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TEMPORAL DIFFERENCE LEARNING FOR HIGH-DIMENSIONAL
PIDEs WITH JUMPS∗
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Abstract. In this paper, we propose a deep learning framework for solving high-dimensional
partial integro-differential equations (PIDEs) based on the temporal difference learning. We in-
troduce a set of Lévy processes and construct a corresponding reinforcement learning model. To
simulate the entire process, we use deep neural networks to represent the solutions and nonlocal
terms of the equations. Subsequently, we train the networks using the temporal difference error, the
termination condition, and properties of the nonlocal terms as the loss function. The relative error of
the method reaches O(10−3) in 100-dimensional experiments and O(10−4) in one-dimensional pure
jump problems. Additionally, our method demonstrates the advantages of low computational cost
and robustness, making it well-suited for addressing problems with different forms and intensities of
jumps.
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1. Introduction. The partial integro-differential equation (PIDE) has found
widespread applications in various real-world scenarios, including engineering, biology,
and particularly finance [1, 13, 18]. Examples of such phenomena can be observed
in ohmic heating, resistance spot welding, the Gierer–Meinhardt system, and option
pricing [13, 18]. Classical methods such as the finite difference method [6, 21] and
the finite element method [14, 29] have traditionally been used to solve PIDEs, and
they exhibit good performance in low-dimensional problems. However, these mesh-
based approaches face significant challenges in high-dimensional cases due to the curse
of dimensionality [20]. The computational complexity grows exponentially as the
number of dimensions increases, rendering these methods impractical. Nevertheless,
many real-world models formulated as PIDEs inherently possess high-dimensional
characteristics. For instance, in option pricing, the dimensions correspond to the
number of underlying assets, while in reaction-diffusion systems of cell dynamics,
they correspond to the number of reacting substances.
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Neural networks have emerged as a promising tool for alleviating the curse of
dimensionality in solving high-dimensional partial differential equations (PDEs) with-
out nonlocal terms. In recent years, several neural network–based methods have been
widely adopted for this purpose [3, 7]. The physics-informed neural network (PINN)
[31, 5, 17, 19, 22, 25, 27, 28, 34, 35] incorporates the residual term of the PDE into
the training process and utilizes automatic differentiation to handle the differential
operations, and it has sparked a wave of using deep learning to solve PDEs. The
idea of the deep Galerkin method (DGM) [32] is similar to PINN, but it incorporates
the norm of the residual term in its loss function and adopts an L2 norm. The deep
mixed residual method (MIM) [26] rewrites high-order PDEs into a system of first-
order PDEs for solving purposes. The weak adversarial network (WAN) [36] leverages
the analogy between the weak form of the PDE and the generative adversarial net-
work, integrating by parts to transfer derivatives onto the test functions. The deep
Ritz method [10] utilizes the Ritz variational form to solve high-dimensional PDEs
and eigenvalue problems. The deep Nitsche method [24] represents the trial functions
by neural networks and employs the Nitsche variational form to handle mixed bound-
ary value problems. In addition, introducing stochastic differential equations (SDEs)
related to the PDE provides another potential avenue for mitigating the curse of di-
mensionality. The deep backward stochastic differential equation (deep BSDE) [15, 16]
approximates the gradients of the solution at different time points using a series of
neural networks and trains them with the terminal condition. The forward-backward
stochastic neural network (FBSNN) [30] incorporates trajectory information into the
training process to directly obtain the solution of the equation. The authors of [37]
use two neural networks to approximate the solution and its gradient, or by autodif-
ferentiation and performing training at each time point based on a temporal difference
method.

When it comes to PIDEs, the literature on deep neural network–based approaches
is not as extensive. The authors of [12] extend the work of [15, 16] to a more general
case involving jump processes and that uses additional neural networks to approxi-
mate nonlocal terms. For problems with a finite number of jumps, the authors of [11]
circumvent the computation of nonlocal terms by introducing a stochastic process with
integration on a Poisson random measure. In [4], an error estimation technique is pro-
posed for approximating forward-backward stochastic systems using neural networks.
Furthermore, the authors of [33] approximate the initial value function, gradients
of the solution, and the integral kernel using neural networks, with the termination
condition serving as a constraint.

This paper aims to numerically compute solutions to PIDEs. A group of Lévy-
type forward-backward stochastic processes is introduced based on the target PIDE.
Inspired by [37], a reinforcement learning framework is established. The equation’s
solution and nonlocal terms are represented using neural networks. Subsequently, a
loss function is constructed to update the network parameters, taking into account the
errors from temporal difference methods, termination conditions, and the properties
of nonlocal terms. This method exhibits two primary advantages: (1) It exhibits a
reduced computational cost. Capitalizing on the benefits of temporal difference learn-
ing, the proposed approach eliminates the need to wait for the completion of an entire
trajectory simulation before updating parameters. Moreover, as the dimensionality
increases, the required number of trajectories does not experience significant growth.
(2) The method has fast convergence and high precision. With rapid convergence, the
error remains within the range of O(10−4) for one-dimensional pure jump problems
and O(10−3) for high-dimensional problems.
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TEMPORAL DIFFERENCE LEARNING FOR PIDEs C351

The rest of this paper is organized as follows. Section 2 presents the overall
methodology, which involves the incorporation of Lévy processes and reinforcement
learning models to establish the training objectives. Section 3 demonstrates numer-
ical examples for solving one-dimensional and high-dimensional PIDEs. Finally, in
section 4, we provide a summary of the entire approach.

