÿý(ý,ý)ýý

(
ÿ−ÿý(ý,ý)ÿ(ý, ý)

)
,

(7)

and where the function ý is defined in the linear case by ý(ý, ý) =
ýý (ý).

2.2. PINN-SWR methods

Instead of using standard approximation methods such as finite el-
ements/differences or pseudo-spectral methods [13,5], we propose to 
solve the system using PINN. While other types of NN-based solvers ex-
ist (see [8,10,11]), we choose PINN for their simplicity and flexibility. 
The generic NN to optimize is denoted by ý(ÿ, ý, ý), where ÿ (belongs to 
a vector space Θ) represents the unknown parameters. The PINN-SWR 
allows for adaptability in the depth of the neural networks, depending 
on the local structure of the solution. We consider

ÿÿýý
±,(ý) = −ÿýýý

±,(ý) − ý (ý)ý±,(ý), in Ω±
ÿ × [0, ÿ ],

ý±,(ý)(⋅,0) = ÿ±
0
, in Ω±

ÿ ,

±(ý, ý)ý±,(ý) = ±(ý, ý)ý∓,(ý−1), on Γ±ÿ × [0, ÿ ],

ý±,(ý) = 0, on Λ±
ÿ
× [0, ÿ ] ,

(8)

where ý±,(ý) denotes the local neural network in Ω±
ÿ at Schwarz it-

eration ý, and where i) ±(ý, ý) = ý is the identity operator for the 
classical SWR method, ii) ±(ý, ý) = ÿý + ÿý for some constant ÿ for the 
Robin∕optimized SWR method, and iii) ±(ý, ý) = ÿý+ÿΛ±;ý(ý, ý) for the 
optimal or quasi-optimal SWR method. For instance at ý = ±ÿ∕2 (for 
Γ±
ÿ
= {±ÿ∕2}) and ý = 0, the quasi-optimal SWR method corresponds to

(
ÿý + ÿΛ±,0

)
ý±(ÿ,±ÿ∕2, ý) = ÿýÿ± ÿ−ÿÿ∕4

ÿ

ÿý

ý

∫
0

ý±(ÿ,±ÿ∕2, ÿ)
√

ÿ(ý− ÿ)
ýÿ .

At Schwarz iteration ý, we minimize at (±ÿ∕2, ý)

±(ÿ±,(ý)) = ÿ±
‖‖‖ÿÿýý

±,(ý)(ÿ±,(ý), ⋅, ⋅) + ÿýýý
±,(ý)(ÿ±,(ý), ⋅, ⋅)

+ ý (ý)ý±,(ý)(ÿ±,(ý), ⋅, ⋅)
‖‖‖ÿ2(Ω±

ÿ ×[0,ÿ ])

+ ÿ±‖‖‖±(±ÿ∕2, ý)ý±,(ý)(ÿ±,(ý),±ÿ∕2, ⋅)

− ±(±ÿ∕2, ý)ý∓,(ý−1)(ÿ
±
,±ÿ∕2, ⋅)

‖‖‖ÿ2(0,ÿ )

+ ÿ±‖‖‖ý
±,(ý)(ÿ±,(ý), ⋅, ⋅)

‖‖‖ÿ2(Λ±
ÿ ×[0,ÿ ])

+ ÿ±
‖‖‖ý

±,(ý)(ÿ±,(ý),0, ⋅) − ÿ±
0
(⋅)
‖‖‖ÿ2(Ω±

ÿ )
,

(9)

where we have denoted ÿ
±
= (ÿ

±,(ý−1)
) computed at the Schwarz itera-

tion ý − 1. The convergence criterion of the PINN-SWR algorithm reads 
as follows

lim
ý→+∞

‖‖‖ ‖ý+(ÿ
+,(ý)

, ⋅, ⋅) −ý−(ÿ
−,(ý)

, ⋅, ⋅)‖
∞,Ω

+

ÿ ∩Ω
−

ÿ

‖‖‖ÿ2(0,ÿ )
= 0 , (10)
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where ‖ ⋅‖
∞,Ω

+

ÿ ∩Ω
−

ÿ

denotes ÿ∞-norm over the spatial domain Ω
+

ÿ ∩Ω
−

ÿ . 

Moreover, the approximate solution (ý̃) to the Schrödinger equation as 
is hence defined by:

ý̃ =

{
ý+,(ýcvg)(ÿ

+
, ⋅, ⋅), in Ω+

ÿ × [0, ÿ ] ,

ý−,(ýcvg)(ÿ
−
, ⋅, ⋅), in Ω−

ÿ
× [0, ÿ ] ,

where ýcvg denotes the number of Schwarz iterations to reach con-
vergence and ÿ

±
= ÿ

±,(ýcvg)
denotes the corresponding converged set 

of parameters. The loss function is computed by evaluating the equa-
tion at a large number of randomly chosen input points {(ý±

ÿ
, ýÿ)}ÿ;ÿ in 

Ω±
ÿ × [0, ÿ ]. From the optimization point of view, the method now re-

quires the minimizing of two local loss functions. At each iteration ý, we 
optimize the loss functions in Ω±

ÿ with updated boundary conditions. Al-
though standard SWR methods require the computation of IBVP “from 
scratch” (but with updated boundary conditions), PINN-SWR allow to 
initialize the local neural networks at iteration ý, using the parame-

ters ÿ
±,(ý−1)

parameterizing to the space-time approximation solution 

ý±(ÿ
±,(ý)

, ⋅, ⋅) in Ω±
ÿ . That is at Schwarz iteration ý and for ý ⩾ 0,

ÿ
±,(ý)

ý+1
= ÿ

±,(ý)

ý
− ÿ∇±(ÿ

±,(ý)

ý
) ,

where ÿ±,(ý)

0
= ÿ

±,(ý−1)
, ý denotes the optimization algorithm iteration 

index, and ÿ denotes the learning rate. In other words, we expect the op-
timization algorithm accelerates the convergence at least close to SWR 

where (ÿ±,(ý−1)
) ≈ (ÿ±,(ý)

). By analogy, the use of standard TDSE 
solvers would correspond to randomly choose the initial parameters 

ÿ
±,(ý)

0
= ÿ

±
random

and with (ÿ±,(ý−1)
) ≪ (ÿ±

random
).

Remark 2.1. By rewriting SWR algorithms as a fixed-point problem and 
employing microlocal analysis arguments from [5,13], the following 
error estimate can be directly established:

‖ÿ±,(ý) − ÿ|Ω±
ÿ
‖ÿ2(Ω±

ÿ ×[0,ÿ ])
⩽ ÿ(ÿ, ÿ, ý )ý‖ÿ±,(0) − ÿ|Ω±

ÿ
‖ÿ2(Ω±

ÿ ×[0,ÿ ])
,

where ÿ(ÿ, ÿ, ý ) is dependent on the type of transmission conditions 
with 1 > ÿCSWR > ÿRSWR > ÿp-OSWR and where CSWR refers to classi-
cal SWR based on Dirichlet transmission conditions, RSWR refers to 
(optimized) Robin-SWR based on Robin transmission conditions, and 
p-OSWR refers to optimal (or p-optimal) SWR methods. Rather than 
computing (8), it may be relevant to consider the following system

• For ý = 1, we consider (3) with ÿ±,(0) given.
• For ý ⩾ 2, we set ý±,(1) = ÿ±,(1) − ÿ±,(0) and consider

ÿÿýý
±,(ý) = −ÿýýý

±,(ý) − ý (ý)ý±,(ý), on Ω±
ÿ × [0, ÿ ] ,

ý±,(ý)(⋅,0) =ý±,(ý−1)(⋅,0), in Ω±
ÿ ,

±(ý, ý)ý±,(ý) = ±(ý, ý)ý∓,(ý−1), on Γ±
ÿ
× [0, ÿ ],

ý±,(ý) = 0, on Λ±
ÿ
× [0, ÿ ] .

