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ABSTRACT: The traditional approach of using the Monin–Obukhov similarity theory (MOST) to model near-surface
processes in large-eddy simulations (LESs) can lead to significant errors in natural convection. In this study, we propose an
alternative approach based on feedforward neural networks (FNNs) trained on output from direct numerical simulation
(DNS). To evaluate the performance, we conduct both a priori and a posteriori tests. In the a priori (offline) tests, we com-
pare the statistics of the surface shear stress and heat flux, computed from filtered DNS input variables, to the stress and
flux obtained from the filtered DNS. Additionally, we investigate the importance of various input features using the Shap-
ley additive explanations value and the conditional average of the filter grid cells. In the a posteriori (online) tests, we im-
plement the trained models in the System for Atmospheric Modeling (SAM) LES and compare the LES-generated surface
shear stress and heat flux with those in the DNS. Our findings reveal that vertical velocity, a traditionally overlooked flow
quantity, is one of the most important input features for determining the wall fluxes. Increasing the number of input fea-
tures improves the a priori test results but does not always improve the model performance in the a posteriori tests because
of the differences in input variables between the LES and DNS. Last, we show that physics-aware FNN models trained
with logarithmic and scaled parameters can well extrapolate to more intense convection scenarios than in the training data-
set, whereas those trained with primitive flow quantities cannot.

SIGNIFICANCE STATEMENT: The traditional near-surface turbulence model, based on a shear-dominated bound-
ary layer flow, does not represent near-surface turbulence in natural convection. Using a feedforward neural network
(FNN), we can construct a more accurate model that better represents the near-surface turbulence in various flows and re-
veals previously overlooked controlling factors and process interactions. Our study shows that the FNN-generated models
outperform the traditional model and highlight the importance of the near-surface vertical velocity. Furthermore, the
physics-aware FNN models exhibit the potential to extrapolate to convective flows of various intensities beyond the range
of the training dataset, suggesting their broader applicability for more accurate modeling of near-surface turbulence.

KEYWORDS: Convection; Turbulence; Boundary layer; Large eddy simulations; Subgrid-scale processes;
Machine learning

1. Introduction

Wall modeling, an approach to modeling near-surface tur-
bulence, is a crucial component in large-eddy simulations
(LESs) of wall-bounded flows at high Reynolds numbers
(Piomelli and Balaras 2002; Bose and Park 2018; Yang and
Griffin 2021), including flows in the atmospheric boundary
layer (Deardorff 1980; Moeng 1984; Bou-Zeid et al. 2005;
Salesky and Anderson 2018). Despite its importance, there is
currently no one-size-fits-all approach for all types of flow
(Slotnick et al. 2014; Wang et al. 2023). Traditional wall mod-
els are mostly derived in flows that are quasi steady, horizon-
tally homogeneous in surface and flow properties, and
horizontally dominated (i.e., the horizontal components of the
near-surface velocity are much larger than the vertical

component), which are not necessarily suitable for unsteady
and locally convective flows.

One of the most widely used wall models to account for hy-
drostatic stability is based on the Monin–Obukhov similarity
theory (MOST; Monin and Obukhov 1954), which assumes a
horizontally homogeneous, quasi-steady, and predominantly
horizontal flow. In a neutral boundary layer, MOST reduces
to the law of the wall (Prandtl 1933). Applying the law of the
wall for wall modeling is equivalent to the drag coefficient ap-
proach that uses a constant roughness length and first-level
vertical grid spacing (e.g., Roberts et al. 2020). However, the
limitations of MOST have been well known (Stiperski and
Calaf 2023). For example, MOST fails to account for horizon-
tal wind variances (Wyngaard and Coté 1974), wall normal
velocity variances, and temperature variances (Mahrt 1999).
Additionally, its overly idealized assumptions call into ques-
tion its broad applicability, for example, in Rayleigh–Bénard
convection (RBC) and other natural convection flows.