2. Methodology. The Brownian motion, defined based on the Gaussian dis-
tribution, has been widely adopted for modeling noise. However, in the scenarios of
real applications, non-Gaussian noises are better characterized by Lévy motion, which
is particularly relevant in fields like finance, chemistry, engineering, and geophysics
[8, 9]. Lévy processes are stochastic processes that satisfy zero initial values, station-
ary independent increments, and stochastically continuous sample paths [2]. For any
Lévy process Lt, the Poisson random measure N , the compensated Poisson random
measure Ñ , and the jump measure ν can be defined by

N(t, S)(ω) := card{s∈ [0, t) :Ls(ω)−Ls−(ω)∈ S]},(2.1)

ν(S) :=EN(1, S)(ω),(2.2)

Ñ(t, S) =N(t, S)− tν(S),(2.3)

where S is a Borel set on R
d\{0}.

The Lévy form of the Itô’s formula bridges the gap between integro-differential
operators and Lévy processes. Nevertheless, there remains a considerable disparity
in simulating the Lévy process and accurately computing the nonlocal terms in the
operator. Furthermore, efficiently solving high-dimensional problems at a lower cost
presents a formidable challenge. To tackle these issues, we propose a framework that
employs reinforcement learning and utilizes deep neural networks.

2.1. PIDE and Lévy process. In the present investigation, our attention is
directed towards the resolution of the following partial integro-differential equation
(PIDE):





∂u

∂t
+ b · ∇u+

1

2
Tr(σσTH(u)) +Au+ f = 0,

u(T, ·) = g(·),
(2.4)

where ∇u and H(u) correspond to the gradient and Hessian matrix of the function
u(t, x) with respect to the spatial variable x ∈ R

d, and 0 < t < T . The vectors
b= b(x)∈Rd, the matrix σ= σ(x)∈Rd×d, and the function f = f(t, x,u,σT∇u)∈R,
are all predefined. Here

Au(t, x) =
∫

Rd

(u(t, x+G(x, z))− u(t, x)−G(x, z) · ∇u(t, x))ν(dz),(2.5)

where G=G(x, z)∈Rd×Rd→R
d, and ν is a Lévy measure associated with a Poisson

random measure N .
Traditional approaches, such as finite element and finite difference methods, tend

to be insufficient in dealing with nonlocal terms and high-dimensional scenarios. To
overcome these limitations, we propose the following Lévy-type process on the prob-
ability space (Ω,F ,P) in the Itô sense:

dXt = b(Xt)dt+ σ(Xt)dWt +

∫

Rd

G(Xt, z)Ñ(dt,dz).(2.6)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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In this context, {Wt}Tt=0 denotes a d-dimensional Brownian motion, and Ñ(dt,dz) =
N(dt,dz) − ν(dz)dt represents the compensated Poisson measure. {Ft}Tt=0 is the
filtration generated by Brownian motion Wt and Poisson random measure N . If X0

is assumed to follow a known single-point distribution X0 = ξ ∈Rd, the entire process
Xt can be completely known and simulated. Subsequently, we introduce the following
three stochastic processes:

Yt = u(t,Xt), Zt =∇u(t,Xt), Ut =

∫

Rd

(u(t,Xt +G(Xt, z))− u(t,Xt))ν(dz).(2.7)

According to the Itô formula for Lévy-type stochastic integrals [2],

dYt =

[
∂u

∂t
(t,Xt) + b(Xt) · ∇u(t,Xt)

+
1

2
Tr

(
σ(Xt)σ(Xt)

TH(u)(t,Xt)
)
+Au(t,Xt)

]
dt

+∇u(t,Xt) · σ(Xt)dWt +

∫

Rd

[u(t,Xt +G(Xt, z))− u(t,Xt)] Ñ(dt,dz)

=− f(t,Xt, Yt, σ(Xt)
TZt)dt+ (σ(Xt)

TZt)
T dWt

+

∫

Rd

[u(t,Xt +G(Xt, z))− u(t,Xt)] Ñ(dt,dz),

(2.8)

with YT = g(XT ).
Equations (2.6) and (2.8) are collectively referred to as the forward-backward

stochastic differential equation (FBSDE) system [30], which establishes a fundamental
link between solving the equation and simulating the stochastic process. In other
words, if u(t, x) represents a solution to (2.4), the processes (Xt, Yt,Zt,Ut) defined
through (2.6) and (2.7) are required to satisfy (2.8). This provides a foundation for
assessing the accuracy of the approximate solution u(t, x).

In order to simulate these stochastic processes, the time [0, T ] is divided into
N equal subintervals: 0 = t0 < t1 < t2 < · · · < tN = T , resulting in the numerical
discretization of (2.6)

Xtn+1 =Xtn + b(Xtn)∆t+ σ(Xtn)∆Wn

+

Nn+1∑

i=Nn+1

G(Xtn , zi)−∆t

∫

Rd

G(Xtn , z)ν(dz)
(2.9)

and the discretization of (2.8)

Ytn+1
= Ytn − f(tn,Xtn , Ytn , σ

TZtn)∆t+ (σ(tn,Xtn)
TZtn)

T∆Wn

+

Nn+1∑

i=Nn+1

[u(tn,Xtn +G(Xtn , zi))− u(tn,Xtn)]−∆tUtn .
(2.10)

The terms ∆Wn in both (2.9) and (2.10) correspond to a same sample drawn from
normal distribution N (0,∆t). Nn represents the number of jumps that occur in the
interval [0, tn] for the Poisson random measure N , while zi ∈ R

d denotes the size of
the ith jump if arranging all jumps in the interval [0, T ] in chronological order. This
discretization provides a practical framework for numerical approximation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TEMPORAL DIFFERENCE LEARNING FOR PIDEs C353

2.2. Neural network approximations. The discretized versions of (2.9) and
(2.10) offer a viable approach for simulating the stochastic processes. However, several
aspects remain unclear and require further investigation before achieving the final
solution. While the simulation of the stochastic process Xt can proceed smoothly
once the initial value X0 = ξ is determined, the simulation of Yt presents greater
challenges due to its dependence on Yt itself, as well as Zt and Ut. The computation
of the integral form in Ut is a matter that needs careful consideration, and accurately
calculating the difference in Zt is also not a trivial task.

