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In this paper, we derive and analyze the performance of optimal/quasi-optimal Schwarz Waveform Relaxation
(SWR) domain decomposition methods (DDM) for the time-dependent Schrodinger equation when implement
with neural network-based Partial Differential Equations (PDE) solvers. Optimal SWR methods, which are based
on Dirichlet-to-Neumann operators, are known to have a higher convergence rate than classical or optimized
SWR methods. However, they are usually considered prohibitive due to their computational costs with standard

PDE solvers. Thanks to Physics Informed Neural Network acceleration within the Schwarz waveform relaxation
process and an efficient computation of Dirichlet-to-Neumann transmission operators, we demonstrate that
optimal and quasi-optimal SWR methods can be performed almost as efficiently as classical or optimized SWR
methods while maintaining a faster convergence rate. We present a few numerical examples to illustrate the
performance and convergence of the proposed method.

1. Introduction

In this paper, our focus is on computing the time-dependent
Schrodinger equation (TDSE) using the optimal or quasi-optimal
Schwarz Waveform Relaxation (SWR) domain decomposition method
(DDM) [1], which relies on Dirichlet-to-Neumann-like transmission con-
ditions. At the PDE level, optimal and quasi-optimal SWR methods
are known to converge much faster than classical (based on Dirich-
let transmission conditions) or optimized (based on Robin transmis-
sion conditions) SWR methods. However, the approximation of the
corresponding local initial boundary value problems with standard
Schrodinger equation solvers is i) more computationally complex (ill-
conditioned linear systems), ii) requires large data storage due to the
nonlocality of Dirichlet-to-Neumann (DtN) operators, and iii) may lead
to numerical instabilities. For these reasons, classical SWR or Optimized
SWR methods are usually preferred, even if they provide a slower con-
vergence rate than optimal SWR methods. Additional details can be
found in [2-5]. Here, we show that, thanks to Physics Informed Neural
Networks (PINN) [6], optimal and quasi-optimal Schwarz Waveform
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Relaxation (SWR) methods can be numerically performed almost as
efficiently as classical and optimized SWR methods. PINN algorithms
offer two main advantages: i) they introduce learning into the Schwarz
waveform relaxation process, as observed in [7], and ii) they enable the
efficient computation of Dirichlet-to-Neumann transmission operators
through automatic differentiation (and possibly integration, currently
under investigation) of neural networks. It is important to note that the
term learning refers to the acceleration of the optimization algorithms
within the Schwarz process, specifically to the initialization of the op-
timization algorithms within the Schwarz algorithm. We should also
mention that other types of neural network-based algorithms for solv-
ing Partial Differential Equations (PDEs) can be considered instead of
PINN [8-11]. To clarify this concept, we provide some preliminary in-
formation about the SWR method and PINN algorithms. We insist on
the fact the although PINN methods enable the efficient performance
of optimal SWR methods, in general and particularly in low dimen-
sions, standard PDE solvers usually remain much more computationally
efficient. The central idea of this paper is to demonstrate that within
the PINN framework, unlike standard Schrédinger equation solvers,
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optimal and quasi-optimal SWR methods can be performed almost as
efficiently as classical or Robin SWR methods while maintaining a faster
convergence rate.

1.1. Introductory remarks

Optimal and quasi-optimal SWR methods are domain decomposi-
tion methods for evolutionary PDEs, which are based on transparent
transmission operators (typically such as Dirichlet-to-Neumann-like op-
erators), and which are known to provide a very fast convergence of the
Schwarz process [1,12,13], as less as two Schwarz iterations at the con-
tinuous level, and in the most simple configuration. Optimal Schwarz
waveform relaxation methods are more generally constructed using
Nirenberg’s factorization of the Schrédinger operator (and more gen-
erally evolution wave operators) at the subdomain interfaces [1,14]. In
one dimension, it simply consists of the following factorization,

af - iaxx = (\/a_t + ei”/4ax)(\/a_t - eiﬂ/4ax) >
and allowing an incoming/outgoing wave decomposition at the subdo-
main interface. The pseudo-differential (fractional operator) 0:/ 2 is a
nonlocal operator which is, for instance, defined by Riemann-Liouville
integrals [3]. More specifically, for a real integrable function f, we de-
fine

t

f(@) 4
—dr
0 Vzrlt—1)

where Df is the so-called a—derivative with respect to . It is well-
known that the approximation of Dirichlet-to-Neumann operators is
far from trivial, and often leads to numerical stability, ill-posed linear
systems with accuracy and storage issues, as observed in the frame-
work of absorbing boundary conditions [15,2,4] or Schwarz waveform
relaxation [12,13]. Hence for TDSE, even if the optimal Schwarz wave-
form relaxation method allows for an “optimal” convergence, much
faster than classical Schwarz (based on Dirichlet transmission condi-
tions) or even Optimized Schwarz (based on optimized Robin trans-
mission conditions), they are often considered as prohibitive from
the computational point of view. Practically, an optimized Robin
transmission operator usually provides the best compromise between
computational efficiency, accuracy, and SWR convergence rate. We
summarize the difficulties related to standard discretizations (finite
element/difference/volume methods) of the DtN-like transmission con-
ditions (see [2,16,171):

D)*f(t)=D,

5

+ Storage of the solution at any time at the subdomain interfaces;

» Stability and accuracy issues;

* Loss of efficiency due to the numerical computation of ill-posed
linear systems.

PINN algorithms are a “new” type of PDE solvers which consist in
i) searching the PDE solution in the form of a neural network (that
is a parameterized given function), ii) optimizing the neural network
(NN) parameters by minimizing a loss function written as a continu-
ous PDE residual and iii) including (experimental or numerical) data.
The space-and-time approximate solution is then given by a neural net-
work evaluated at a set of optimized parameters. This approach benefits
in particular from i) the use of automatic differentiation which allows
for exact computation of partial derivatives (no differential operator
approximation), and ii) the use of efficient stochastic methods for op-
timizing a loss function constructed as the norm of PDE residuals at
randomly chosen space&time points. On the other hand, as far as we
know, automatic integration is not rigorously treated in the literature,
and as a consequence, as in this paper, fractional time-derivatives will
be computed using appropriate quadratures. We do not delve into the
discussion of the interest/relevance of using NN-based algorithms for
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solving PDEs, but rather, we refer to [6,18,19]. Also, note that neural
networks are now widely used in quantum chemistry for solving high-
dimensional eigenvalue problems in connection with the energy states
of large molecules [9,20].

In this paper, we are interested in the consequences of using optimal
SWR-DDM in combination with PINN algorithms:

1. At Schwarz iteration k, we initiate the optimization algorithm
using the set of converged parameters obtained at the previous
Schwarz iteration k — 1, corresponding to the approximate solu-
tion at iteration k — 1. Consequently, we anticipate an acceleration
of the convergence of the optimization algorithm as k increases.
In comparison, achieving a similar acceleration with standard nu-
merical solvers involving time-stepping would require storing the
approximate solutions at every time step.

