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The serine-glycine—one-carbon metabolic network
orchestrates changes in nitrogen and sulfur metabolism
and shapes plant development
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Abstract

L-serine (Ser) and L-glycine (Gly) are critically important for the overall functioning of primary metabolism. We investigated the
interaction of the phosphorylated pathway of Ser biosynthesis (PPSB) with the photorespiration-associated glycolate pathway
of Ser biosynthesis (GPSB) using Arabidopsis thaliana PPSB-deficient lines, GPSB-deficient mutants, and crosses of PPSB with
GPSB mutants. PPSB-deficient lines mainly showed retarded primary root growth. Mutation of the photorespiratory enzyme
Ser-hydroxymethyltransferase 1 (SHMT1) in a PPSB-deficient background resumed primary root growth and induced a change
in the plant metabolic pattern between roots and shoots. Grafting experiments demonstrated that metabolic changes in
shoots were responsible for the changes in double mutant development. PPSB disruption led to a reduction in nitrogen
(N) and sulfur (S) contents in shoots and a general transcriptional response to nutrient deficiency. Disruption of SHMT1
boosted the Gly flux out of the photorespiratory cycle, which increased the levels of the one-carbon (1C) metabolite 5,10-
methylene-tetrahydrofolate and S-adenosylmethionine. Furthermore, disrupting SHMT1 reverted the transcriptional response
to N and S deprivation and increased N and S contents in shoots of PPSB-deficient lines. Our work provides genetic evidence of
the biological relevance of the Ser—-Gly—1C metabolic network in N and S metabolism and in interorgan metabolic homeostasis.
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Background: Photorespiration, in which Rubisco adds oxygen to RuBP instead of adding carbon dioxide, thus low-
ering photosynthetic output, is a key metabolic pathway that will be affected by rising temperatures and increasing
atmospheric CO, levels. For a long time, this pathway has been considered a wasteful process that consumes energy in
the form of adenosine triphosphate (ATP) and reducing power. It also leads to the futile loss of carbon units as CO,,
consequently constraining plant growth and yield. However, recent studies suggest that future climate conditions,
which may reduce photorespiratory activity, may also enhance plant biomass albeit at the cost of decreased crop nu-
tritional value.

Question: Should we consider photorespiration only as a loss-inducing process?

Findings: Our research reveals the crucial role of glycine flux regulation by photorespiration in maintaining nitrogen,
carbon, and sulfur balance in plants. Redirecting glycine flux out of the photorespiratory pathway has a positive effect
on plant nitrogen and sulfur levels. Our findings shed light on the molecular mechanisms through which reduced
photorespiration adversely affects crop nutritional value. In mammals, the serine—glycine—one-carbon metabolic net-
work functions as a central integrator of nutrient status. We propose a similar role for this network in plants.

Next steps: Our findings open new avenues for enhancing crop nutritional quality under future climate change con-
ditions, particularly with regard to nitrogen content, an essential component of proteins and nucleic acids. Validating
the feasibility of this biotechnological approach will require additional experiments conducted in natural environ-

ments across different species and under varying conditions of temperature, light, and CO..

Introduction

The L-serine (Ser)-L-glycine (Gly)—one carbon (1C) metabol-
ic network is required for the biosynthesis of nucleotides,
proteins, and lipids. This network also drives the methyl-
transferase reactions governing epigenetic regulation and
the supply of almost all methylated metabolites (Fig. 1). In
mammals, the Ser—Gly—1C network supports the uninhibit-
ed proliferation of cancer cells and is associated with tumor
progression (Locasale et al. 2011; Possemato et al. 2011;
Pacold et al. 2016; Ducker and Rabinowitz 2017; Reina-
Campos et al. 2019; Geeraerts et al. 2021). As a major 1C do-
nor, Ser plays a crucial role in the regulation and function of
Ser—Gly—1C metabolism in mammals (Locasale 2013; Yang
and Vousden 2016) where it is mainly synthesized by the so-
called phosphorylated pathway of Ser biosynthesis (PPSB) lo-
cated in the cytosol. Ser biosynthesis in plants is much more
complex and consists of 3 pathways. The first pathway, the
glycolate pathway of Ser biosynthesis (GPSB), is associated
with photorespiration and operates in mitochondria. In add-
ition, there are 2 alternative nonrelated photorespiratory
pathways: the PPSB (located in plastids) and the glycerate
pathway (in peroxisomes).

In plants, the PPSB was long considered to be a minor
pathway. However, functional characterization of PPSB genes
demonstrated that this pathway is essential for male gameto-
phyte and embryo development and for root growth
(Benstein et al. 2013; Cascales-Mifiana et al. 2013; Toujani
et al. 2013; Waulfert and Krueger 2018). Cell proliferation
and elongation analysis revealed that PPSB is indispensable
for normal meristem development (Zimmermann et al.
2021). The plant PPSB defines a branch point for the 3-
phosphoglycerate (3-PGA) produced in plastidial glycolysis
and comprises 3 sequential reactions catalyzed by 3-PGA

dehydrogenase (PGDH), 3-phosphoSer aminotransferase
(PSAT), and 3-phosphoSer phosphatase (PSP; Fig. 1) (Ho
and Saito 2001). In Arabidopsis thaliana (Arabidopsis), 3
genes encode PGDHs (PGDH1, PGDH2, and PGDH3), 2 en-
code PSAT (PSAT1 and PSAT2), and one encodes PSP
(PSP1) (Ros et al. 2014).

The GPSB has been regarded as the plant’s most important
Ser biosynthesis pathway due to the high flux borne by photo-
respiration (Tolbert 1997; Douce et al. 2001). The GPSB is the
result of the oxygenase activity of Rubisco, which depends on
the CO,/O, ratio in the atmosphere (Ogren and Bowes 1971;
Ogren 2003). This CO,/O, ratio determines whether Rubisco
acts as a carboxylase, producing 2 molecules of 3-PGA in the
Calvin—Benson cycle, or as an oxygenase, producing one mol-
ecule of 3-PGA and one of the potent enzyme inhibitor
2-phosphoglycolate (2-PG). This 2-PG is recycled to 3-PGA
through a series of enzymatic reactions of the photorespira-
tory cycle that takes place in the chloroplasts, peroxisomes,
and mitochondria (Fig. 1). In this cycle, 2 molecules of 2-PG
(2C each) are needed to recover one molecule of 3-PGA
(3C), and one of the 4C atoms is released as CO.. In addition,
the photorespiratory cycle loses reduced nitrogen (N) as NH;,
which has to be reassimilated in a high energy-consuming
pathway called the photorespiratory nitrogen cycle (Fig. 1).
For this reason, photorespiration was long considered to be
a futile cycle with the largest energy losses in plants (Bauwe
et al. 2010; Peterhansel et al. 2010).

However, photorespiration integrates and participates in
other pathways (Shi and Bloom 2021). First, photorespiration
contributes to the pools of Gly and Ser. The photorespiratory
Gly-decarboxylase complex (GDC) and Ser-hydroxymethyl-
transferase 1 (SHMT1) in the mitochondria of photosynthetic
cells convert 2 Gly molecules into one Ser molecule (Fig. 1).
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Figure 1. Schematic representation of the phosphorylated pathway (PSPB) and glycolate pathway (GPSB) of serine biosynthesis and putative inter-
actions with other primary metabolic pathways. Enzymes and transporters: APR, APS reductase; ATPS, ATP sulfurylase; GDC, glycine-decarboxylase
complex; GGAT, glutamate-glyoxylate aminotransferase; GLK, glycerate kinase; GOGAT, glutamine-oxoglutarate aminotransferase; GOX, glycolate
oxidase; GS, glutamine-synthetase; HPR, hydroxypyruvate reductase; OAS-TL, O-acetylserine-(thiol)-lyase; PGDH, 3-phosphoglycerate dehydrogen-
ase; PGLP, 2-phosphoglycolate phosphatase; PSAT, 3-phosphoserine aminotransferase; PSP1, 3-phosphoserine phosphatase; SERAT,
serine-acetyltransferase; SHMT, serine-hydroxymethyltransferase; SIR, sulfite reductase. Metabolites: 3-PHP, 3-phosphohydroxypyruvate; 3-PS,
3-phosphoserine; CH;-THF, 5-methyl-THF; APS, adenosine 5’-phosphosulfate; C1, one-carbon metabolite; CH,-THF, 5,10-methylene-THF; Gln, glu-
tamine; Glu, glutamate; OAS, O-acetylserine; SAH, S-adenosylhomocysteine.

One Gly molecule is cleaved by GDC releasing CO, and NHs.
The remaining methylene C of Gly is transferred to tetrahy-
drofolate (THF) to form 5,10-methylene-THF (CH,-THF) and
NADH, which react with a second Gly to form Ser in a reac-
tion catalyzed by SHMT (Fig. 1). The GDC complex activity

exceeds that of SHMTT1 in vitro (Rebeille et al. 1994; Douce
et al. 2001), which led to the assumption that CH,-THF accu-
mulates in the mitochondria relative to THF. Ser produced by
SHMT in mitochondria and that synthesized by PPSB in plas-
tids can be transported to the cytosol, where they can also be
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used to produce 1C-units by the reverse reaction catalyzed
by the cytosolic SHMTs (Mouillon et al. 1999; Engel et al.
2007). Cytosolic 1C units are employed for methionine
(Met) biosynthesis, which is then incorporated into proteins
or used for the production of the universal methyl donor
S-AdenosylMet (SAM) (Fig. 1). Moreover, 1C units are also
utilized to synthesize purines and pyrimidines (Rébeillé
et al. 2006; Hanson and Gregory 2011; Gorelova et al. 2017;
Mohanta et al. 2019). Although the SHMT1/GDC activity
has been considered to be the major source of 1C units for
plants (Bauwe and Kolukisaoglu 2003), genetic and metabol-
ic evidence about the contribution of these photorespiratory
reactions to the folate and SAM cycles is missing. Moreover,
the contribution of the PPSB-derived Ser to 1C-folate metab-
olism is unknown.