In this work, neural networks have been adopted as an approximation for the
solution u(t, x) of the PIDE (2.4). Specifically, when the values of Xt are known, they
can be readily fed into the neural network to obtain an approximation of Yt. Moreover,
the automatic differentiation technique enables us to conveniently approximate Zt.
However, the computation of Ut remains a challenging task. Employing Monte Carlo
methods to evaluate the integral in Ut might not be an optimal choice, as it necessitates
repetitive calculations for every possible value of Xt and would require recomputation
whenever u(t, x) undergoes changes.

To address the challenges associated with the computation of Ut, a modification
is made to the output of the neural network. Specifically, two components are in-
troduced: one output N1 to represent u(t, x) and the other output N2 to represent∫
Rd(u(t, x + G(x, z)) − u(t, x))ν(dz). It is important to note that the value of N2

depends not only on the input (t, x) but also on the current u(t, x). Consequently,
employing a neural network with two outputs may be more suitable than using two
separate networks, as it effectively captures the inherent relationship between these
outputs. The structure of the neural network is depicted in Figure 1, and it can be
mathematically described as





a
1 =W

1
a
0 + b

1, a
0 = (t, x)∈Rd+1,

a
i = h(W 2i−1h(W 2i−2

a
i−1 + b

2i−2) + b
2i−1) + a

i−1, i= 2,3, . . . , l,

a
l+1 =W

2l
a
l + b

2l ∈R2.

(2.11)

Here the (d + 1)-dimensional input (t, x) undergoes a linear layer, several residual
blocks, and another linear layer, resulting in a two-dimensional output. Each residual
block consists of two linear layers combined with an activation function h, along with
a residual connection.

Fig. 1. Architecture of the residual network utilized in this work. The neural network takes a
(d + 1)-dimensional input consisting of time t ∈ R and spatial variable x ∈ R

d. The two outputs
represent u(t, x) and

∫
Rd (u(t, x+G(x, z))− u(t, x))ν(dz), respectively.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Upon utilizing a neural network as an approximation,

Ytn+1
= Ytn − f(tn,Xtn ,N1(tn,Xn), σ

T∇N1(tn,Xn))∆t

+ (σ(tn,Xtn)
T∇N1(tn,Xn))

T∆Wn

+

Nn+1∑

i=Nn+1

[N1(tn,Xtn +G(Xtn , zi))−N1(tn,Xtn)]−∆tN2(tn,Xtn)

(2.12)

allows us to simulate Yt, where the definition of zi and Nn remain consistent with
(2.10). Consequently, it becomes necessary to impose a constraint on N2. There are
various methods to enforce this constraint, and in this study, it is observed that

{∫ t

0

∫

Rd

(u(t,Xt +G(Xt, z))− u(t,Xt))Ñ(dt,dz)

}T

t=0

(2.13)

behaves as a martingale, implying

E

[∫ tn+1

tn

∫

Rd

u(t,Xt +G(Xt, z))− u(t,Xt)Ñ(dt,dz)

∣∣∣∣Ftn

]
= 0(2.14)

within any time [tn, tn+1]⊂ [0, T ]. Inspired from this observation, we incorporate

∣∣∣∣∣∣
1

M

M∑

j=1




Nn+1∑

i=Nn+1

[N1(tn, x
j
tn

+G(xj
tn
, z

j
i ))−N1(tn, x

j
tn
)]−∆tN2(tn, x

j
tn
)




∣∣∣∣∣∣
(2.15)

into the final loss function, where M denotes the number of training samples, and x
j
tn

refers to the jth sample of Xtn . The constraint expressed in (2.15) establishes a link
between N1 and N2. Consequently, our subsequent objective is to identify a criterion
that enables N1 to closely approximate the solution u(t, x) of the PIDE (2.4).

2.3. Temporal difference learning. As an approach for learning through in-
teraction, reinforcement learning (RL) has gained increasing attention in various fields,
including solving high-dimensional PDEs [23]. Temporal difference (TD) is a reinforce-
ment learning method with the form of bootstrapping. It offers the advantage of not
requiring prior knowledge about the environment and allows for learning from each
state transition without waiting for the completion of a full trajectory. Remarkably,
(2.10) delineates the process Yt in an incremental manner, aligning harmoniously with
the fundamental principles of TD learning.

This observation leads to the establishment of an RL model for our problem by
defining a triplet (S,R,P ). The state S = [0, T ] × R

d encompasses the set of all
possible spatiotemporal pairs s = (t, x) under the initial condition X0 = ξ. The
transition probability

Ps1s2 = P(S2 = (t2, x2)|S1 = (t1, x1)) = P(Xt2 = x2|Xt1 = x1)(2.16)

represents the probability of transitioning from x1 at time t1 to x2 at time t2. Since
the state process Xt fully determines the transition probability P , the specific values
of P can be calculated using (2.9), making it a model-based problem. However, we
will assume that this remains a model-free problem, as our approach does not require
knowledge of the transition probability P . Thus, our method can be generalized to
more scenarios.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Furthermore, we aim to define a reward R such that the corresponding state
value function of the model aligns precisely with the solution u(t, x) of PIDE (2.4).
This allows us to transform the solution of (2.4) into the computation of the value
function within the framework of RL. If u(t, x) is employed as the value function in
an RL model, the process Yt defined in (2.10) corresponds to the cumulative reward
associated with the state process Xt. Hence, the reward can be defined by

Rsnsn+1
=−f(tn,Xtn , Ytn , σ

TZtn)∆t+ (σ(Xtn)
TZtn)

T∆Wn

+

Nn+1∑

i=Nn+1

[u(tn,Xtn +G(Xtn , zi))− u(tn,Xtn)]−∆tUtn ,
(2.17)

using the incremental formulation in (2.10) for Yt. And in the case of neural network
approximation, it can be computed by

Rsnsn+1
=−f(tn,Xtn ,N1(tn,Xn), σ

T∇N1(tn,Xn))∆t

+ (σ(Xtn)
T∇N1(tn,Xn))

T∆Wn

+

Nn+1∑

i=Nn+1

[N1(tn,Xtn +G(Xtn , zi))−N1(tn,Xtn)]−∆tN2(tn,Xtn).