2. The discretization of time-derivatives in standard evolution PDE
solvers is usually the source of numerical linear instabilities. While
automatic differentiation applied to time-derivatives may, at first
sight, circumvent this issue (see, for instance, [21] for the Dirac
equation), the discretization and minimization of the loss function
by Monte Carlo integration may potentially introduce some numer-
ical instability. As far as we know, this interesting question has not
been rigorously addressed in the literature.

3. The minimization of the loss functions may be complexified due to
the nonlocal operator involved in the residual.

In theory, we expect an improvement for Points 1. and 2. using PINN
compared to standard Real Space Methods (RSM). The key point is
then to study the overall efficiency of the optimization with nonlocal
(DtN-type) boundary conditions, Point 3. Let us mention that domain
decomposition in the framework of PINN algorithms has been studied in
several recent works, such as [22], where space-time decomposition is
directly implemented in the minimization of the loss function. In [23],
Schwarz domain decomposition is proposed for stationary equations,
and evolution PDEs are considered in [24].

For the sake of simplicity, in this paper, we will mainly work in
a one-dimensional framework, although the concepts, algorithms, and
implementations discussed in Subsections 2.3 and 3.2 are identical in
higher dimensions.

1.2. PINN for the time-dependent Schrédinger equation

In this paper, we consider the following TDSE:

idu+o, u+Vxu=0,xeR,t>0,
(e, D] =5 rpeo 0 120, ey
u(x,0) =uy(x), xR,

where u denotes the Cauchy data, and V' is a smooth, real-valued po-
tential that depends on space and is positive (respectively negative) for
attractive (respectively repulsive) interactions. To solve the Schrodinger
equation using PINN, we first consider a bounded spatial domain de-
noted by Q, which is assumed to contain the support of u,. We impose
the boundary conditions Mu =0 at I' := 0Q, where M is a boundary
operator. Therefore, we consider the following TDSE on Q X [0,T], for
some T > 0,

10+ 0y u+V(xu=0 in Qx[0,T1,
Mu=0 inI"x[0,T], 2
u(-,0) =1y, in Q.

In practice, M is often chosen as the DtN-like operator (absorbing or
transparent conditions) to avoid artificial wave reflections; alternatively
the Robin operator or the identity operator (for Dirichlet conditions)
can be used for large enough domains.

PINN algorithms generalize Lagaris’ work [25] on differential equa-
tion computation and involve approximating the solution to (2) using
a parameterized neural network denoted by N (6, x,t). The parameters
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of the network are optimized by minimizing a discrete version of the
following loss function:

L£(0) = (10, + 0y + V(X)) N (O, -, )l 2(ax10.77)
+ullMN @O, )l 2oy T KINO,-,0) = upll 12 »

where 4, 4 and « are positive parameters and 6 € ® € R” for some
“large” P. The notation || - || 2(qxo.ry) (¥€sP- || - Il L2qpo.77)) denotes the
L2-norm over Qx [0,7T7] (resp. I'x [0, T']). To numerically construct the
loss function by Monte Carlo integration, a large number of space-time
input data points {(x;,?,)},, are randomly chosen. Karniadakis et al.
have developed numerous techniques to improve of PINN algorithms
for direct and inverse PDEs problems; see [6,18,19] for more details.

1.3. Organization of the paper

In Section 2, we discuss the combination of PINN with (quasi-)opti-
mal SWR methods. We examine some important convergence properties
of this solver, particularly in comparison with combined Robin-SWR
methods. In Section 3, we provide additional details on the implementa-
tion of the PINN and SWR algorithms and present a complexity analysis.
We then present some numerical experiments in Section 4, and in Sec-
tion 5.

2. Optimal and quasi-optimal SWR methods with PINN

The purpose of this paper is to demonstrate the relevance of opti-
mal (or quasi-optimal) SWR methods when used in conjunction with
PINN algorithms. In this section, we introduce the basics of PINN-SWR
algorithms.

2.1. Optimal and quasi-optimal SWR methods

We recall here the basics of SWR methods, particularly its optimal
version based on (transparent or absorbing) Dirichlet-to-Neumann-like
operators. As this paper focuses on fundamental principles and un-
derstanding, we consider a simple setting of two subdomains with or
without overlap. We denote these subdomains as Q:f =(—a,+¢/2) and
Q- =(—¢/2,a) forsome e >0and a € R? . We recall that SWR methods
on two subdomains consist in solving:

10 ® = 0 1™ ® — V (xut®, in QF x[0,T],
w0, 0)=u¥, in QF,

T, G, ® =7, (x, H™* D, on Tt x[0,T],
w8 =0, on A*x[0,T1],

3

where 7, (x,?) is a boundary operator, and where we have denoted

* = {+¢/2}, and A = 0QF\I't = {Fa}. The well-posedness and the
convergence of this method and its rate of convergence were established
in [1,5,12,13] for different types of transmission conditions applied
to the Schrdodinger equation. In this paper, we focus on the optimal
SWR-methods which rely on transparent/absorbing transmission oper-
ators obtained by Nirenberg’s factorization at the subdomain interfaces
[14,12]. Below we recall some fundamental results relative to the con-
struction of optimal and quasi-optimal Schwarz waveform relaxation
methods. Let us start by recalling the principle of Nirenberg’s factoriza-
tions.

10, + 0y + V()= (0, +1L7)(0, +iLY) + R, “4)

where R € OPS™ =), OPS™ (with OPS™ denoting the set of order
m differential operators) is a smooth pseudo-differential operator and
L* are pseudo-differential operators of order 1/2 in time and order 0
in space, which can be constructed by expanding its symbol A* in the
form

+ +
’1+NZ’11/2—,'/2’ ®
=0
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where A;—' ajjp A€ elementary symbols corresponding to operators of
order 1/2—-j/2, jeN.

» when V is constant, A= =Fy/ -7+ V.

« When V is not constant, we construct quasi-optimal SWR methods of
order p (p-OSWR) involving DtN operators at the subdomain inter-
faces with the following operators:

TE(x,t) =0, + 1L*¥P(x,1,0,,9,), (6)

where for p=0,1,2, L*? is given by

LE0(x,1,0,,0)u = /49!y,

L (x,1,0,, 0 )u = e /40012 (7400 (x, 1)) o

1 _
L4 (x,1,0,,0)u= LY w(x,1) + iZV'(x)el“’("”)lt (e Du(x, 1)),

and where the function w is defined in the linear case by w(x,t) =
tV (x).