As the oxygenase activity of Rubisco depends on the CO,/
O, ratio, the supply of Ser-Gly—1C by GPSB to plants will be
influenced by increases in the atmospheric CO, concentra-
tion resulting from anthropogenic activity. Furthermore, as
Ser is recycled by photorespiration to 3-PGA (Fig. 1), the ab-
solute contribution of GPSB to the supply of Ser for plant me-
tabolism and development remains controversial. Modeling
and isotopic labeling studies estimated that under ambient
CO, (aCO,) concentrations, a substantial fraction of the
photorespiratory Gly and Ser is not recycled back to
3-PGA, but it is used in other metabolic pathways as precur-
sors of molecules required for growth, such as nucleotides or
proteins (Abadie et al. 2016; Busch et al. 2018; Fu et al. 2023).
However, under elevated CO, (eCO,) growth conditions,
when GPSB activity is restricted, increase in Arabidopsis bio-
mass provided that PPSB remains functional, indicating that
the PPSB-derived Ser contributes more to plant growth than
the GPSB-derived Ser (Zimmermann et al. 2021). These find-
ings highlight the complexity of the interaction of both path-
ways and indicate that their contribution to other metabolic
networks is not completely understood. In this regard, it has
been described that photorespiration and PPSB may contrib-
ute to N and sulfur (S) assimilation (Rachmilevitch et al. 2004;
Bloom et al. 2010; Abadie et al. 2016; Busch et al. 2018;
Samuilov et al. 2018a, 2018b; Abadie and Tcherkez 2019;
Anoman et al. 2019; Zimmermann et al. 2021). The role of
PPSB and GPSB in these metabolic networks may be especial-
ly important for crops in a scenario in which the continuous
increase in atmospheric CO, concentrations may reduce
photorespiration and thus limit crop nutritional quality
(Bloom et al. 2010; Bloom et al. 2012, 2014; Jauregui et al.
2015, 2016; Walker et al. 2016). Nonetheless, the connections
between PPSB and GPSB with N and S metabolism and espe-
cially their biological relevance in terms of their contribution
to overall plant nutrient status and development remain
unclear.

In this study, we aimed to clarify the relative contributions
of both PPSB and GPSB to Ser—Gly—1C biosynthesis and to
gain insight into how they interact with N, S, and C metab-
olism. Previous attempts to block both PPSB and photo-
respiration have been unsuccessful. Therefore, studies were
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conducted using PPSB-deficient lines under conditions that
favored or disfavored photorespiration (Zimmermann et al.
2021). Here, we used a combination of PPSB-deficient and
SHMT1-deficient lines. In this way, we could bypass the reac-
tion producing Ser in the GPSB without short-circuiting the
photorespiratory cycle. We show that the regulation of
Ser/Gly flux by PPSB and GPSB affects N, C, and S homeosta-
sis. Our work provides genetic evidence of the biological sig-
nificance of the Ser-Gly—1C metabolic network in N and S
metabolism and in organ developmental patterns in
Arabidopsis. Our study unravels essential steps of photo-
respiration, which might be used to develop new crops
with higher nutritional value.

Results

Interactions of PPSB and GPSB modify the
developmental pattern of aerial parts/roots of plants
Figure 2 shows that both PGDH71- and PSP1-deficient
Arabidopsis lines (c-psp1 and c-pgdh1), with low background
levels of PGDH1 and PSP1, respectively (Cascales-Mifiana
et al. 2013; Casatejada-Anchel et al. 2021), displayed more
dramatic growth phenotypes under eCO, where GPSB activ-
ity is reduced, than under aCO, (Fig. 2, A and B), which cor-
roborates the notion that PPSB and GPSB cooperate in
supplying Ser for plant growth (Zimmermann et al. 2021).
Accordingly, PGDH1 and PGDH2, the 2 main PGDH family
genes (Casatejada-Anchel et al. 2021), were induced in shoots
of wild-type (WT) plants under eCO, growth conditions
(Fig. 2C). Under these conditions, PGDH1 and especially
PGDH2 were also induced in c-psp1 lines, as well as PGDH2
in c-pghd1 lines, suggesting the general upregulation of the
PPSB in response to PSP1 or PGDHT1 inactivation (Fig. 2D).
However, SHMT1 was repressed in PPSB-deficient lines.
Besides, neither PGDH1 nor PGDH?2 was induced in the roots
of a mutant of SHMTT1 (shmt1.2, henceforth shmt1) in which
PGDH2 was even repressed. These results indicate that the in-
teractions between the 2 Ser biosynthetic pathways are
complex.

In the first attempt to complement the growth phenotype
of PPSB-deficient lines, we blocked photorespiration at the
level of serine-glyoxylate aminotransferase (SGAT), which is
the peroxisomal enzyme that converts Ser into hydroxypyr-
uvate in the photorespiratory cycle (Fig. 1). SGAT could be
a key point in the control of the Ser pool since it was shown
that sgat mutants have increased Ser levels and that SGAT
overexpression reduces Ser levels (Somerville and Ogren
1980; Modde et al. 2017). In our experimental conditions,
the sgat1 mutants accumulated more Ser than WT when
grown under aCO, and eCO, conditions (Supplemental
Fig. S1). However, the sgat1 mutation in the PGDH-silenced
lines was lethal.

The finding that SHMTT1 was repressed in PPSB-deficient
lines led us to introduce the shmtl mutation into the
PPSB-deficient mutant background (shmt1 c-psp1 and
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Figure 2. Characterization of PPSB-deficient (c-psp1 and c-pgdh1) and SHMT1-deficient (shmt1.2, shmt1.2 c-psp1, and shmt1.2 c-pgdh1) lines. A)
Relative shoot fresh weight (FW), primary root length (PRL), and shoot FW/PRL ratio of different lines grown under aCO, or eCO, conditions com-
pared to WT plants. B) Photograph of representative individuals of each line grown under aCO, or eCO, conditions. C) PGDH1 and PGDH2 expres-
sion in shoots and roots of WT lines under eCO, compared with aCO, conditions. D) PSP1, PGDH1, PGDH2, and SHMTT1 expression in different lines
grown under eCO, compared with WT. E) Relative shoot FW and PRL of different lines grown under eCO, supplemented with Gly. In A) and E)
(mean =+ sg, n > 7; data represent the mean of at least 10 plants), values are normalized to the mean calculated for the WT under aCO, A) or eCO,
conditions E); different letters indicate significant differences between lines (P < 0.05) under the same growth conditions; significant differences
between growth conditions, as determined by Student’s t-test, are denoted by * (P < 0.05), ** (P < 0.01), or *** (P < 0.001). C and D) Values (mean
+ sg; n > 4 independent biological replicates of pools of 40 plants) are normalized to the gene expression under aCO, conditions C) or to the WT
background D); significant differences between aCO, and eCO, gene expression C) or between mutants and WT D), as determined by Student’s
t-test, are denoted by * (P < 0.05). Scale bar =2 cm B).

shmt1 c-pgdh1). In contrast to PPSB-deficient lines, PGDH2
expression was no longer induced in shmt1 c-pgdh1 shoots
and shmt1 c-psp1 roots, while it was even repressed in the
roots of shmt1 c-pgdh1 lines, indicating a general downregu-
lation of the PPSB pathway in these mutant backgrounds. We
characterized single and double mutants under eCO, and
aCO, whenever possible. In single mutants, the PPSB defi-
ciency (c-psp1 and c-pgdh1) mainly affected primary root
growth, while the SHMT1 mutation mostly affected shoot

growth (Fig. 2, A and B). For instance, under aCO,, the shoot
fresh weight of the c-pgdh1 lines was unchanged, while the
primary root length was reduced by more than 50% com-
pared with WT. Under eCO,, the same growth trend, albeit
more exacerbated, was observed for both c-psp1 and
c-pgdh1. Under these conditions, shmt1 showed a 65% reduc-
tion in shoot biomass, while the primary root length was only
reduced by 13%. The shmt1 mutation in PPSB-deficient lines
maintained (shmt1 c-pgdh1) or reduced (shmt1 c-psp1) shoot
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growth versus their respective PPSB-deficient lines (c-pgdh1
or ¢c-psp1). Interestingly, the primary root length recovered
in the double mutants between 2.6-fold and 5.2-fold longer
than in the respective PPSB-deficient lines. These results indi-
cate a change in the shoot/root developmental pattern in
the double mutants, as quantified by the shoot fresh
weight/primary root length ratio (Fig. 2A). This ratio was al-
ways higher in c-pgdh1 than in the shmt1 c-pgdh1 lines, while
the lowest shoot fresh weight/primary root length ratio was
found in the shmt1 line (Fig. 2A). Altogether, phenotypic
characterization and expression data suggest that Ser
homeostasis might be modified in the double-mutant lines.