(2.18)

TD learning updates the current value function at each time step without requir-
ing the completion of the entire trajectory over the time interval [0, T ]. Therefore,
in this problem, the loss function is computed and optimization is performed at each
time step. Since the current model does not involve actions and policies,

u(sn)← u(sn) + α(Rsnsn+1
+ u(sn)− u(sn+1))(2.19)

is utilized to update the value function u(t, x) in the classical temporal difference
method. The TD error Rsnsn+1

+u(sn)−u(sn+1) serves as a measure of the accuracy
of the current value function, which can be effectively used to impose constraints
on the neural network N1. Consequently, the TD error is incorporated as the first
component of the loss function

TD Errorjtn =−f(tn, xj
tn
,N1(tn, x

j
n), σ

T∇N1(tn, x
j
n))∆t(2.20)

+ (σ(xj
tn
)T∇N1(tn, x

j
n))

T∆Wn

+

Nn+1∑

i=Nn+1

[N1(tn, x
j
tn

+G(xj
tn
, z

j
i ))−N1(tn, x

j
tn
)]

− ∆tN2(tn, x
j
tn
) +N1(tn, x

j
tn
)−N1(tn+1, x

j
tn+1

),

Loss1tn =
1

M

M∑

j=1

|TD Errorjtn |2.(2.21)

Here M represents the number of samples, and (2.20) represents the TD error of the
jth sample at time tn.

Next, since the cumulative reward process Yt needs to satisfy not only (2.10) but
also YT = g(XT ), the termination conditions and their gradients are incorporated
as the second and third components of the loss function, respectively, and evenly
distributed across each time step 0 = t0 < t1 < t2 < · · ·< tN = T ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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C356 LIWEI LU, HAILONG GUO, XU YANG, AND YI ZHU

Loss2tn =
1

N

1

M

M∑

j=1

|N1(T,x
j
T )− g(xj

T )|2,(2.22)

Loss3tn =
1

N

1

M

M∑

j=1

|∇N1(T,x
j
T )−∇g(xj

T )|2.(2.23)

It should be noted that in TD learning, which does not require the simulation of the
entire trajectory, the loss function is computed at each time step. Hence, the terminal
state XT remains unknown when t < T . To address this challenge, the terminal state
XT from the previous iteration is utilized in the calculation of (2.22) and (2.23), while
for the initial iteration, the terminal state is randomly generated.

Last, as discussed in subsection 2.2, (2.15) is incorporated as the fourth component
of the loss function:

Loss4tn

=

∣∣∣∣∣∣
1

M

M∑

j=1




Nn+1∑

i=Nn+1

[N1(tn, x
j
tn

+G(xj
tn
, z

j
i ))−N1(tn, x

j
tn
)]−∆tN2(tn, x

j
tn
)




∣∣∣∣∣∣
.

(2.24)

It serves to constrain the output of the neural network N2, aiming to make it as close
to

∫
Rd(N1(t, x+G(x, z))−N1(t, x))ν(dz) as possible. Based on these, the loss function

at time step tn can be defined in the following manner:

Losstn =Loss1tn +Loss2tn +Loss3tn +Loss4tn .(2.25)

The pseudocode for the entire method is presented in Algorithm 2.1. The overall
process of this approach is illustrated in Figure 2. In summary, the solution to the
PIDE (2.4) is sought by introducing a set of Lévy-type forward-backward stochastic
processes (Xt, Yt,Zt,Ut). The simulation of Yt involves unknown functions u(t, x)
and

∫
Rd(u(t, x + G(x, z)) − u(t, x))ν(dz), which are represented separately using a

residual network with two outputs. An RL framework is then established, where
Xt corresponds to the state process, the solution u(t, x) of (2.4) corresponds to the
value function, Yt corresponds to the cumulative reward process, and the reward
is obtained from (2.10). By employing TD learning and termination conditions and
leveraging the properties of martingales, the final loss function is constructed. Finally,
the parameters of the neural network are updated using optimization methods such
as Adam. Through these steps, the solution to (2.4) is successfully obtained.

Remark 2.1. From an alternative perspective, (2.19) employs a one-step TD
learning, where after the state transitions from sn to sn+1, the sum of the reward
Rsnsn+1

and u(sn) is used as an approximation for u(sn+1). However, it is also
possible to employ a two-step TD learning

u(sn)← u(sn) + α(Rsnsn+1
+Rsn+1sn+2

+ u(sn)− u(sn+2)),(2.26)

whereby the state progresses from sn to sn+2, and the sum of Rsnsn+1
+Rsn+1sn+2

and
u(sn) is utilized to approximate u(sn+2). Consequently, the TD error and loss1 would
undergo corresponding adjustments. If, during a single iteration where the samples
run from t0 to tN , the one-step TD learning optimizes the parameters 2m times, then
the two-step TD learning optimizes the parameters m times since it updates them
every two steps. Similarly, this approach can be generalized to a k-step temporal
difference learning.
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Algorithm 2.1. TD learning on high-dimensional PIDEs.

