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Abstract
L-serine (Ser) and L-glycine (Gly) are critically important for the overall functioning of primary metabolism. We investigated the 
interaction of the phosphorylated pathway of Ser biosynthesis (PPSB) with the photorespiration-associated glycolate pathway 
of Ser biosynthesis (GPSB) using Arabidopsis thaliana PPSB-deficient lines, GPSB-deficient mutants, and crosses of PPSB with 
GPSB mutants. PPSB-deficient lines mainly showed retarded primary root growth. Mutation of the photorespiratory enzyme 
Ser-hydroxymethyltransferase 1 (SHMT1) in a PPSB-deficient background resumed primary root growth and induced a change 
in the plant metabolic pattern between roots and shoots. Grafting experiments demonstrated that metabolic changes in 
shoots were responsible for the changes in double mutant development. PPSB disruption led to a reduction in nitrogen 
(N) and sulfur (S) contents in shoots and a general transcriptional response to nutrient deficiency. Disruption of SHMT1 
boosted the Gly flux out of the photorespiratory cycle, which increased the levels of the one-carbon (1C) metabolite 5,10- 
methylene-tetrahydrofolate and S-adenosylmethionine. Furthermore, disrupting SHMT1 reverted the transcriptional response 
to N and S deprivation and increased N and S contents in shoots of PPSB-deficient lines. Our work provides genetic evidence of 
the biological relevance of the Ser–Gly–1C metabolic network in N and S metabolism and in interorgan metabolic homeostasis.
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Introduction
The L-serine (Ser)–L-glycine (Gly)–one carbon (1C) metabol
ic network is required for the biosynthesis of nucleotides, 
proteins, and lipids. This network also drives the methyl
transferase reactions governing epigenetic regulation and 
the supply of almost all methylated metabolites (Fig. 1). In 
mammals, the Ser–Gly–1C network supports the uninhibit
ed proliferation of cancer cells and is associated with tumor 
progression (Locasale et al. 2011; Possemato et al. 2011; 
Pacold et al. 2016; Ducker and Rabinowitz 2017; Reina- 
Campos et al. 2019; Geeraerts et al. 2021). As a major 1C do
nor, Ser plays a crucial role in the regulation and function of 
Ser–Gly–1C metabolism in mammals (Locasale 2013; Yang 
and Vousden 2016) where it is mainly synthesized by the so- 
called phosphorylated pathway of Ser biosynthesis (PPSB) lo
cated in the cytosol. Ser biosynthesis in plants is much more 
complex and consists of 3 pathways. The first pathway, the 
glycolate pathway of Ser biosynthesis (GPSB), is associated 
with photorespiration and operates in mitochondria. In add
ition, there are 2 alternative nonrelated photorespiratory 
pathways: the PPSB (located in plastids) and the glycerate 
pathway (in peroxisomes).

In plants, the PPSB was long considered to be a minor 
pathway. However, functional characterization of PPSB genes 
demonstrated that this pathway is essential for male gameto
phyte and embryo development and for root growth 
(Benstein et al. 2013; Cascales-Miñana et al. 2013; Toujani 
et al. 2013; Wulfert and Krueger 2018). Cell proliferation 
and elongation analysis revealed that PPSB is indispensable 
for normal meristem development (Zimmermann et al. 
2021). The plant PPSB defines a branch point for the 3- 
phosphoglycerate (3-PGA) produced in plastidial glycolysis 
and comprises 3 sequential reactions catalyzed by 3-PGA 

dehydrogenase (PGDH), 3-phosphoSer aminotransferase 
(PSAT), and 3-phosphoSer phosphatase (PSP; Fig. 1) (Ho 
and Saito 2001). In Arabidopsis thaliana (Arabidopsis), 3 
genes encode PGDHs (PGDH1, PGDH2, and PGDH3), 2 en
code PSAT (PSAT1 and PSAT2), and one encodes PSP 
(PSP1) (Ros et al. 2014).

The GPSB has been regarded as the plant’s most important 
Ser biosynthesis pathway due to the high flux borne by photo
respiration (Tolbert 1997; Douce et al. 2001). The GPSB is the 
result of the oxygenase activity of Rubisco, which depends on 
the CO2/O2 ratio in the atmosphere (Ogren and Bowes 1971; 
Ogren 2003). This CO2/O2 ratio determines whether Rubisco 
acts as a carboxylase, producing 2 molecules of 3-PGA in the 
Calvin–Benson cycle, or as an oxygenase, producing one mol
ecule of 3-PGA and one of the potent enzyme inhibitor 
2-phosphoglycolate (2-PG). This 2-PG is recycled to 3-PGA 
through a series of enzymatic reactions of the photorespira
tory cycle that takes place in the chloroplasts, peroxisomes, 
and mitochondria (Fig. 1). In this cycle, 2 molecules of 2-PG 
(2C each) are needed to recover one molecule of 3-PGA 
(3C), and one of the 4C atoms is released as CO2. In addition, 
the photorespiratory cycle loses reduced nitrogen (N) as NH3, 

which has to be reassimilated in a high energy-consuming 
pathway called the photorespiratory nitrogen cycle (Fig. 1). 
For this reason, photorespiration was long considered to be 
a futile cycle with the largest energy losses in plants (Bauwe 
et al. 2010; Peterhansel et al. 2010).

However, photorespiration integrates and participates in 
other pathways (Shi and Bloom 2021). First, photorespiration 
contributes to the pools of Gly and Ser. The photorespiratory 
Gly-decarboxylase complex (GDC) and Ser-hydroxymethyl
transferase 1 (SHMT1) in the mitochondria of photosynthetic 
cells convert 2 Gly molecules into one Ser molecule (Fig. 1). 

IN A NUTSHELL
Background: Photorespiration, in which Rubisco adds oxygen to RuBP instead of adding carbon dioxide, thus low
ering photosynthetic output, is a key metabolic pathway that will be affected by rising temperatures and increasing 
atmospheric CO2 levels. For a long time, this pathway has been considered a wasteful process that consumes energy in 
the form of adenosine triphosphate (ATP) and reducing power. It also leads to the futile loss of carbon units as CO2, 
consequently constraining plant growth and yield. However, recent studies suggest that future climate conditions, 
which may reduce photorespiratory activity, may also enhance plant biomass albeit at the cost of decreased crop nu
tritional value.

Question: Should we consider photorespiration only as a loss-inducing process?

Findings: Our research reveals the crucial role of glycine flux regulation by photorespiration in maintaining nitrogen, 
carbon, and sulfur balance in plants. Redirecting glycine flux out of the photorespiratory pathway has a positive effect 
on plant nitrogen and sulfur levels. Our findings shed light on the molecular mechanisms through which reduced 
photorespiration adversely affects crop nutritional value. In mammals, the serine–glycine–one-carbon metabolic net
work functions as a central integrator of nutrient status. We propose a similar role for this network in plants.

Next steps: Our findings open new avenues for enhancing crop nutritional quality under future climate change con
ditions, particularly with regard to nitrogen content, an essential component of proteins and nucleic acids. Validating 
the feasibility of this biotechnological approach will require additional experiments conducted in natural environ
ments across different species and under varying conditions of temperature, light, and CO2.
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One Gly molecule is cleaved by GDC releasing CO2 and NH3. 
The remaining methylene C of Gly is transferred to tetrahy
drofolate (THF) to form 5,10-methylene-THF (CH2-THF) and 
NADH, which react with a second Gly to form Ser in a reac
tion catalyzed by SHMT (Fig. 1). The GDC complex activity 

exceeds that of SHMT1 in vitro (Rebeille et al. 1994; Douce 
et al. 2001), which led to the assumption that CH2-THF accu
mulates in the mitochondria relative to THF. Ser produced by 
SHMT in mitochondria and that synthesized by PPSB in plas
tids can be transported to the cytosol, where they can also be 

Figure 1. Schematic representation of the phosphorylated pathway (PSPB) and glycolate pathway (GPSB) of serine biosynthesis and putative inter
actions with other primary metabolic pathways. Enzymes and transporters: APR, APS reductase; ATPS, ATP sulfurylase; GDC, glycine-decarboxylase 
complex; GGAT, glutamate-glyoxylate aminotransferase; GLK, glycerate kinase; GOGAT, glutamine-oxoglutarate aminotransferase; GOX, glycolate 
oxidase; GS, glutamine-synthetase; HPR, hydroxypyruvate reductase; OAS-TL, O-acetylserine-(thiol)-lyase; PGDH, 3-phosphoglycerate dehydrogen
ase; PGLP, 2-phosphoglycolate phosphatase; PSAT, 3-phosphoserine aminotransferase; PSP1, 3-phosphoserine phosphatase; SERAT, 
serine-acetyltransferase; SHMT, serine-hydroxymethyltransferase; SIR, sulfite reductase. Metabolites: 3-PHP, 3-phosphohydroxypyruvate; 3-PS, 
3-phosphoserine; CH3-THF, 5-methyl-THF; APS, adenosine 5′-phosphosulfate; C1, one-carbon metabolite; CH2-THF, 5,10-methylene-THF; Gln, glu
tamine; Glu, glutamate; OAS, O-acetylserine; SAH, S-adenosylhomocysteine.
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used to produce 1C-units by the reverse reaction catalyzed 
by the cytosolic SHMTs (Mouillon et al. 1999; Engel et al. 
2007). Cytosolic 1C units are employed for methionine 
(Met) biosynthesis, which is then incorporated into proteins 
or used for the production of the universal methyl donor 
S-AdenosylMet (SAM) (Fig. 1). Moreover, 1C units are also 
utilized to synthesize purines and pyrimidines (Rébeillé 
et al. 2006; Hanson and Gregory 2011; Gorelova et al. 2017; 
Mohanta et al. 2019). Although the SHMT1/GDC activity 
has been considered to be the major source of 1C units for 
plants (Bauwe and Kolukisaoglu 2003), genetic and metabol
ic evidence about the contribution of these photorespiratory 
reactions to the folate and SAM cycles is missing. Moreover, 
the contribution of the PPSB-derived Ser to 1C-folate metab
olism is unknown.