Disrupting SHMT1 profoundly alters N and C
metabolism in PPSB-deficient lines

To investigate the effect of disrupting SHMTT on central me-
tabolism, we measured the major C and N metabolites in
plants grown under eCO, conditions under which
SHMT1-deficient lines are viable (Fig. 3). Glycolate measure-
ments in shoots, a key metabolite at the beginning of the
photorespiratory pathway and the product of the metaboliza-
tion of toxic 2-PG, showed that its content in shmt1 c-pgdh1
and shmt1 was not higher than in WT or c-pgdh lines
(Supplemental Fig. S2). This result suggests that metabolites
upstream of glycolate in the photorespiratory pathway, such
as 2-PG, did not accumulate more in mutants with a shmt1
background than in other lines under the low photorespira-
tory growth conditions used in this work (eCO, and
100 pumol m™2 s~ light intensity). However, principal compo-
nent analysis (PCA) of metabolites revealed clear differences
between lines (Fig. 3, A and D). The metabolite whose levels
differed most strongly between lines in shoots and roots was
the amino acid Gly. Like the shmt1 parental lines, double
shmt1 PPSB-deficient lines showed a dramatic increase in
Gly levels in shoots and roots compared with the other lines.
These lines also displayed higher Ser levels than their respect-
ive single PPSB-deficient lines, although the changes were not
as dramatic as for Gly. In fact, the common pattern of all
SHMT1-deficient lines (shmt1, shmt1 c-psp1, and shmt1
c-pgdh1) had a much higher shoot Gly/Ser ratio than WT or
PPSB-deficient lines, suggesting that Gly metabolism was
more strongly altered than the Ser metabolism in these lines
(Fig. 3B). Therefore, diverting the photorespiratory flux before
Ser biosynthesis by SHMT1 changes the Gly/Ser ratio in shoots.
Gly-feeding experiments confirmed that this amino acid can
complement the root growth phenotypes of PPSB-deficient
mutants (Fig. 2E). However, externally supplied Gly differently
affected the root growth response, depending on the mutant
background and the concentration. Thus, Gly concentrations
of 0.5 mm or higher clearly inhibited primary root growth com-
pared with controls without Gly supplementation in WT and
shmt1 plants, especially the latter. However, these Gly concen-
trations still had a positive effect on the primary root growth
of c-pgdhT lines. These results indicate that greater levels of ex-
ternal Gly are required in PPSB-deficient lines.
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Other major metabolite changes between lines were the
accumulation of transport amino acids, such as glutamate
(Glu), glutamine (GIn), and aspartate (Asp), and Asp-derived
amino acids, such asparagine (Asn) and Met in shoots of
SHMT1-deficient lines compared with WT and PPSB-
deficient lines (Fig. 3, A and C). By contrast, the levels of
soluble sugars such as glucose and fructose were reduced
in these lines: in roots, Glu, Gln, Asp, and Asn no longer
accumulated in SHMT1-deficient versus PPSB-deficient lines
(Fig. 3F). Conversely, some of these amino acids (GIn and
Asn) and others like alanine overaccumulated in PPSB-
deficient lines. As in shoots, glucose and fructose levels
decreased in the roots of SHMT1-deficient lines, with a clear
opposite trend to that in the PPSB-deficient lines. These dif-
ferences in the amino acids and sugar profiles between
shoots and roots of PPSB- and SHMT 1-deficient lines point
to changes in N and C homeostasis between organs in differ-
ent mutant backgrounds.

To more precisely identify how Ser-Gly homeostasis in
shoots and roots was affected by the lack of SHMT1 activity
in the PPSB-deficient background, we shifted plants grown
under eCO, to aCO, conditions, where photorespiration is
much more active (Fig. 3B; Supplemental Fig. S3). In WT
shoots, as expected, the Ser and Gly levels dropped when
plants were grown under eCO, conditions compared with
aCO, (Fig. 3B; Supplemental Fig. S3). The Gly/Ser ratio indi-
cated that the drop of Gly levels in shoots under eCO, was
much greater than that of Ser in both PPSB-deficient and
WT lines (Fig. 3B). Other relevant changes found in the
shoots of SHMT1-deficient lines shifted from eCO, to
aCO, conditions were strong increases in Glu and Asp levels
and decreases in 2-oxoglutarate (2-OG) levels (Supplemental
Fig. S3). In roots, Gly and Ser levels also decreased in all lines
transferred from eCO, to aCO, conditions, and these
changes were more drastic in SHMT1-deficient lines
(Fig. 3E; Supplemental Fig. S3). The shift from eCO, to
aCO, primarily affected amino acid homeostasis in roots
(Supplemental Fig. S3). In addition to the above-mentioned
Gly, the transport amino acids Glu, GIn, Asp, and Asn were
more drastically affected in the SHMT1-deficient mutants
than in other lines, confirming the influence of photorespir-
ation on amino acid status in roots (Supplemental Fig. S3).
Overall, these results indicate that SHMT1 activity has clear
consequences for amino acid metabolism and distribution
between roots and shoots.

Root phenotypes in PPSB-deficient lines are
dependent on SHMT1/GDC activity in shoots

SHMTT is mainly expressed in shoots. We performed grafting
experiments to elucidate the role of shoots in the changes in
root developmental patterns in the mutants. Using the
shmt1 c-psp1 shoot as the scion, the root growth of the
c-psp1 stock was rescued (Fig. 4; Supplemental Fig. S4),
confirming that the changes in developmental patterns in
the shmt1 PPSB-deficient lines are shoot-dependent.
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Figure 3. Metabolite profiles of WT, PPSB-deficient (c-psp1 and c-pgdh1), and SHMT1-deficient (shmt1.2, shmt1.2 c-psp1, and shmt1.2 c-pgdh1) lines
grown under eCO, conditions. A and D) PCA and loading plots of metabolites in shoots A) and roots D). Data from GC-MS analysis were evaluated
using PCA with the 2 first components accounting for at least 70% of total metabolic variance. Values in parenthesis give the relative contribution of
each component to the total variance observed in the dataset. B and E) Relative Gly and Ser content in shoots B) and roots E) of different mutant
backgrounds under eCO, conditions or after a 24 h shift to aCO, conditions compared with WT. C and F) Heat map showing most relevant changes
in the metabolite contents of shoots C) and roots F) under eCO, conditions. Values represent the mean + sg, n > 6 of pools of 40 plants from 2
different lines for each genotype; different letters indicate significant differences between lines (P < 0.05) under eCO, conditions; significant differ-
ences between the same line under aCO, and eCO, conditions, as determined by Student’s t-test, are denoted by * (P < 0.05), ** (P < 0.01),
and ** (P < 0.001). In the Gly/Ser ratio, lines are compared with the WT under the same growth conditions.

To investigate the specific role of SHMT1 activity in the ob-  deficient lines. SHMT2 is the second mitochondrial SHMT
served developmental patterns, we introduced the SHMT2  isoform in Arabidopsis. Its activity represents only a very
mutation (shmt2.2, henceforth shmt2) into the PPSB- small fraction of total SHMT activity in shoots, which is
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Figure 4. Grafting of scion shmt1.2 c-psp1 shoots onto c-psp1 roots under eCO,. Squares mark the junction between shoots and roots. Scale bars =

2 cm (left) and 2 mm (right).

confined to vascular tissues (Engel et al. 2011) (http://www.
bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi). shmt2 c-pgdh1 lines
were viable under aCO, and eCO, conditions, but the
SHMT2 mutation did not rescue the inhibited primary root
length of c-pgdh1 and even enhanced it under aCO,
(Supplemental Fig. S5). The most important difference be-
tween the shmt1 c-pgdh1 and shmt2 c-pgdh1 mutants was
the increase in Ser and especially Gly contents in the shoots
of shmt1 c-pgdh1 (Fig. 3B; Supplemental Fig. S5). Overall,
these data demonstrate that the change in the developmen-
tal patterns observed in shmt1 PPSB-deficient lines is related
to the lack of photorespiration-associated SHMT1 activity in
shoots.

15N labeling experiments confirm that Gly is
prioritized over Ser in the double mutants, affecting
the Ser-Gly-1c

The ""N-labeling experiments (Fig. 5) showed that the de
novo incorporation of °N into Gly was much greater in
SHMT1-deficient lines than in WT and c-pgdh1 (Fig. 5, A
and B). However, the de novo incorporation of "N into Ser
was higher in c-pgdh1 than in SHMT1-deficient lines, espe-
cially in roots. The enrichment of both Gly and Ser, a useful
measure of the turnover rate, was lower in the
SHMT1-deficient lines than in WT or c-pgdhl. However,
the enrichment of Ser in SHMT1-deficient lines was much
lower than that of Gly (Fig. 5, A and B). Thus, much more
Gly is incorporated and is metabolized more quickly than
Ser in SHMT1-deficient lines. These data, plus the higher
Ser steady-state values, suggest lesser Ser flux into other me-
tabolites in the SHMT1-deficient mutants.

Considering that the differences between the lines with
and without SHMT 1-deficiency were mostly in the Gly in-
corporation rate rather than in enrichment, our results sug-
gest that a considerable amount of Gly not being
metabolized by SHMT1 is diverted to other metabolic reac-
tions in the mutants. These reactions could include other
SHMT isoforms, such as the plastidial SHMT3, whose gene
was upregulated in shmt1 c-pgdh1 shoots, or enhanced
GDC activity, as deduced by the induction of some genes en-
coding isoforms of the GDC complex (GLDP1 and GLDP2) in
shmt1 c-pgdh1 (Fig. 6). In contrast to shmt1 c-pgdh1, both
GDC (GLDP1 and GLDP2) and SHMT1 gene expression was
repressed in c-pgdh1 (Figs. 2D and 6C). These results suggest
that Gly could also be taken out of the photorespiratory cy-
cle in mitochondria of this mutant at a higher rate than in
WT and might be converted to Ser in other compartments
or organs to compensate for the Ser deficiency. This notion
was substantiated by the greater Gly enrichment found in
c-pgdh1 shoots, which indicates a higher Gly metabolization
rate (Fig. 5A).

The "°N flux measurements also indicated that Glu did not
display a higher de novo biosynthesis rate in SHMT1-
deficient versus PPSB-deficient shoots (Fig. 5A), suggesting
that Glu accumulation observed at steady state might be
due to lower turnover caused by inhibited photorespiratory
flux. However, the de novo "N label incorporation into Asp
and Asp-derived amino acids such as Met was greater in
SHMT1-deficient than in PPSB-deficient shoots. Unlike
shoots, "°N flux analysis in roots indicated greater Asp and
Glu biosynthesis in c-pgdh1 than in shmt1 c-pgdh1 (Fig. 5B),
which could explain the amino acid accumulation in the
roots of PPSB-deficient lines.
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Figure 5. SHMT1-deficient lines (shmt1.2 and shmt1.2 c-pgdh1) incorporate more Gly and Asp-family amino acids and synthesize more folates and
SAM intermediates than PPSB-deficient (c-pgdh1) lines. A and B), Quantification of *N-labeled major amino acids in PPSB- and SHMT1-deficient
lines grown under eCO, conditions; values of shoots A) and roots B) are shown as relative abundance (upper panel) and fractional enrichment
(lower panel). C) Relative contents of folate and SAM cycle intermediates in the shoots and roots of different mutant backgrounds grown under
eCO, conditions compared with WT. In A) and B), values represent the mean =+ sg, 4 < n < 10 pools; data represent the mean of at least 45 plants
from 2 different lines for each genotype. In C), values represent the mean =+ sg, n > 6 pools data represent the mean of at least 40 plants. Different
letters indicate significant differences between lines (P < 0.05).