Input: PIDE (2.4), neural network with two outputs (N1,N2) and parameter θ,
snapshots 0 = t0 < t1 < t2 < · · ·< tN = T , sample number M , maximum iterations
Iterations, initial distribution X0 = ξ, learning rate α.

Output: Approximate solution N1 of PIDE (2.4).
1: Initialize neural network. iteration= 0. Randomly generate M terminal state

{xj
T }Mj=1 for the initial iteration. Initialize the previous terminal state

X= {xj
T }Mj=1.

2: while iteration≤ Iterations do
3: Sample M Brownian motion {{∆W j

n}Nn=1}Mj=1 for each time interval [tn, tn+1].

Sample some jumps {zji }Mj=1 for each trajectory j from Lévy motion (see
section 3 for details).

4: for time step n= 0→N − 1 do

5: Update state (tn, x
j
n) to (tn+1, x

j
n+1) by (2.9), j = 1,2, . . . ,M .

6: Compute Loss1tn by (2.21) and Loss4tn by (2.24).
7: if n=N − 1 then

8: Update the previous terminal state X= {xj
T }Mj=1.

9: end if
10: Compute Loss2tn by (2.22) and Loss3tn by (2.23) using the current X.
11: Compute Losstn by (2.25). Optimize the parameter θ of the neural network.
12: end for
13: iteration= iteration+ 1
14: end while

3. Numerical results. To facilitate the generation of the jump sizes zi in (2.9)
and (2.10), we consider the Lévy measure ν(dz) in the form of ν(dz) = λφ(z)dz. Here
φ(z) denotes the density function of a d-dimensional random variable and λ ∈R. By
constructing a compound Poisson process Lt using

Lt =

Pt∑

i=1

Ji,(3.1)

where {Ji}∞i=1 denotes a sequence of independent and identically distributed (i.i.d.)
random variables with density function φ(z), and Pt denotes a Poisson process with
intensity λ that is independent of {Ji}∞i=1, the resulting jump measure ν(dz) associated
with Lt precisely corresponds to λφ(z)dz. Accordingly, the jumps can be simulated
on each trajectory based on the procedure illustrated in Figure 3. Initially, a sequence
of exponential distributions {Ei}m+1

i=1 with parameter λ is generated. Subsequently,
the cumulative sum of these random variables yields the arrival times t1, t2, . . . , tm
of the Poisson process Pt. Finally, the density function φ(z) is sampled m times to
simulate the jumps at each time point. This approach enables the determination of
the jump occurrence times and their corresponding magnitudes.

In the numerical experiments, the neural network architecture is composed of a
(d+1)- dimensional input, a linear layer, five residual blocks, a linear layer, and a two-
dimensional output, as illustrated in Figure 1. Each residual block includes two linear
layers mapping from 25-dimensional space to 25-dimensional space and a residual
connection. In high-dimensional experiments, the width of the network is adjusted

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
7
/2

0
/2

4
 t

o
 1

2
8
.1

1
1
.6

1
.9

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



C358 LIWEI LU, HAILONG GUO, XU YANG, AND YI ZHU

Fig. 2. The diagram of solving high-dimensional PIDEs with jumps by the TD method. The
PIDE under consideration is associated with a set of Lévy-type forward-backward stochastic pro-
cesses. These processes can be effectively characterized and addressed within the framework of RL,
as depicted in the highlighted red box (color available online only) in the figure. By employing neural
networks, the calculation of the loss function becomes feasible through the utilization of TD meth-
ods. Consequently, the model parameters can be updated accordingly to facilitate the resolution of
the PIDE.

Fig. 3. Simulation of jumps. To simulate the jumps on each trajectory, the following steps are
taken: (a) A sequence of exponential distributions with parameter λ is generated. (b) The cumulative
sum of this sequence yields the arrival times of the Poisson process on the respective trajectory. (c)
At each arrival time, a single sample is drawn from the distribution φ(z) to determine the value of
the jump at that particular moment.

proportionally to the dimension. The tanh activation function is employed, and the
Adam optimizer is chosen with an initial learning rate of 5 × 10−5. The learning
rate is divided by 5 every 5000 parameter updates during the training process. All
experiments adopt the same random seed of 2023. Considering the characteristics
of BSDEs, the L1 relative error of Y0 is employed as the evaluation of the model.
The experiments are conducted on a Tesla V100 GPU with 32GB memory and 40GB
RAM, utilizing 10 cores.
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3.1. One-dimensional pure jump process. One-dimensional Lévy processes
are widely encountered in various fields, such as insurance, hedging, and pricing [8].
To better illustrate the abilities of our method in computing the PIDEs, this subsec-
tion specifically focuses on the one-dimensional pure jump process to avoid potential
challenges arising from higher dimensions and Brownian motion. We aim to solve the
following PIDE:





∂u

∂t
(t, x) +

∫

R

(
u(t, xez)− u(t, x)− x(ez − 1)

∂u

∂x
(t, x)

)
ν(dz) = 0,

u(T,x) = x,

(3.2)

where ν(dz) = λφ(z)dz, φ(z) = 1√
2πσ

e−
1
2 (

z−µ
σ )

2

, and x ∈ R. The equation possesses

an exact solution of u(t, x) = x, and the corresponding Lévy-type processes are

dXt =

∫

R

Xt(e
z − 1)Ñ(dt,dz),(3.3)

dYt =

∫

R

(u(t,Xte
z)− u(t,Xt)) Ñ(dt,dz).(3.4)

The initial value of the process is set to X0 = 1, and the time interval [0,1] is
divided into N = 50 equal partitions. The intensity of the Poisson process is λ= 0.3,
with the jumps following a normal distribution with µ = 0.4, σ = 0.25. A total of
M = 1000 trajectories are employed. The training consists of 400 iterations, with
50 parameter updates in each iteration, resulting in a cumulative total of 20,000
parameter updates.