(11)

Practically, we can then construct neural networks ý± ∶ (ý, ý) ↦
ý±(ÿ±,(ý), ý, ý) which are eventually convergent to the null function. 
From a PINN point of view, ý±(ÿ±,(ý), ⋅, ⋅) is an approximation of ý±,(ý)

at Schwarz iteration ý. We denote by ÿ
±,(ýcvg)

the parameters corre-
sponding to the converged SWR solution. Adapting the analysis of [7], 
we obtain the following stability result for ý large enough and for some 
positive ÿ > 0:

‖ÿ
±,(ýcvg)

− ÿ
±,(ý)

‖2 ≲ÿ|ý±(ÿ
±,(ý)

, ⋅, ⋅)|ÿ∞(Ω±
ÿ ×[0,ÿ ])

,

where ý±(ÿ
±,(ý)

, ⋅, ⋅) is close to the null function and |ÿ|ÿ∞(Ω±
ÿ ×[0,ÿ ])

= supý∈Ω±
ÿ ;ý∈[0,ÿ ]

|ÿ(ý, ý)|.

2.3. Multi-dimensional PINN-SWR algorithm

In this paper, the SWR-learning concepts are proposed in a one-
dimensional framework. However, the multi-dimensional extension of 
the algorithms and concepts remains valid. Hereafter, we present some 
details about the extension to ý spatial dimensions. The neural networks 
read ý±(ÿ, ý, ý), for ý ∈Ω±

ÿ ⊂ℝý with smooth boundary and such that 
Ω =Ω−

ÿ ∪Ω+
ÿ . Hence considering the IVBP

ÿÿýÿ+Δÿ+ ý (ý)ÿ = 0, in Ω× [0, ÿ ] ,

ýÿ = 0, in Γ × [0, ÿ ],

ÿ(⋅,0) = ÿ0, in Ω,

(12)

the corresponding SWR at Schwarz iteration ý, reads

ÿÿýý
±,(ý) = −Δý±,(ý) − ý (ý)ý±,(ý), in Ω±

ÿ
× [0, ÿ ],

ý±,(ý)(⋅,0) = ÿ±
0
, in Ω±

ÿ ,

±(ý, ý)ý±,(ý) = ±(ý, ý)ý∓,(ý−1), on Γ±ÿ × [0, ÿ ],

ý±,(ý) = 0, on Λ±
ÿ × [0, ÿ ] ,

(13)

where ±(ý, ý) is a boundary operator. For ý = 2 and null potential, we 
have for instance:

• Assuming that Γ±
ÿ
are smooth interfaces with outward normal vec-

tors ÿ±. Quasi-optimal transmission operators typically read for

0-optimal (Robin) ÿ
ÿ
± + ÿÿ, on Γ±ÿ ,

1-optimal ÿ
ÿ
± + ÿ−ÿÿ∕4ÿ

1∕2
ý , on Γ±ÿ ,

2-optimal ÿ
ÿ
± + ÿ−ÿÿ∕4ÿ

1∕2
ý − ÿÿÿ∕4

1

2
ΔΓ±ÿ

ý
1∕2
ý , on Γ±ÿ ,

where ΔΓ±ÿ
is the second-order derivative (Laplace-Beltrami) oper-

ator over Γ±ÿ and ý
ÿ
ý

ýÿ
ý ÿ (ý) =

ý

∫
0

ÿ (ÿ)(ÿ(ý− ÿ))−ÿýÿ .

See [26] for the details.
• In the case of curved interface

ÿ
ÿ
∓ + ÿ−ÿÿ∕4ÿ

1∕2
ý +

ÿ(ý)

2
− ÿÿÿ∕4

(
ÿ(ý)2

8
+

1

2
ΔΓ±ÿ

)
ý
1∕2
ý

+ÿ

(
ÿ(ý)3

8
+

1

2
ÿý(ÿ(ý)ÿý) +

ΔΓ±ÿ
ÿ(ý)

8

)
ýý, on Γ±ÿ ,

where we have denoted ÿ the local curvature, and where ý is the 
curvilinear abscissa along Γ±

ÿ
.

The derivation and implementation of PINN algorithms in higher spa-
tial dimensional is straightforward. At Schwarz iteration ý, we hence 
minimize the following local loss functions

±(ÿ±,(ý)) = ÿ±
‖‖‖ÿÿýý

±,(ý)(ÿ±,(ý), ⋅, ⋅) + Δý±,(ý)(ÿ±,(ý), ⋅, ⋅)

+ ý (⋅)ý±,(ý)(ÿ±,(ý), ⋅, ⋅)
‖‖‖ÿ2(Ω±

ÿ ×[0,ÿ ])

+ ÿ±‖‖‖±(⋅, ý)ý±,(ý)(ÿ±,(ý), ⋅, ⋅)

− ±(⋅, ý)ý∓,(ý−1)(ÿ
±
, ⋅, ⋅)

‖‖‖ÿ2(Γ±ÿ ×[0,ÿ ])

+ ÿ±‖‖‖ý
±,(ý)(ÿ±,(ý), ⋅, ⋅)

‖‖‖ÿ2(Λ±
ÿ ×[0,ÿ ])

+ ÿ±
‖‖‖ý

±,(ý)(ÿ±,(ý),0, ⋅) − ÿ±
0
(⋅)
‖‖‖ÿ2(Ω±

ÿ )
,

where ÿ
±
are the optimized parameters defining the approximate local 

space-time solutions in Ω±
ÿ at iteration ý − 1 and where ÿ±, ÿ± and ÿ±

are some positive parameters.
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3. Numerical schemes

In this section, we provide some details about the schemes used to 
solve the TDSE using SWR-DDM. We will perform several tests and com-
parisons including:

• Comparison of Classical/Robin-SWR with Optimal SWR in terms of 
number of Schwarz iterations using finite difference (FD) solvers 
and physics-informed neural network (PINN) solvers. We do not 
expect any improvement in terms of Schwarz iterations when us-
ing PINN over FD for the same type of transmission conditions. 
However, we will illustrate that Optimal SWR has a much faster 
convergence rate than CSWR/Robin-SWR, as previously proven 
and observed in [13].

• Comparison of the normalized CPU time for CSWR/Robin-SWR/
Optimal-SWR convergence with FD and PINN, as a function of 
Schwarz iterations.

• Comparison of loss values for Robin-SWR and Optimal SWR us-
ing PINN, where at each Schwarz iteration ý, (i) the parameters 
are initialized with the converged parameters at iteration ý − 1

(SWR-learning), or (ii) the parameters are randomly initialized (no 
learning).