20z AINF €2 U0 Josn saLieiqr Aysianlun aels uojbuiysem Aq 0¥0962./¥0¥/Z/9€/l0e/190]d/woo"dno-olwapese//:sdny woly papeojumoq



Ser-Gly links C with N and S metabolism

THE PLANT CELL 2024: 36; 404-426

413

A shmt1.2 c-pgdh1 vs c-pgdh1 c Shoots Roots
| 4913 up-regulated genes
300 i SULTR1.1- 08 |05 |13
YD4 " 5
SETRAY < L) SULTR1.2 i 04 | 04 |08
N\ Lsut SULTR1.34 09 |n_4'4 18
SULTR3.1
SULT\Ras\ SULTR2.1- -0.4 13 |-1.7 |05
SHMT? \ 4
SDH.\\ \ SEHEE GLNT.1 _— SULTR2.2 -04 10 | 07
Y N - SERATZ21 SULTR3.1- 0| -1.0 -15[-1.3
N L
200 Lsua\\\ \ SULTR3.2| 05 | 04 07
_ M \\ /. BLNt3 SULTR3.3{-05 | 05
@ SULTRG‘-- \\\\ \ SHMT3 SULTR344 16 |-19|-03 07 |-14 | -07
] LSUZ\\\.\\\\ \\ . £ SULTR35{ 08 |19 | 12| [-04 03
E s > \\ f/"/GLDP1 g SULTR4.14 06 |-05 03 |-04
suLTRzz\\\ \\ _ I K| SULTR4.2{ 08 |-10 |-0.2 07 |-08
\ 2 () 4
o0 suum,z\\\ & / 2 APR1{ 07 |11 |-04 06 [-12]-05
AFRZ\\ BN - APR24 11 |-10 03 |[-03
NIGT1.2 N = APR31 03 |-06 |03 05 |-04
SULTR4.1 NN w SERAT2.11{ 03 | 12 | 16 0.3
féff SULTR3.2 SERAT224 0.7 |-04 | 0.3
SERAT3.21 08 |-10 06 |-1.1
SERATR2 GLN1.2 =
SULTR2.1 Spit il 26
13t e a L SDiz -0.7 04 |-03
; LSU1 -2.6 14 |17
-10 -5 . OFC 5 10 Lsu2 08 11 |-16 | -05
©9; LSU3 13 |-19
B LSU4 0.8 |-1.0
response to starvation - g SHMTT 04 05 | -05
to nutrient levels - 5 : =
% response to nutrien ev.es 8 GLNTA ] i 7
E cellular response to starvation - o
7] E cellular response to nutrient levels - o] £ GENT:Z4 O e 0G| 05 pei
o2n sulfate transmembrane transporter activity - 8 o GLN1.3103 | 07 | 09 03 |-05 |-0.2
O 8 secondary active transmembrane transporter activity - E © GLN1.4 -03
B S U'E'J iron-sulfur cluster binding - B E ﬁ GLN1.54 -1.0
é g translation | [B0E ] g GLN2/GS2 -0.4 0.3 03
© hotosynthesis | a5 | :
u:.l generation of precursor metabolit:ls andyenergy F 127 5 HRSHNeTIA =15 W 06
o| NIGT1.2/HHO21 05 | -05
response to stress - ] Fs)
T T T T T = PYD1{ 04 |-03 0.2
z PYD2{ 0.2 |-06[-03 02
E response to starvation - 5 PYD34 0.3 |-02
” ’é’, response to nutrient levels - E PYD4- <7 12 |-14|-02
£ E‘ cellular response to starvation g - g SHMT3 06 | 05 0.2 |-03
=
29 i cellular response to nutrient levels - O $ 3 SHMT5 A 16 |-16
8 e 3 sulfate transmembrane transporter activity - 2 e GLDP1{-03 | 04 | 02
- 'g)% secondary active sulfate transmembrane transporter activity E 0o GLDP24{-05| 12 | 0.7 -0.3 | 0.2
% E. iron-sulfur cluster binding E E ! ’i ! ! '\‘ )
= translaonq (el | %\Yé & e\é\ %Q§ & 6\\‘6
w = L-serine metabolic process - V‘\\"\ c,'QQ’ ‘\r\"\ ‘\\"\ (:QQ K
£ response to carbohydrate stimulus § 0_9 qb ’\“fa Qé
£ 2R L f
@ ; T ot & 0 Y gl
10 10 AP o &
Z-score L E & 7
& &
m WT —= shmt1.2 c-pgdhi s WT mmm c-pgdht.2 mm=m shmt1.2 c-pgdh1.2
== ¢c-pgdh1 === shmit1.2 == c¢-pgdh1.1 —= shmt1.2 c-pgdh1.1 shmt1.2
GS Activity Shoots GS Activity Roots
800 Shoots 600 Roots 10000 Y
d 6000
2 8000 be ©d d
400 = ab =
L 60001 @ L 4000
g g
= 4000 =
200 g 2 2000
2000 &
0 0 0

Figure 6. Transcriptomics profiles of PPSB-deficient (c-pgdh1) and SHMT 1-deficient (shmt1.2 c-pgdh1) lines under eCO,. A) Volcano plots for dif-
ferentially expressed genes between shmt1.2 c-pgdh1 and c-pgdh1 in shoots. Brown and green dots represent upregulated and downregulated genes,
respectively (FDR < 0.05). B) Functional category analysis for transcriptional responses in shoots. In each bar, the number of genes differently up-
regulated or downregulated is shown. C) Heat map showing the most relevant changes in the expression of genes related to Gly/Ser, sulfur, and
nitrogen metabolism in shoots and roots. Numbers inside boxes stand for log-fold change. D) Nitrate (NO;™) content in shoots and roots of different
lines. E) Glutamine synthetase (GS) activity in shoots and roots of different lines. Values represent the mean + st, 4 < n < 8 pools of 40 plants from 2

different lines for each genotype; different letters indicate significant differences between lines (P < 0.05).
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Briefly, the most important difference between lines is the
higher Gly flux in shoots and roots of SHMT1-deficient lines.
The increased Gly flux in shoots of SHMT1-deficient lines is
channeled into Asp family amino acids, especially Asn and
Met, linking N with S and folate metabolism.

Folate and SAM cycles are affected by changes in Ser/
Gly flux

Because Ser and Gly participate in 1C-folate metabolism via
SHMT and GDC enzymes, we measured steady-state folate
pools. The most striking difference between the lines was
the 15-fold higher CH,-THF + THF pool size in shmt1
c-pgdh1 shoots compared with the WT (Fig. 5C). These values
are consistent with higher GDC activity in shmt1 c-pgdh1
lines. No method is currently available to distinguish be-
tween CH,-THF and THF in plant tissues. However, the in-
crease in the CH,-THF + THF pool in shmt1 and shmt1
c-pgdh1 probably reflects a rise in the level of CH,-THF, the
product of GDC activity, because shmt1 mutants are unable
to convert the CH,-THF produced by GDC into Ser and THF
in the mitochondria. Other minor changes were found in the
folate pool of shmt1 c-pgdh1 shoots, i.e. a reduction in the
pools of 5-methyl-THF (CH5-THF) and 5,10-methenyl-THF
(CH-THF) + 10-formyl-THF (HCO-THF), with these metabol-
ite levels showing an opposite trend to that in c-pgdh1
shoots. Differences in folate pools between lines were
much smaller in roots than in shoots. The CH,-THF + THF
pool decreased in shmt1 roots but increased in c-pgdh1 roots
(Fig. 5C). However, no major changes appeared in the folate
levels of shmt1 c-pgdh1 lines, probably due to the balancing
of the opposite effects from the 2 single mutants.

The changes in the folate pool found between lines and or-
gans could affect other pathways like the SAM cycle because
the methyl moiety of SAM is derived from 1C-folates. The le-
vels of SAM and adenosine, another product of the SAM cy-
cle, increased 2-fold to 3-fold in shoots of SHMT1-deficient
lines (Fig. 5C). Increased SAM cycle activity could also explain
the depletion of CH;-THF, which is the donor of 1C groups
for SAM, in SHMT1-deficient lines. Briefly, changes in Ser/
Gly flux strongly affected folate and SAM metabolism, modi-
fying the metabolite equilibrium between roots and shoots
and affecting S-metabolism.

Transcriptomic analysis confirms alterations of the
N-C-S networks between shoots and roots of
c-pgdh1 and shmt1 c-pgdh1 lines

In agreement with previous results, PCA of the transcrip-
tomic data indicated that the main differences between lines
appeared in shoots and not in roots (Supplemental Fig. S6).
When comparing c-pgdh1 with shmt1 c-pgdh1 shoots, 4,857
genes were downregulated and 4,913 were upregulated
(Fig. 6A). Compared with WT, in c-pgdh1 shoots, several cat-
egories of genes related to response to nutrient level and
starvation were upregulated, including marker genes for S
and N deficiency (Fig. 6B). When comparing shmt1 c-pgdh1
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with c-pgdh1, however, genes in the same categories that re-
spond to nutrient levels were downregulated. In shoots of
c-pgdh1, there was a general induction of genes encoding en-
zymes participating in pyrimidine catabolism, the so-called
PYD genes, which respond to N deficiency (Fig. 6GC;
Supplemental Fig. S7). In particular, PYD4, the last gene of
the pyrimidine catabolic pathway, was strongly upregulated
in c-pgdh lines and strongly repressed in shmt1 c-pgdh1. PYD
genes are induced under N-limited conditions to use pyrimi-
dines as an N source (Zrenner et al. 2009; Witte and Herde
2020). Accordingly, downregulation of genes encoding en-
zymes participating in the biosynthesis of pyrimidine inter-
mediates occurred in c-pgdh1 shoots compared with WT,
while the opposite trend was noted when comparing
shmt1 c-pgdh1 lines versus c-pgdh1 (Supplemental Fig. S7).