2.2. PINN-SWR methods

Instead of using standard approximation methods such as finite el-
ements/differences or pseudo-spectral methods [13,5], we propose to
solve the system using PINN. While other types of NN-based solvers ex-
ist (see [8,10,11]), we choose PINN for their simplicity and flexibility.
The generic NN to optimize is denoted by N (6, x, 1), where 6 (belongs to
a vector space ©) represents the unknown parameters. The PINN-SWR
allows for adaptability in the depth of the neural networks, depending
on the local structure of the solution. We consider

ig, N*® = -9 N*® —y(x)N=® | in QF x [0, T},
+,(k - - +

NEOC,0)=u¥, in QF,

T, ) N*® =7 (x, )NF*D on T x [0, 77,

N+® =0, on A* x[0,T],

®

where N*®) denotes the local neural network in QF at Schwarz it-
eration k, and where i) 7,(x,7) = I is the identity operator for the
classical SWR method, ii) 7_.(x,?) = 0, + rI for some constant r for the
Robin/optimized SWR method, and iii) 7, (x,) = 9, + iA®?(x, 1) for the
optimal or quasi-optimal SWR method. For instance at x = +¢/2 (for

* = {+¢/2}) and p = 0, the quasi-optimal SWR method corresponds to

t
a0 [ NEO,x6/2,7)
(0, + IATO)N*(O, +6/2,1) = u+ e /* — / dr.

0t0 Vzrt—1)

At Schwarz iteration k, we minimize at (+¢/2,1)

Ei(et,(k)) — /FH 1a,NJ—"(")(9i*("), )+ 0XXN1’(k)(9i’(k), )

V(x)N=®@ge® . . H
+V () ( )LZ(Qfxlo,Tl)

+ ”i”Tx(if/l HNEO @GO 1672,

— T, (xe/2,ONTED(@, ¢ /2, ')"LZ(OI) 7
4t HNi,(k)(Oi,(k)’ . ')”LZ(Afx[O,T])
+¢* HNJ"’(")(OJ—"(")’Q )= ”g(')”LZ(szi) ’

—+ (k-1 .
where we have denoted 0+ = (0+( )) computed at the Schwarz itera-

tion k — 1. The convergence criterion of the PINN-SWR algorithm reads
as follows

. —+(k) _ k)
Jim | IV @)= Nm@ ol 0. (0

= =
0,2, nQ, 112(0,1)
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—F —
where || -|| =+ — denotes L*-norm over the spatial domain Q_ NQ_.
00,Q, NQ, € €

Moreover, the approximate solution (N) to the Schrodinger equation as
is hence defined by:

§od NPED@L), et x(0,T],
N D@ -, inQ x[0,T1,

where k8 denotes thek number of Schwarz iterations to reach con-

vergence and 9 denotes the corresponding converged set
of parameters. The loss function is computed by evaluating the equa-
tion at a large number of randomly chosen input points {(x;—', 1)}, in
Q;—“ X [0,T]. From the optimization point of view, the method now re-
quires the minimizing of two local loss functions. At each iteration k, we
optimize the loss functions in Q;—r with updated boundary conditions. Al-
though standard SWR methods require the computation of IBVP “from
scratch” (but with updated boundary conditions), PINN-SWR allow to

initialize the local neural networks at iteration k, using the parame-
—=,(
ters 6

) .. . . . .
parameterizing to the space-time approximation solution

—+,(k)
N*6 o ,+,0) in Q;—“ That is at Schwarz iteration k and for £ > 0,
+.(k) (k) _ +/pt.(k)
0., =6, VVLEO,),
+.(k) _ pEk=1 S . . .
where 05 =60 , ¢ denotes the optimization algorithm iteration

index, and v denotes the learning rate. In other words, we expect the op-
timization algorithm accelerates the convergence at least close to SWR

where E(@i ) =1 £(6+( )) By analogy, the use of standard TDSE

solvers would correspond to randomly choose the initial parameters
o= =g andwith L@ )< LOF ).

random random

Remark 2.1. By rewriting SWR algorithms as a fixed-point problem and
employing microlocal analysis arguments from [5,13], the following
error estimate can be directly established:

+,(k)

kp,,£:0)
1= = gz Ml 2oy S €& V)T — g Nl 2o -

where C(z,¢,V) is dependent on the type of transmission conditions
with 1> Cegwr > Crswr > Cp.oswr and where CSWR refers to classi-
cal SWR based on Dirichlet transmission conditions, RSWR refers to
(optimized) Robin-SWR based on Robin transmission conditions, and
p-OSWR refers to optimal (or p-optimal) SWR methods. Rather than
computing (8), it may be relevant to consider the following system

« For k = 1, we consider (3) with u=© given.
« For k > 2, we set w1 = =) — ;=0 and consider

10,wt® = -9, w=® -V (x)wt®, on QF x[0,T7],
w®(,0)=wt*D(.,0), inQF,

T, (e, Hwt® =T, (x, nw™* D on T'* x[0,T],
wt® =0, on A*x[0,T].

an

Practically, we can then construct neural networks NZ* : (x,f) —
N i(Gi’(k),x, t) which are eventually convergent to the null function.
From a PINN point of view, N*(6*® . .)is an approximation of w=®

at Schwarz iteration k. We denote by 0 #Kevg) the parameters corre-
sponding to the converged SWR solution. Adapting the analysis of [7],
we obtain the following stability result for k large enough and for some
positive D > 0:

+,(k)

+.(keyg)  —+.(k)
v~ ERE) ')|L°°(Q$><[O,T]) s

6 6 ll, S DIN*(

—=+,(k) . .
where N*(0 ,-,-) is close to the null function and |u|; w01
= 8UP,cqtyeqory [4(X DI
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2.3. Multi-dimensional PINN-SWR algorithm

In this paper, the SWR-learning concepts are proposed in a one-
dimensional framework. However, the multi-dimensional extension of
the algorithms and concepts remains valid. Hereafter, we present some
details about the extension to d spatial dimensions. The neural networks
read N*(6,x,1), for x € QF C R with smooth boundary and such that
Q=Q- uQ'. Hence considering the IVBP

idu+Au+V(x)u=0, inQx[0,T],
Mu=0, inI"'x[0,T], (12)
u(+,0) = uy, in Q,

the corresponding SWR at Schwarz iteration k, reads

19, N*® = —_AN*® — y(x)N*® | in O x [0,T],
NEOC0)=u¥, in QF,

T, h)N=P =T (x, ) N¥¢=Don T* x [0, T,
N*® =0, on AT x[0,T],

13)

where 7, (x,1) is a boundary operator. For d =2 and null potential, we
have for instance:

* Assuming that I'f are smooth interfaces with outward normal vec-
tors n*. Quasi-optimal transmission operators typically read for

0-optimal (Robin) d,+ +ir, on F+
1-optimal Oy + e‘l”/401/2, on F;—' )
2-optimal Op= + e_l”/40t1/2 —eln/4 %Ar:_r 111/27 onT%,

where Ap= is the second-order derivative (Laplace-Beltrami) oper-
t3
ator over ' and I}*

It f= /f(f)(ﬂ(l - 1) %dz.
0

See [26] for the details.
In the case of curved interface

Oz + e /401% 4 % —etr/t (K(g) EAF,> 1?
Arsk(s)
+i < K(g) as(,((s)a )+ FT) I, onT%,

where we have denoted x the local curvature, and where s is the
curvilinear abscissa along I'F.