In spite of the long-standing limitations of MOST, without a
more reliable alternative, atmospheric models have used
MOST for evaluating surface fluxes, even for the flow over
complex terrain (e.g., Schumanndlr 1990) and intense convection
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(e.g., Schenkman et al. 2014; Markowski and Bryan 2016;
Roberts et al. 2020), which clearly violate the MOST assump-
tions. Numerical simulations have shown that the vertical velocity
induced by horizontal convergence (implying a horizontally het-
erogeneous velocity field) is sensitive to the use of wall models
(Wang et al. 2020, 2023). Without relying on the MOST, the non-
equilibrium wall models have also been developed in the engi-
neering community (Balaras et al. 1996; Cabot and Moin 2000;
Wang and Moin 2002; Park and Moin 2014), but currently, their
applications have only been explored in shear-dominated bound-
ary layers, and therefore further discussion of these approaches is
not pursued here.

RBC is an example of a locally and horizontally heteroge-
neous phenomenon that violates the MOST assumptions.
RBC is characterized by local warm updrafts and cold down-
drafts, where the local near-surface vertical velocity can be on
the same order of magnitude as the horizontal velocity. Previ-
ous studies have revealed the deviation from MOST in the
updraft and downdraft of convection (e.g., Fodor et al. 2019),
but MOST is still often used in the LES of RBC to model
near-surface turbulence while accounting for near-surface sta-
bility (e.g., Salesky and Anderson 2018; Thomas et al. 2019;
Yang et al. 2022).

Efforts to construct wall models using neural networks
(NNs) began as early as Milano and Koumoutsakos (2002).
Over the last decade, significant advances in machine learning
(ML) and high-performance computing have provided greater
opportunities to develop innovative wall modeling approaches
based on NNs. For instance, LES wall models based on NNs
have been constructed for canonical boundary layers (e.g.,
Yang et al. 2019; Bae and Koumoutsakos 2022; Vadrot et al.
2023), periodic hills (Zhou et al. 2021), rotating channels
(Huang et al. 2019; Huang and Yang 2021), and irregular sur-
faces on aircrafts (Lozano-Durán and Bae 2020, 2023). To the
best of our knowledge, however, LES wall models for RBCs
using an NN-based approach have yet to be explored. There-
fore, the objective of this work is to employ NNs to develop
wall models as alternatives to the MOST-based models for
LES of RBC and to gain a deeper understanding of the mech-
anisms governing the surface shear stress and heat flux.

For training and evaluation purposes, we perform direct nu-
merical simulations (DNSs), which resolve all scales of motion
and do not require a wall model, and then filter the DNS results
to resolutions that are relevant to LES. We employ a feedfor-
ward neural network (FNN) to relate the near-wall flow proper-
ties to the surface shear stress and heat flux. We also use the
same DNS results to evaluate the accuracy of the MOST-based
model for the wall fluxes. Compared to the previous ML-
wall-model studies, the complexity of the flow considered in this
paper is the involvement of thermal stratification and heat trans-
fer. It is not entirely clear what off-wall information should be
used when modeling the wall shear stress and wall heat flux. The
absence of such knowledge puts us at risk of overfitting or under-
fitting. To determine the most relevant input features, we evalu-
ate the importance of each input using the Shapley additive
explanations values (SHAP value; Shapley 1953; Štrumbelj and
Kononenko 2014), which, combined with deep learning, is a
form of interpretable ML. To better understand the SHAP

values and gain the physical insight, we also analyze the velocity
and temperature profiles within the filter grid cells conditionally
selected according to the low and high ranges of the input
variables.