In roots, the HSR1/NIGT1.4 was strongly downregulated in
c-pgdh1 but upregulated in shmt1 c-pgdh1 compared with
the WT (Fig. 6C). HSR1/NIGT1.4 is a member of the NIGT
clade that is specifically expressed in roots, encoding a tran-
scriptional repressor of the NO;~ transporter gene NTR2.1
(Maeda et al. 2018; Ueda et al. 2020). The downregulation
of HSR1/NIGT1.4 in c-pgdh1 roots suggests that NO;~ uptake
was activated as a response to N deficiency. Accordingly, the
NO;™ content in c-pgdh1 roots was approximately 35% lower
than in WT (Fig. 6D), while the NO;~ content in shmt1
c-pgdh1 roots was significantly higher than that of c-pgdh1
and similar to that of WT (even a 14% increase was ob-
served). Another NIGT clade member, NIGT1.2, was upregu-
lated in c-pgdh1 shoots and downregulated in shmt1 c-pgdh1
shoots compared with c-pgdh1. These data show that NO;™
signaling between shoots and roots is differentially altered in
PPSB-deficient and SHMT1-deficient lines, probably reflect-
ing a change of NO;™ allocation between the organs. The
gene expression pattern of glutamine synthetase (GS) iso-
forms was also altered in c-pgdh1 versus shmt1 c-pgdhi.
Major changes occurred in the cytosolic GS isoforms
GLN1.7, GLN1.2, and GLN1.3, showing an opposite expression
pattern between shoots and roots (Fig. 6C).

NH," content showed a similar increase in shoots of both
¢-pgdh1 and shmt1 c-pgdh1 mutant lines compared with WT
(Supplemental Fig. S8). To determine whether this higher
NH4" content was related to changes in a biosynthetic pro-
cess, we measured GS activity. Compared with the WT, GS
activity was greater in shmt1 c-pgdh1 shoots, but similar to
or even lower than that in ¢c-pgdh1 roots (Fig. 6E). These re-
sults indicate that N signaling between shoots and roots is al-
tered in shmt1 c-pgdh1 compared with c-pgdh1, confirming
that SHMT1 activity can profoundly affect N homeostasis.

Genes encoding sulfate transporters (SULTRs) and pro-
teins involved in S metabolism in general were downregu-
lated in shmt1 c-pgdh1 shoots compared with c-pgdhi1
(Fig. 6B). Thus, genes described as S deficiency markers,
such as SHMT7, LSU1, LSU2, LSU3, LSU4, SDI1, and SDI2, which
were upregulated in ¢-pgdh1 shoots and roots compared
with WT, showed the opposite trend in shmt1 c-pgdhi.
Some of these genes (LSUT, LSU2, SHMT7, and SDI2) showed
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Table 1. Carbon (C), nitrogen (N), and sulfur (S) contents (mg/g dry weight) in shoots and roots of WT, PPSB-deficient (c-pgdht), and

SHMT 1-deficient (shmt1.2 c-pgdh1, shmt1.2) lines growth under eCO, conditions

genotype C N S N/C ratio S/C ratio
Shoots

WT 400.1 + 0.6 67.86 +0.27% 9.12 +0.15° 0.170 + 5.49-107% 2 0.023 + 4.03-107% 2

c-pgdhi 4199 +0.7° 62.80 +0.41° 737 +£0.12° 0.150 +9.04-107 ® 0.018 +3.08107°

shmt1.2 c-pgdht 3905 + 1.0° 70.69 + 0.29° 10.84 + 0.10° 0.181 +7.75107% ¢ 0.028 +326:107* €

shmt1.2 397.2 +3.0° 69.90 + 0.26° 11.57 +0.26 0.176 +3.42-107> € 0.029 +8.17-107% €
Roots

wT 4188 +0.7° 51.75 + 0.34° 7.30 + 0.09° 0.124 +7.68-107% 2 0017 £225107%*2

c-pgdhi 4279 +08° 54.92 +0.16° 9.77 +0.07° 0.128 + 5181074 ° 0.023 + 1.36107%°

shmt1.2 c-pgdh 4038 +0.1° 57.45 + 0.40° 8.97 +0.10° 0.142 £ 1.08-1073 € 0.022 +2351074°

shmt1.2 4137 +1.2¢ 57.12 + 1.31° 7.39 +0.22° 0.138 +2.78-1073 ¢ 0.018 + 4.85107% ¢

Values represent the mean =+ s, n > 6 of pools of 40 plants from 2 different lines per genotype; different letters (

even lower expression levels in shmt1 c-pgdh1 shoots than in
the WT, which agrees with the notion that S metabolism is
activated in these mutant lines (Fig. 6C). SULTRs and adeno-
sine phosphosulfate reductase (APR) enzymes play predom-
inant roles in controlling sulfate assimilation in plastids
(Ristova and Kopriva 2022). All 3 APR genes were upregu-
lated in c-pgdh1 compared with WT but downregulated in
shmt1 c-pgdh1 compared with c-pgdh1 (Fig. 6C). SULTR genes
showed different expression patterns depending on their
functions in plants. SULTR1.1 and SULTR1.2, whose major
functions involve root uptake, were upregulated in roots of
both c-pgdh1 and shmt1 c-pgdh1, but with higher expression
levels in the latter (Fig. 6C). However, an opposite expression
trend appeared in most of the other 10 SULTR genes in both
mutants, especially in shoots. Notably, SULTR1.3 and
SULTR3.1 were highly upregulated in c-pgdh1 and highly
downregulated in shmt1 c-pgdh1. SULTR1.3 is a high-affinity
SULTR required for sulfate uptake and for maintaining S me-
tabolism in the sieve element companion cell complex
(Yoshimoto et al. 2007). Deletion of this high-affinity
SULTR restricted transfer of **S from cotyledons to shoot
meristems and roots in Arabidopsis (Yoshimoto et al.
2007). SULTR3.1 participates in sulfate transport at chloro-
plast/plastid envelopes (Cao et al. 2013). Taken together,
these transcriptional data indicate that the expression of
genes responding to sulfate signaling and sensing was altered
in shmt1 c-pgdh1 compared with c-pgdh1, with the upregula-
tion of major sulfate uptake transporter genes in roots but
downregulation of APR genes, and most SULTR genes in-
volved in intercellular and intracellular sulfate transport.
Unlike genes that respond to nutrient levels, genes related
to carbohydrate metabolism were among the most highly
upregulated in shmt1 c-pgdh1 shoots (Fig. 6B). For example,
among the 154 differentially regulated genes in the “response
to carbohydrate stimulus” category in shmt1 c-pgdh1 shoots,
104 were upregulated (Fig. 6B; Supplemental Data Set 1). This
also indicates a shift in C metabolism between c-pgdh1 and
shmt1 c-pgdh1. Therefore, we measured total N, C, and S le-
vels in roots and shoots (Table 1). In c-pgdh1, an alteration
occurred in the distribution of S and N between shoots
and roots versus WT, with a deficiency in shoots and an

5 < dy indicate significant differences between lines (P < 0.05).

excess in roots. However, the C content increased in both
shoots and roots of c-pgdh1 versus WT. In shmt1 c-pgdh1,
however, the S and N contents increased in shoots to levels
even higher than in the WT, but the C content decreased in
both shoots and roots. The most important differences be-
tween shmt1 c-pgdh1 and c-pgdh1 were, once again, found
in shoots, particularly in the S content. Compared with the
WT, the S content of c-pgdh1 shoots decreased by approxi-
mately 20% but increased by ~20% in shmt1 c-pgdh1, follow-
ing a similar trend in shmt1. Due to the changesin C, S,and N
contents, the N/C and S/C ratios in shoots decreased in
PPSB-deficient lines and increased in SHMT-deficient lines.
In roots, the most important differences between both lines
were changes in the C content, which dropped in shmt1
c-pgdh1 and rose in c-pgdh1. We also measured total N, S,
and C contents under aCO, growth conditions in the
c-pgdh1 line, confirming that the reduction in N and S con-
tents and the increase in C content in shoots of the
PPSB-deficient lines occurred independently of photorespira-
tory activity (Supplemental Table S1).

Therefore, the deficiency of N and S that occurred in
c-pgdh1 shoots was corrected by bypassing the photorespira-
tory flux at the SHMTT1 level. This implies that PGDH1 and
SHMT1 activities play important roles in regulating C, N,
and S distribution within and between plant cells and organs.

Protein and carbohydrate metabolism is differentially
affected in PPSB- and SHMT-deficient lines

We performed protein biosynthesis experiments using a la-
beled **SCys/>*SMet cocktail in shoots. Neither c-pgdht
nor shmt1 c-pgdh1 showed higher amino acid incorporation
into proteins than WT (Fig. 7A). However, the enrichment of
3°5Cys/>*SMet was lower in SHMT1-deficient lines than in
WT or c-pgdh1, which suggests a lower metabolization rate.
This could indicate a greater preference of N-containing me-
tabolites as a C sink instead of carbohydrates and would
agree with the increased N and S and the decreased soluble
sugar contents in these lines. We checked the growth re-
sponses of c-pgdh1 and shmt1 c-pgdh1 in the presence of ex-
ogenous 2% sucrose. While the shoot fresh weight of shmt1
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Figure 7. Protein and carbohydrate metabolism is differentially affected in PPSB-deficient (c-pgdh1) and SHMT1-deficient (shmt1.2 and shmt1.2
c-pgdh1) lines under eCO, conditions. A) Protein synthesis in shoots measured by >*S-Met/>*S-Cys labeling experiments. Values are shown as in-
corporation into proteins (left panel) and enrichment (right panel). B) Relative shoot fresh weight (FW), primary root length (PRL), and shoot
FW/PRL ratio of different lines supplemented +2% sucrose. C) Photograph of representative individuals of each line. In A), values represent the
mean + sg, n > 6 pools of 40 plants from 2 different lines for each genotype; different letters indicate significant differences between lines (P <
0.05). In B), values (mean =+ sg; n > 40 plants from 2 different lines for each genotype) are normalized to the mean calculated for the WT.
Different letters indicate significant differences between lines (P < 0.05); significant differences between the same line under control growth con-
ditions, as determined by Student’s t-test, are denoted by * (P < 0.05), ** (P < 0.01), or *** (P < 0.001). Scale bars =2 cm (C).

increased almost 3-fold, the shoot growth of c-pgdh1 was
negatively affected by this treatment (Fig. 7, B and C).
Interestingly, sucrose treatment drastically decreased the pri-
mary root length of shmt1 c-pgdh1 but increased the primary
root length of ¢-pgdh1 (Fig. 7, B and C). Consequently, su-
crose treatment altered the plant developmental pattern de-
pending on the genetic background, as shown by the shoot
fresh weight/primary root length ratio, which increased in
the SHMT-deficient lines but decreased in c-pgdh1 compared
with control medium without sucrose (Fig. 7B). These results
confirm the notion that SHMT1-deficient lines have im-
paired carbohydrate metabolism compared with the other
lines and that developmental changes in PPSB- and
SHMT-deficient mutants involve nutrient sensing and signal-
ing mechanisms in different plant organs, as well as shoot-
root communications processes.