As the oxygenase activity of Rubisco depends on the CO2/ 
O2 ratio, the supply of Ser–Gly–1C by GPSB to plants will be 
influenced by increases in the atmospheric CO2 concentra
tion resulting from anthropogenic activity. Furthermore, as 
Ser is recycled by photorespiration to 3-PGA (Fig. 1), the ab
solute contribution of GPSB to the supply of Ser for plant me
tabolism and development remains controversial. Modeling 
and isotopic labeling studies estimated that under ambient 
CO2 (aCO2) concentrations, a substantial fraction of the 
photorespiratory Gly and Ser is not recycled back to 
3-PGA, but it is used in other metabolic pathways as precur
sors of molecules required for growth, such as nucleotides or 
proteins (Abadie et al. 2016; Busch et al. 2018; Fu et al. 2023). 
However, under elevated CO2 (eCO2) growth conditions, 
when GPSB activity is restricted, increase in Arabidopsis bio
mass provided that PPSB remains functional, indicating that 
the PPSB-derived Ser contributes more to plant growth than 
the GPSB-derived Ser (Zimmermann et al. 2021). These find
ings highlight the complexity of the interaction of both path
ways and indicate that their contribution to other metabolic 
networks is not completely understood. In this regard, it has 
been described that photorespiration and PPSB may contrib
ute to N and sulfur (S) assimilation (Rachmilevitch et al. 2004; 
Bloom et al. 2010; Abadie et al. 2016; Busch et al. 2018; 
Samuilov et al. 2018a, 2018b; Abadie and Tcherkez 2019; 
Anoman et al. 2019; Zimmermann et al. 2021). The role of 
PPSB and GPSB in these metabolic networks may be especial
ly important for crops in a scenario in which the continuous 
increase in atmospheric CO2 concentrations may reduce 
photorespiration and thus limit crop nutritional quality 
(Bloom et al. 2010; Bloom et al. 2012, 2014; Jauregui et al. 
2015, 2016; Walker et al. 2016). Nonetheless, the connections 
between PPSB and GPSB with N and S metabolism and espe
cially their biological relevance in terms of their contribution 
to overall plant nutrient status and development remain 
unclear.

In this study, we aimed to clarify the relative contributions 
of both PPSB and GPSB to Ser–Gly–1C biosynthesis and to 
gain insight into how they interact with N, S, and C metab
olism. Previous attempts to block both PPSB and photo
respiration have been unsuccessful. Therefore, studies were 

conducted using PPSB-deficient lines under conditions that 
favored or disfavored photorespiration (Zimmermann et al. 
2021). Here, we used a combination of PPSB-deficient and 
SHMT1-deficient lines. In this way, we could bypass the reac
tion producing Ser in the GPSB without short-circuiting the 
photorespiratory cycle. We show that the regulation of 
Ser/Gly flux by PPSB and GPSB affects N, C, and S homeosta
sis. Our work provides genetic evidence of the biological sig
nificance of the Ser–Gly–1C metabolic network in N and S 
metabolism and in organ developmental patterns in 
Arabidopsis. Our study unravels essential steps of photo
respiration, which might be used to develop new crops 
with higher nutritional value.

Results
Interactions of PPSB and GPSB modify the 
developmental pattern of aerial parts/roots of plants
Figure 2 shows that both PGDH1- and PSP1-deficient 
Arabidopsis lines (c-psp1 and c-pgdh1), with low background 
levels of PGDH1 and PSP1, respectively (Cascales-Miñana 
et al. 2013; Casatejada-Anchel et al. 2021), displayed more 
dramatic growth phenotypes under eCO2, where GPSB activ
ity is reduced, than under aCO2 (Fig. 2, A and B), which cor
roborates the notion that PPSB and GPSB cooperate in 
supplying Ser for plant growth (Zimmermann et al. 2021). 
Accordingly, PGDH1 and PGDH2, the 2 main PGDH family 
genes (Casatejada-Anchel et al. 2021), were induced in shoots 
of wild-type (WT) plants under eCO2 growth conditions 
(Fig. 2C). Under these conditions, PGDH1 and especially 
PGDH2 were also induced in c-psp1 lines, as well as PGDH2 
in c-pghd1 lines, suggesting the general upregulation of the 
PPSB in response to PSP1 or PGDH1 inactivation (Fig. 2D). 
However, SHMT1 was repressed in PPSB-deficient lines. 
Besides, neither PGDH1 nor PGDH2 was induced in the roots 
of a mutant of SHMT1 (shmt1.2, henceforth shmt1) in which 
PGDH2 was even repressed. These results indicate that the in
teractions between the 2 Ser biosynthetic pathways are 
complex.

In the first attempt to complement the growth phenotype 
of PPSB-deficient lines, we blocked photorespiration at the 
level of serine-glyoxylate aminotransferase (SGAT), which is 
the peroxisomal enzyme that converts Ser into hydroxypyr
uvate in the photorespiratory cycle (Fig. 1). SGAT could be 
a key point in the control of the Ser pool since it was shown 
that sgat mutants have increased Ser levels and that SGAT 
overexpression reduces Ser levels (Somerville and Ogren 
1980; Modde et al. 2017). In our experimental conditions, 
the sgat1 mutants accumulated more Ser than WT when 
grown under aCO2 and eCO2 conditions (Supplemental 
Fig. S1). However, the sgat1 mutation in the PGDH-silenced 
lines was lethal.

The finding that SHMT1 was repressed in PPSB-deficient 
lines led us to introduce the shmt1 mutation into the 
PPSB-deficient mutant background (shmt1 c-psp1 and 
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shmt1 c-pgdh1). In contrast to PPSB-deficient lines, PGDH2 
expression was no longer induced in shmt1 c-pgdh1 shoots 
and shmt1 c-psp1 roots, while it was even repressed in the 
roots of shmt1 c-pgdh1 lines, indicating a general downregu
lation of the PPSB pathway in these mutant backgrounds. We 
characterized single and double mutants under eCO2 and 
aCO2 whenever possible. In single mutants, the PPSB defi
ciency (c-psp1 and c-pgdh1) mainly affected primary root 
growth, while the SHMT1 mutation mostly affected shoot 

growth (Fig. 2, A and B). For instance, under aCO2, the shoot 
fresh weight of the c-pgdh1 lines was unchanged, while the 
primary root length was reduced by more than 50% com
pared with WT. Under eCO2, the same growth trend, albeit 
more exacerbated, was observed for both c-psp1 and 
c-pgdh1. Under these conditions, shmt1 showed a 65% reduc
tion in shoot biomass, while the primary root length was only 
reduced by 13%. The shmt1 mutation in PPSB-deficient lines 
maintained (shmt1 c-pgdh1) or reduced (shmt1 c-psp1) shoot 

Figure 2. Characterization of PPSB-deficient (c-psp1 and c-pgdh1) and SHMT1-deficient (shmt1.2, shmt1.2 c-psp1, and shmt1.2 c-pgdh1) lines. A) 
Relative shoot fresh weight (FW), primary root length (PRL), and shoot FW/PRL ratio of different lines grown under aCO2 or eCO2 conditions com
pared to WT plants. B) Photograph of representative individuals of each line grown under aCO2 or eCO2 conditions. C) PGDH1 and PGDH2 expres
sion in shoots and roots of WT lines under eCO2 compared with aCO2 conditions. D) PSP1, PGDH1, PGDH2, and SHMT1 expression in different lines 
grown under eCO2 compared with WT. E) Relative shoot FW and PRL of different lines grown under eCO2 supplemented with Gly. In A) and E) 
(mean ± SE, n ≥ 7; data represent the mean of at least 10 plants), values are normalized to the mean calculated for the WT under aCO2 A) or eCO2 

conditions E); different letters indicate significant differences between lines (P < 0.05) under the same growth conditions; significant differences 
between growth conditions, as determined by Student’s t-test, are denoted by * (P < 0.05), ** (P < 0.01), or *** (P < 0.001). C and D) Values (mean  
± SE; n ≥ 4 independent biological replicates of pools of 40 plants) are normalized to the gene expression under aCO2 conditions C) or to the WT 
background D); significant differences between aCO2 and eCO2 gene expression C) or between mutants and WT D), as determined by Student’s 
t-test, are denoted by * (P < 0.05). Scale bar = 2 cm B).
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growth versus their respective PPSB-deficient lines (c-pgdh1 
or c-psp1). Interestingly, the primary root length recovered 
in the double mutants between 2.6-fold and 5.2-fold longer 
than in the respective PPSB-deficient lines. These results indi
cate a change in the shoot/root developmental pattern in 
the double mutants, as quantified by the shoot fresh 
weight/primary root length ratio (Fig. 2A). This ratio was al
ways higher in c-pgdh1 than in the shmt1 c-pgdh1 lines, while 
the lowest shoot fresh weight/primary root length ratio was 
found in the shmt1 line (Fig. 2A). Altogether, phenotypic 
characterization and expression data suggest that Ser 
homeostasis might be modified in the double-mutant lines.