3.1. Finite difference set-up

We consider two bounded subdomains Ω+
ÿ,ÿ

= (−ÿ, ÿ + ÿ∕2), Ω−
ÿ,ÿ

=

(ÿ − ÿ∕2, ÿ), ÿ ∈ ℝ∗
+ and with ÿ > 0 a (small) parameter characterizing 

the overlapping region Γÿ,ÿ =Ω+
ÿ,ÿ ∩Ω−

ÿ,ÿ = (ÿ − ÿ∕2, ÿ + ÿ∕2), and Ωÿ =

Ω+
ÿ ∪ Ω−

ÿ = (−ÿ, ÿ). The interfaces are located at ÿ ± ÿ∕2. The Crank-
Nicolson scheme which is used here is fully described in [13]. Denoting 
ÿ±,ÿ,(ý) the approximate solution in Ω±

ÿ
at Schwarz iteration ý and time 

iteration ÿ, the convergence criterion for the Schwarz DDM is given by

‖‖‖ ‖ÿ+,ÿÿ ,(ý)

|Γÿ
− ÿ

−,ÿÿ ,(ý)

|Γÿ
‖∞,Γÿ

‖‖‖ÿ2(0,ÿ )
⩽ ÿSc, (14)

with ÿSc = 10−14 (“Sc” for Schwarz) and where ÿÿ = ÿ ∕Δý. When the 
convergence of the full iterative algorithm is obtained at Schwarz it-
eration ýcvg, one gets the converged global solution ÿcvg ∶= ÿ(ý

cvg) in 
Ωÿ.

CSWR algorithm. The CSWR method is based on Dirichlet transmis-
sion conditions implemented as follows. At ý+

ý+ = ÿ + ÿ∕2, we impose 

ÿ
+,ÿ+1,(ý)

ý+ + ÿ
+,ÿ,(ý)

ý+ = ÿ
−,ÿ+1,(ý−1)
ÿ0

+ ÿ
−,ÿ,(ý−1)
ÿ0

, and ÿ0 denotes the num-
ber of overlapping nodes, i.e. ÿ = (ÿ0 − 1)Δý. At ý1 = ÿ − ÿ∕2, we 
fix ÿ−,ÿ+1,(ý)

1
+ ÿ

−,ÿ,(ý)

1
= ÿ

+,ÿ+1,(ý−1)

ý+−ÿ0
+ ÿ

+,ÿ,(ý−1)

ý+−ÿ0
. Finally at ý+

1
= −ÿ and 

ý−
ý− = ÿ, we set null Dirichlet boundary conditions.

Robin-SWR algorithm. The Robin-SWR method is based on Robin 
transmission conditions ÿý ± ÿÿ (with non-null constant ÿ). Say at 
ý+
ý+ = ÿ + ÿ∕2, we impose (ÿ+,ÿ+1,(ý)

ý+ + ÿ
+,ÿ,(ý)

ý+ − ÿ
+,ÿ+1,(ý)

ý+−1
− ÿ

+,ÿ,(ý)

ý+−1
) +

Δýÿ(ÿ
+,ÿ+1,(ý)

ý+ + ÿ
+,ÿ,(ý)

ý+ ) = (ÿ
−,ÿ+1,(ý−1)

ÿ0+1
+ ÿ

−,ÿ,(ý−1)

ÿ0+1
− ÿ

−,ÿ+1,(ý−1)
ÿ0

− ÿ
−,ÿ,(ý−1)
ÿ0

) + Δýÿ(ÿ
−,ÿ+1,(ý−1)
ÿ0

+ ÿ
−,ÿ,(ý−1)
ÿ0

), and ÿ0 denotes the number 
of overlapping nodes, i.e. ÿ = (ÿ0 − 1)Δý.

Standard p-OSWR solver. The chosen discretization of the nonlocal 
time Riemann-Liouville operator was derived from [3], and allows in 
1-d, for unconditional stability in the framework of TDSE discretization. 
We refer to [13] for a full description of the algorithm.

3.2. On the PINN-SWR approximation

Let us provide some details about the discretization of the PINN-
SWR algorithm (8) in the case of DtN transmission conditions (quasi-
optimal or optimal SWR methods). The local loss functions are numer-
ically evaluated by Monte Carlo integration using (ýÿ , ýÿ)ÿ;, randomly 
chosen points in space-time. It is important to note that the non-locality 

(in time) of the DtN operator is not a concern in the PINN approach. 
At each Schwarz iteration, ÿ(ý) parameterizes the complete space-time 
solution. In contrast to standard PDE solvers, which require storing the 
solution at the boundary at each previous iteration, this information is 

contained in the converged parameters ÿ
(ý−1)

. The transmission condi-
tions in quasi-optimal SWR methods involve the fractional derivative 
ÿ
1∕2
ý

ÿ
1∕2
ý ý(ÿ, ý, ý) = ÿý

(
ý(ÿ, ý, ý) ∗ý

1
√

ÿý

)
= ÿý

ý

∫
0

ý(ÿ, ý, ÿ)
√

ÿ(ý− ÿ)
ýÿ ,

for any ÿ and ý. The fractional derivative can be estimated using the 
convolution product of neural networks and automatic differentiation. 
This is particularly convenient as it is well-known that accurate and 
efficient approximation of fractional derivatives is hard to achieve, es-
pecially in a FPDE framework. The transmission operator at (±ÿ∕2, ý)
applied to a neural network ý reads

ÿ
1∕2
ý ý±,(ý) ± ÿÿÿ∕4ÿýý

±,(ý) = ÿ
1∕2
ý ý∓,(ý−1) ± ÿÿÿ∕4ÿýý

∓,(ý−1) ,

Automatic integration is still at an early stage of investigation, so that 
the approximation of ÿ̃1∕2ý is here preferred; see [27,28] for instance. 
Introducing discrete times 0 < ý1 < ⋯ < ýÿ, we define the following 
quadrature, at ý = ýÿ for any ÿ with enough regularity

ÿ̃
1∕2
ý ÿ(ýÿ) = ÿ(ýÿ) +

ÿ∑

ÿ=1

Δýÿý
(ÿ)
ÿ

ÿ(ýÿ−ÿ) , (15)

where the weights read

ý
(ÿ)
ÿ

=

ÿ∑

ý=1

Γ(ý − ÿ)

Γ(−ÿ)Γ(ý + 1)
,

and where Δýÿ = ýÿ− ýÿ−1. Higher order quadratures are discussed in [27,
28]. In order to include the contribution of the transmission conditions 
in the loss function, we then proceed as follows.

• Within the PINN framework, the discrete times {ýÿ}ÿ are randomly 
selected.

• At any (±ÿ∕2, ýÿ), we impose

ÿ̃
1∕2
ý ý(ÿ,±ÿ∕2, ýÿ) ± ÿÿÿ∕4ÿýý(ÿ,±ÿ∕2, ýÿ)

= ±ÿÿÿ∕4ÿýý(ÿ,±ÿ∕2, ýÿ) +ý(ÿ,±ÿ∕2, ýÿ)

+
∑ÿ

ÿ=1
Δýÿý

(ÿ)
ÿ

ý(ÿ,±ÿ∕2, ýÿ) .

The above condition does not require any additional storage, as all 
the corresponding information is all encoded in ÿ.