Discussion

Evidence supports the involvement of
photorespiratory Gly in the maintenance of Ser
homeostasis at the whole plant level

Crosstalk has been proposed between photorespiration and
PPSB during Ser biosynthesis. This assumption is based on

the observation that Ser levels drop to a lesser extent than
Gly levels under low photorespiratory conditions in WT
leaves (Kleczkowski and Givan 1988; Fig. 3B), which might
be due to PPSB induction when photorespiration is com-
promised (Modde et al. 2017; Fig. 2, C and D). However, we
have shown that steady-state levels of Ser also drop to a
much lesser extent than Gly in PPSB-deficient lines under
photorespiratory-reduced conditions (Fig. 3B). We have
also shown that not only Gly but also steady-state Ser levels
increase in double mutants devoid of PGDH and SHMT1 ac-
tivities. ">N-flux measurements indicated that less Ser was in-
corporated into shoots and roots in the shmt1 c-pgdh1 lines
than in PPSB-deficient lines (Fig. 5, A and B), as expected after
eliminating the major enzymes responsible for its synthesis.
Therefore, we propose that some of the Gly leaving photo-
respiration is used for Ser synthesis in the cytosol and plas-
tids. This conversion of Gly into Ser through cytosolic and
plastidial SHMTs is not thermodynamically favored.
However, the high Gly/Ser ratio in the SHMT 1-deficient lines
could shift the reaction equilibrium in favor of Ser formation
in these compartments.

Gly and Ser levels in roots also decreased in all lines in
response to the transition from aCO, to eCO, conditions, es-
pecially in SHMT 1-deficient lines. This implies that fractions
of the root Gly and Ser pools are also associated with
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and change the N/C and S/C ratios, which modify the plant developmental pattern. Enzymes: GDC, glycine-decarboxylase complex; SHMT1, serine-
hydroxymethyl transferase 1. Metabolites: CHs-THF, 5-methyl-THF, Asp, aspartate; CH,-THF, 5,10-methylene-THF; GIn, glutamine.

photorespiratory activity, suggesting that both amino acids
are transported from shoots to roots. These data collectively
indicate the involvement of photorespiratory Gly in main-
taining Ser homeostasis at the whole plant level. Thus, the
regulation of SHMT/GDC activity could be a crucial compo-
nent of the contribution of photorespiration to Ser-Gly-1C
homeostasis in plants. The provision of more or less Gly from
photorespiration could be a physiological strategy, as sug-
gested by the downregulation of SHMT1 and GDC genes in
PPSB-deficient lines to provide Ser and folates for growth
and metabolism when other pathways such as the PPSB
are restricted. However, other questions remain. For instance,
why do PPSB-deficient mutants have such strong pheno-
types? Thus, the vast majority of the observed metabolic

changes in PPSB-deficient lines may not be related to Ser
starvation directly, which was not always observed in
PPSB-deficient lines, but are most likely caused by alterations
in nutrient signaling and metabolism. As we have shown that
changes in shoots are responsible for the phenotypes of roots
(Fig. 4), our results suggest that metabolic changes in shoots
led by Gly might modulate root development (Fig. 8).

Folates and Gly as activators of N metabolism

Photorespiration was long considered to be a process that re-
duces photosynthetic efficiency, especially in C5 plants, and
considerable efforts have been made to reduce its activity
or bypass the metabolic pathway (the so-called photore-
spiratory bypasses) in order to enhance crop productivity
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(Kebeish et al. 2007; Peterhansel et al. 2010; Betti et al. 2016;
Cotton et al. 2018; Shen et al. 2019; South et al. 2019; Baslam
et al. 2020; Fernie and Bauwe 2020). However, several studies
have indicated that reduced photorespiratory rates due to
the increasing atmospheric CO, concentrations will positive-
ly affect plant biomass (Ainsworth and Long 2020), most like-
ly causing a decrease in their nutritional quality (Myers et al.
2014; Medek et al. 2017). Our study supports the notion that
regulating photorespiratory activity might provide benefits
for N, S, and folate status, which is important for the nutri-
tional quality of crops.

One of the main problems associated with increasing at-
mospheric CO, levels is the reduction in N and protein con-
tents in plants, which alters the N/C ratio (Wieser et al. 2008;
Bloom et al. 2010; Myers et al. 2014; Medek et al. 2017; Bloom
et al. 2020). Under eCO, conditions, N content is constrained
in leaves of C; plants but not in roots (Jauregui et al. 2016).
PPSB-deficient lines also showed altered N and S allocation
between roots and shoots (lower in shoots and higher in
roots than in WT; Table 1). In shmt1 c-pgdh1 shoots, however,
the N and S content increased, and marker genes for S and N
deficiency were downregulated (Table 1 and Figs. 6, B and C).
Thus, our data demonstrate that a shift in photorespiratory
flux affects the N status in shoots of PPSB-deficient plants at
the transcriptional and metabolic levels, corroborating the
important impact of photorespiration on N metabolism.

How the N/C ratio is altered by eCO, has been the subject
of intense debate in recent years (Bloom et al. 2010, 2012,
2014; Bloom 2015; Jauregui et al. 2015, 2016; Walker et al.
2016; Eisenhut et al. 2019; Andrews et al. 2020). Diminished
photorespiratory flux has been suggested as one of the pos-
sible causes of reduced NO5~ assimilation (and uptake) in
shoots, although the mechanism is not fully understood
(Rachmilevitch et al. 2004; Bloom 2015; Kramer et al. 2022).
One plausible hypothesis to explain the relationship between
photorespiration and NO;™ assimilation points to the high
demand for electrons required to power NO5~ reduction
by nitrate reductase. Bloom and Lancaster (2018) postulated
an alternative photorespiratory pathway that increases
photorespiratory energy efficiency by generating malate in
the chloroplast. Low photorespiratory activity under eCO,
could impair the malate:2-OG shuttle in the chloroplast, de-
creasing the reducing power in the form of NADH in the
cytosol for nitrate reductase activity (Bloom and Lancaster
2018; Shi and Bloom 2021). In shmt1 c-pgdh1 lines, we did
not find any differences in the levels of glycolate
(Supplemental Fig. S2), one of the products of the postulated
alternative photorespiratory reaction, which could explain
changes in the N status between lines.

Alternatively, other sources of higher NADH content in
shmt1 c-pgdh1 could increase the reducing power for nitrate
reductase activity in these lines. In shmt1 c-pgdh1 lines,
photorespiration is arrested before the hydroxypyruvate re-
ductase reaction; this enzyme consumes NADH in the per-
oxisome (Fig. 1). Besides, shmt1 c-pgdh1 lines showed
increased GDC gene expression in shoots (Fig. 6C), which

Rosa-Téllez et al.

could provide extra NADH in mitochondria. Therefore, ex-
cess NADH levels in the mitochondria and peroxisomes of
shmt1 c-pgdh1 could also help provide the NADH required
for nitrate reductase activity in the cytosol through the mal-
ate shuttles. Supporting this idea, shmt1 c-pgdh1 displayed
higher malate levels compared with the other lines.

Increases in the levels of other metabolites associated with
SHMT1/GDC activity in SHMT1-deficient shoots, such as Gly
itself and those of the CH,-THF + THF pool (Figs. 3B and 5C),
could also have an impact on N and S metabolism. The over-
accumulation of Gly in SHMT1-deficient lines may play a key
role in stabilizing the C/N balance by consuming photosyn-
thetic products and providing amino groups for N metabol-
ism. It has been suggested that, under photorespiratory
conditions, plants divert a considerable amount of C into
amino acids such as Gly and Ser, which in turn stimulate ami-
no acid biosynthesis and N assimilation (Busch et al. 2018). As
described by Abadie et al. (2016), the Gly/Ser stoichiometry
of photorespiration is close to 2 but increases at high photo-
respiratory rates. Thus, subtle changes in SHMT1/GDC cata-
lytic activity would build up Gly, sequestering N, which
would need to be compensated for by increased N assimila-
tion (Abadie et al. 2016). Photorespiratory flux is up to
100-fold greater than NO5~ reduction (Bloom et al. 2010),
so even a slight imbalance in photorespiratory recycling
may affect the plant N budget. By increasing the availability
of Gly, we modified N/C and S/C ratios in plants, confirming
earlier predictions.