Disrupting SHMT1 profoundly alters N and C 
metabolism in PPSB-deficient lines
To investigate the effect of disrupting SHMT1 on central me
tabolism, we measured the major C and N metabolites in 
plants grown under eCO2 conditions under which 
SHMT1-deficient lines are viable (Fig. 3). Glycolate measure
ments in shoots, a key metabolite at the beginning of the 
photorespiratory pathway and the product of the metaboliza
tion of toxic 2-PG, showed that its content in shmt1 c-pgdh1 
and shmt1 was not higher than in WT or c-pgdh1 lines 
(Supplemental Fig. S2). This result suggests that metabolites 
upstream of glycolate in the photorespiratory pathway, such 
as 2-PG, did not accumulate more in mutants with a shmt1 
background than in other lines under the low photorespira
tory growth conditions used in this work (eCO2 and 
100 µmol m−2 s−1 light intensity). However, principal compo
nent analysis (PCA) of metabolites revealed clear differences 
between lines (Fig. 3, A and D). The metabolite whose levels 
differed most strongly between lines in shoots and roots was 
the amino acid Gly. Like the shmt1 parental lines, double 
shmt1 PPSB-deficient lines showed a dramatic increase in 
Gly levels in shoots and roots compared with the other lines. 
These lines also displayed higher Ser levels than their respect
ive single PPSB-deficient lines, although the changes were not 
as dramatic as for Gly. In fact, the common pattern of all 
SHMT1-deficient lines (shmt1, shmt1 c-psp1, and shmt1 
c-pgdh1) had a much higher shoot Gly/Ser ratio than WT or 
PPSB-deficient lines, suggesting that Gly metabolism was 
more strongly altered than the Ser metabolism in these lines 
(Fig. 3B). Therefore, diverting the photorespiratory flux before 
Ser biosynthesis by SHMT1 changes the Gly/Ser ratio in shoots. 
Gly-feeding experiments confirmed that this amino acid can 
complement the root growth phenotypes of PPSB-deficient 
mutants (Fig. 2E). However, externally supplied Gly differently 
affected the root growth response, depending on the mutant 
background and the concentration. Thus, Gly concentrations 
of 0.5 mM or higher clearly inhibited primary root growth com
pared with controls without Gly supplementation in WT and 
shmt1 plants, especially the latter. However, these Gly concen
trations still had a positive effect on the primary root growth 
of c-pgdh1 lines. These results indicate that greater levels of ex
ternal Gly are required in PPSB-deficient lines.

Other major metabolite changes between lines were the 
accumulation of transport amino acids, such as glutamate 
(Glu), glutamine (Gln), and aspartate (Asp), and Asp-derived 
amino acids, such asparagine (Asn) and Met in shoots of 
SHMT1-deficient lines compared with WT and PPSB- 
deficient lines (Fig. 3, A and C). By contrast, the levels of 
soluble sugars such as glucose and fructose were reduced 
in these lines: in roots, Glu, Gln, Asp, and Asn no longer 
accumulated in SHMT1-deficient versus PPSB-deficient lines 
(Fig. 3F). Conversely, some of these amino acids (Gln and 
Asn) and others like alanine overaccumulated in PPSB- 
deficient lines. As in shoots, glucose and fructose levels 
decreased in the roots of SHMT1-deficient lines, with a clear 
opposite trend to that in the PPSB-deficient lines. These dif
ferences in the amino acids and sugar profiles between 
shoots and roots of PPSB- and SHMT1-deficient lines point 
to changes in N and C homeostasis between organs in differ
ent mutant backgrounds.

To more precisely identify how Ser–Gly homeostasis in 
shoots and roots was affected by the lack of SHMT1 activity 
in the PPSB-deficient background, we shifted plants grown 
under eCO2 to aCO2 conditions, where photorespiration is 
much more active (Fig. 3B; Supplemental Fig. S3). In WT 
shoots, as expected, the Ser and Gly levels dropped when 
plants were grown under eCO2 conditions compared with 
aCO2 (Fig. 3B; Supplemental Fig. S3). The Gly/Ser ratio indi
cated that the drop of Gly levels in shoots under eCO2 was 
much greater than that of Ser in both PPSB-deficient and 
WT lines (Fig. 3B). Other relevant changes found in the 
shoots of SHMT1-deficient lines shifted from eCO2 to 
aCO2 conditions were strong increases in Glu and Asp levels 
and decreases in 2-oxoglutarate (2-OG) levels (Supplemental 
Fig. S3). In roots, Gly and Ser levels also decreased in all lines 
transferred from eCO2 to aCO2 conditions, and these 
changes were more drastic in SHMT1-deficient lines 
(Fig. 3E; Supplemental Fig. S3). The shift from eCO2 to 
aCO2 primarily affected amino acid homeostasis in roots 
(Supplemental Fig. S3). In addition to the above-mentioned 
Gly, the transport amino acids Glu, Gln, Asp, and Asn were 
more drastically affected in the SHMT1-deficient mutants 
than in other lines, confirming the influence of photorespir
ation on amino acid status in roots (Supplemental Fig. S3). 
Overall, these results indicate that SHMT1 activity has clear 
consequences for amino acid metabolism and distribution 
between roots and shoots.

Root phenotypes in PPSB-deficient lines are 
dependent on SHMT1/GDC activity in shoots
SHMT1 is mainly expressed in shoots. We performed grafting 
experiments to elucidate the role of shoots in the changes in 
root developmental patterns in the mutants. Using the 
shmt1 c-psp1 shoot as the scion, the root growth of the 
c-psp1 stock was rescued (Fig. 4; Supplemental Fig. S4), 
confirming that the changes in developmental patterns in 
the shmt1 PPSB-deficient lines are shoot-dependent. 
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To investigate the specific role of SHMT1 activity in the ob
served developmental patterns, we introduced the SHMT2 
mutation (shmt2.2, henceforth shmt2) into the PPSB- 

deficient lines. SHMT2 is the second mitochondrial SHMT 
isoform in Arabidopsis. Its activity represents only a very 
small fraction of total SHMT activity in shoots, which is 

Figure 3. Metabolite profiles of WT, PPSB-deficient (c-psp1 and c-pgdh1), and SHMT1-deficient (shmt1.2, shmt1.2 c-psp1, and shmt1.2 c-pgdh1) lines 
grown under eCO2 conditions. A and D) PCA and loading plots of metabolites in shoots A) and roots D). Data from GC-MS analysis were evaluated 
using PCA with the 2 first components accounting for at least 70% of total metabolic variance. Values in parenthesis give the relative contribution of 
each component to the total variance observed in the dataset. B and E) Relative Gly and Ser content in shoots B) and roots E) of different mutant 
backgrounds under eCO2 conditions or after a 24 h shift to aCO2 conditions compared with WT. C and F) Heat map showing most relevant changes 
in the metabolite contents of shoots C) and roots F) under eCO2 conditions. Values represent the mean ± SE, n ≥ 6 of pools of 40 plants from 2 
different lines for each genotype; different letters indicate significant differences between lines (P < 0.05) under eCO2 conditions; significant differ
ences between the same line under aCO2 and eCO2 conditions, as determined by Student’s t-test, are denoted by * (P < 0.05), ** (P < 0.01), 
and *** (P < 0.001). In the Gly/Ser ratio, lines are compared with the WT under the same growth conditions.
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confined to vascular tissues (Engel et al. 2011) (http://www. 
bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi). shmt2 c-pgdh1 lines 
were viable under aCO2 and eCO2 conditions, but the 
SHMT2 mutation did not rescue the inhibited primary root 
length of c-pgdh1 and even enhanced it under aCO2 

(Supplemental Fig. S5). The most important difference be
tween the shmt1 c-pgdh1 and shmt2 c-pgdh1 mutants was 
the increase in Ser and especially Gly contents in the shoots 
of shmt1 c-pgdh1 (Fig. 3B; Supplemental Fig. S5). Overall, 
these data demonstrate that the change in the developmen
tal patterns observed in shmt1 PPSB-deficient lines is related 
to the lack of photorespiration-associated SHMT1 activity in 
shoots.

15N labeling experiments confirm that Gly is 
prioritized over Ser in the double mutants, affecting 
the Ser–Gly–1c
The 15N-labeling experiments (Fig. 5) showed that the de 
novo incorporation of 15N into Gly was much greater in 
SHMT1-deficient lines than in WT and c-pgdh1 (Fig. 5, A 
and B). However, the de novo incorporation of 15N into Ser 
was higher in c-pgdh1 than in SHMT1-deficient lines, espe
cially in roots. The enrichment of both Gly and Ser, a useful 
measure of the turnover rate, was lower in the 
SHMT1-deficient lines than in WT or c-pgdh1. However, 
the enrichment of Ser in SHMT1-deficient lines was much 
lower than that of Gly (Fig. 5, A and B). Thus, much more 
Gly is incorporated and is metabolized more quickly than 
Ser in SHMT1-deficient lines. These data, plus the higher 
Ser steady-state values, suggest lesser Ser flux into other me
tabolites in the SHMT1-deficient mutants.

Considering that the differences between the lines with 
and without SHMT1-deficiency were mostly in the Gly in
corporation rate rather than in enrichment, our results sug
gest that a considerable amount of Gly not being 
metabolized by SHMT1 is diverted to other metabolic reac
tions in the mutants. These reactions could include other 
SHMT isoforms, such as the plastidial SHMT3, whose gene 
was upregulated in shmt1 c-pgdh1 shoots, or enhanced 
GDC activity, as deduced by the induction of some genes en
coding isoforms of the GDC complex (GLDP1 and GLDP2) in 
shmt1 c-pgdh1 (Fig. 6). In contrast to shmt1 c-pgdh1, both 
GDC (GLDP1 and GLDP2) and SHMT1 gene expression was 
repressed in c-pgdh1 (Figs. 2D and 6C). These results suggest 
that Gly could also be taken out of the photorespiratory cy
cle in mitochondria of this mutant at a higher rate than in 
WT and might be converted to Ser in other compartments 
or organs to compensate for the Ser deficiency. This notion 
was substantiated by the greater Gly enrichment found in 
c-pgdh1 shoots, which indicates a higher Gly metabolization 
rate (Fig. 5A).