One challenge for ML algorithms is to apply the trained
model beyond the scope of its training data. Yang et al.
(2019) demonstrated that the NN including physical informa-
tion has the capability to model the boundary layer at a
Reynolds number higher than that used to train the NN. On
the contrary, an NN trained without incorporating any physi-
cal information struggles to extrapolate. For RBC, however,
there is no well-known relationship for the near-surface flow
quantities like that between the velocity and wall-normal dis-
tance in a canonical boundary layer. The NN ability to extrap-
olate can be improved by using dimensionless parameters
within the local and near-surface regions, which allows NN to
account for relationships observed in large-scale circulations,
such as power laws among the Nusselt number, Reynolds
number, and Rayleigh number (Ahlers et al. 2009). As we do
not invoke the governing equation in our training, we refer to
our approach as the “physics-aware” approach to distinguish
it from the physics-informed NN approach (Cai et al. 2021),
where one penalizes the solution based on the governing
equation. Specifically, the NNs here are called physics-aware
feedforward neural networks (PAFNNs).

In this paper, we first evaluate the performance of the NN
models (referring to both FNN and PAFNN models hereaf-
ter) and the importance of the features using a priori tests.
Specifically, we will use DNS-filtered data as input to the
models and compare their output surface shear stress and
heat flux with the DNS-filtered ones. Later, to evaluate their
applicability, we will implement the NN models in LES for
the a posteriori tests. To assess the extrapolation capability of
the NN models, an additional set of DNS and LES runs with
more intense RBC is performed.

The rest of the paper is organized as follows: Section 2 in-
troduces the methods, which cover the DNS configuration,
the filtering approach to mimic the LES data, the MOST
wall model, the deep learning configuration, the SHAP
value, and the a posteriori tests. Section 3 presents the re-
sults. Finally, section 4 provides the conclusions. For the
readers’ reference, we place the flow statistics from the inte-
rior of the domain in appendix A and more details of the
training process in appendix B.

2. Methods

The training data used in this work are filtered from DNS.
Therefore, we first present the DNS model description, simu-
lation setup, and the filtering approach used to obtain data
relevant to the LES grid resolutions. Next, we introduce the
traditional MOST and several newly trained NN models, ex-
plaining how the filtered data are used as inputs. To under-
stand the importance of the inputs for each FNN wall model,
we introduce the SHAP value. Finally, we describe how we
implement the NN models in LES for a posteriori tests in
both the training and the extrapolation scenarios.
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a. DNS

The DNS is performed using the System for Atmospheric
Modeling (SAM), which solves dimensionalized equations for
velocity and moist static energy (see details in Khairoutdinov
and Randall 2003, appendix A). The velocity components are
solved on a staggered Arakawa C grid and advected using a
second-order central scheme. The scalar is solved at the center
of each grid cell and advected using a multidimensional
positive-definite advection transport algorithm (Smolarkiewicz
and Grabowski 1990). Pressure is diagnosed by solving a Pois-
son equation. Moisture is not introduced in the simulations of
this study.

SAM was originally designed for atmospheric LES but has
recently been adapted to simulate cloud chambers, which have
a scale similar to the case in this study (Thomas et al. 2019,
2023; Yang et al. 2022; Wang et al. 2024). For the DNS used in
this study, the anelastic approximation is replaced by the
Boussinesq approximation. Additionally, the eddy viscosity
is substituted with the kinematic viscosity (y 5 m/r, where
m 5 1.717 3 1025 Pa s is the dynamic viscosity of air, and
r 5 1.2096 kg m23 is the density of air), and the wall model is
replaced by an explicit no-penetration and no-slip boundary
condition. The Prandtl number is 0.72. The simulation setup
largely follows the DNS performed by Chandrakar et al. (2022):
a 1 m3 cube domain with a cold top surface of 282 K and a warm
bottom surface of 294 K (indicated as DT 5 12 K hereafter),
yielding a Rayleigh number of ;109 (Table 1). Different from
Chandrakar et al. (2022), sidewalls are removed in this work, and
the doubly periodic lateral boundary conditions are applied for
simplicity. The horizontal size of the domain results in a domain
aspect ratio of 1, which may not be ideal for studying the structure
of RBC (Grötzbach 1983; Stevens et al. 2018), but it is sufficient
for capturing the characteristics of near-surface turbulence within
RBC.