Figure 4(a) illustrates the evolution of the relative error of Y0 throughout the
entire training process, while Table 1 presents the specific values of the relative error
of Y0 during the initial and final 5000 steps of training. Figure 4(b) depicts the
relative error of the neural network’s approximation for Yt at each time t. Our method
achieves a relative error of 0.02% for Y0. It is noteworthy that the error decreases
to approximately 1% after only 1000 parameter updates, and with sufficient training,
the error magnitude reaches the order of 10−4. To visually assess the results, Figure 5
illustrates 30 trajectories, among which five exhibit jumps. The results illustrate the

(a) (b)

Fig. 4. Relative error of the one-dimensional pure jump problem. (a) The evolution of the
relative error of Y0 with respect to the number of iterations. The exact value is Y0 = 1, and the
relative error converges to 0.02%. (b) The relative error of the neural network’s approximation for
Yt at different time t.
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Table 1

Relative error of Y0 during the initial and final 5000 updates of training in the one-dimensional
pure jump problem. The exact value is Y0 = 1.

Iteration Y0 Relative error Iteration Y0 Relative error

0 1.1570 15.70% 15000 0.9929 0.71%
500 1.0965 9.65% 15500 0.9943 0.57%

1000 1.0033 0.33% 16000 0.9946 0.54%
1500 1.0313 3.13% 16500 0.9968 0.32%

2000 0.9853 1.47% 17000 0.9976 0.24%
2500 1.0013 0.13% 17500 0.9985 0.15%

3000 0.9974 0.26% 18000 0.9989 0.11%

3500 0.9862 1.38% 18500 0.9993 0.07%
4000 0.9896 1.04% 19000 0.9996 0.04%
4500 0.9837 1.63% 19500 0.9997 0.03%
5000 0.9875 1.25% 20000 0.9998 0.02%

Fig. 5. The visualization of the trajectories for the one-dimensional pure jump problem. 30
trajectories are displayed, and five trajectories exhibit jumps, while the remaining 25 trajectories
coincide entirely due to the absence of Brownian motion.

rapid convergence and high precision achieved by our method in one-dimensional pure
jump problems. In summary, our method demonstrates remarkable performance.

3.2. Robustness. The proposed method involves various parameters, which
may not always align with the ideal conditions encountered in practical scenarios.
The effectiveness of our method has been demonstrated in the one-dimensional pure
jump problem. In this subsection, the performance of the method under different
parameter settings is evaluated to assess its robustness, including the number of tra-
jectories, the number of time intervals, jump intensity, jump form, and TD step size.
The experiment is conducted using the following PIDE:





∂u

∂t
(t, x) + εx

∂u

∂x
(t, x) +

1

2
θ2

∂2u

∂x2
(t, x)

+

∫

R

(
u(t, xez)− u(t, x)− x(ez − 1)

∂u

∂x
(t, x)

)
ν(dz) = εx,

u(T,x) = x,

(3.5)
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where ν(dz) = λφ(z)dz, and x ∈ R. The equation possesses an exact solution of
u(t, x) = x, and the corresponding Lévy-type processes are

dXt = εXt dt+ θ dWt +

∫

R

Xt(e
z − 1)Ñ(dt,dz),(3.6)

dYt = εXt dt+ θZt dWt +

∫

R

(u(t,Xte
z)− u(t,Xt)) Ñ(dt,dz),(3.7)

and the initial value is set to X0 = 1.
(a) Trajectories and intervals. In the computation of the loss function, Monte

Carlo methods are employed to estimate the expectations. Therefore, the number of
trajectories M used can potentially influence the method’s performance. The number
of time intervals N is associated with the discretization of the stochastic process, as
well as the number of optimizations in each iteration. Hence, it is an important factor
in assessing the method’s robustness. Here we assume that the jump form will follow

a normal distribution φ(z) = 1√
2πσ

e−
1
2 (

z−µ
σ )

2

with µ= 0.4, σ = 0.25 and the intensity
of the Poisson process is set to λ= 0.3, maintaining consistency with subsection 3.1.
Additionally, we set ε= 0.25, θ= 0 in (3.5) and the termination time T = 1.

Since the number of time intervals N affects the number of optimizations per-
formed in each iteration, we report the results for three different numbers of itera-
tions: 250, 500, and 750. For example, in the case of 500 iterations and N = 40 time
intervals, this implies a total of 500 ∗ 40 = 20,000 parameter updates. The results are
presented in Table 2. The findings reveal that increasing the number of trajectories M
can effectively reduce the error at convergence, with a more pronounced improvement
observed when the number of trajectories increases from M = 125 to M = 250. On
the other hand, altering the number of time intervals between N = 20,40,80 does not
exert a significant influence on the error at convergence. For trajectory numbers of
M = 250 or higher, the error at convergence almost consistently remains within the
order of 10−3. Therefore, our method does not require a high number of trajectories
and is not sensitive to the number of time intervals.

(b) Lévy measure. The form of the Lévy measure plays a decisive role in
nonlocal terms. Here we aim to evaluate the performance of our method under dif-
ferent Poisson intensities λ and jump forms φ(z). A total of M = 250 trajectories are
employed, and the time interval [0,1] is evenly divided into N = 50 intervals. The
parameters in (3.5) are set as ε = 0, θ = 0.4. The training process comprises 400
iterations, resulting in a total of 20,000 parameter updates. For the conducted tests,
the Poisson intensities are systematically varied from 0.3 to 1.8. Additionally, the fol-
lowing four distinct jump distributions φ(z) are utilized: (1) normal distribution with
µ = 0.4, σ = 0.25, (2) uniform distribution with δ = 0.4, (3) exponential distribution
with λ0 = 3, and (4) Bernoulli distribution with a1 =−0.2, a2 = 0.4, p= 0.7:

Table 2

Relative errors of Y0 for different numbers of trajectories M and time intervals N in the ro-
bustness checks. Parameters are updated N times in each iteration.