The 15N flux measurements also indicated that Glu did not 
display a higher de novo biosynthesis rate in SHMT1- 
deficient versus PPSB-deficient shoots (Fig. 5A), suggesting 
that Glu accumulation observed at steady state might be 
due to lower turnover caused by inhibited photorespiratory 
flux. However, the de novo 15N label incorporation into Asp 
and Asp-derived amino acids such as Met was greater in 
SHMT1-deficient than in PPSB-deficient shoots. Unlike 
shoots, 15N flux analysis in roots indicated greater Asp and 
Glu biosynthesis in c-pgdh1 than in shmt1 c-pgdh1 (Fig. 5B), 
which could explain the amino acid accumulation in the 
roots of PPSB-deficient lines.

Figure 4. Grafting of scion shmt1.2 c-psp1 shoots onto c-psp1 roots under eCO2. Squares mark the junction between shoots and roots. Scale bars =  
2 cm (left) and 2 mm (right).

Ser–Gly links C with N and S metabolism                                                                          THE PLANT CELL 2024: 36; 404–426 | 411

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/article/36/2/404/7296040 by W

ashington State U
niversity Libraries user on 23 July 2024

http://www.bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
http://www.bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad256#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad256#supplementary-data


Figure 5. SHMT1-deficient lines (shmt1.2 and shmt1.2 c-pgdh1) incorporate more Gly and Asp-family amino acids and synthesize more folates and 
SAM intermediates than PPSB-deficient (c-pgdh1) lines. A and B), Quantification of 15N-labeled major amino acids in PPSB- and SHMT1-deficient 
lines grown under eCO2 conditions; values of shoots A) and roots B) are shown as relative abundance (upper panel) and fractional enrichment 
(lower panel). C) Relative contents of folate and SAM cycle intermediates in the shoots and roots of different mutant backgrounds grown under 
eCO2 conditions compared with WT. In A) and B), values represent the mean ± SE, 4 ≤ n ≤ 10 pools; data represent the mean of at least 45 plants 
from 2 different lines for each genotype. In C), values represent the mean ± SE, n ≥ 6 pools data represent the mean of at least 40 plants. Different 
letters indicate significant differences between lines (P < 0.05).
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Figure 6. Transcriptomics profiles of PPSB-deficient (c-pgdh1) and SHMT1-deficient (shmt1.2 c-pgdh1) lines under eCO2. A) Volcano plots for dif
ferentially expressed genes between shmt1.2 c-pgdh1 and c-pgdh1 in shoots. Brown and green dots represent upregulated and downregulated genes, 
respectively (FDR < 0.05). B) Functional category analysis for transcriptional responses in shoots. In each bar, the number of genes differently up
regulated or downregulated is shown. C) Heat map showing the most relevant changes in the expression of genes related to Gly/Ser, sulfur, and 
nitrogen metabolism in shoots and roots. Numbers inside boxes stand for log-fold change. D) Nitrate (NO3

−) content in shoots and roots of different 
lines. E) Glutamine synthetase (GS) activity in shoots and roots of different lines. Values represent the mean ± SE, 4 ≤ n ≤ 8 pools of 40 plants from 2 
different lines for each genotype; different letters indicate significant differences between lines (P < 0.05).
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Briefly, the most important difference between lines is the 
higher Gly flux in shoots and roots of SHMT1-deficient lines. 
The increased Gly flux in shoots of SHMT1-deficient lines is 
channeled into Asp family amino acids, especially Asn and 
Met, linking N with S and folate metabolism.

Folate and SAM cycles are affected by changes in Ser/ 
Gly flux
Because Ser and Gly participate in 1C-folate metabolism via 
SHMT and GDC enzymes, we measured steady-state folate 
pools. The most striking difference between the lines was 
the 15-fold higher CH2-THF + THF pool size in shmt1 
c-pgdh1 shoots compared with the WT (Fig. 5C). These values 
are consistent with higher GDC activity in shmt1 c-pgdh1 
lines. No method is currently available to distinguish be
tween CH2-THF and THF in plant tissues. However, the in
crease in the CH2-THF + THF pool in shmt1 and shmt1 
c-pgdh1 probably reflects a rise in the level of CH2-THF, the 
product of GDC activity, because shmt1 mutants are unable 
to convert the CH2-THF produced by GDC into Ser and THF 
in the mitochondria. Other minor changes were found in the 
folate pool of shmt1 c-pgdh1 shoots, i.e. a reduction in the 
pools of 5-methyl-THF (CH3-THF) and 5,10-methenyl-THF 
(CH-THF) + 10-formyl-THF (HCO-THF), with these metabol
ite levels showing an opposite trend to that in c-pgdh1 
shoots. Differences in folate pools between lines were 
much smaller in roots than in shoots. The CH2-THF + THF 
pool decreased in shmt1 roots but increased in c-pgdh1 roots 
(Fig. 5C). However, no major changes appeared in the folate 
levels of shmt1 c-pgdh1 lines, probably due to the balancing 
of the opposite effects from the 2 single mutants.

The changes in the folate pool found between lines and or
gans could affect other pathways like the SAM cycle because 
the methyl moiety of SAM is derived from 1C-folates. The le
vels of SAM and adenosine, another product of the SAM cy
cle, increased 2-fold to 3-fold in shoots of SHMT1-deficient 
lines (Fig. 5C). Increased SAM cycle activity could also explain 
the depletion of CH3-THF, which is the donor of 1C groups 
for SAM, in SHMT1-deficient lines. Briefly, changes in Ser/ 
Gly flux strongly affected folate and SAM metabolism, modi
fying the metabolite equilibrium between roots and shoots 
and affecting S-metabolism.

Transcriptomic analysis confirms alterations of the 
N–C–S networks between shoots and roots of 
c-pgdh1 and shmt1 c-pgdh1 lines
In agreement with previous results, PCA of the transcrip
tomic data indicated that the main differences between lines 
appeared in shoots and not in roots (Supplemental Fig. S6). 
When comparing c-pgdh1 with shmt1 c-pgdh1 shoots, 4,857 
genes were downregulated and 4,913 were upregulated 
(Fig. 6A). Compared with WT, in c-pgdh1 shoots, several cat
egories of genes related to response to nutrient level and 
starvation were upregulated, including marker genes for S 
and N deficiency (Fig. 6B). When comparing shmt1 c-pgdh1 

with c-pgdh1, however, genes in the same categories that re
spond to nutrient levels were downregulated. In shoots of 
c-pgdh1, there was a general induction of genes encoding en
zymes participating in pyrimidine catabolism, the so-called 
PYD genes, which respond to N deficiency (Fig. 6C; 
Supplemental Fig. S7). In particular, PYD4, the last gene of 
the pyrimidine catabolic pathway, was strongly upregulated 
in c-pgdh1 lines and strongly repressed in shmt1 c-pgdh1. PYD 
genes are induced under N-limited conditions to use pyrimi
dines as an N source (Zrenner et al. 2009; Witte and Herde 
2020). Accordingly, downregulation of genes encoding en
zymes participating in the biosynthesis of pyrimidine inter
mediates occurred in c-pgdh1 shoots compared with WT, 
while the opposite trend was noted when comparing 
shmt1 c-pgdh1 lines versus c-pgdh1 (Supplemental Fig. S7).

In roots, the HSR1/NIGT1.4 was strongly downregulated in 
c-pgdh1 but upregulated in shmt1 c-pgdh1 compared with 
the WT (Fig. 6C). HSR1/NIGT1.4 is a member of the NIGT 
clade that is specifically expressed in roots, encoding a tran
scriptional repressor of the NO3

− transporter gene NTR2.1 
(Maeda et al. 2018; Ueda et al. 2020). The downregulation 
of HSR1/NIGT1.4 in c-pgdh1 roots suggests that NO3

− uptake 
was activated as a response to N deficiency. Accordingly, the 
NO3

− content in c-pgdh1 roots was approximately 35% lower 
than in WT (Fig. 6D), while the NO3

− content in shmt1 
c-pgdh1 roots was significantly higher than that of c-pgdh1 
and similar to that of WT (even a 14% increase was ob
served). Another NIGT clade member, NIGT1.2, was upregu
lated in c-pgdh1 shoots and downregulated in shmt1 c-pgdh1 
shoots compared with c-pgdh1. These data show that NO3

− 

signaling between shoots and roots is differentially altered in 
PPSB-deficient and SHMT1-deficient lines, probably reflect
ing a change of NO3

− allocation between the organs. The 
gene expression pattern of glutamine synthetase (GS) iso
forms was also altered in c-pgdh1 versus shmt1 c-pgdh1. 
Major changes occurred in the cytosolic GS isoforms 
GLN1.1, GLN1.2, and GLN1.3, showing an opposite expression 
pattern between shoots and roots (Fig. 6C).

NH4
+ content showed a similar increase in shoots of both 

c-pgdh1 and shmt1 c-pgdh1 mutant lines compared with WT 
(Supplemental Fig. S8). To determine whether this higher 
NH4

+ content was related to changes in a biosynthetic pro
cess, we measured GS activity. Compared with the WT, GS 
activity was greater in shmt1 c-pgdh1 shoots, but similar to 
or even lower than that in c-pgdh1 roots (Fig. 6E). These re
sults indicate that N signaling between shoots and roots is al
tered in shmt1 c-pgdh1 compared with c-pgdh1, confirming 
that SHMT1 activity can profoundly affect N homeostasis.