The derivation and implementation of PINN algorithms in higher spa-
tial dimensional is straightforward. At Schwarz iteration k, we hence
minimize the following local loss functions

Ei(et,(k)) — /FH ia,NJ—“’(")(Gi*("), )+ ANi,(k)(gt,(k), )

HVONEOED, ')HLz(ntx[o )

+ |7 oNED @D, )
— —+
S TLCONTED@ ]

4 KiHNi,(k)(ei,(k)’ . )” .
L2(AEX[0,T])

NEG50,0,) - )

+ || o V=50 e,
—* - . .

where 6 are the optimized parameters defining the approximate local

space-time solutions in Q:—’ at iteration k — 1 and where A%, y* and x*

are some positive parameters.
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3. Numerical schemes

In this section, we provide some details about the schemes used to
solve the TDSE using SWR-DDM. We will perform several tests and com-
parisons including:

» Comparison of Classical/Robin-SWR with Optimal SWR in terms of
number of Schwarz iterations using finite difference (FD) solvers
and physics-informed neural network (PINN) solvers. We do not
expect any improvement in terms of Schwarz iterations when us-
ing PINN over FD for the same type of transmission conditions.
However, we will illustrate that Optimal SWR has a much faster
convergence rate than CSWR/Robin-SWR, as previously proven
and observed in [13].

Comparison of the normalized CPU time for CSWR/Robin-SWR/
Optimal-SWR convergence with FD and PINN, as a function of
Schwarz iterations.

Comparison of loss values for Robin-SWR and Optimal SWR us-
ing PINN, where at each Schwarz iteration k, (i) the parameters
are initialized with the converged parameters at iteration k — 1
(SWR-learning), or (ii) the parameters are randomly initialized (no
learning).

3.1. Finite difference set-up

We consider two bounded subdomains Q; =(-ab+e /2), Q; =
(b—¢€/2,a),a € Ri and with € > 0 a (small) parameter characterizing
the overlapping region I',, = QL NQ,, =b-¢/2,b+¢/2),and Q, =
Q: U Q7 = (—a,a). The interfaces are located at b + €/2. The Crank-
Nicolson scheme which is used here is fully described in [13]. Denoting
u="(k) the approximate solution in QF at Schwarz iteration k and time
iteration n, the convergence criterion for the Schwarz DDM is given by
|| ” +"1 (k) _ —"1 (k)”

< §5¢
o <8 14)

with §5¢ = 10’14 (“Sc” for Schwarz) and where np = T /At. When the
convergence of the full iterative algorithm is obtained at Schwarz it-
eration k8, one gets the converged global solution u®'8 := u*“® in
Q

a-

CSWR algorithm. The CSWR method is based on Dirichlet transmis-
sion conditions implemented as follows. At xjv . =b+¢/2, we impose

L) ) D) ) .
N+ tuyy =y +u , and j, denotes the num-

ber of overlappmg nodes, ie. € = (jo — DAx. At x; =b —¢g/2, we

u

ix TR k) ey k1) g +_
fix u; +u Un+ljo + Uneljy - Finally at x| = —a and
x}y- = a, we set null Dirichlet boundary conditions.

Robin-SWR algorithm. The Robin-SWR method is based on Robin
transmission conditions d, + ir (with non-null constant r). Say at

X%, =b+€/2, we impose @ttt R gy u;:,’fil]’(k) ut (k)) +
Axr(u+ L I +n(k)) - W —n+1 (k=1 —nle=l) _mntl =)
Jot+1 Jjo

- uj_o"(k Dy 4+ Axr(u L=y, j_o"(k Dy, and Jjo denotes the number

of overlapping nodes, ie. e =(jo— DAx.

Standard p-OSWR solver. The chosen discretization of the nonlocal
time Riemann-Liouville operator was derived from [3], and allows in
1-d, for unconditional stability in the framework of TDSE discretization.
We refer to [13] for a full description of the algorithm.

3.2. On the PINN-SWR approximation

Let us provide some details about the discretization of the PINN-
SWR algorithm (8) in the case of DtN transmission conditions (quasi-
optimal or optimal SWR methods). The local loss functions are numer-
ically evaluated by Monte Carlo integration using (x j,tn)_;, randomly
chosen points in space-time. It is important to note that the non-locality
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(in time) of the DtN operator is not a concern in the PINN approach.
At each Schwarz iteration, 0% parameterizes the complete space-time
solution. In contrast to standard PDE solvers, which require storing the
solution at the boundary at each previous iteration, this information is

. . —(k=1) s .
contained in the converged parameters 0 . The transmission condi-
tions in quasi-optimal SWR methods involve the fractional derivative

1/2
at
t
N(@,x,71)
d

1
WA v

for any 0 and x. The fractional derivative can be estimated using the
convolution product of neural networks and automatic differentiation.
This is particularly convenient as it is well-known that accurate and
efficient approximation of fractional derivatives is hard to achieve, es-
pecially in a FPDE framework. The transmission operator at (+£/2,1)
applied to a neural network N reads

s

AN @O, x,1) = a,<N(9, X0 %,

z)fl/z NE® 4 ein/4ax Nk — 8,1/2 NFE=D) 4 ei”/4ﬁx NFG=D

Automatic integration is still at an early stage of investigation, so that
the approximation of 5:/ % is here preferred; see [27,28] for instance.
Introducing discrete times 0 < #; < -+ <t,, we define the following
quadrature, at t = ¢, for any u with enough regularity

0 Pu(t,) = u(t,) + 2 At ®ut,_,), (15)

i=1

where the weights read

O I(-a)
@ _
Wi Z‘ Tl +1)’

and where At; =1, —t,_;. Higher order quadratures are discussed in [27,
28]. In order to include the contribution of the transmission conditions
in the loss function, we then proceed as follows.

+ Within the PINN framework, the discrete times {¢,}, are randomly
selected.
At any (+€/2,t,), we impose

VAN, +e/2.1,) + e27/40 N (0, +£/2.1,)
=+e/*0, N (0, +e/2,1,) + N(0,xe/2,t,)
+ Y0 AL PN, xe/2,1,).

The above condition does not require any additional storage, as all

the corresponding information is all encoded in 6.