Iterations 250 500 750

Intervals N 20 40 80 20 40 80 20 40 80

M = 1000 7.687% 1.671% 1.723% 0.303% 0.660% 0.545% 0.276% 0.159% 0.377%

M = 500 2.988% 0.412% 2.611% 0.245% 1.385% 0.665% 0.219% 0.402% 0.639%
M = 250 0.972% 1.671% 2.847% 0.264% 0.598% 0.502% 2.122% 0.139% 0.364%

M = 125 4.100% 5.687% 4.303% 3.272% 0.662% 1.968% 1.700% 0.489% 1.691%
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Table 3

Relative errors of Y0 under different Poisson intensities λ and jump forms φ(z) in the robustness
checks. The specific forms of the four distributions are given in (3.8). The experiments were all
conducted with M = 250 trajectories, N = 50 time intervals, and a total of 20,000 parameter updates.

Y0 relative error Normal Exponential Uniform Bernoulli

λ= 0.3 0.051% 0.475% 0.376% 0.752%
λ= 0.6 0.117% 0.393% 2.450% 2.469%

λ= 0.9 0.340% 0.910% 1.355% 1.997%
λ= 1.2 1.111% 0.567% 1.048% 1.202%
λ= 1.5 1.960% 1.591% 1.202% 1.227%
λ= 1.8 1.173% 0.461% 0.167% 1.257%

φ(z) =
1√
2πσ

e−
1
2 (

z−µ
σ )

2

, φ(z) =

{
1

2δ
, −δ≤ z ≤ δ,

0 else,

φ(z) =

{
λ0e

−λ0z, z ≥ 0,

0, z < 0,
φ(z) =

{
p, z = a1,

1− p, z = a2.

(3.8)

Table 3 illustrates the relative errors of Y0 under various Poisson intensities λ and
jump forms φ(z). With the increase of Poisson intensity from λ= 0.3 to λ= 1.8, the
occurrence frequency of jumps within the [0, T ] time interval gradually increases. The
results reveal a growing trend in the error for the normal distribution, while the errors
for the remaining three distributions show no significant changes. Across almost all
scenarios, the relative errors of Y0 remain within 2%. Figure 6 visually showcases 10
trajectories for each of the four jump forms when the Poisson intensity is λ = 0.3.
Notably, the occurrence of jumps is indicated by bold red lines. The figure illustrates
the excellent performance of our method under the four distinct jump forms.

(c) n-step TD. According to the loss function, the previous experiments can be
regarded as one-step TD methods. However, an intuitive approach is to investigate
the influence of selecting an appropriate TD step n on the method’s performance. In
this regard, we set ε= 0.25, θ= 0.4 in (3.5) for training purposes. A total of M = 250
trajectories were employed, and the Poisson process intensity was set to λ= 0.3, with

the jump form being φ(z) = 1√
2πσ

e−
1
2 (

z−µ
σ )

2

and µ = 0.4, σ = 0.25. For the sake
of computational convenience, it was desirable to have the number of intervals N

precisely divisible by the TD step n. Consequently, the time [0,1] was divided into
N = 60 intervals, and we examined the TD step n= 1,2,3,4,5,6.

Due to the reduced number of parameter updates in each iteration with larger
step sizes n, and considering both the number of parameter updates and convergence,
we performed M = 500 iterations for n = 1,2, M = 1000 iterations for n = 3,4, and
M = 1500 iterations for n = 5,6. The results of the relative error of Y0 for different
step sizes n are presented in Table 4. It can be observed that, in this case, the one-step
TD method demonstrates the most favorable computational performance. The error
does not exhibit a significant trend as the step size increases, and it remains almost
consistently below 1%.

3.3. High-dimensional problems. When faced with higher-dimensional prob-
lems, many methods encounter a bottleneck due to the exponential increase in com-
putational cost. This phenomenon, known as the curse of dimensionality, poses a
significant challenge. In this subsection, our focus shifts towards investigating the
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(a) Normal distribution (b) Uniform distribution

(c) Exponential distribution (d) Bernoulli distribution

Fig. 6. The visualization of the trajectories under different jump forms φ(z) in the robustness
checks. To distinguish the jumps with smaller amplitudes from the Brownian motion, the occurrence
of jumps is marked with bold red lines (color available online only).

Table 4

Relative errors of Y0 for different TD step n in the robustness checks. We performed M = 500
iterations for n= 1,2, M = 1000 iterations for n= 3,4, and M = 1500 iterations for n= 5,6.

TD step n 1 2 3 4 5 6

Y0 0.9998 0.9926 1.0114 1.0088 1.0078 0.9965
relative error of Y0 0.022% 0.745% 1.137% 0.880% 0.780% 0.354%

performance in high-dimensional scenarios. The experiments are conducted using the
following PIDE:





∂u

∂t
(t, x) +

ε

2
x · ∇u(t, x) + 1

2
Tr(θ2H(u))

+

∫

Rd

(u(t, x+ z)− u(t, x)− z · ∇u(t, x))ν(dz) = λ(µ2 + σ2
0) + θ2 +

ε

d
‖x‖2,

u(T,x) =
1

d
‖x‖2,

(3.9)

with ε= 0, θ= 0.3, x∈Rd and Poisson intensity λ= 0.3. To highlight the effectiveness
of our method in handling high-dimensional problems, we chose the jump form to be
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independent multidimensional normal distributions, with a mean of µ∗(1,1, . . . ,1) and
a covariance matrix σ2Id. Here µ= 0.1, σ2

0 = 0.0001, and the intention is to maintain
uniformity in jump sizes to the greatest extent possible. The equation possesses an
exact solution of u(t, x) = 1

d
‖x‖2. The training process utilizes M = 500 trajectories,

and the time [0,1] is divided into N = 50 intervals. Furthermore, the number of
neurons in the linear layers of each block is adjusted to d + 10, instead of 25, to
accommodate the varying input dimensions d.