Genes encoding sulfate transporters (SULTRs) and pro
teins involved in S metabolism in general were downregu
lated in shmt1 c-pgdh1 shoots compared with c-pgdh1 
(Fig. 6B). Thus, genes described as S deficiency markers, 
such as SHMT7, LSU1, LSU2, LSU3, LSU4, SDI1, and SDI2, which 
were upregulated in c-pgdh1 shoots and roots compared 
with WT, showed the opposite trend in shmt1 c-pgdh1. 
Some of these genes (LSU1, LSU2, SHMT7, and SDI2) showed 

414 | THE PLANT CELL 2024: 36; 404–426                                                                                                              Rosa-Téllez et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/article/36/2/404/7296040 by W

ashington State U
niversity Libraries user on 23 July 2024

http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad256#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad256#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad256#supplementary-data
http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad256#supplementary-data


even lower expression levels in shmt1 c-pgdh1 shoots than in 
the WT, which agrees with the notion that S metabolism is 
activated in these mutant lines (Fig. 6C). SULTRs and adeno
sine phosphosulfate reductase (APR) enzymes play predom
inant roles in controlling sulfate assimilation in plastids 
(Ristova and Kopriva 2022). All 3 APR genes were upregu
lated in c-pgdh1 compared with WT but downregulated in 
shmt1 c-pgdh1 compared with c-pgdh1 (Fig. 6C). SULTR genes 
showed different expression patterns depending on their 
functions in plants. SULTR1.1 and SULTR1.2, whose major 
functions involve root uptake, were upregulated in roots of 
both c-pgdh1 and shmt1 c-pgdh1, but with higher expression 
levels in the latter (Fig. 6C). However, an opposite expression 
trend appeared in most of the other 10 SULTR genes in both 
mutants, especially in shoots. Notably, SULTR1.3 and 
SULTR3.1 were highly upregulated in c-pgdh1 and highly 
downregulated in shmt1 c-pgdh1. SULTR1.3 is a high-affinity 
SULTR required for sulfate uptake and for maintaining S me
tabolism in the sieve element companion cell complex 
(Yoshimoto et al. 2007). Deletion of this high-affinity 
SULTR restricted transfer of 35S from cotyledons to shoot 
meristems and roots in Arabidopsis (Yoshimoto et al. 
2007). SULTR3.1 participates in sulfate transport at chloro
plast/plastid envelopes (Cao et al. 2013). Taken together, 
these transcriptional data indicate that the expression of 
genes responding to sulfate signaling and sensing was altered 
in shmt1 c-pgdh1 compared with c-pgdh1, with the upregula
tion of major sulfate uptake transporter genes in roots but 
downregulation of APR genes, and most SULTR genes in
volved in intercellular and intracellular sulfate transport.

Unlike genes that respond to nutrient levels, genes related 
to carbohydrate metabolism were among the most highly 
upregulated in shmt1 c-pgdh1 shoots (Fig. 6B). For example, 
among the 154 differentially regulated genes in the “response 
to carbohydrate stimulus” category in shmt1 c-pgdh1 shoots, 
104 were upregulated (Fig. 6B; Supplemental Data Set 1). This 
also indicates a shift in C metabolism between c-pgdh1 and 
shmt1 c-pgdh1. Therefore, we measured total N, C, and S le
vels in roots and shoots (Table 1). In c-pgdh1, an alteration 
occurred in the distribution of S and N between shoots 
and roots versus WT, with a deficiency in shoots and an 

excess in roots. However, the C content increased in both 
shoots and roots of c-pgdh1 versus WT. In shmt1 c-pgdh1, 
however, the S and N contents increased in shoots to levels 
even higher than in the WT, but the C content decreased in 
both shoots and roots. The most important differences be
tween shmt1 c-pgdh1 and c-pgdh1 were, once again, found 
in shoots, particularly in the S content. Compared with the 
WT, the S content of c-pgdh1 shoots decreased by approxi
mately 20% but increased by ∼20% in shmt1 c-pgdh1, follow
ing a similar trend in shmt1. Due to the changes in C, S, and N 
contents, the N/C and S/C ratios in shoots decreased in 
PPSB-deficient lines and increased in SHMT-deficient lines. 
In roots, the most important differences between both lines 
were changes in the C content, which dropped in shmt1 
c-pgdh1 and rose in c-pgdh1. We also measured total N, S, 
and C contents under aCO2 growth conditions in the 
c-pgdh1 line, confirming that the reduction in N and S con
tents and the increase in C content in shoots of the 
PPSB-deficient lines occurred independently of photorespira
tory activity (Supplemental Table S1).

Therefore, the deficiency of N and S that occurred in 
c-pgdh1 shoots was corrected by bypassing the photorespira
tory flux at the SHMT1 level. This implies that PGDH1 and 
SHMT1 activities play important roles in regulating C, N, 
and S distribution within and between plant cells and organs.

Protein and carbohydrate metabolism is differentially 
affected in PPSB- and SHMT-deficient lines
We performed protein biosynthesis experiments using a la
beled 35SCys/35SMet cocktail in shoots. Neither c-pgdh1 
nor shmt1 c-pgdh1 showed higher amino acid incorporation 
into proteins than WT (Fig. 7A). However, the enrichment of 
35SCys/35SMet was lower in SHMT1-deficient lines than in 
WT or c-pgdh1, which suggests a lower metabolization rate. 
This could indicate a greater preference of N-containing me
tabolites as a C sink instead of carbohydrates and would 
agree with the increased N and S and the decreased soluble 
sugar contents in these lines. We checked the growth re
sponses of c-pgdh1 and shmt1 c-pgdh1 in the presence of ex
ogenous 2% sucrose. While the shoot fresh weight of shmt1 

Table 1. Carbon (C), nitrogen (N), and sulfur (S) contents (mg/g dry weight) in shoots and roots of WT, PPSB-deficient (c-pgdh1), and 
SHMT1-deficient (shmt1.2 c-pgdh1, shmt1.2) lines growth under eCO2 conditions

genotype C N S N/C ratio S/C ratio

Shoots
WT 400.1 ± 0.6a 67.86 ± 0.27a 9.12 ± 0.15a 0.170 ± 5.49·10−4 a 0.023 ± 4.03·10−4 a

c-pgdh1 419.9 ± 0.7b 62.80 ± 0.41b 7.37 ± 0.12b 0.150 ± 9.04·10−4 b 0.018 ± 3.08·10−4 b

shmt1.2 c-pgdh1 390.5 ± 1.0c 70.69 ± 0.29c 10.84 ± 0.10c 0.181 ± 7.75·10−4 c 0.028 ± 3.26·10−4 c

shmt1.2 397.2 ± 3.0a 69.90 ± 0.26c 11.57 ± 0.26d 0.176 ± 3.42·10−3 c 0.029 ± 8.17·10−4 c

Roots
WT 418.8 ± 0.7a 51.75 ± 0.34a 7.30 ± 0.09a 0.124 ± 7.68·10−4 a 0.017 ± 2.25·10−4 a

c-pgdh1 427.9 ± 0.8b 54.92 ± 0.16b 9.77 ± 0.07b 0.128 ± 5.18·10−4 b 0.023 ± 1.36·10−4 b

shmt1.2 c-pgdh1 403.8 ± 0.1c 57.45 ± 0.40c 8.97 ± 0.10c 0.142 ± 1.08·10−3 c 0.022 ± 2.35·10−4 b

shmt1.2 413.7 ± 1.2d 57.12 ± 1.31c 7.39 ± 0.22a 0.138 ± 2.78·10−3 d 0.018 ± 4.85·10−4 c

Values represent the mean ± SE, n ≥ 6 of pools of 40 plants from 2 different lines per genotype; different letters (a, b, c, d) indicate significant differences between lines (P < 0.05).
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increased almost 3-fold, the shoot growth of c-pgdh1 was 
negatively affected by this treatment (Fig. 7, B and C). 
Interestingly, sucrose treatment drastically decreased the pri
mary root length of shmt1 c-pgdh1 but increased the primary 
root length of c-pgdh1 (Fig. 7, B and C). Consequently, su
crose treatment altered the plant developmental pattern de
pending on the genetic background, as shown by the shoot 
fresh weight/primary root length ratio, which increased in 
the SHMT-deficient lines but decreased in c-pgdh1 compared 
with control medium without sucrose (Fig. 7B). These results 
confirm the notion that SHMT1-deficient lines have im
paired carbohydrate metabolism compared with the other 
lines and that developmental changes in PPSB- and 
SHMT-deficient mutants involve nutrient sensing and signal
ing mechanisms in different plant organs, as well as shoot– 
root communications processes.

Discussion
Evidence supports the involvement of 
photorespiratory Gly in the maintenance of Ser 
homeostasis at the whole plant level
Crosstalk has been proposed between photorespiration and 
PPSB during Ser biosynthesis. This assumption is based on 

the observation that Ser levels drop to a lesser extent than 
Gly levels under low photorespiratory conditions in WT 
leaves (Kleczkowski and Givan 1988; Fig. 3B), which might 
be due to PPSB induction when photorespiration is com
promised (Modde et al. 2017; Fig. 2, C and D). However, we 
have shown that steady-state levels of Ser also drop to a 
much lesser extent than Gly in PPSB-deficient lines under 
photorespiratory-reduced conditions (Fig. 3B). We have 
also shown that not only Gly but also steady-state Ser levels 
increase in double mutants devoid of PGDH and SHMT1 ac
tivities. 15N-flux measurements indicated that less Ser was in
corporated into shoots and roots in the shmt1 c-pgdh1 lines 
than in PPSB-deficient lines (Fig. 5, A and B), as expected after 
eliminating the major enzymes responsible for its synthesis. 
Therefore, we propose that some of the Gly leaving photo
respiration is used for Ser synthesis in the cytosol and plas
tids. This conversion of Gly into Ser through cytosolic and 
plastidial SHMTs is not thermodynamically favored. 
However, the high Gly/Ser ratio in the SHMT1-deficient lines 
could shift the reaction equilibrium in favor of Ser formation 
in these compartments.