Finally the transmission condition which is implemented at
+€/2,1) reads

5;/2N1,(k) +ein/4g N=K) = 5;1/2N¢,(k—]) + ein/4g NFGK-1)

when CSWR (resp. RSWR) simply involves the transmission con-
ditions N=® = N¥k=D (resp. rN=® + g N+®) = pNF*=D 4
9, N¥*=D_for some constant r).

Remark 3.1. Dirichlet-to-Neumann boundary conditions are widely
used to prevent artificial reflections in various types of wave equations
(such as Maxwell, wave, Schrédinger, Dirac, etc.) on complex domains,
as discussed in [26]. As mentioned earlier, their stable, accurate, and
efficient approximation can however be challenging. It is interesting to
notice that practically, the fast convergence of optimal or quasi-optimal
SWR methods does not necessarily require a highly accurate approxi-
mation of the transmission operators. For example, for the Schrodinger
operator, the Robin operator can be viewed as an approximation of the
DtN operator, where the fractional operator in time is approximated
by a constant algebraic operator, and still provides rapid convergence
of the corresponding SWR algorithm (then referred to as Robin-SWR).
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Fig. 1. Second level of learning.

In future works, we will specifically explore transparent/high-order ab-
sorbing boundary conditions using PINN algorithms in detail.

In order to improve the efficiency of the overall algorithm on (QF U
I Ei) X [0,T], a second level of (traditional) learning involves restricting
the training zone to (@F UTZ) X [t;, 1], where oF C QF and 0 <1, <
tr < T. This relies on the trained networks to approximate the local
solutions in QF\w* X ([0,75] U [t1,T]), as illustrated in Fig. 1.

3.3. Practical implementation

Usual neural network libraries, like jax, which is utilized in this
paper, are designed to handle real-valued neural networks. It is note-
worthy, however, that pytorch, starting from version 1.7, possesses
the capability to directly manage complex neural networks. Below,
we rewrite the Schrodinger equation as a real 2-equation system on

the real and imaginary part of the approximate complex wavefunc-

-1 »(k=1)
tion N = N + iN;. Denoting NRI = +(k D@, the

(quasi-)optimal SWR method involving the DtN hke transmission con-
dition 6/ +e'7/49, reads as follows:

INE® =9 N*® _y()NEH, in 0F x[0,T],

5, Nt ® g N @ -VNEY, in O x[0,T1,
;;(k)(.,o) =Re(uy), in QF,

N;—f’(")(., 0) =Im(uy), in QF,

1
1/2 ar,(k) +,(k) +,(k)
6, NR i—zdx(NR _NI )

—.(k-1 1 k=1) —F.(k=1
T >_70 T vl
2

=0’N ), on T x[0,T], (16)

1
1/2 (k) +,(k) +,(k)
6t NI + %ax(NR + Nl )

(k-1 1 k=1)  —F.(k-1
—01/2 +( )__a (N ( )+N}—( )), onF;—'X[O,T],
V2
N;"’(k) =0, on A*x[0,T],
N;—"(k) =0, on A x[0,T].

Notice that Ng and N can be taken with the same set of parameters
(or not). The local loss functions (assuming for simplicity that the ini-
tial condition is encoded in the neural network) which are defined at
Schwarz iteration k, and at any (+¢/2,¢) read

£k = 1” NEO 4 5 k) Ni’(k)”
LHOY) = (0N + 0o NFW + VONTD L o)

11”0 Ni,(k) 0, Nt(k) v Ni,(k)”
+ N +VING LAQEX[0.T])

1/2N1 (k)

1
+ w9 + —o (N2W _ N=0)
2

1 k=1)  —F. (k-1
5 g (WA ey

\/5 )H L2(TEx[0,T])

01/2_+ L(k—1)

1
+ u* “61/2 =0y g (NED 4 NEO)
2

1 k=1)  —F. (k=1
5 o (WA LY

V2

L2(AEX[0,T])

1 /2—+ L(k=1) )H
L2(TEX[0,T])

S L I

L2(AEX[OT])
3.4. Computational complexity

Let us discuss the computational complexity of SWR methods when
using RSM (typically finite element or finite difference) from one hand,
and PINN algorithm on the other hand. In this context, we denote by n
the number of degrees of freedom in each subdomain QF for RSM (and
the number of spatial training points for PINN), and #, as the number of
time steps for RSM (and the number of training points in-time for PINN).
Additionally, we denote by k;‘{,ﬁR the number of Schwarz iterations re—
quired to reach a given tolerance 6% with a SWR algorithm. Finally, n*
represents the number of neural network parameters to optimize in the
PINN algorithms. The computational complexities for SWR+PINN and

SWR+RSM methods read

cvg
kSWR

Comn+swR = O ” o iy 2 pSWR(k)

where p;—'WR(k) (= k—+e 0 and coming from the acceleration of the
optimization algorithm within SWR iterations) denotes the number of
gradient descent iterations at Schwarz iteration k. Moreover,

Crsu+ swr = O (kgyp 1 () ™WR ) |

for some agyg > 1, depending on the sparsity and structure of the
linear systems involved in implicit RSM. The coefficient agyy also de-
pends on the type of transmission conditions, where typically a, oswr >
arswr > ®cswr- Additionally, for RSM DtN-like operators require large
data storage, and it is well-known that using DtN-transmission condi-
tions usually leads to stability issues (see [2-4]), necessitating smaller
time steps than those for Dirichlet conditions (CSWR); or equivalently,
nfCSWR) < ngp “OSWR) " On the other hand, as recalled in Section 2, in
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general, we have kP_OSWR < kgswr < Kcswr- In the PINN-framework,

the minimization of the loss functions with CSWR and p-OSWR algo-
rithms at each Schwarz iteration k respectively requires pcgwr(k) and
Pposwr(k) gradient descent iterations. Unlike RSM, in the framework
of PINN algorithms, we do not predict an efficiency discrepancy due
to stability or storage issues when using DtN compared to Dirichlet or
Robin transmission conditions. Hence,

* We can not state that overall Crgyiposwr < Crsmscswr » although
in general Crgyirswr < Crsm+rswr < Crsm+poswr 5 see [1,13,12].
» The above discussion however suggests that we can expect that

Comn+poswr < CpINN+CSWR and Coinn+poswR < CPINN+RSWR -

This latter point will then be numerically studied.
4. Numerics

This section is devoted to numerical experiments illustrating the
above discussions. We first present preliminary tests using real space
methods (RSM) then PINN algorithms. Hereafter, we shall use the nota-
tions from Section 3.