In the 100-dimensional experiment, the relative error of Y0 is found to be 0.548%,
with a computational time of approximately 10 minutes. Figure 7(a) depicts the
evolution of the relative error of Y0 throughout the entire training process in the 100-
dimensional experiment. Since the model did not converge after 400 iterations, i.e.,
20,000 parameter updates, the training was extended to 600 iterations, i.e., 30,000 pa-
rameter updates. Furthermore, Figure 7(b) provides a visual representation of five tra-
jectories in the 100-dimensional problem, highlighting the locations of jumps through
bold red lines. It is evident that our proposed method achieves a high-precision
approximation of the solution in the 100-dimensional problem, while maintaining a
computationally feasible runtime.

Furthermore, the performance of our method was evaluated in various dimensions
d. The experimental setup remained consistent with the 100-dimensional experiment.
Table 5 presents the relative error of Y0 and the program’s execution time across
different dimensions d. It is noteworthy that regardless of low or high dimensions, the
relative error of Y0 generally remains within the range of 10−3. All experiments were
conducted using M = 500 trajectories, and it is evident that our method exhibits a
minimal sensitivity to the number of trajectories in high-dimensional problems. As
the dimensionality increases, the program’s execution time exhibits a roughly linear
growth, ranging from 5 to 10 minutes, which is entirely acceptable. In summary, our
method demonstrates remarkable performance across different dimensions and shows
no significant curse of dimensionality.

Finally, we slightly modified (3.9) to consider the following high-dimensional
PIDE with the coupled drift term and the coupled diffusion term

(a) (b)

Fig. 7. Result of the 100-dimensional problem. The exact value of Y0 is 1, and the relative
error of the neural network approximation is 0.548%. (a) The evolution of the relative error of
Y0 with the number of iterations. (b) Visualization of five trajectories under the neural network’s
approximation and the exact solution.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Table 5

The relative error of Y0 and runtime for different dimensions d. The experiments were con-
ducted on a Tesla V100 GPU with 32GB memory and 40GB RAM.

Dimension 2 4 6 8 10
Y0 relative error 0.954% 0.251% 0.025% 0.671% 1.895%

Time (s) 332 336 338 356 364

Dimension 20 30 40 50 60
Y0 relative error 0.702% 1.221% 0.956% 0.219% 0.944%

Times (s) 368 396 401 423 506

Dimension 70 80 90 100 -
Y0 relative error 0.044% 0.277% 0.460% 0.548% -

Time (s) 529 565 584 638 -





∂u

∂t
(t, x) +

ε

2
‖x‖x · ∇u(t, x) + 1

2
Tr(σσTH(u))

+

∫

Rd

(u(t, x+ z)− u(t, x)− z · ∇u(t, x))ν(dz) = λ(µ2 + σ2
0) +

2d− 2

d
θ2 +

ε

d
‖x‖3,

u(T,x) =
1

d
‖x‖2.

(3.10)

Here ε= 0.05, θ= 0.2, Poisson intensity λ= 0.3, and the diffusion term is given by

σ= θ




1 0 0 0 · · · 0
1 1 0 0 · · · 0
0 1 1 0 · · · 0
0 0 1 1 · · · 0
...

...
...

...
. . . 0

0 0 0 · · · 1 1




.

The exact solution is u(t, x) = 1

d
‖x‖2. In this numerical test, we use the same setups

as in the previous example, including the selection of the jump form, the discretization
of the time interval, the number of trajectories, and the number of iterations. We test
the cases for dimensions d = 25, 50, 75, and 100 and visualize their trajectories in
Figure 8. The relative errors of Y0 are 0.743% for d= 25, 1.910% for d= 50, 2.412%
for d= 75, and 2.387% for d= 100. It is seen that our method still performs well with
the existence of the coupled drift term and coupled diffusion term.

4. Conclusion. In this work, a framework based on RL is proposed to solve
high-dimensional PIDEs. A set of Lévy-type stochastic processes is introduced to
characterize the solutions of the PIDE, and an RL model is built upon these pro-
cesses. Deep neural networks are employed to represent the solutions of the original
PIDE and nonlocal terms, enabling a step-by-step simulation of the system. TD
learning is utilized, and its error is employed as the loss function, allowing parameter
updates without the need to wait for completing the entire trajectory. Additionally,
termination conditions and the properties of nonlocal terms are incorporated into the
loss function. The entire training process can be completed with a relatively low
computational cost.

The numerical experiments demonstrate the efficacy of the proposed method in
solving 100-dimensional problems with a relative error on the order of 10−3 and one-
dimensional pure jump problems with an relative error on the order of 10−4. The
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(a) d = 25 (b) d = 50

(c) d = 75 (d) d = 100

Fig. 8. The visualization of the trajectories of high-dimensional problems with the coupled drift
term and the couple diffusion term.

computational cost of the method exhibits approximately linear growth with increas-
ing dimensionality, while maintaining a low requirement for the number of trajectories
in high-dimensional cases. Robustness tests reveal favorable outcomes for different
forms and intensities of jumps, without the need for dense time interval divisions or
large TD step sizes. These findings indicate the broader applicability of the proposed
method. The error analysis is left for future work. Furthermore, the extension of this
method to more general problems, such as inverse problems involving Lévy processes
with available data, warrants further investigation in future work.
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