Gly and Ser levels in roots also decreased in all lines in 
response to the transition from aCO2 to eCO2 conditions, es
pecially in SHMT1-deficient lines. This implies that fractions 
of the root Gly and Ser pools are also associated with 

Figure 7. Protein and carbohydrate metabolism is differentially affected in PPSB-deficient (c-pgdh1) and SHMT1-deficient (shmt1.2 and shmt1.2 
c-pgdh1) lines under eCO2 conditions. A) Protein synthesis in shoots measured by 35S-Met/35S-Cys labeling experiments. Values are shown as in
corporation into proteins (left panel) and enrichment (right panel). B) Relative shoot fresh weight (FW), primary root length (PRL), and shoot 
FW/PRL ratio of different lines supplemented ±2% sucrose. C) Photograph of representative individuals of each line. In A), values represent the 
mean ± SE, n ≥ 6 pools of 40 plants from 2 different lines for each genotype; different letters indicate significant differences between lines (P <  
0.05). In B), values (mean ± SE; n ≥ 40 plants from 2 different lines for each genotype) are normalized to the mean calculated for the WT. 
Different letters indicate significant differences between lines (P < 0.05); significant differences between the same line under control growth con
ditions, as determined by Student’s t-test, are denoted by * (P < 0.05), ** (P < 0.01), or *** (P < 0.001). Scale bars = 2 cm (C).
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photorespiratory activity, suggesting that both amino acids 
are transported from shoots to roots. These data collectively 
indicate the involvement of photorespiratory Gly in main
taining Ser homeostasis at the whole plant level. Thus, the 
regulation of SHMT/GDC activity could be a crucial compo
nent of the contribution of photorespiration to Ser–Gly–1C 
homeostasis in plants. The provision of more or less Gly from 
photorespiration could be a physiological strategy, as sug
gested by the downregulation of SHMT1 and GDC genes in 
PPSB-deficient lines to provide Ser and folates for growth 
and metabolism when other pathways such as the PPSB 
are restricted. However, other questions remain. For instance, 
why do PPSB-deficient mutants have such strong pheno
types? Thus, the vast majority of the observed metabolic 

changes in PPSB-deficient lines may not be related to Ser 
starvation directly, which was not always observed in 
PPSB-deficient lines, but are most likely caused by alterations 
in nutrient signaling and metabolism. As we have shown that 
changes in shoots are responsible for the phenotypes of roots 
(Fig. 4), our results suggest that metabolic changes in shoots 
led by Gly might modulate root development (Fig. 8).

Folates and Gly as activators of N metabolism
Photorespiration was long considered to be a process that re
duces photosynthetic efficiency, especially in C3 plants, and 
considerable efforts have been made to reduce its activity 
or bypass the metabolic pathway (the so-called photore
spiratory bypasses) in order to enhance crop productivity 

Figure 8. Proposed model for metabolic pathways interacting with the PPSB and GPSB. Reduced PPSB activity negatively affects nitrogen (N) and 
sulfur (S) metabolism in shoots and induces the nutrient starvation response. Lack of SHMT1 activity increases glycine, aspartate as well as CH2-THF 
content, which has an impact on pyrimidine metabolism, activating biosynthetic and repressing catabolic processes. SAM is also activated. All these 
changes, along with possible increases in NADH content, positively affect N, S, and carbon (C) metabolism, repress the nutrient starvation response, 
and change the N/C and S/C ratios, which modify the plant developmental pattern. Enzymes: GDC, glycine-decarboxylase complex; SHMT1, serine- 
hydroxymethyl transferase 1. Metabolites: CH3-THF, 5-methyl-THF, Asp, aspartate; CH2-THF, 5,10-methylene-THF; Gln, glutamine.
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(Kebeish et al. 2007; Peterhansel et al. 2010; Betti et al. 2016; 
Cotton et al. 2018; Shen et al. 2019; South et al. 2019; Baslam 
et al. 2020; Fernie and Bauwe 2020). However, several studies 
have indicated that reduced photorespiratory rates due to 
the increasing atmospheric CO2 concentrations will positive
ly affect plant biomass (Ainsworth and Long 2020), most like
ly causing a decrease in their nutritional quality (Myers et al. 
2014; Medek et al. 2017). Our study supports the notion that 
regulating photorespiratory activity might provide benefits 
for N, S, and folate status, which is important for the nutri
tional quality of crops.

One of the main problems associated with increasing at
mospheric CO2 levels is the reduction in N and protein con
tents in plants, which alters the N/C ratio (Wieser et al. 2008; 
Bloom et al. 2010; Myers et al. 2014; Medek et al. 2017; Bloom 
et al. 2020). Under eCO2 conditions, N content is constrained 
in leaves of C3 plants but not in roots (Jauregui et al. 2016). 
PPSB-deficient lines also showed altered N and S allocation 
between roots and shoots (lower in shoots and higher in 
roots than in WT; Table 1). In shmt1 c-pgdh1 shoots, however, 
the N and S content increased, and marker genes for S and N 
deficiency were downregulated (Table 1 and Figs. 6, B and C). 
Thus, our data demonstrate that a shift in photorespiratory 
flux affects the N status in shoots of PPSB-deficient plants at 
the transcriptional and metabolic levels, corroborating the 
important impact of photorespiration on N metabolism.

How the N/C ratio is altered by eCO2 has been the subject 
of intense debate in recent years (Bloom et al. 2010, 2012, 
2014; Bloom 2015; Jauregui et al. 2015, 2016; Walker et al. 
2016; Eisenhut et al. 2019; Andrews et al. 2020). Diminished 
photorespiratory flux has been suggested as one of the pos
sible causes of reduced NO3

− assimilation (and uptake) in 
shoots, although the mechanism is not fully understood 
(Rachmilevitch et al. 2004; Bloom 2015; Krämer et al. 2022). 
One plausible hypothesis to explain the relationship between 
photorespiration and NO3

− assimilation points to the high 
demand for electrons required to power NO3

− reduction 
by nitrate reductase. Bloom and Lancaster (2018) postulated 
an alternative photorespiratory pathway that increases 
photorespiratory energy efficiency by generating malate in 
the chloroplast. Low photorespiratory activity under eCO2 

could impair the malate:2-OG shuttle in the chloroplast, de
creasing the reducing power in the form of NADH in the 
cytosol for nitrate reductase activity (Bloom and Lancaster 
2018; Shi and Bloom 2021). In shmt1 c-pgdh1 lines, we did 
not find any differences in the levels of glycolate 
(Supplemental Fig. S2), one of the products of the postulated 
alternative photorespiratory reaction, which could explain 
changes in the N status between lines.

Alternatively, other sources of higher NADH content in 
shmt1 c-pgdh1 could increase the reducing power for nitrate 
reductase activity in these lines. In shmt1 c-pgdh1 lines, 
photorespiration is arrested before the hydroxypyruvate re
ductase reaction; this enzyme consumes NADH in the per
oxisome (Fig. 1). Besides, shmt1 c-pgdh1 lines showed 
increased GDC gene expression in shoots (Fig. 6C), which 

could provide extra NADH in mitochondria. Therefore, ex
cess NADH levels in the mitochondria and peroxisomes of 
shmt1 c-pgdh1 could also help provide the NADH required 
for nitrate reductase activity in the cytosol through the mal
ate shuttles. Supporting this idea, shmt1 c-pgdh1 displayed 
higher malate levels compared with the other lines.

Increases in the levels of other metabolites associated with 
SHMT1/GDC activity in SHMT1-deficient shoots, such as Gly 
itself and those of the CH2-THF + THF pool (Figs. 3B and 5C), 
could also have an impact on N and S metabolism. The over
accumulation of Gly in SHMT1-deficient lines may play a key 
role in stabilizing the C/N balance by consuming photosyn
thetic products and providing amino groups for N metabol
ism. It has been suggested that, under photorespiratory 
conditions, plants divert a considerable amount of C into 
amino acids such as Gly and Ser, which in turn stimulate ami
no acid biosynthesis and N assimilation (Busch et al. 2018). As 
described by Abadie et al. (2016), the Gly/Ser stoichiometry 
of photorespiration is close to 2 but increases at high photo
respiratory rates. Thus, subtle changes in SHMT1/GDC cata
lytic activity would build up Gly, sequestering N, which 
would need to be compensated for by increased N assimila
tion (Abadie et al. 2016). Photorespiratory flux is up to 
100-fold greater than NO3

− reduction (Bloom et al. 2010), 
so even a slight imbalance in photorespiratory recycling 
may affect the plant N budget. By increasing the availability 
of Gly, we modified N/C and S/C ratios in plants, confirming 
earlier predictions.

It has been hypothesized that the deposition of already 
fixed N as Gly is important for effective de novo N assimila
tion, because Gly (and Ser) are N sinks with low C content, 
leaving C skeletons (2-OG) available for de novo N assimila
tion (Krämer et al. 2022). SHMT1-deficient lines divert a large 
amount of Gly from the photorespiratory cycle compared 
with other lines, which affects N accumulation in shoots 
(Fig. 5A and Table 1). Besides, Gly is metabolized more quick
ly in PPSB-deficient mutants than in other lines, likely to ob
tain Ser, which may account for their lower N content in 
shoots under both photorespiratory and nonphotorespira
tory conditions. Since high photorespiratory rates stimulate 
NO3

− assimilation and uptake in plants (Rachmilevitch 
et al. 2004; Bloom 2015), high Gly levels (or metabolites 
derived from Gly) in shoots may positively affect root 
NO3

− uptake, as suggested by the increased NO3
− content 

in roots of shmt1 c-pgdh1 (Fig. 6D). If this were so, the drop 
in Gly content observed when WT plants grow under eCO2 

could be one of the signals to reduce N assimilation. As Gly 
and Ser contents in plant cell are lower than the contents of 
other major amino acids, Gly/Ser status may not serve as an 
N reservoir but may instead function as the metabolic signal 
to modulate NO3

− uptake and assimilation.
The high Gly contents in the SHMT1-deficient lines led to a 

change in the folate content, especially the CH2-THF + THF 
pool (Fig. 5C), most likely indicating an increase in the 
CH2-THF content. Thus, photorespiration might also be re
lated to N metabolism via its impact on folate metabolism. 