• Finally the transmission condition which is implemented at
(ÿ, ±ÿ∕2, ý) reads

ÿ̃
1∕2
ý ý±,(ý) ± ÿÿÿ∕4ÿýý

±,(ý) = ÿ̃
1∕2
ý ý∓,(ý−1) ± ÿÿÿ∕4ÿýý

∓,(ý−1) ,

when CSWR (resp. RSWR) simply involves the transmission con-
ditions ý±,(ý) = ý∓,(ý−1) (resp. ÿý±,(ý) + ÿýý

±,(ý) = ÿý∓,(ý−1) +

ÿýý
∓,(ý−1), for some constant ÿ).

Remark 3.1. Dirichlet-to-Neumann boundary conditions are widely 
used to prevent artificial reflections in various types of wave equations 
(such as Maxwell, wave, Schrödinger, Dirac, etc.) on complex domains, 
as discussed in [26]. As mentioned earlier, their stable, accurate, and 
efficient approximation can however be challenging. It is interesting to 
notice that practically, the fast convergence of optimal or quasi-optimal 
SWR methods does not necessarily require a highly accurate approxi-
mation of the transmission operators. For example, for the Schrödinger 
operator, the Robin operator can be viewed as an approximation of the 
DtN operator, where the fractional operator in time is approximated 
by a constant algebraic operator, and still provides rapid convergence 
of the corresponding SWR algorithm (then referred to as Robin-SWR). 
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Fig. 1. Second level of learning.

In future works, we will specifically explore transparent/high-order ab-
sorbing boundary conditions using PINN algorithms in detail.

In order to improve the efficiency of the overall algorithm on (Ω±
ÿ
∪

Γ±ÿ ) × [0, ÿ ], a second level of (traditional) learning involves restricting 
the training zone to (ÿ±

ÿ ∪ Γ±ÿ ) × [ý0, ýÿ ], where ÿ
±
ÿ ⊂ Ω±

ÿ and 0 < ý0 <

ýÿ < ÿ . This relies on the trained networks to approximate the local 
solutions in Ω±

ÿ ∖ÿ
±
ÿ × ([0, ý0] ∪ [ýÿ , ÿ ]), as illustrated in Fig. 1.

3.3. Practical implementation

Usual neural network libraries, like jax, which is utilized in this 
paper, are designed to handle real-valued neural networks. It is note-
worthy, however, that pytorch, starting from version 1.7, possesses 
the capability to directly manage complex neural networks. Below, 
we rewrite the Schrödinger equation as a real 2-equation system on 
the real and imaginary part of the approximate complex wavefunc-

tion ý = ýý + ÿýý . Denoting ý
±,(ý−1)

ý,ý = ý
±,(ý−1)

ý,ý
(ÿ

±,(ý−1)
, ⋅, ⋅), the

(quasi-)optimal SWR method involving the DtN-like transmission con-
dition ÿ1∕2ý ± ÿÿÿ∕4ÿý reads as follows:

ÿýý
±,(ý)

ý
= −ÿýýý

±,(ý)

ý
− ý (ý)ý

±,(ý)

ý
, in Ω±

ÿ
× [0, ÿ ],

ÿýý
±,(ý)

ý
= ÿýýý

±,(ý)

ý
− ý (ý)ý

±,(ý)

ý
, in Ω±

ÿ × [0, ÿ ],

ý
±,(ý)

ý
(⋅,0) = Re(ÿ±

0
), in Ω±

ÿ ,

ý
±,(ý)

ý
(⋅,0) = Im(ÿ±

0
), in Ω±

ÿ ,

ÿ
1∕2
ý ý

±,(ý)

ý
±

1
√
2
ÿý(ý

±,(ý)

ý
−ý

±,(ý)

ý
)

= ÿ
1∕2
ý ý

∓,(ý−1)

ý ±
1
√
2
ÿý(ý

∓,(ý−1)

ý −ý
∓,(ý−1)

ý ), on Γ±ÿ × [0, ÿ ],

ÿ
1∕2
ý ý

±,(ý)

ý
±

1
√
2
ÿý(ý

±,(ý)

ý
+ý

±,(ý)

ý
)

= ÿ
1∕2
ý ý

∓,(ý−1)

ý ±
1
√
2
ÿý(ý

∓,(ý−1)

ý +ý
∓,(ý−1)

ý ), on Γ±ÿ × [0, ÿ ],

ý
±,(ý)

ý
= 0, on Λ±

ÿ
× [0, ÿ ],

ý
±,(ý)

ý
= 0, on Λ±

ÿ
× [0, ÿ ] .

(16)

Notice that ýý and ýý can be taken with the same set of parameters 
(or not). The local loss functions (assuming for simplicity that the ini-
tial condition is encoded in the neural network) which are defined at 
Schwarz iteration ý, and at any (±ÿ∕2, ý) read

±(ÿ(ý)) = ÿ±
‖‖‖ÿýý

±,(ý)

ý
+ ÿýýý

±,(ý)

ý
+ ý (ý)ý

±,(ý)

ý

‖‖‖ÿ2(Ω±
ÿ ×[0,ÿ ])

+ ÿ±
‖‖‖ÿýý

±,(ý)

ý
+ ÿýýý

±,(ý)

ý
+ ý (ý)ý

±,(ý)

ý

‖‖‖ÿ2(Ω±
ÿ ×[0,ÿ ])

+ ÿ±‖‖‖ÿ
1∕2
ý ý

±,(ý)

ý
±

1
√
2
ÿý(ý

±,(ý)

ý
−ý

±,(ý)

ý
)

− ÿ
1∕2
ý ý

∓,(ý−1)

ý ∓
1
√
2
ÿý(ý

∓,(ý−1)

ý −ý
∓,(ý−1)

ý )
‖‖‖ÿ2(Γ±ÿ ×[0,ÿ ])

+ ÿ±‖‖‖ÿ
1∕2
ý ý

±,(ý)

ý
±

1
√
2
ÿý(ý

±,(ý)

ý
+ý

±,(ý)

ý
)

− ÿ
1∕2
ý ý

∓,(ý−1)

ý
∓

1
√
2
ÿý(ý

∓,(ý−1)

ý
+ý

∓,(ý−1)

ý
)
‖‖‖ÿ2(Γ±ÿ ×[0,ÿ ])

+ ÿ±‖‖‖ý
±,(ý)

ý

‖‖‖ÿ2(Λ±
ÿ ×[0,ÿ ])

+ ÿ±‖‖‖ý
±,(ý)

ý

‖‖‖ÿ2(Λ±
ÿ ×[0,ÿ ])

.