According to the observation in the Pi chamber (Chang
et al. 2016; Chandrakar et al. 2016), the maximum magnitude
of vertical velocity has an order of 0.1 m s21, which is taken as
the turbulent velocity scale (y). With the length scale (l) of
1 m, the dissipation rate (e) and the Kolmogorov length scale
(h) can be derived as

e 5
y3

l
; 1023 m2 s23, (1)

h 5
n3

e

( )1/4
; 1023 m: (2)

The DNS has 512 grid points in each direction (similar to
those applied in Chandrakar et al. 2022), yielding a homoge-
neous and constant grid spacing of ;2 mm. The time step is
adjustable to account for the Courant–Friedrichs–Lewy crite-
rion. The quasi-steady state of mean surface heat flux is
reached in roughly 1 min (Fig. A1), and the result at 1–10 min
is used for training. Although a quasi-steady state of domain-
averaged quantities is reached, the locations of updraft and
downdraft shift horizontally, which can represent the flow’s
horizontal heterogeneity and unsteadiness. An illustration of

the resulting temperature field, turbulent coherent structures,
and energy spectrum is shown in Fig. 1. Because the focus of
this research is on the wall model rather than the structure of
RBC, we leave the statistics of domainwide flow quantities in
appendix A and focus on the near-surface area in the main
context hereafter.

The definition of boundary layer depth in this study is com-
plicated by the slightly negatively tilted temperature profile
observed within the domain’s interior (see Figs. A2a,b), which
is a consequence of the limited horizontal domain with peri-
odic boundaries. If we define the boundary layer by tempera-
ture gradient (­T/­z; i.e., as ­T/­z is 99% close to the
centerline value, where z is the distance from the surface),
there are 12 grid points in the boundary layer, which meets
the requirement of roughly 10 points for this Ra (Stevens et al.
2010). Table 1 shows that the resulting Nusselt numbers
align with experimental data from Niemela et al. (2000) and
Chavanne et al. (2001), as well as the DNS from Stevens et al.
(2010) (see the intercomparison of NuRa21/3 in Stevens et al.
2010, Fig. 1a).

For an a posteriori test, a separate DNS run is carried out
with a 276-K cold top surface and a 300-K warm bottom sur-
face (indicated as DT 5 24 K hereafter). The grid resolution
follows the DNS with DT 5 12 K. If we define the boundary
layer by ­T/­z as above, the boundary layer will contain
11 grid points. Concerning the limitation of computational re-
source, this run is performed for a physical time of 4 min, but
the data are enough for analysis (Fig. A1). A comparison of
the energy spectra of two DNS runs is presented in Fig. 1b. It
should be noted that this second DNS run is not used for
training the NN models but instead is employed to evaluate
the extrapolation ability of the NN models after they are im-
plemented in LES.

Table 1 demonstrates that the two DNS runs yield similar
values of NuRa21/3, and the values are consistent with the ex-
periments and DNS results presented by Stevens et al. (2010),
Fig. 1a. However, Stevens et al. (2010) show that a broader
Ra range reveals a decrease in NuRa21/3 with increasing
Ra, implying that the true scaling power of Ra for Nu is less
than 1/3 [see Grossmann and Lohse (2000, Table 1) for the
scaling power in various experiments].

b. Data preparation

For parameterization development and evaluation, the
DNS output is mapped to the LES grid (allowing the over-
lapping of filter grid cells to increase the amount of data) by
applying a top-hat filter (i.e., DNS results are averaged over
each LES grid cell). The filter length is chosen to be consis-
tent with the grid spacing used in recent LES studies of cloud
chambers, ranging from 3.125 to 6.25 cm (Thomas et al. 2019,
2023; Yang et al. 2022; Wang et al. 2024). Note that these

TABLE 1. The Ra and resulting Nu from the DNS runs.