418 | THE PLANT CELL 2024: 36; 404–426                                                                                                              Rosa-Téllez et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/article/36/2/404/7296040 by W

ashington State U
niversity Libraries user on 23 July 2024

http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad256#supplementary-data


Folates were reported to play important roles in signaling 
cascades (Stokes et al. 2013), as well as in N and C metabol
ism (Jiang et al. 2013; Meng et al. 2014; Li et al. 2021), but the 
action mechanisms remain largely unknown. Folates are sub
strates for the synthesis of purines and pyrimidines; these 
major N-containing molecules are required for DNA and 
RNA biosynthesis. Transcriptomic data indicate that the pyr
imidine catabolism pathway was strongly upregulated in 
c-pgdh1 lines (Supplemental Fig. S7), likely as a response to 
organic N depletion, while pyrimidine biosynthesis was 
downregulated. The large supply of CH2-THF, Gln, and Asp 
in the SHMT1-deficient lines, which are all required for pyr
imidine biosynthesis, could fuel the pyrimidine biosynthetic 
pathway and restore the N balance in cells. These data allow 
us to hypothesize that Gly, along with the 1C-folate pathway, 
acts on nutrient signaling networks leading to the regulation 
of N metabolism and represents links between photorespir
ation and N metabolism (Fig. 8).

Overall, our results support the idea that the regulation of 
SHMT1/GDC may play a key role in the crosstalk between 
photorespiration and N-metabolism. Much speculation has 
been made as to why low photorespiration rates reduce N 
and protein contents. Our results provide genetic evidence 
for the biological relevance of regulating SHMT1/GDC activ
ity on N metabolism (Fig. 8). We also provide clues about the 
underlying molecular mechanisms.

SHMT1/GDC activity links S with folate and SAM 
metabolism
The molecular mechanisms controlling S sensing and signal
ing in plants are not fully elucidated. We show that changes 
in the Gly/Ser flux alter the metabolic and transcriptional re
sponses to S (Figs. 5C, 6B, and 6C). At the transcriptional level 
(Fig. 6, B and C), sulfate signaling and sensing were altered in 
shmt1 c-pgdh1 in an opposite manner to that in c-pgdh1, 
pointing to the importance of the PPSB–GPSB interaction 
for balancing S homeostasis between heterotrophic and 
autotrophic tissues and also between cellular compartments. 
1C units are required to synthesize the S-containing amino 
acid Met (Fig. 1) and could thus be involved in the activation 
of S-metabolism in shoots of SHMT1-deficient lines. 
SHMT1-deficient lines showed high levels of CH2-THF +  
THF but reduced levels of other THF forms such as 
CH3-THF or CH-THF (Fig. 5C). This finding suggests that 
there is not equilibrium between different THF pools among 
plant cell compartments. Alternatively, changes in folate 
homeostasis could be related to the activation of other meta
bolic pathways in SHMT1-deficient lines, such as the SAM cy
cle in the cytosol (Ravanel et al. 2004). The levels of SAM 
cycle components adenosine, SAM, and Met increased in 
SHMT1-deficient lines compared with the WT (Fig. 5C). 
SAM not only serves as a methyl donor in methylation reac
tions, but it is also an important S-containing metabolite and 
a form of reduced S that undergoes long-distance transport 
(Rennenberg et al. 1979; Bonas et al. 1982; Lappartient et al. 

1999; Davidian and Kopriva 2010; Tan et al. 2010; Watanabe 
et al. 2021). Thus, the S-containing metabolites of the SAM 
cycle could be the link between SHMT/GDC activity and S 
metabolism.

Our results suggest that Asp and its derived amino acids 
may participate in bottleneck reactions in the shoots of 
shmt1 PPSB-deficient lines. Under eCO2 conditions, Asp levels 
increased in all lines, as expected, since photorespiration drains 
amino groups out of the Asp pools (Novitskaya et al. 2002). 
However, under these eCO2 conditions at which SHMT1- 
deficient lines are viable, we found higher de novo incorpor
ation of Asp as well as much higher Asp pools in shoots of 
SHMT1-deficient lines than in other lines (Figs. 3C and 5A). 
This greater incorporation could be directly related to the in
creased accumulation of Glu in these lines, from which Asp is 
formed. Increased levels of SAM cycle metabolites might also 
be involved in the activation of the Asp pathway (or vice versa) 
in SHMT1-deficient lines. Indeed, the Asp pathway is finely 
regulated by SAM and Cys feedback loops (Sauter et al. 
2013; Galili et al. 2016). Asp is a precursor of the essential ami
no acids Met, lysine, threonine, and isoleucine and of nucleo
tides and NAD+, which serve as key metabolites for cell 
proliferation. This coregulation is consistent with the changes 
in folate levels in shoots and roots of SHMT1-deficient lines 
and supports the connection between folates and the S me
tabolism. Taken together, we can reasonably infer that the 
change in Asp concentration is one of the key reasons for 
the metabolic changes observed in SHMT1-deficient lines. 
To date, the mechanisms controlling Asp homeostasis are 
not fully elucidated. Thus, our results may reveal an important 
link between Asp and the regulation of SHMT1/GDC activity. 
We propose that this connection links photorespiration to S 
metabolism through the folate and SAM cycles (Fig. 8).

Crosstalk of C, S, and N metabolism shapes root 
development
In contrast to amino acids, glucose and fructose levels were 
drastically reduced in the mutants with a SHMT1-deficient 
background (Fig. 3C). The low hexose levels in SHMT1- 
deficient lines could not only be explained by slow recycling 
of photorespiration-derived 3-PGA (Eisenhut et al. 2017; 
Flügel et al. 2017; Timm et al. 2021) but also by their greater 
use in the synthesis of Asp family amino acids, as shown in 
mammals (Ritterhoff et al. 2020). The lower turnover of pro
teins in shmt1 c-pgdh1 could mean that these lines prioritize 
protein accumulation as sink to the detriment of other meta
bolites such as sugars in order to channel the excess amino 
acids. In the end, the upregulation of genes responding to 
carbohydrate stimulus and the reduction in total C content 
in shmt1 c-pgdh1 are consistent with a C deficiency in 
SHMT1-deficient lines. In c-pgdh1, however, there is an excess 
of C (glucose, fructose, and total C; Fig. 3C and Table 1), likely 
due to the lack of 3-PGA utilization for Ser synthesis by PGDHs.

These lines also showed a deficiency of S and N in shoots. 
We propose that the imbalanced S/C and N/C ratios might 

Ser–Gly links C with N and S metabolism                                                                          THE PLANT CELL 2024: 36; 404–426 | 419

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/article/36/2/404/7296040 by W

ashington State U
niversity Libraries user on 23 July 2024

http://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koad256#supplementary-data


affect root growth in PPBS mutants (Fig. 8). The strong re
duction in primary root growth in the shmt1 c-pgdh1 mutant 
in the presence of sucrose corroborated this hypothesis. 
Since one of the inhibitory effects of sucrose on photosyn
thesis is the inhibition of Rubisco activity itself (Quentin 
et al. 2013; Lobo et al. 2015), we assume that, under these 
growth conditions, photorespiration may be further inhib
ited, while plants maintain high levels of C provided by su
crose. Changes in the developmental pattern in the shmt1 
c-pgdh1 mutant could therefore be explained by the follow
ing: (i) supplied sucrose affects the C/N and C/S ratios direct
ly in shmt1 c-pgdh1 by increasing the C content, (ii) the 
further reduction in Rubisco oxygenase activity in shmt1 
c-pgdh1 affects the N and S status, or (iii) a combination of 
both factors. In line with this hypothesis, the combination 
of PPSB and SHMT1 mutant backgrounds compensated for 
the imbalance in C, N, and S levels and modified the 
shoot/root developmental pattern by stimulating root versus 
shoot growth (Fig. 8).

The interaction between metabolism and development in 
plants is poorly understood. Our work provides important 
clues about how Gly/Ser fluxes modulate N/C and S/C ratios 
and shape plant developmental patterns in response to nu
trient status. We show that PPSB is necessary for correct N 
and S partitioning between shoots and roots. Disrupting 
PPSB led to an imbalance in this partitioning, leading to an 
N and S deficit in shoots and a general response to nutrient 
deficiency. Forcing the exit of Gly out of the photorespiratory 
cycle by inhibiting SHMT1 led to changes in folate, SAM, and 
Asp metabolism that reversed the changes in N and S defi
ciency in shoots of the PPSB-deficient lines. Therefore, the 
regulation of the Ser–Gly–1C network is crucial for N, C, 
and S homeostasis. Several hypotheses have been put for
ward to explain the role of photorespiration in N and S me
tabolism. Our results provide genetic and biochemical 
evidence that the regulation of the SHMT1/GDC activity ra
tio is a key target linking photorespiration to N and S metab
olism at the metabolic and transcriptional levels. Therefore, 
both the photorespiratory and PPSB pathways modulate N, 
S, and C fluxes through the Ser–Gly–1C network. In mam
mals, this network is considered to be a central integrator 
of nutrient status (Locasale 2013). We propose a similar 
role for the Ser–Gly–1C network for plants. Genetic engin
eering of SHMT/GDC and PGDH activity is expected to be 
a useful target to improve the N and S contents of crops un
der forthcoming climate change conditions. To validate the 
viability of this biotechnological approach, additional experi
ments will need to be conducted in natural environments 
under varying temperature, light, and CO2 conditions.