4.1. RSM-SWR numerical experiments

Experiment 1. The first test is devoted to a wave propagating in
the direction of the subdomain interface, from initial time O to fi-
nal time 7 = 1. We follow the experiment given in [13]. The nu-
merical parameters for this test are the following: a = 20, b =5,
with N* =640 and N~ = 385. The size of the overlapping zone is
€ = Ax, corresponding to j, = 2. The time step is equal to At =0.1.
The initial data is given by uy(x) = exp(~10x?). We report in Fig. 2
(Left) the initial condition, and the converged solution at final time
T =1, Fig. 2 (Right). We compare on Fig. 3 (Left) the residual his-
tory {k, || ||u|*i;:’Ts(k) _ ”fr’E"T’(k) loor. || 207,) ©f CSWR, Robin-SWR (with
r=15), and 1-optimal SWR. In Fig. 3 (Middle), we report the CPU-time as
a function of Schwarz iteration. In order to provide a fair comparison,
we also propose to normalize the CPU-time as a function of Schwarz
iteration / CPU for the 100th iteration (the first iterations require addi-
tional basic computations) and report tg:/:m as a function of k, for k > 2:

(k)
SWR
(100) °
SWR

(k)
SWR

t
This example shows in particular that the cost of the local IBVP compu-
tations remains roughly constant as a function of the Schwarz iteration,
at least in the asymptotic regime of convergence [12,5].

4.2. PINN-SWR numerical experiments

In the following series of experiments, we consider

1
idu+ EAM +V(x)u=0,

where V' is a given smooth potential. We solve this equation using SWR
algorithms on Qz' =(—a,e/2) and Q7 = (—¢/2,a) and the time interval
(0,T) with null Dirichlet conditions +a. A PINN algorithm is imple-
mented on each subdomain allowing the optimization at each Schwarz
iteration k, of the parameters (), The initial condition is a Gaussian
function

ug(x) =exp(—a(x — xo)2 +1ikyx),

with ky =5, a =25 and x; = —7/8 and in the following tests we take
a=3/2. We are specifically interested in:

« illustrating the acceleration process which is introduced in the
PINN algorithm by initializing at Schwarz iteration k, the local

. ... pEk=1) . .
loss functions £* with 0 . In other words, at iteration k the
parameters (925)) are initialized with the converged sets of param-
eters (in the optimization sense) at the previous Schwarz iteration:
—+,(k—1) . X . .
93’(") =60 allowing to define approximate solutions to (3).

We then compare the convergence of the loss functions as a func-
tion of Schwarz and optimization iterations with randomly chosen
parameters G(f’(k).

Comparison of the rate of convergence as well as the computational
efficiency of PINN-SWR algorithm with different types of transmis-
sion conditions.

In the following experiment the local neural networks are constituted by
3 hidden layers with 5 neurons each. The number of training points in
space and time is set by default to 25 X 25. Pratically, the 2 subdomains
are respectively defined by (—a, Ax) and (—Ax, a) with Ax = a/25.

Experiment 2a. This experiment is dedicated to the illustration
of PINN-SWR convergence on the space-time domain (—7/4,7/4) X
(0,1/4). We present the modulus of the reconstructed wavefunction
after one Schwarz iteration in Fig. 4. Specifically, in the right subdo-
main, the global solution is nearly “null”. Fig. 5 displays the modulus
of the reconstructed wavefunction at Schwarz convergence across the
entire space-time domain. For improved visualization, we also include
the reconstructed solution on a truncated domain in space-time.

Experiment 2b. We here compare the rate of convergence of PINN-
SWR algorithms using Robin-SWR (0, + ir) and Optimal-SWR algo-
rithms with transmission operator a} /2 + el7/ 40X/\/§. The Robin con-
stant is fixed to r = 10. The Robin constant can be optimized to achieve
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Fig. 3. Experiment 1. (Left) Residual history for Quasi-optimal SWR, Robin-SWR and Classical SWR methods. (Right) Relative CPU time as function of Schwarz

iteration.

Fig. 4. Experiment 2a. (Left) Loss function as a function of Schwarz iterations.
(Right) Reconstructed wavefunction after one Schwarz iteration.

the fastest possible convergence. This optimization can be accomplished
using analytical arguments or by dynamically adapting its values to en-
hance the convergence rate from one Schwarz iteration to the next. In
this scenario, the method is referred to as optimized Schwarz. Learn-
ing the optimized constant within the combined PINN-SWR algorithm
could also be investigated, but it is not in the scope of this study. We
report in Fig. 6 (Left), the residual history as a function of the Schwarz
iterations in subdomain QF:

{ (ke | N=06%, xe/2.) - NTOF e /2, N o)+ £ 0}.

The transmission is encoded within the loss function and is hence
satisfied up to i) a pre-defined optimization error, as well as ii) a quadra-
ture error for DtN-based transmission conditions. To illustrate the con-
vergence of SWR algorithms traditionally, the norm in space and time of
the difference of the local solutions on the overlapping zones/interfaces
is reported. In order to illustrate the acceleration of the optimization
algorithm and to compare the efficiency of the Optimal-SWR and Robin-
SWR (RSWR) methods, such a criterion is no longer appropriate. The
key point to report is the increasingly faster convergence of the opti-
mization algorithm within the SWR process. The chosen criterion is the
evaluation of the loss function for a fixed number of gradient descent
iterations as a function of Schwarz iterations. We expect a decrease in
the overall local loss functions along the Schwarz iterations, with nat-
urally smaller values for Optimal-SWR than for Robin-SWR. In Fig. 7
(resp. Fig. 8), we report the loss function values as function of k in
the Domains QF, when the neural network parameters are “learnt” or
randomly chosen in the case of RSRW (resp. OSWR) algorithm, after a
fixed number N, of iterations of the optimization algorithm, that is we
report:

(kL5 @3, K1),

with and without “learning”. We notice that when the optimization pa-
rameters are randomly (resp. learnt from previous Schwarz iteration)
chosen, the value of the loss function at £ = N, is overall not decreasing
(resp. decreasing) as a function of k. Let us mention that it is naturally
possible to reduce the loss function values on those tests by increasing
Ny, the number of iterations of the optimization algorithm. As ex-
pected and theoretically proven in [13,29], the convergence of optimal
SWR is much faster than Robin-SWR, and observed using standard PDE
solvers [13]. As discussed above, Dirichlet-to-Neumann transmission
operators usually deteriorate the stability, efficiency and sometimes
accuracy of SWR computational solvers. Thanks to automatic differen-
tiation PINN does not (directly) introduce stability issues related to the
time/space discretization. For completeness, we also present the loss
function as a function of the optimization iteration after three Schwarz
iterations (k = 3) in sz with and without acceleration in Fig. 9 (Left).
To illustrate the acceleration of the optimization algorithm along the
Schwarz process, we additionally provide the normalized loss values
as a function of the optimization iteration for different Schwarz itera-
tions k (k = 1,3,10,25,50) without learning (Fig. 9, Middle) and with
learning (Fig. 9, Right). Specifically, we represent the graph in a semi-
logarithmic scale, normalizing it by £+(0™(") for various values of k:

{(£.£@ ")/t ™), £>1}, )

with and without “learning”. As expected, initializing the optimization
algorithm at iteration k > 1 using the converged set of parameters from
Schwarz iteration k — 1 allows for the acceleration of the optimization
algorithm. We notice that the larger k, the smaller the ratio (17). This
test hence illustrates the acceleration of the convergence thanks to the
learning provided by PINN algorithms.