DT (K) Ra Nu NuRa21/3

12 1.472 3 109 74.5 6.547 3 1022

24 2.945 3 109 93.9 6.549 3 1022
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filter lengths are within the small-scale part of the inertial
subrange, as shown by the red dashed and dotted lines in
Fig. 1b, confirming the appropriateness of these grid spacings
for LES.

The inputs to the MOST and NN models include the dis-
tance from the walls (h, which is half of the filter length) and

two filtered variables: magnitude of horizontal wind speed
(|Ũ |5 �����������

ũ2 1 ỹ 2
√

, where u and y are zonal and meridional
wind components) and temperature difference between the
surface and the first imaginary LES grid cell (DT̃). Here,
the tilde over each variable indicates that it is filtered over the
LES grid cell. For the NN models, three more variables

FIG. 2. Filtered (a) surface shear stress and (b) heat flux in DNS compared to those modeled by the traditional
MOST. The upper-left corner of each panel shows the coefficient of determination (R2, also known as the explained
proportion of the total deviance; Di Mari et al. 2023).

FIG. 1. An illustration of the DNS runs. (a) The turbulent coherent structure is visualized by a snapshot of the DNS run with Tbot 2 Ttop 5

12 K (where Tbot2 Ttop indicates the bottomminus top temperature difference) at t5 5 min using isosurface of l25240 s22 (colored by tem-
perature with transparency indicated by the white region in the color bar), which represents the local pressure minimum owing to vortical mo-
tions and thus visualizes turbulent vortex tubes (Jeong and Hussain 1995). (b) The horizontal energy density spectra from the central plane
(z 5 0.5 m) of two DNS runs are presented, where blue and orange lines represent the spectra at the last snapshots in the DNS runs of
Tbot 2 Ttop 5 12 and 24 K, respectively; gray line represents the slope of the inertial subrange (Kolmogorov 1941); and red dashed and dotted
lines represent the range of the filter length.
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are filtered for the inputs: vertical velocity (w̃), magnitude of
pressure gradient force (r21|=p̃|), and the angle between hori-
zontal wind and pressure gradient force (u, measured as
cosu). The surface shear stress (t̃) and the heat flux (Q̃) are
filtered over the square area beneath the filter grid cell of the
inputs as the target values to train the NN models and evalu-
ate the accuracy of the MOST and NN models. Notice that
we use velocity as a model input. Including velocity as input is
usually not advisable since velocity is not Galilean invariant.
However, since wall modeling assumes a stationary wall, in-
voking the velocity as an input here does not violate Galilean
invariance.

Information in the NN models is fed forward through acti-
vation function. Before being fed forward, the features in the
input layer are standardized. Similarly, the target values in
the output layer are standardized before being used for penal-
ties. The standardization is carried out as

finput=output_layer 5
f 2 m(f)

s(f) , (3)

where f represents any input feature or target value; m and s

indicate mean and standard deviation of the training data,
respectively.

For training the PAFNN models, a choice needs to be
made about whether to invoke global (as in Zhou et al. 2021)
or only local quantities for input. Because a wall model is in-
tended to be applicable to any geometry and flow type, using
only local variables is highly preferred (Yang et al. 2017).

The local |Ũ | and DT̃ are combined with h to form the fol-
lowing nondimensional parameters:

RehU 5
|Ũ |h
n

, (4)

Rah 5
gbDT̃h3

na
, (5)

where g5 9.81 m s22 is the gravitational acceleration, b 5 3.53
1023 K21 is the thermal expansion coefficient, and a 5 n /Pr is
the thermal diffusivity; RehU is a local Reynolds number based
on the magnitude of horizontal velocity at a distance h from the
surface, and Rah is a local Rayleigh number based on the tem-
perature difference between the surface and a distance h. For the
vertical velocity scaling, we take

Frw 5
w̃����������

gbDT̃h
√ , (6)

which is analogous to the Froude number based on vertical
velocity and buoyant acceleration. A different scaling using
Reynolds number based on vertical velocity and the ratio of
vertical velocity to wind speed has also been explored, but
Eq. (6) is found to perform better in this study. Because verti-
cal velocity and buoyancy can affect each other, Frw can be
viewed as the vertical velocity of large-scale circulation com-
pared to that initiated by hydrostatic stability. If Frw 5 1, the
vertical velocity is purely dominated by hydrostatic stability.