Materials and methods
Plant material and growth conditions
Original Arabidopsis (A. thaliana) seed stocks (ecotype 
Columbia-0 or Landsberg erecta) were supplied by the 

European Arabidopsis Stock Center (Scholl et al. 2000). 
Conditional mutants with reduced expression of PSP1 
(c-psp1.1 and c-psp1.2) and PGDH1 (c-pgdh1.1 and c-pgdh1.2) 
were obtained as previously described (Cascales-Miñana 
et al. 2013; Casatejada-Anchel et al. 2021). The shmt1.2 mutant 
(Voll et al. 2006) was kindly supplied by Prof Hermann Bauwe 
(Rostok, Germany). The mutant alleles of At5g26780 (shmt2.2; 
SALK 096265) and At2g13360 (sgat1; GT_5_6208) were se
lected in the SIGnAL Collection database at the Salk 
Institute (Alonso et al. 2003) and were identified by PCR geno
typing with the primers listed in Supplemental Table S2. 
PPSB-deficient double mutants with shmt1.2 and shmt2.2 
(shmt1.2 c-psp1.1, shmt1.2 c-psp1.2, shmt1.2 c-pgdh1.1, 
shmt1.2 c-pgdh1.2, shmt2.2 c-psp1.1, shmt2.2 c-psp1.2, shmt2.2 
c-pgdh1.1, and shmt2.2 c-pgdh1.2) were generated by crossing 
single shmt1.2 and shmt2.2 mutants with PPSB-deficient mu
tants and identified by PCR genotyping with the primers listed 
in Supplemental Table S2.

Unless otherwise stated, seeds were sterilized and sown on 
0.8% agar plates containing 1/5 strength MS medium with 
Gamborg vitamins buffered with 0.9 g L−1 MES, adjusted to 
pH 5.7 with Tris (1/5 MS). After 2 to 4 d of stratification at 
4 °C, the plates were vertically placed at 22 °C under a 16-h 
day/8-h night photoperiod at 100 µmol m−2 s−1 light inten
sity (Lumilux fluorescent cool white, OSRAM EAN 
4050300517797) and under aCO2 or eCO2 (2000 ppm) con
ditions for 14 to 16 d before sampling the seedlings. When 
indicated, 2% sucrose was added to the growth medium.

Grafting experiments
To graft the double mutant shmt1.2 c-psp1 shoot (scion) 
with the PPSB-deficient c-psp1 root (root-stock) and for self- 
grafting of PPSB-deficient c-psp1, the protocol described by 
Thieme et al. (2015) was followed with some modifications. 
In short, plants were grown vertically on solid 1/5 MS me
dium containing 1.5% (w/v) agar at 22 °C and 2,000 ppm 
of CO2 under a 16-h day/8-h night photoperiod and 
100 µmol m−2 s−1 light. One day before grafting, plates con
taining the seedlings were covered with aluminum foil to fa
vor the elongation of the mutant’s hypocotyls. Seven to eight 
days after germination, evenly elongated hypocotyls were cut 
transversely in the upper half of the hypocotyl with a sterile 
razor blade, and the scions were combined with the root 
stock. Graft junctions were supported using a silicon tube 
with a 0.51 mm internal diameter, and grafted plants were 
transferred onto new sterile plates with 1/2 MS containing 
1.5% (w/v) agar and grown under the same conditions as 
mentioned above. Every 3 d, the formation of adventitious 
roots originating from the scion was checked and whenever 
possible carefully removed.

Metabolite determination
Shoots and roots of 15-d-old plants grown on vertical plates 
were used to determine metabolite content in derivatized 
methanol extracts by gas chromatography-MS (GC-MS) as 
described by Lisec et al. (2006). Plants were sampled after 
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10-h of growth in the light. Folates were analyzed according 
to Wu et al. (2018). SAM analysis was performed as previous
ly described (Hung et al. 2013). For adenosine measurements, 
100 mg (fresh weight) of tissue was resuspended in 100 µL of 
HClO4 1 M. After a 10-min centrifugation at 11,500 rpm at 
4 °C, the supernatant was analyzed by LC-MS-MS as de
scribed by Fung et al. (2001).

15N enrichment of the metabolome
Seeds were surface sterilized and sown on 1/5 MS plates con
taining 0.8% agar and kept in the dark at 4 °C for 4 d to 
synchronize germination. The plates were then incubated 
at 22 °C under a 16-h day/8-h night photoperiod at a light 
level of 100 µmol m−2 s−1 and eCO2 in a phytotron chamber. 
After 5 d of germination, the seedlings were transferred to 
hydroponic cultures as previously described (Erban et al. 
2020). Briefly, seedlings were grown for 12 d in sterile glass 
containers with a metal net for support and liquid 1/5 MS 
medium. After reaching the morphological stage of 1.05 
(Boyes et al. 2001), plants were transferred to new hydropon
ic medium containing 0.8 mM ammonium nitrate as the sole 
nitrogen source labeled or unlabeled with the stable isotope 
15N, 15NH4

15NO3 (Sigma-Aldrich, Ref. 366528), or 14NH4 
14NO3 (Sigma-Aldrich, Ref. 221244). After 3 d, shoots and 
roots were harvested separately and immediately frozen. 
The roots from the labeled media were washed with un
labeled 1/5 MS medium to detach the labeled ions. 
Extraction of metabolites was performed as described by 
Erban et al. (2020) and analyzed by GC-MS.

The raw chromatograms were baseline corrected and de
convoluted in ChromaTOF. Subsequently, the files were ex
ported as .netCDF files. The .netCDF files were imported 
into TagFinder (Luedemann et al. 2008), setting the intensity 
threshold for upload into TagFinder to one, so as to include 
low abundance peaks such as multiply 15N-labeled isotopo
logs. Internal retention time standards of n-alkanes C10 to 
C36 (decane, dodecane, pentadecane, octadecane, nonade
cane, docosane, octacosane, dotriacontane, hexatriacontane) 
were used to align the chromatograms. Peak intensities were 
scaled to the maximum of all peaks with the same m/z ratio 
and retention index window set to 0.05. Compounds were 
identified using the Golm Metabolome Database (Hummel 
et al. 2007). Due to isotopic envelope shifts, N-containing 
metabolites were manually annotated. 13C6-Sorbitol was 
used as the internal standard of the polar phase. The normal
ization factor applied to each sample was the product of the 
fresh weight per sample multiplied by the intensity of the in
ternal standard. Annotated mass features from the Golm 
Metabolome Database were used as targets for 15N isotopic 
tracing analysis of each N-containing metabolite. In particu
lar, mass features that contained one or more N atoms in 
their molecular formulas were used. The natural isotopic 
abundance (NIA) of mass features was corrected for across 
all detected isotopologs. The sum of the corrected 
15N-labeled isotopolog intensities divided by the total 14N- 
and 15N-pool was considered to be the mean fractional 

enrichment. All calculations were performed as previously 
described (Huege et al. 2014; Heinrich et al. 2018; Millard 
et al. 2019). The 15N relative abundance reflects the relative 
amount of the metabolite pool that was newly synthesized 
since it incorporated the 15N during our experiment. The 
nominal values were considered to be the sum of all detected 
isotopologs per mass feature after correcting NIA. In cases 
where one isotopolog was used for correction, the 15N rela
tive abundance is the NIA-corrected abundance of the first 
isotopolog.

Elemental analyses, nitrate, and ammonium 
quantification
NH4

+ analysis was performed using the Berthelot method as 
described by Weatherburn (1967). NO3

− was determined as 
described by Zhao and Wang (2017). Elemental analysis 
was performed using the Pregl–Dumas method with a 
CHNS elemental analyzer (Thermofisher SmartFlash model).

Gene expression analyses and RNA-seq
Reverse transcription quantitative PCR analysis was per
formed as described recently (Casatejada-Anchel et al. 
2021). The primers used are listed in Supplemental 
Table S2. For RNA-seq, shoots and roots of 14-d-old plants 
vertically grown on 1/5 MS plates under eCO2 conditions 
were used. Three independent biological replicates of each 
sample were harvested after the 10-h light period for analysis. 
Total RNA extraction, RNA-seq library preparation, and se
quencing were performed as previously described (Anoman 
et al. 2019). Quality check, trimming, alignment, reads count
ing, and filtering of genes expressed at low levels were con
ducted as previously described (Sun et al. 2018). PCA was 
performed on the TMM-normalized gene matrix after re
moving genes that are not expressed using the R function 
prcomp. Filtered genes were used to perform differential 
gene expression analysis with EdgeR. Genes were considered 
to be significantly differentially expressed if the corrected 
P-value (false discovery rate, FDR) was <0.05. Gene 
Ontology Enrichment Analysis was performed in agriGO 
v2.0 (Tian et al. 2017) based on a hypergeometric test.

Analysis of glutamine synthetase activity
GS activity was determined from crude extracts using the 
biosynthetic enzyme assay as previously described by 
Márquez et al. (2005). Crude extracts were obtained as de
scribed by García-Calderón et al. (2012). Shoots and roots 
were harvested from 14-d-old plants grown under eCO2 con
ditions on 1/5 MS plates.

Analysis of protein biosynthesis using 35S-labeled 
Met/Cys and analysis of total protein content
The analysis of tracer incorporation into proteins using a 
35S-labeled L-Met/L-Cys cocktail (NEG77200MC) was per
formed as described previously (Zimmermann et al. 2021). 
Plant material was incubated in hydroponic culture 
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containing 1/5 MS medium supplemented with 0.1 mM Met 
traced by 6.3 µCi 35S-labeled L-Met/L-Cys cocktail per well for 
6-h before harvesting. Total protein content was quantified 
with Bradford reagent (Bio-Rad) using bovine serum albumin 
as a standard.

Statistical analysis
Experimental values represent mean values and SE; n repre
sents the number of independent samples. Significant differ
ences compared with either the WT or control treatment 
were analyzed by Student’s t-test algorithms (2-tailed) em
bedded in Microsoft Excel. Significant differences between 
groups were analyzed by 1-way ANOVA followed by 
Fisher’s LSD test using IBM SPSS Statistics software. Bar plots 
were generated in GraphPad 8 software. The details of statis
tical analysis results are listed in Supplemental Data Sets 1 
and 2.

Accession numbers
The original RNA-seq data were submitted to SRA under 
BioProject accession number PRJNA911249 (released 2023- 
10-11). The Arabidopsis locus identifiers for genes used in 
this study are as follows: PSP1 (At1g18640), PGDH1 
(At4g34200), SGAT (At2g13360), SHMT1 (At4g37930), and 
SHMT2 (At5g26780).
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