It has been hypothesized that the deposition of already
fixed N as Gly is important for effective de novo N assimila-
tion, because Gly (and Ser) are N sinks with low C content,
leaving C skeletons (2-OG) available for de novo N assimila-
tion (Kramer et al. 2022). SHMT1-deficient lines divert a large
amount of Gly from the photorespiratory cycle compared
with other lines, which affects N accumulation in shoots
(Fig. 5A and Table 1). Besides, Gly is metabolized more quick-
ly in PPSB-deficient mutants than in other lines, likely to ob-
tain Ser, which may account for their lower N content in
shoots under both photorespiratory and nonphotorespira-
tory conditions. Since high photorespiratory rates stimulate
NO;  assimilation and uptake in plants (Rachmilevitch
et al. 2004; Bloom 2015), high Gly levels (or metabolites
derived from Gly) in shoots may positively affect root
NO;~ uptake, as suggested by the increased NO;~ content
in roots of shmt1 c-pgdh1 (Fig. 6D). If this were so, the drop
in Gly content observed when WT plants grow under eCO,
could be one of the signals to reduce N assimilation. As Gly
and Ser contents in plant cell are lower than the contents of
other major amino acids, Gly/Ser status may not serve as an
N reservoir but may instead function as the metabolic signal
to modulate NO;™ uptake and assimilation.

The high Gly contents in the SHMT1-deficient lines led to a
change in the folate content, especially the CH,-THF + THF
pool (Fig. 5C), most likely indicating an increase in the
CH,-THF content. Thus, photorespiration might also be re-
lated to N metabolism via its impact on folate metabolism.
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Folates were reported to play important roles in signaling
cascades (Stokes et al. 2013), as well as in N and C metabol-
ism (Jiang et al. 2013; Meng et al. 2014; Li et al. 2021), but the
action mechanisms remain largely unknown. Folates are sub-
strates for the synthesis of purines and pyrimidines; these
major N-containing molecules are required for DNA and
RNA biosynthesis. Transcriptomic data indicate that the pyr-
imidine catabolism pathway was strongly upregulated in
c-pgdh lines (Supplemental Fig. S7), likely as a response to
organic N depletion, while pyrimidine biosynthesis was
downregulated. The large supply of CH,-THF, GIn, and Asp
in the SHMT 1-deficient lines, which are all required for pyr-
imidine biosynthesis, could fuel the pyrimidine biosynthetic
pathway and restore the N balance in cells. These data allow
us to hypothesize that Gly, along with the 1C-folate pathway,
acts on nutrient signaling networks leading to the regulation
of N metabolism and represents links between photorespir-
ation and N metabolism (Fig. 8).

Overall, our results support the idea that the regulation of
SHMT1/GDC may play a key role in the crosstalk between
photorespiration and N-metabolism. Much speculation has
been made as to why low photorespiration rates reduce N
and protein contents. Our results provide genetic evidence
for the biological relevance of regulating SHMT1/GDC activ-
ity on N metabolism (Fig. 8). We also provide clues about the
underlying molecular mechanisms.

SHMT1/GDC activity links S with folate and SAM
metabolism

The molecular mechanisms controlling S sensing and signal-
ing in plants are not fully elucidated. We show that changes
in the Gly/Ser flux alter the metabolic and transcriptional re-
sponses to S (Figs. 5C, 6B, and 6C). At the transcriptional level
(Fig. 6, B and C), sulfate signaling and sensing were altered in
shmt1 c-pgdh1 in an opposite manner to that in c-pgdhT,
pointing to the importance of the PPSB—GPSB interaction
for balancing S homeostasis between heterotrophic and
autotrophic tissues and also between cellular compartments.
1C units are required to synthesize the S-containing amino
acid Met (Fig. 1) and could thus be involved in the activation
of S-metabolism in shoots of SHMT1-deficient lines.
SHMT1-deficient lines showed high levels of CH,-THF +
THF but reduced levels of other THF forms such as
CH;-THF or CH-THF (Fig. 5C). This finding suggests that
there is not equilibrium between different THF pools among
plant cell compartments. Alternatively, changes in folate
homeostasis could be related to the activation of other meta-
bolic pathways in SHMT1-deficient lines, such as the SAM cy-
cle in the cytosol (Ravanel et al. 2004). The levels of SAM
cycle components adenosine, SAM, and Met increased in
SHMT1-deficient lines compared with the WT (Fig. 5C).
SAM not only serves as a methyl donor in methylation reac-
tions, but it is also an important S-containing metabolite and
a form of reduced S that undergoes long-distance transport
(Rennenberg et al. 1979; Bonas et al. 1982; Lappartient et al.
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1999; Davidian and Kopriva 2010; Tan et al. 2010; Watanabe
et al. 2021). Thus, the S-containing metabolites of the SAM
cycle could be the link between SHMT/GDC activity and S
metabolism.

Our results suggest that Asp and its derived amino acids
may participate in bottleneck reactions in the shoots of
shmt1 PPSB-deficient lines. Under eCO, conditions, Asp levels
increased in all lines, as expected, since photorespiration drains
amino groups out of the Asp pools (Novitskaya et al. 2002).
However, under these eCO, conditions at which SHMT1-
deficient lines are viable, we found higher de novo incorpor-
ation of Asp as well as much higher Asp pools in shoots of
SHMT1-deficient lines than in other lines (Figs. 3C and 5A).
This greater incorporation could be directly related to the in-
creased accumulation of Glu in these lines, from which Asp is
formed. Increased levels of SAM cycle metabolites might also
be involved in the activation of the Asp pathway (or vice versa)
in SHMT1-deficient lines. Indeed, the Asp pathway is finely
regulated by SAM and Cys feedback loops (Sauter et al.
2013; Galili et al. 2016). Asp is a precursor of the essential ami-
no acids Met, lysine, threonine, and isoleucine and of nucleo-
tides and NAD", which serve as key metabolites for cell
proliferation. This coregulation is consistent with the changes
in folate levels in shoots and roots of SHMT1-deficient lines
and supports the connection between folates and the S me-
tabolism. Taken together, we can reasonably infer that the
change in Asp concentration is one of the key reasons for
the metabolic changes observed in SHMT1-deficient lines.
To date, the mechanisms controlling Asp homeostasis are
not fully elucidated. Thus, our results may reveal an important
link between Asp and the regulation of SHMT1/GDC activity.
We propose that this connection links photorespiration to S
metabolism through the folate and SAM cycles (Fig. 8).

Crosstalk of C, S, and N metabolism shapes root
development
In contrast to amino acids, glucose and fructose levels were
drastically reduced in the mutants with a SHMT1-deficient
background (Fig. 3C). The low hexose levels in SHMT1-
deficient lines could not only be explained by slow recycling
of photorespiration-derived 3-PGA (Eisenhut et al. 2017;
Fligel et al. 2017; Timm et al. 2021) but also by their greater
use in the synthesis of Asp family amino acids, as shown in
mammals (Ritterhoff et al. 2020). The lower turnover of pro-
teins in shmt1 c-pgdh1 could mean that these lines prioritize
protein accumulation as sink to the detriment of other meta-
bolites such as sugars in order to channel the excess amino
acids. In the end, the upregulation of genes responding to
carbohydrate stimulus and the reduction in total C content
in shmt1 c-pgdh1 are consistent with a C deficiency in
SHMT 1-deficient lines. In c-pgdh1, however, there is an excess
of C (glucose, fructose, and total C; Fig. 3C and Table 1), likely
due to the lack of 3-PGA utilization for Ser synthesis by PGDHs.
These lines also showed a deficiency of S and N in shoots.
We propose that the imbalanced S/C and N/C ratios might
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affect root growth in PPBS mutants (Fig. 8). The strong re-
duction in primary root growth in the shmt1 c-pgdh1 mutant
in the presence of sucrose corroborated this hypothesis.
Since one of the inhibitory effects of sucrose on photosyn-
thesis is the inhibition of Rubisco activity itself (Quentin
et al. 2013; Lobo et al. 2015), we assume that, under these
growth conditions, photorespiration may be further inhib-
ited, while plants maintain high levels of C provided by su-
crose. Changes in the developmental pattern in the shmt1
c-pgdh1 mutant could therefore be explained by the follow-
ing: (i) supplied sucrose affects the C/N and C/S ratios direct-
ly in shmt1 c-pgdh1 by increasing the C content, (ii) the
further reduction in Rubisco oxygenase activity in shmt1
c-pgdh affects the N and S status, or (iii) a combination of
both factors. In line with this hypothesis, the combination
of PPSB and SHMT1 mutant backgrounds compensated for
the imbalance in C, N, and S levels and modified the
shoot/root developmental pattern by stimulating root versus
shoot growth (Fig. 8).

The interaction between metabolism and development in
plants is poorly understood. Our work provides important
clues about how Gly/Ser fluxes modulate N/C and S/C ratios
and shape plant developmental patterns in response to nu-
trient status. We show that PPSB is necessary for correct N
and S partitioning between shoots and roots. Disrupting
PPSB led to an imbalance in this partitioning, leading to an
N and S deficit in shoots and a general response to nutrient
deficiency. Forcing the exit of Gly out of the photorespiratory
cycle by inhibiting SHMT1 led to changes in folate, SAM, and
Asp metabolism that reversed the changes in N and S defi-
ciency in shoots of the PPSB-deficient lines. Therefore, the
regulation of the Ser-Gly-1C network is crucial for N, C,
and S homeostasis. Several hypotheses have been put for-
ward to explain the role of photorespiration in N and S me-
tabolism. Our results provide genetic and biochemical
evidence that the regulation of the SHMT1/GDC activity ra-
tio is a key target linking photorespiration to N and S metab-
olism at the metabolic and transcriptional levels. Therefore,
both the photorespiratory and PPSB pathways modulate N,
S, and C fluxes through the Ser—-Gly—1C network. In mam-
mals, this network is considered to be a central integrator
of nutrient status (Locasale 2013). We propose a similar
role for the Ser—Gly-1C network for plants. Genetic engin-
eering of SHMT/GDC and PGDH activity is expected to be
a useful target to improve the N and S contents of crops un-
der forthcoming climate change conditions. To validate the
viability of this biotechnological approach, additional experi-
ments will need to be conducted in natural environments
under varying temperature, light, and CO, conditions.