The influence of the pressure gradient force, r21|=p̃|, is ac-
counted for through the Euler number:

Euh 5
|=p̃|h
rŨ2 : (7)

Another input parameter, namely, the direction of the pressure
gradient force relative to the horizontal velocity, cosu, is already
nondimensional. Last, the output parameters t̃ and Q̃ are nondi-
mensionalized to form as the local drag coefficient (CD) and Nus-
selt number based on the heat transfer to the height of h (Nuh):

CD 5
t̃

rŨ2 (8)

and

Nuh 5
Q̃h

kDT̃
, (9)

where k 5 arCp is the thermal conductivity and Cp 5

1004 J kg21 K21 is the specific heat of air.

c. The Monin–Obukhov similarity model

MOST predicts that in a horizontally homogeneous and
quasi-steady state turbulent boundary layer, the near-surface
velocity and temperature vary with height as

U(z) 5 u*
k

ln
z
z0

( )
2 CM(z)

[ ]
, (10)

u0 2 u(z) 5 u*
k

ln
z
zT

( )
2 CH(z)

[ ]
, (11)

where U represents horizontal velocity; u is potential temper-
ature (which has negligible difference from temperature, T, in
this work); u0 is the potential temperature of the wall; u∗ and
u∗ are the friction velocity and scaling temperature; k 5 0.4 is
the von Kármán constant; z0 and zT, known as the roughness
lengths for velocity and temperature, are the heights where
U(z0) and u0 2 u(zT) reach zero; z 5 z/L is the stability pa-
rameter, where L is the Obukhov length;CM andCH are inte-
gral stability functions for velocity and potential temperature.
For the details of Obukhov length, stability parameter, and
stability functions, the readers are referred to Garratt (1994,
chapter 3). The overbar indicates Reynolds-average quanti-
ties, which are different from the filtered quantities in LES
where the energy-containing eddies are preserved. However,
in an equilibrium approach, the filtered velocity and tempera-
ture in LES are often used as the Reynolds-average inputs for
MOST to derive the local surface shear stress and heat flux:

t̃ 5 ru2* , (12)

Q̃ 52rCpu*u*: (13)

In the a priori test, h, |Ũ |, andDT̃ (’u0 2 u) derived in section 2(b)
are used as inputs for Eqs. (10) and (11). The MOST-predicted
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t̃ and Q̃ from Eqs. (12) and (13) are then compared with the t̃

and Q̃ from DNS. To avoid the deviation resulting from the
model parameters for different flows, z0 and zT in Eqs. (10)
and (11), which vary with flow and surface types (Garratt
1994), are tuned so that the mean values of t and Q given by
MOST match those from DNS as Tbot 2 Ttop 5 12 K. This cal-
ibration suggests that z0 5 0.98 mm and zT 5 0.53z0.