3.4. Computational complexity

Let us discuss the computational complexity of SWR methods when 
using RSM (typically finite element or finite difference) from one hand, 
and PINN algorithm on the other hand. In this context, we denote by ÿ±ý
the number of degrees of freedom in each subdomain Ω±

ÿ for RSM (and 
the number of spatial training points for PINN), and ÿý as the number of 
time steps for RSM (and the number of training points in-time for PINN). 
Additionally, we denote by ýcvgSWR the number of Schwarz iterations re-
quired to reach a given tolerance ÿcv with a SWR algorithm. Finally, ÿ±

ÿ
represents the number of neural network parameters to optimize in the 
PINN algorithms. The computational complexities for SWR+PINN and 
SWR+RSM methods read

ÿPINN+SWR =ÿ
(
ÿ±
ÿ
ÿýÿ

±
ý

ý
cvg
SWR∑

ý=1

ý±SWR(ý)
)
,

where ý±SWR(ý) (→ý→+∞ 0 and coming from the acceleration of the 
optimization algorithm within SWR iterations) denotes the number of 
gradient descent iterations at Schwarz iteration ý. Moreover,

ÿRSM+SWR =ÿ
(
ý
cvg
SWRÿý(ÿ

±
ý
)ÿSWR

)
,

for some ÿSWR > 1, depending on the sparsity and structure of the 
linear systems involved in implicit RSM. The coefficient ÿSWR also de-
pends on the type of transmission conditions, where typically ÿp-OSWR >

ÿRSWR > ÿCSWR. Additionally, for RSM DtN-like operators require large 
data storage, and it is well-known that using DtN-transmission condi-
tions usually leads to stability issues (see [2–4]), necessitating smaller 
time steps than those for Dirichlet conditions (CSWR); or equivalently, 
ÿ
(CSWR)
ý < ÿ

(p-OSWR)
ý . On the other hand, as recalled in Section 2, in 
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Fig. 2. Experiment 1. (Left) Initial data. (Right) Converged solution at final time.

general, we have ýcvgp-OSWR < ý
cvg
RSWR ≪ ý

cvg
CSWR. In the PINN-framework, 

the minimization of the loss functions with CSWR and p-OSWR algo-
rithms at each Schwarz iteration ý respectively requires ýCSWR(ý) and 
ýpOSWR(ý) gradient descent iterations. Unlike RSM, in the framework 
of PINN algorithms, we do not predict an efficiency discrepancy due 
to stability or storage issues when using DtN compared to Dirichlet or 
Robin transmission conditions. Hence,

• We can not state that overall ÿRSM+pOSWR < ÿRSM+CSWR , although 
in general ÿRSM+RSWR < ÿRSM+RSWR < ÿRSM+pOSWR ; see [1,13,12].

• The above discussion however suggests that we can expect that 
ÿPINN+pOSWR < ÿPINN+CSWR and ÿPINN+pOSWR < ÿPINN+RSWR .

This latter point will then be numerically studied.

4. Numerics

This section is devoted to numerical experiments illustrating the 
above discussions. We first present preliminary tests using real space 
methods (RSM) then PINN algorithms. Hereafter, we shall use the nota-
tions from Section 3.

4.1. RSM-SWR numerical experiments

Experiment 1. The first test is devoted to a wave propagating in 
the direction of the subdomain interface, from initial time 0 to fi-
nal time ÿ = 1. We follow the experiment given in [13]. The nu-
merical parameters for this test are the following: ÿ = 20, ÿ = 5, 
with ý+ = 640 and ý− = 385. The size of the overlapping zone is 
ÿ = Δý, corresponding to ÿ0 = 2. The time step is equal to Δý = 0.1. 
The initial data is given by ÿ0(ý) = exp(−10ý2). We report in Fig. 2
(Left) the initial condition, and the converged solution at final time 
ÿ = 1, Fig. 2 (Right). We compare on Fig. 3 (Left) the residual his-
tory {ý, ‖‖‖‖ÿ

+,ÿÿ ,(ý)

|Γÿ
− ÿ

−,ÿÿ ,(ý)

|Γÿ
‖∞,Γÿ

‖‖‖ÿ2(0,ÿ )
} of CSWR, Robin-SWR (with 

ÿ = 5), and 1-optimal SWR. In Fig. 3 (Middle), we report the CPU-time as 
a function of Schwarz iteration. In order to provide a fair comparison, 
we also propose to normalize the CPU-time as a function of Schwarz 
iteration ∕ CPU for the 100th iteration (the first iterations require addi-
tional basic computations) and report ý(ý)SWR as a function of ý, for ý ⩾ 2:

ý
(ý)
SWR ←

ý
(ý)
SWR

ý
(100)
SWR

.

This example shows in particular that the cost of the local IBVP compu-
tations remains roughly constant as a function of the Schwarz iteration, 
at least in the asymptotic regime of convergence [12,5].

4.2. PINN-SWR numerical experiments

In the following series of experiments, we consider

ÿÿýÿ+
1

2
Δÿ+ ý (ý)ÿ = 0 ,

where ý is a given smooth potential. We solve this equation using SWR 
algorithms on Ω+

ÿ
= (−ÿ, ÿ∕2) and Ω−

ÿ
= (−ÿ∕2, ÿ) and the time interval 

(0, ÿ ) with null Dirichlet conditions ±ÿ. A PINN algorithm is imple-
mented on each subdomain allowing the optimization at each Schwarz 
iteration ý, of the parameters ÿ±,(ý). The initial condition is a Gaussian 
function

ÿ0(ý) = exp(−ÿ(ý− ý0)
2 + ÿý0ý) ,

with ý0 = 5, ÿ = 25 and ý0 = −7∕8 and in the following tests we take 
ÿ = 3∕2. We are specifically interested in:

• illustrating the acceleration process which is introduced in the 
PINN algorithm by initializing at Schwarz iteration ý, the local 

loss functions ± with ÿ
±,(ý−1)

. In other words, at iteration ý the 
parameters (ÿ±,(ý)

ý=0
) are initialized with the converged sets of param-

eters (in the optimization sense) at the previous Schwarz iteration: 

ÿ
±,(ý)

0
= ÿ

±,(ý−1)
allowing to define approximate solutions to (3). 

We then compare the convergence of the loss functions as a func-
tion of Schwarz and optimization iterations with randomly chosen 
parameters ÿ±,(ý)

0
.

• Comparison of the rate of convergence as well as the computational 
efficiency of PINN-SWR algorithm with different types of transmis-
sion conditions.

In the following experiment the local neural networks are constituted by 
3 hidden layers with 5 neurons each. The number of training points in 
space and time is set by default to 25 ×25. Pratically, the 2 subdomains 
are respectively defined by (−ÿ, Δý) and (−Δý, ÿ) with Δý = ÿ∕25.

Experiment 2a. This experiment is dedicated to the illustration 
of PINN-SWR convergence on the space-time domain (−7∕4, 7∕4) ×
(0, 1∕4). We present the modulus of the reconstructed wavefunction 
after one Schwarz iteration in Fig. 4. Specifically, in the right subdo-
main, the global solution is nearly “null”. Fig. 5 displays the modulus 
of the reconstructed wavefunction at Schwarz convergence across the 
entire space-time domain. For improved visualization, we also include 
the reconstructed solution on a truncated domain in space-time.

Experiment 2b. We here compare the rate of convergence of PINN-
SWR algorithms using Robin-SWR (ÿý ± ÿÿ) and Optimal-SWR algo-

rithms with transmission operator ÿ1∕2ý ± ÿÿÿ∕4ÿý∕
√
2. The Robin con-

stant is fixed to ÿ = 10. The Robin constant can be optimized to achieve 
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Fig. 3. Experiment 1. (Left) Residual history for Quasi-optimal SWR, Robin-SWR and Classical SWR methods. (Right) Relative CPU time as function of Schwarz 
iteration.