Materials and methods

Plant material and growth conditions
Original Arabidopsis (A. thaliana) seed stocks (ecotype
Columbia-0 or Landsberg erecta) were supplied by the
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European Arabidopsis Stock Center (Scholl et al. 2000).
Conditional mutants with reduced expression of PSP1
(c-psp1.1 and c-psp1.2) and PGDH1 (c-pgdh1.1 and c-pgdh1.2)
were obtained as previously described (Cascales-Mifiana
et al. 2013; Casatejada-Anchel et al. 2021). The shmt1.2 mutant
(Voll et al. 2006) was kindly supplied by Prof Hermann Bauwe
(Rostok, Germany). The mutant alleles of At5g26780 (shmt2.2;
SALK 096265) and At2g13360 (sgat1; GT_5_6208) were se-
lected in the SIGnAL Collection database at the Salk
Institute (Alonso et al. 2003) and were identified by PCR geno-
typing with the primers listed in Supplemental Table S2.
PPSB-deficient double mutants with shmt1.2 and shmt2.2
(shmt1.2 c-psp1.1, shmt1.2 c-pspl.2, shmtl.2 c-pgdhl.i,
shmt1.2 c-pgdh1.2, shmt2.2 c-psp1.1, shmt2.2 c-psp1.2, shmt2.2
c-pgdh1.1, and shmt2.2 c-pgdh1.2) were generated by crossing
single shmt1.2 and shmt2.2 mutants with PPSB-deficient mu-
tants and identified by PCR genotyping with the primers listed
in Supplemental Table S2.

Unless otherwise stated, seeds were sterilized and sown on
0.8% agar plates containing 1/5 strength MS medium with
Gamborg vitamins buffered with 0.9 g L~' MES, adjusted to
pH 5.7 with Tris (1/5 MS). After 2 to 4 d of stratification at
4 °C, the plates were vertically placed at 22 °C under a 16-h
day/8-h night photoperiod at 100 ymol m~2 s~ light inten-
sity (Lumilux fluorescent cool white, OSRAM EAN
4050300517797) and under aCO, or eCO, (2000 ppm) con-
ditions for 14 to 16 d before sampling the seedlings. When
indicated, 2% sucrose was added to the growth medium.

Grafting experiments

To graft the double mutant shmt1.2 c-psp1 shoot (scion)
with the PPSB-deficient c-psp1 root (root-stock) and for self-
grafting of PPSB-deficient c-psp1, the protocol described by
Thieme et al. (2015) was followed with some modifications.
In short, plants were grown vertically on solid 1/5 MS me-
dium containing 1.5% (w/v) agar at 22 °C and 2,000 ppm
of CO, under a 16-h day/8-h night photoperiod and
100 umol m~? s~ light. One day before grafting, plates con-
taining the seedlings were covered with aluminum foil to fa-
vor the elongation of the mutant’s hypocotyls. Seven to eight
days after germination, evenly elongated hypocotyls were cut
transversely in the upper half of the hypocotyl with a sterile
razor blade, and the scions were combined with the root
stock. Graft junctions were supported using a silicon tube
with a 0.51 mm internal diameter, and grafted plants were
transferred onto new sterile plates with 1/2 MS containing
1.5% (w/v) agar and grown under the same conditions as
mentioned above. Every 3 d, the formation of adventitious
roots originating from the scion was checked and whenever
possible carefully removed.

Metabolite determination

Shoots and roots of 15-d-old plants grown on vertical plates
were used to determine metabolite content in derivatized
methanol extracts by gas chromatography-MS (GC-MS) as
described by Lisec et al. (2006). Plants were sampled after
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10-h of growth in the light. Folates were analyzed according
to Wu et al. (2018). SAM analysis was performed as previous-
ly described (Hung et al. 2013). For adenosine measurements,
100 mg (fresh weight) of tissue was resuspended in 100 uL of
HCIO, 1 m. After a 10-min centrifugation at 11,500 rpm at
4 °C, the supernatant was analyzed by LC-MS-MS as de-
scribed by Fung et al. (2001).

15N enrichment of the metabolome

Seeds were surface sterilized and sown on 1/5 MS plates con-
taining 0.8% agar and kept in the dark at 4 °C for 4 d to
synchronize germination. The plates were then incubated
at 22 °C under a 16-h day/8-h night photoperiod at a light
level of 100 ymol m~2 s™" and eCO, in a phytotron chamber.
After 5 d of germination, the seedlings were transferred to
hydroponic cultures as previously described (Erban et al.
2020). Briefly, seedlings were grown for 12 d in sterile glass
containers with a metal net for support and liquid 1/5 MS
medium. After reaching the morphological stage of 1.05
(Boyes et al. 2001), plants were transferred to new hydropon-
ic medium containing 0.8 mm ammonium nitrate as the sole
nitrogen source labeled or unlabeled with the stable isotope
>N, "NH,'°NO; (Sigma-Aldrich, Ref. 366528), or "“NH,
"NO; (Sigma-Aldrich, Ref. 221244). After 3 d, shoots and
roots were harvested separately and immediately frozen.
The roots from the labeled media were washed with un-
labeled 1/5 MS medium to detach the labeled ions.
Extraction of metabolites was performed as described by
Erban et al. (2020) and analyzed by GC-MS.

The raw chromatograms were baseline corrected and de-
convoluted in ChromaTOF. Subsequently, the files were ex-
ported as .netCDF files. The .netCDF files were imported
into TagFinder (Luedemann et al. 2008), setting the intensity
threshold for upload into TagFinder to one, so as to include
low abundance peaks such as multiply *N-labeled isotopo-
logs. Internal retention time standards of n-alkanes C;, to
C3s (decane, dodecane, pentadecane, octadecane, nonade-
cane, docosane, octacosane, dotriacontane, hexatriacontane)
were used to align the chromatograms. Peak intensities were
scaled to the maximum of all peaks with the same m/z ratio
and retention index window set to 0.05. Compounds were
identified using the Golm Metabolome Database (Hummel
et al. 2007). Due to isotopic envelope shifts, N-containing
metabolites were manually annotated. >Cg-Sorbitol was
used as the internal standard of the polar phase. The normal-
ization factor applied to each sample was the product of the
fresh weight per sample multiplied by the intensity of the in-
ternal standard. Annotated mass features from the Golm
Metabolome Database were used as targets for "N isotopic
tracing analysis of each N-containing metabolite. In particu-
lar, mass features that contained one or more N atoms in
their molecular formulas were used. The natural isotopic
abundance (NIA) of mass features was corrected for across
all detected isotopologs. The sum of the corrected
">N-labeled isotopolog intensities divided by the total "*N-
and "°N-pool was considered to be the mean fractional
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enrichment. All calculations were performed as previously
described (Huege et al. 2014; Heinrich et al. 2018; Millard
et al. 2019). The "°N relative abundance reflects the relative
amount of the metabolite pool that was newly synthesized
since it incorporated the '°N during our experiment. The
nominal values were considered to be the sum of all detected
isotopologs per mass feature after correcting NIA. In cases
where one isotopolog was used for correction, the "°N rela-
tive abundance is the NIA-corrected abundance of the first
isotopolog.

Elemental analyses, nitrate, and ammonium
quantification

NHZ analysis was performed using the Berthelot method as
described by Weatherburn (1967). NO3 was determined as
described by Zhao and Wang (2017). Elemental analysis
was performed using the Pregl-Dumas method with a
CHNS elemental analyzer (Thermofisher SmartFlash model).

Gene expression analyses and RNA-seq

Reverse transcription quantitative PCR analysis was per-
formed as described recently (Casatejada-Anchel et al.
2021). The primers used are listed in Supplemental
Table S2. For RNA-seq, shoots and roots of 14-d-old plants
vertically grown on 1/5 MS plates under eCO, conditions
were used. Three independent biological replicates of each
sample were harvested after the 10-h light period for analysis.
Total RNA extraction, RNA-seq library preparation, and se-
quencing were performed as previously described (Anoman
et al. 2019). Quality check, trimming, alignment, reads count-
ing, and filtering of genes expressed at low levels were con-
ducted as previously described (Sun et al. 2018). PCA was
performed on the TMM-normalized gene matrix after re-
moving genes that are not expressed using the R function
prcomp. Filtered genes were used to perform differential
gene expression analysis with EdgeR. Genes were considered
to be significantly differentially expressed if the corrected
P-value (false discovery rate, FDR) was <0.05. Gene
Ontology Enrichment Analysis was performed in agriGO
v2.0 (Tian et al. 2017) based on a hypergeometric test.

Analysis of glutamine synthetase activity

GS activity was determined from crude extracts using the
biosynthetic enzyme assay as previously described by
Marquez et al. (2005). Crude extracts were obtained as de-
scribed by Garcia-Calderdn et al. (2012). Shoots and roots
were harvested from 14-d-old plants grown under eCO, con-
ditions on 1/5 MS plates.

Analysis of protein biosynthesis using >>S-labeled
Met/Cys and analysis of total protein content

The analysis of tracer incorporation into proteins using a
S-labeled L-Met/L-Cys cocktail (NEG77200MC) was per-
formed as described previously (Zimmermann et al. 2021).
Plant material was incubated in hydroponic culture
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containing 1/5 MS medium supplemented with 0.1 mm Met
traced by 6.3 pCi >*S-labeled L-Met/L-Cys cocktail per well for
6-h before harvesting. Total protein content was quantified
with Bradford reagent (Bio-Rad) using bovine serum albumin
as a standard.

Statistical analysis

Experimental values represent mean values and sg n repre-
sents the number of independent samples. Significant differ-
ences compared with either the WT or control treatment
were analyzed by Student’s t-test algorithms (2-tailed) em-
bedded in Microsoft Excel. Significant differences between
groups were analyzed by 1-way ANOVA followed by
Fisher’s Lsp test using IBM SPSS Statistics software. Bar plots
were generated in GraphPad 8 software. The details of statis-
tical analysis results are listed in Supplemental Data Sets 1
and 2.

Accession numbers

The original RNA-seq data were submitted to SRA under
BioProject accession number PRJNA911249 (released 2023-
10-11). The Arabidopsis locus identifiers for genes used in
this study are as follows: PSP1 (At1g18640), PGDH1
(At4g34200), SGAT (At2g13360), SHMT1 (At4g37930), and
SHMT2 (At5g26780).
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