The next important question to address, is the performance of the
optimal vs Robin (or classical) SWR algorithm within the PINN frame-
work. We report in Fig. 10 (Left), the CPU-time for minimizing a local
loss functions with a fixed number of epochs, and within one Schwarz
iteration and different values of training data in time (from 12 to
150). The number of training data in space is fixed to 25. We also re-
port in Fig. 10 (Right), the relative cost Optimal-SWR vs Robin-SWR
(foptswr — Trswr)/Toptswr- We observe the computational complexity
of both PINN-SWR methods is linear. As expected, optimal-SWR com-
putational complexity is shown to be higher than Robin-SWR, but the
difference is actually relatively small in particular for a large number
of training points in time; the slight additional computational cost is
negligible in comparison with the gain in terms of convergence accel-
eration of the SWR algorithm. Overall, the PINN-Optimal SWR is then
expected to be more efficient than PINN-RSWR or PINN-CSWR. Another
illustration of this acceleration is also illustrated in the next experiment.

Experiment 3. We propose to compare the convergence of PINN-SWR
algorithm in terms of the optimization algorithm, with and without
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Fig. 7. Experiment 2b. Local loss function £* as function of k for random and learnt parameters in RSWR-algorithm.

learning. The test is similar as above, except that the number of train-
ing data are 40 in both time and space, and the neural networks contain
10 neurons and 10 hidden layers. We have fixed to N, = 10* the max-
imal possible number of optimization iterations per Schwarz iteration.
At each Schwarz iteration k for RSWR (Robin constant r is taken equal
to 10) and Optimal SWR with and without learning in each subdomains
Q*, we report in logscale the normalized number of optimization itera-
tions for reaching the loss value # = 0.3 in Q* (resp. n =0.02 in Q7),

1
that is {(k. £ "), k> 1) where /7% = —min (£ > 1. : £ ") <
0
n} for Optimal SWR Fig. 11 (Left) and Robin-SWR in Fig. 11 (Right). The
normalized CPU-time per Schwarz iteration can be deduced from these
graphs, considering that each optimization iteration requires roughly
speaking a constant CPU-time. As the PINN-SWR algorithm depends on

many parameters (related to the optimization algorithms, neural net-
work structures, etc.), it was preferred to report a normalized number
of optimization iterations rather than normalized CPU-time. We also re-
port in Fig. 12, for Optimal-SWR the loss function values as a function
of Schwarz iterations in logscale. Selecting the number of optimization
iterations a priori is non-standard, but it allows us to illustrate the SWR-
learning effect provided by PINN, as well as the fact that Optimal-SWR
allows for faster convergence than Robin-SWR.

Experiment 4. In this experiment, we aim to study the effect of choos-
ing hyperparameters on the relative convergence of the accelerated
PINN-RSWR and PINN-OptSWR algorithms. To achieve this goal, our
focus is on the relative selection of hyperparameters A (associated with
the PDE residual) and y (related to transmission conditions), as well as
the convergence threshold within the optimization algorithm:
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The space-time domain is [-7/4,7/4] x [0,1/4] and the initial data is
ug(x) = exp(—a(x —xo)2 +1ikgx), with kg =5, @ =25 and x; = —7/8. We
consider two hidden layers with ten neurons each and report below the
relative convergence of RSWR and Optimal-SWR algorithms for various
hyperparameters.

Experiment 4.a This experiment focuses on the relative number of
optimization iterations (OptSWR/RSWR) at convergence, for a fixed tol-

10

erance ¢ of the optimization algorithm, as a function of the Schwarz
iterations, while varying the hyperparameters A, in (18). We set p; :=
A /uy =2 fori=1,--,4, and fix u, = 10. For fixed p;, we denote

A= e

+ (f'k))
RSWR

s

@), o® = ¥

ptSWR(g

+.(¢%) +(r=1)

such that £*(6, ) <& <L, ). In Fig. 13, we present the
number of iterations for the optlmlzation algorithm for Optimal-SWR as
a function of the Schwarz iterations for different values of the parame-
ters: {(k, ogk)), k=1,---,100}. In Fig. 13 (Right), we report the relative
(OptSWR/RSWR) number of iterations {(k, o /r"), k=1,--,100}. 1t
is observed that, like any PINN-based PDE solver, the overall conver-
gence of the PINN-SWR algorithms is largely dependent of the choice of
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the hyper-parameters. Furthermore, PINN-OptSWR demonstrates better
convergence, particularly for properly chosen parameters.

Experiment 4.b In this experiment, we set the parameters A =5 and
u =10, and vary the convergence tolerance of the optimization algo-
rithm. Specifically, we use ¢; = g,/2 for i =0,1,2,3, with &, = 1. The
relative number of optimization iterations is then reported as a function
of the tolerance ¢; for both RSWR and OptSWR. More specifically, we
denote:

+.(Cx) +.(Ck)

k) . _ p+ k) . _ p+
Ri7 = Lpgwr@; 7 "), 077 1= Loqwr@ 7 1),
such that £+(9i+’(f")) <g < £+(0i+’(f"_])). We report in Fig. 14 (Left),

the number of iterations of optimization algorithm with OptSWR as a
function of Schwarz iterations, for different tolerances ¢;: {(k, 0,(,1‘)), k=
1,50} {(k,O®/RY), k = 1,--,50}. In Fig. 14, we report the
relative (OptSWR/RSWR) number of iterations: {(k, O;k) / Rik)), k =
1,---,50}. Notice that the smaller ¢; the more accurate, N =K cor-
responding to the local approximate solutions to the Schrodinger equa-
tion.