Fig. 4. Experiment 2a. (Left) Loss function as a function of Schwarz iterations. 
(Right) Reconstructed wavefunction after one Schwarz iteration.

the fastest possible convergence. This optimization can be accomplished 
using analytical arguments or by dynamically adapting its values to en-
hance the convergence rate from one Schwarz iteration to the next. In 
this scenario, the method is referred to as optimized Schwarz. Learn-
ing the optimized constant within the combined PINN-SWR algorithm 
could also be investigated, but it is not in the scope of this study. We 
report in Fig. 6 (Left), the residual history as a function of the Schwarz 
iterations in subdomain Ω±

ÿ :
{(

ý,
‖‖‖ý

±,(ý)(ÿý
±,±ÿ∕2, ⋅) −ý∓,(ý)(ÿý

∓,±ÿ∕2, ⋅)
‖‖‖ÿ∞(0,ÿ )

)
, ý ⩾ 0

}
.

The transmission is encoded within the loss function and is hence 
satisfied up to i) a pre-defined optimization error, as well as ii) a quadra-
ture error for DtN-based transmission conditions. To illustrate the con-
vergence of SWR algorithms traditionally, the norm in space and time of 
the difference of the local solutions on the overlapping zones/interfaces 
is reported. In order to illustrate the acceleration of the optimization 
algorithm and to compare the efficiency of the Optimal-SWR and Robin-
SWR (RSWR) methods, such a criterion is no longer appropriate. The 
key point to report is the increasingly faster convergence of the opti-
mization algorithm within the SWR process. The chosen criterion is the 
evaluation of the loss function for a fixed number of gradient descent 
iterations as a function of Schwarz iterations. We expect a decrease in 
the overall local loss functions along the Schwarz iterations, with nat-
urally smaller values for Optimal-SWR than for Robin-SWR. In Fig. 7
(resp. Fig. 8), we report the loss function values as function of ý in 
the Domains Ω±

ÿ , when the neural network parameters are “learnt” or 
randomly chosen in the case of RSRW (resp. OSWR) algorithm, after a 
fixed number ý0 of iterations of the optimization algorithm, that is we 
report:

{(
ý,±

ÿÿ ý
(ÿ

±,(ý)

ý0
)
)
, ý ⩾ 1

}
,

with and without “learning”. We notice that when the optimization pa-
rameters are randomly (resp. learnt from previous Schwarz iteration) 
chosen, the value of the loss function at ý =ý0 is overall not decreasing 
(resp. decreasing) as a function of ý. Let us mention that it is naturally 
possible to reduce the loss function values on those tests by increasing 
ý0, the number of iterations of the optimization algorithm. As ex-
pected and theoretically proven in [13,29], the convergence of optimal 
SWR is much faster than Robin-SWR, and observed using standard PDE 
solvers [13]. As discussed above, Dirichlet-to-Neumann transmission 
operators usually deteriorate the stability, efficiency and sometimes 
accuracy of SWR computational solvers. Thanks to automatic differen-
tiation PINN does not (directly) introduce stability issues related to the 
time∕space discretization. For completeness, we also present the loss 
function as a function of the optimization iteration after three Schwarz 
iterations (ý = 3) in Ω+

ÿ with and without acceleration in Fig. 9 (Left). 
To illustrate the acceleration of the optimization algorithm along the 
Schwarz process, we additionally provide the normalized loss values 
as a function of the optimization iteration for different Schwarz itera-
tions ý (ý = 1, 3, 10, 25, 50) without learning (Fig. 9, Middle) and with 
learning (Fig. 9, Right). Specifically, we represent the graph in a semi-
logarithmic scale, normalizing it by +(ÿ+,(1)) for various values of ý:

{(
ý,(ÿ+,(ý)

ý
)∕(ÿ+,(1)

ý
)
)
, ý ⩾ 1

}
, (17)

with and without “learning”. As expected, initializing the optimization 
algorithm at iteration ý > 1 using the converged set of parameters from 
Schwarz iteration ý − 1 allows for the acceleration of the optimization 
algorithm. We notice that the larger ý, the smaller the ratio (17). This 
test hence illustrates the acceleration of the convergence thanks to the 
learning provided by PINN algorithms.

The next important question to address, is the performance of the 
optimal vs Robin (or classical) SWR algorithm within the PINN frame-
work. We report in Fig. 10 (Left), the CPU-time for minimizing a local 
loss functions with a fixed number of epochs, and within one Schwarz 
iteration and different values of training data in time (from 12 to 
150). The number of training data in space is fixed to 25. We also re-
port in Fig. 10 (Right), the relative cost Optimal-SWR vs Robin-SWR 
(ýOptSWR − ýRSWR)∕ýOptSWR. We observe the computational complexity 
of both PINN-SWR methods is linear. As expected, optimal-SWR com-
putational complexity is shown to be higher than Robin-SWR, but the 
difference is actually relatively small in particular for a large number 
of training points in time; the slight additional computational cost is 
negligible in comparison with the gain in terms of convergence accel-
eration of the SWR algorithm. Overall, the PINN-Optimal SWR is then 
expected to be more efficient than PINN-RSWR or PINN-CSWR. Another 
illustration of this acceleration is also illustrated in the next experiment.

Experiment 3. We propose to compare the convergence of PINN-SWR 
algorithm in terms of the optimization algorithm, with and without 
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Fig. 5. Experiment 2a. Reconstructed wavefunction. (Left) Global space-time domain. (Right) Truncated domain.

Fig. 6. Experiment 2b. Residual history comparison between Robin-SWR and optimal-SWR methods in Ω+
ÿ
. (Left). (Middle) Local loss function + as function of ý. 

(Right) Local loss function − as function of ý.

Fig. 7. Experiment 2b. Local loss function ± as function of ý for random and learnt parameters in RSWR-algorithm.

learning. The test is similar as above, except that the number of train-
ing data are 40 in both time and space, and the neural networks contain 
10 neurons and 10 hidden layers. We have fixed to ý0 = 104 the max-
imal possible number of optimization iterations per Schwarz iteration. 
At each Schwarz iteration ý for RSWR (Robin constant ÿ is taken equal 
to 10) and Optimal SWR with and without learning in each subdomains 
Ω±

ÿ , we report in logscale the normalized number of optimization itera-
tions for reaching the loss value ÿ = 0.3 in Ω+

ÿ (resp. ÿ = 0.02 in Ω−
ÿ ), 

that is {(ý, ý±,(ý)
ÿ ), ý ⩾ 1} where ý±,(ý)

ÿ =
1

ý0

miný{ý ⩾ 1, ∶ (ÿ±,(ý)

ý
) ⩽

ÿ} for Optimal SWR Fig. 11 (Left) and Robin-SWR in Fig. 11 (Right). The 
normalized CPU-time per Schwarz iteration can be deduced from these 
graphs, considering that each optimization iteration requires roughly 
speaking a constant CPU-time. As the PINN-SWR algorithm depends on 

many parameters (related to the optimization algorithms, neural net-
work structures, etc.), it was preferred to report a normalized number 
of optimization iterations rather than normalized CPU-time. We also re-
port in Fig. 12, for Optimal-SWR the loss function values as a function 
of Schwarz iterations in logscale. Selecting the number of optimization 
iterations a priori is non-standard, but it allows us to illustrate the SWR-
learning effect provided by PINN, as well as the fact that Optimal-SWR 
allows for faster convergence than Robin-SWR.