These experiments highlight the crucial role of hyperparameter se-
lection for achieving overall convergence in PINN-based algorithms,
including PINN-SWR. Furthermore, they suggest that the results and
conclusions presented in this paper, particularly regarding the relative
convergence rates of PINN-RSWR vs. PINN-OptSWR, remain largely
valid regardless of the chosen hyperparameters; at least within the
parameter range that ensures overall convergence of the PINN-SWR al-
gorithms.
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Experiment 5. In this final experiment, our focus is specifically on the
approximation of the transmission/boundary condition within the loss
function—an important aspect for validating the conclusions presented
in this paper. This particular question will also be addressed in high
dimensions in a forthcoming paper on absorbing boundary conditions
with neural network-based algorithms. To achieve this, we consider the
following local IBVP within the domain Q = (a, b) and for t € [0,T']:

idu+o,u+Vxu=0,xeQ,rel0,T],
Tu=0,x=b",t€[0,7],
u=0x=a",t€[0,T],

u(x,0) = uy(x), x € (a,b),

19)

where the boundary operator 7 is defined as the Dirichlet-to-Neumann
(DtN) operator Tpy = 6}/ 2 4 ein/ 40, (used in OptSWR) or Robin op-
erator Tpopin = & + 10, (used in Robin SWR), for some fixed Robin
constant. We assume hereafter that the initial and Dirichlet boundary
conditions at x = a™ are intrinsically integrated within the neural net-
works (Ng(+,0) =Re(uy) and N(-,0) =Im(uy) and Np ; =0 at x = a®).
Hence, we simply consider

oNp =
0Ny

—0, Ny —V(x)N;, inQx[0,T],
0 Ng—V(x)Ng, inQx[0,T],

either coupled with i) Dirichlet-to-Neumann boundary conditions

1/2
t

1
p) NR+70x(NR—N,) 0, on {b~} x[0,T],
2

1
a,‘/zN,+\—6ax(NR+N,) 0, on {6~} X[0,T],

where

t
Ngp (0, x,7
—R’I( )dr

o \Va(t—1)

or coupled with ii) Robin boundary conditions

1/2
t

0)* Ng 1(0,x,0)=0,

>

—rN;+0,Np =0, on {b7} x[0,T],
rNrp+d.N; =0, on{b™}x[0,T].
We set

Linern(®) = [|0Ng + 0Ny + VN | L@t

9N +0uNp+V(ONg .
+|| iNp+ 05 Np+VONg L2(QEX[0.T])

We then consider the following loss contribution for Dirichlet-to-
Neumann boundary conditions
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Fig. 13. Experiment 4. (Left) Number of optimization iterations for OptSWR, as function of Schwarz iterations for different values of p; and fixed optimization
algorithm tolerance: {(k, ogk)), k=1,-,100}. (Right) Relative number of optimization iterations (OptSWR/RSWR) as function of Schwarz iterations for different
values of p; and fixed optimization algorithm tolerance: {(k, oik} /rf.k)), k=1,--,100}.
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Fig. 14. Experiment 4.b (Left) Optimization iterations as function Schwarz iteration for different tolerance ¢;: {(k, Ofk) / R?k)), k=1,--,50} (Right) Relative number

of optimization iterations as function Schwarz iterations for different tolerance ¢,: {(k, Ofk) / Rfk)), k=1,--,50}.

1/2

Lon(0) = ||a, Ng + %@X(NR - N,)H

L2(TEX(0,T)

172

+||a,

1
Ny +—=0,(Ng+ N ,
1+ V2 x(Ng+Np) L2(TEX(0.T])
as well as a loss contribution for Robin boundary conditions

Crobingc(®) = ||=rN; + 0, N, +||rNVe + 0N |

L2(TEX[0,T]) L2TEX[0,T])

Finally we set

Ly = ALgtern + #Lp-ees Lrobin = ALmntern + #LRobin-BC - (20)

Practically, the convolution product in DtN-operator is approximated
using a discrete convolution product (function convolve from numpy).
We then proceed as follows:

1. minimization of the global loss function Lpy (resp. Lygpin)s
that is construction of a sequence of parameters {€py..}, (resp.
{eRobin;f }f);

2. report {(¢,Lpw(Opw.r), € 2 0}, as well as {(Z, Lyopin(Orobin:s)s
¢ 20}

3. report {(Z, Lpw.pc(Opmie) € = 0}, as well as
{(f7 ERobin-BC(eRobin;f)’ 14 2 0}

Step 2 corresponds to the convergence of the PINN algorithm, while
Step 3 specifically focuses on the contribution of the boundary condi-
tions within the optimization algorithm. In this experiment, we consider
neural networks with 2 hidden layers, each containing 10 neurons. The
computational domain is such that a = -2 and b = 0, with null po-
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tential, and initial condition given by exp(i5x)exp(—30(x + 1)2). The
Robin constant is taken equal to r = 1. Within the loss functions, we
take 4 =0.9 and p = 0.1, and for consistency the same set of ran-
domly chosen points for both IBVP (Robin and DtN). In Fig. 15, we
report the loss functions for Robin {(¢, Lp(Ogebins)> ¢ = 0} and
DtN {(¢, Lp(Opm.s), € = 0} as well as the corresponding contribu-
tion of the boundary condition {(¢, #Lpebin-pc(Orobins)» ¢ = 0} and
{(€, uLpn.pc(Open:)» € 2= 0}. This allows to specifically illustrate the
convergence of the boundary conditions. Although the DtN operator is
more complex and, as a consequence, less accurately approximated than
the Robin operator, the overall choice of the boundary condition does
not have a significant impact on the convergence of the PDE solver.

5. Conclusion

In this paper, we have studied PINN algorithms for solving the time-
dependent Schrodinger equation using (quasi-)optimal SWR domain
decomposition methods. In [7], it was shown that PINN solvers intro-
duce some learning/acceleration within SWR algorithms. Specifically,
regardless of the transmission conditions chosen, the optimization al-
gorithm is accelerated from one Schwarz iteration to the next thanks
to “learnt” initial neural network parameters. On the other hand, op-
timal SWR algorithms are based on non-local transparent operators
(Dirichlet-to-Neumann) and provide the fastest convergence rate among
SWR algorithms. Dirichlet-to-Neumann operators are known to deteri-
orate the efficiency, stability, and potentially the accuracy of standard
Schrodinger equation solvers. We have shown in this paper that the
use of PINN largely circumvents this issue. In particular, we have ob-
served that the overall efficiency of optimal SWR is higher than that of



E. Lorin and X. Yang

1o ‘ Total loss EDtN | il
—=—Total loss LRohin
——Boundary loss pLptN.BC

00 —+—Boundary loss uLRohin-BC

ER
E 107 3
S
A
102k 3
108k 3
2 " A s 10 12 14
Epochs x10®

Fig. 15. Experiment 5. Global loss functions with Robin and DtN
boundary conditions {(¢, Lpy(Ogoping)> ¢ = 0} and {(Z, Lo (Opwp)s € 2
0} as well as the corresponding contribution of the boundary condition
{(, uLrobinBcOobine): € 20} and {(Z, uLpwpc(Op.), € 20}

CSWR/Robin-SWR, thanks to the acceleration property offered by the
PINN-SWR approach and the automatic differentiation (and potentially
integration) of neural networks, allowing for efficient computation
of Dirichlet-to-Neumann transmission conditions. In future works, we
will study the performance of PINN-SWR methods in high-dimensional
PDEs, as well as NN-based approximations of Dirichlet-to-Neumann-like
operators for absorbing boundary conditions for different types of wave
equations.
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