Experiment 4. In this experiment, we aim to study the effect of choos-
ing hyperparameters on the relative convergence of the accelerated 
PINN-RSWR and PINN-OptSWR algorithms. To achieve this goal, our 
focus is on the relative selection of hyperparameters ÿ (associated with 
the PDE residual) and ÿ (related to transmission conditions), as well as 
the convergence threshold within the optimization algorithm:
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Fig. 8. Experiment 2b. Local loss function ± as function of ý for random and learnt parameters in optimal-SWR algorithms.

Fig. 9. Experiment 2b. (Left) Local loss function at iteration ý = 3 with and without learning in Ω+
ÿ
. (Middle) Normalized loss function (17) without learning. 

(Right) Normalized loss function (17) with learning.

Fig. 10. Experiment 2b. (Left) CPU-time with PINN algorithm: Robin-SWR vs Optimal-SWR per Schwarz iteration. (Right) Relative cost Optimal-SWR vs Robin-SWR.

±(ÿ±,(ý)) = ÿ
‖‖‖ÿÿýý

±,(ý)(ÿ±,(ý), ⋅, ⋅) + ÿýýý
±,(ý)(ÿ±,(ý), ⋅, ⋅)

+ý (ý)ý±,(ý)(ÿ±,(ý), ⋅, ⋅)
‖‖‖ÿ2(Ω±

ÿ ×[0,ÿ ])

+ÿ
‖‖‖±(±ÿ∕2, ý)ý±,(ý)(ÿ±,(ý),±ÿ∕2, ⋅)

−±(±ÿ∕2, ý)ý∓,(ý−1)(ÿ
±
,±ÿ∕2, ⋅)

‖‖‖ÿ2(0,ÿ )
.

(18)

The space-time domain is [−7∕4, 7∕4] × [0, 1∕4] and the initial data is 
ÿ0(ý) = exp(−ÿ(ý −ý0)

2+ÿý0ý), with ý0 = 5, ÿ = 25 and ý0 = −7∕8. We 
consider two hidden layers with ten neurons each and report below the 
relative convergence of RSWR and Optimal-SWR algorithms for various 
hyperparameters.

Experiment 4.a This experiment focuses on the relative number of 
optimization iterations (OptSWR/RSWR) at convergence, for a fixed tol-

erance ÿ of the optimization algorithm, as a function of the Schwarz 
iterations, while varying the hyperparameters ÿ± in (18). We set ÿÿ ∶=
ÿ±∕ÿ± = 2ÿ for ÿ = 1, ⋯ , 4, and fix ÿ± = 10. For fixed ÿÿ, we denote

ÿ
(ý)
ÿ

=+
RSWR(ÿ

+,(ýý)

ÿ
), ý

(ý)
ÿ

=+
OptSWR(ÿ

+,(ýý)

ÿ
) ,

such that +(ÿ
+,(ýý)

ÿ
) < ÿ < +(ÿ

+,(ýý−1)

ÿ
). In Fig. 13, we present the 

number of iterations for the optimization algorithm for Optimal-SWR as 
a function of the Schwarz iterations for different values of the parame-
ters: {(ý, ý(ý)

ÿ
), ý = 1, ⋯ , 100}. In Fig. 13 (Right), we report the relative 

(OptSWR∕RSWR) number of iterations {(ý, ý(ý)
ÿ
∕ÿ

(ý)
ÿ
), ý = 1, ⋯ , 100}. It 

is observed that, like any PINN-based PDE solver, the overall conver-
gence of the PINN-SWR algorithms is largely dependent of the choice of 



Computer Physics Communications 299 (2024) 109129

11

E. Lorin and X. Yang

Fig. 11. Experiment 3. Normalized number of optimization iterations as a function of Schwarz iteration in logscale: Robin-SWR (Left) and Optimal-SWR (Right) 
with and without learning.

Fig. 12. Experiment 3. Loss function as a function of Schwarz iteration for 
Optimal-SWR with and without learning.

the hyper-parameters. Furthermore, PINN-OptSWR demonstrates better 
convergence, particularly for properly chosen parameters.

Experiment 4.b In this experiment, we set the parameters ÿ = 5 and 
ÿ = 10, and vary the convergence tolerance of the optimization algo-
rithm. Specifically, we use ÿÿ = ÿ0∕2

ÿ for ÿ = 0, 1, 2, 3, with ÿ0 = 1. The 
relative number of optimization iterations is then reported as a function 
of the tolerance ÿÿ for both RSWR and OptSWR. More specifically, we 
denote:

ý
(ý)
ÿ

∶=+
RSWR(ÿ

+,(ýý)

ÿ
), ÿ

(ý)
ÿ

∶=+
OptSWR(ÿ

+,(ýý)

ÿ
) ,

such that +(ÿ
+,(ýý)

ÿ
) < ÿÿ < +(ÿ

+,(ýý−1)

ÿ
). We report in Fig. 14 (Left), 

the number of iterations of optimization algorithm with OptSWR as a 
function of Schwarz iterations, for different tolerances ÿÿ: {(ý, ÿ

(ý)
ÿ
), ý =

1, ⋯ , 50} {(ý, ÿ(ý)
ÿ
∕ý

(ý)
ÿ
), ý = 1, ⋯ , 50}. In Fig. 14, we report the 

relative (OptSWR∕RSWR) number of iterations: {(ý, ÿ(ý)
ÿ
∕ý

(ý)
ÿ
), ý =

1, ⋯ , 50}. Notice that the smaller ÿÿ the more accurate, ý
±,(ý), cor-

responding to the local approximate solutions to the Schrödinger equa-
tion.

These experiments highlight the crucial role of hyperparameter se-
lection for achieving overall convergence in PINN-based algorithms, 
including PINN-SWR. Furthermore, they suggest that the results and 
conclusions presented in this paper, particularly regarding the relative 
convergence rates of PINN-RSWR vs. PINN-OptSWR, remain largely 
valid regardless of the chosen hyperparameters; at least within the 
parameter range that ensures overall convergence of the PINN-SWR al-
gorithms.

Experiment 5. In this final experiment, our focus is specifically on the 
approximation of the transmission/boundary condition within the loss 
function—an important aspect for validating the conclusions presented 
in this paper. This particular question will also be addressed in high 
dimensions in a forthcoming paper on absorbing boundary conditions 
with neural network-based algorithms. To achieve this, we consider the 
following local IBVP within the domain Ω = (ÿ, ÿ) and for ý ∈ [0, ÿ ]:

ÿÿýÿ+ ÿýýÿ+ ý (ý)ÿ = 0, ý ∈Ω, ý ∈ [0, ÿ ] ,

 ÿ = 0, ý = ÿ−, ý ∈ [0, ÿ ] ,

ÿ = 0ý = ÿ+, ý ∈ [0, ÿ ] ,

ÿ(ý,0) = ÿ0(ý), ý ∈ (ÿ, ÿ) ,

(19)

where the boundary operator  is defined as the Dirichlet-to-Neumann 
(DtN) operator DtN = ÿ

1∕2
ý + ÿÿÿ∕4ÿý (used in OptSWR) or Robin op-

erator Robin = ÿ + ÿÿý (used in Robin SWR), for some fixed Robin 
constant. We assume hereafter that the initial and Dirichlet boundary 
conditions at ý = ÿ+ are intrinsically integrated within the neural net-
works (ýý(⋅, 0) = Re(ÿ0) and ýý (⋅, 0) = Im(ÿ0) and ýý,ý = 0 at ý = ÿ+). 
Hence, we simply consider

ÿýýý = −ÿýýýý − ý (ý)ýý , in Ω× [0, ÿ ] ,

ÿýýý = ÿýýýý − ý (ý)ýý, in Ω× [0, ÿ ] ,

either coupled with i) Dirichlet-to-Neumann boundary conditions

ÿ
1∕2
ý ýý +

1
√
2
ÿý(ýý −ýý ) = 0, on {ÿ−} × [0, ÿ ] ,

ÿ
1∕2
ý ýý +

1
√
2
ÿý(ýý +ýý ) = 0, on {ÿ−} × [0, ÿ ] ,

where

ÿ
1∕2
ý ýý,ý (ÿ, ý, ý) = ÿý

ý

∫
0

ýý,ý (ÿ, ý, ÿ)
√

ÿ(ý− ÿ)
ýÿ ,

or coupled with ii) Robin boundary conditions

−ÿýý + ÿýýý = 0, on {ÿ−} × [0, ÿ ],

ÿýý + ÿýýý = 0, on {ÿ−} × [0, ÿ ] .

We set

Intern(ÿ) =
‖‖‖ÿýýý + ÿýýýý + ý (ý)ýý

‖‖‖ÿ2(Ω±
ÿ ×[0,ÿ ])

+
‖‖‖ÿýýý + ÿýýýý + ý (ý)ýý

‖‖‖ÿ2(Ω±
ÿ ×[0,ÿ ])

.

We then consider the following loss contribution for Dirichlet-to-
Neumann boundary conditions
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Fig. 13. Experiment 4. (Left) Number of optimization iterations for OptSWR, as function of Schwarz iterations for different values of ÿÿ and fixed optimization 
algorithm tolerance: {(ý, ý(ý)

ÿ
), ý = 1, ⋯ , 100}. (Right) Relative number of optimization iterations (OptSWR∕RSWR) as function of Schwarz iterations for different 

values of ÿÿ and fixed optimization algorithm tolerance: {(ý, ý(ý)
ÿ
∕ÿ

(ý)
ÿ
), ý = 1, ⋯ , 100}.

Fig. 14. Experiment 4.b (Left) Optimization iterations as function Schwarz iteration for different tolerance ÿÿ : {(ý, ÿ
(ý)
ÿ
∕ý

(ý)
ÿ
), ý = 1, ⋯ , 50} (Right) Relative number 

of optimization iterations as function Schwarz iterations for different tolerance ÿÿ : {(ý, ÿ
(ý)
ÿ
∕ý

(ý)
ÿ
), ý = 1, ⋯ , 50}.

DtN(ÿ) =
‖‖‖ÿ

1∕2
ý ýý +

1
√
2
ÿý(ýý −ýý )

‖‖‖ÿ2(Γ±ÿ ×[0,ÿ ])

+
‖‖‖ÿ

1∕2
ý ýý +

1
√
2
ÿý(ýý +ýý )

‖‖‖ÿ2(Γ±ÿ ×[0,ÿ ])
,

as well as a loss contribution for Robin boundary conditions

Robin-BC(ÿ) = ‖‖‖−ÿýý + ÿýýý
‖‖‖ÿ2(Γ±ÿ ×[0,ÿ ])

+
‖‖‖ÿýý + ÿýýý

‖‖‖ÿ2(Γ±ÿ ×[0,ÿ ])
.

Finally we set

DtN = ÿIntern + ÿDtN-BC, Robin = ÿIntern + ÿRobin-BC . (20)

Practically, the convolution product in DtN-operator is approximated 
using a discrete convolution product (function convolve from numpy). 
We then proceed as follows:

1. minimization of the global loss function DtN (resp. Robin), 
that is construction of a sequence of parameters {ÿDtN;ý}ý (resp. 
{ÿRobin;ý}ý);

2. report {(ý, DtN(ÿDtN;ý), ý ⩾ 0}, as well as {(ý, Robin(ÿRobin;ý), 
ý ⩾ 0};

3. report {(ý, DtN-BC(ÿDtN;ý), ý ⩾ 0}, as well as
{(ý, Robin-BC(ÿRobin;ý), ý ⩾ 0}.

Step 2 corresponds to the convergence of the PINN algorithm, while 
Step 3 specifically focuses on the contribution of the boundary condi-
tions within the optimization algorithm. In this experiment, we consider 
neural networks with 2 hidden layers, each containing 10 neurons. The 
computational domain is such that ÿ = −2 and ÿ = 0, with null po-

tential, and initial condition given by exp(ÿ5ý) exp(−30(ý + 1)2). The 
Robin constant is taken equal to ÿ = 1. Within the loss functions, we 
take ÿ = 0.9 and ÿ = 0.1, and for consistency the same set of ran-
domly chosen points for both IBVP (Robin and DtN). In Fig. 15, we 
report the loss functions for Robin {(ý, DtN(ÿRobin;ý), ý ⩾ 0} and 
DtN {(ý, DtN(ÿDtN;ý), ý ⩾ 0} as well as the corresponding contribu-
tion of the boundary condition {(ý, ÿRobin-BC(ÿRobin;ý), ý ⩾ 0} and 
{(ý, ÿDtN-BC(ÿDtN;ý), ý ⩾ 0}. This allows to specifically illustrate the 
convergence of the boundary conditions. Although the DtN operator is 
more complex and, as a consequence, less accurately approximated than 
the Robin operator, the overall choice of the boundary condition does 
not have a significant impact on the convergence of the PDE solver.

5. Conclusion

In this paper, we have studied PINN algorithms for solving the time-
dependent Schrödinger equation using (quasi-)optimal SWR domain 
decomposition methods. In [7], it was shown that PINN solvers intro-
duce some learning∕acceleration within SWR algorithms. Specifically, 
regardless of the transmission conditions chosen, the optimization al-
gorithm is accelerated from one Schwarz iteration to the next thanks 
to “learnt” initial neural network parameters. On the other hand, op-
timal SWR algorithms are based on non-local transparent operators 
(Dirichlet-to-Neumann) and provide the fastest convergence rate among 
SWR algorithms. Dirichlet-to-Neumann operators are known to deteri-
orate the efficiency, stability, and potentially the accuracy of standard 
Schrödinger equation solvers. We have shown in this paper that the 
use of PINN largely circumvents this issue. In particular, we have ob-
served that the overall efficiency of optimal SWR is higher than that of 
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Fig. 15. Experiment 5. Global loss functions with Robin and DtN 
boundary conditions {(ý, DtN(ÿRobin;ý), ý ⩾ 0} and {(ý, DtN(ÿDtN;ý), ý ⩾

0} as well as the corresponding contribution of the boundary condition 
{(ý, ÿRobin-BC(ÿRobin;ý), ý ⩾ 0} and {(ý, ÿDtN-BC(ÿDtN;ý), ý ⩾ 0}.

CSWR/Robin-SWR, thanks to the acceleration property offered by the 
PINN-SWR approach and the automatic differentiation (and potentially 
integration) of neural networks, allowing for efficient computation 
of Dirichlet-to-Neumann transmission conditions. In future works, we 
will study the performance of PINN-SWR methods in high-dimensional 
PDEs, as well as NN-based approximations of Dirichlet-to-Neumann-like 
operators for absorbing boundary conditions for different types of wave 
equations.
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