d. The neural network models

The training of the NN models is performed using Keras
(Chollet et al. 2015) and TensorFlow (Abadi et al. 2015) in
Python. The input layer consists of standardized and filtered
variables from DNS data and a bias. The output layer con-
tains the standardized values of t̃ and Q̃ for FNN, or CD and
Nuh for PAFNN. The NN models comprise two hidden layers,
containing 12 and 6 neurons, respectively. We determine this
configuration through trial and error, aiming to achieve rela-
tively good results with the fewest layers and neurons possi-
ble, thereby minimizing the risk of overfitting. Specifically, we
start with small numbers of hidden layers and neurons, gradu-
ally increasing the hidden layers and neurons until no further
reduction in the loss is observed. The resulting total of 18 neu-
rons is on a scale similar to the 8, 16, and 30 total neurons
used in Yang et al. (2019). We test the configurations on cases
with the most input features in both FNN and PAFNN. For
simplicity and given that hyperparameter optimization is be-
yond the scope of this research, we adopt the same configura-
tions for all NN models, as we do not observe significant
changes in results with the different configurations tested for
other NN models. The neurons in a layer are weighted and
fed into the leaky rectified linear unit (leaky ReLU) function
to activate those in the next layer. The optimization of the
training process is achieved using the Adam optimizer and
mean squared error as the loss function. Among the 4991222
randomly chosen events, 60% are used as the training set, and
the remaining 40% are used as the validation set, with a maxi-
mum of 5000 epochs and a batch size of 10000. To prevent
overfitting, we utilize an early stopping technique with a pa-
tience of 20 epochs. This approach terminates the training
process when the validation set loss fails to decrease for
20 consecutive epochs, even if the training set loss continues
to decrease. After the twentieth epoch, which serves as a
warm-up period, the early stopping process begins. The best
weights are then restored based on the validation set loss.
This ensures that the model generalizes well on unseen data
by halting training at the optimal point. Without the early
stopping criteria, we could still restore the best weights based

on the validation set. However, saving all weights for restora-
tion would be wasteful in terms of storage, and it would be in-
efficient in terms of computational resources to finish the
specified epochs when the validation set loss is already in-
creasing. The testing set contains randomly chosen 2139094
events different from the validation and training sets. Given
the inherent randomness in the training process, each model
is trained several times to select the optimal outcome. Specifi-
cally, the optimal outcome is determined by achieving the
highest R2 value without evident anomalous pattern [exam-
ined subjectively from two-dimensional histogram like panels
(a) and (b) in Figs. 3–5 and 7–9] which tend to occur when the
number of input features is small. Further details of the train-
ing process, including the reduction of loss over epochs and
data distribution, are provided in appendix B.

Several LES wall models are trained for comparison pur-
poses, as summarized in Table 2. The first model (FNN_basic)
is trained using the basic inputs as those for the MOST model
to examine whether the traditional wall model could be im-
proved with the same inputs. The next case (FNN_1w) is
trained with the addition of w̃ to the input layer to assess the
importance of vertical velocity in the wall model. The third
case (FNN_1w1=p) is trained to further investigate the influ-
ence of pressure gradient force.

To construct PAFNN models, three additional cases are
developed using nondimensional variables, as detailed in
section 2(b). The variables are represented on a logarithmic
scale, except for Frw and cosu, which can take negative values.
The use of logarithmic scales is based on previous research
that suggested power-law relationships between the surface
heat flux (scaled as Nuh) and the surface shear stress (scaled
as CD) with the Reynolds number and Rayleigh number
(Grossmann and Lohse 2000, 2002, 2011; Stevens et al. 2011,
2013), at least for sufficiently large Reynolds numbers and
Rayleigh numbers. Invoking the logarithmic scaling simplifies
the regression task in the asymptotic regime. In addition, to
extrapolate outside the training conditions, the behavior of the
target variable at infinity must conform to the behavior of the
activation function at infinity, as per the extrapolation theorem
in Bin et al. (2022). By employing the leaky ReLU activation
function, the above is only true if we invoke the logarithmic
scale. In section 3e, we will evaluate PAFNN performance on
extrapolated input parameters.

e. The Shapley additive explanations value

In addition to comparing different NN cases, the impor-
tance of each feature in the NN models is further evaluated

TABLE 2. Introduction of the FNN cases.

Case Input Output

FNN_basic h, |Ũ |, DT̃ t̃, Q̃
FNN_1w h, |Ũ |, DT̃ , w̃ t̃, Q̃
FNN_1w1=p h, |Ũ |, DT̃ , w̃, r21 |=p̃ |, cosu t̃, Q̃
PAFNN_basic ln(RehU), ln(Rah) ln(CD), ln(Nuh)
PAFNN_1w ln(RehU), ln(Rah), Frw ln(CD), ln(Nuh)
PAFNN_1w1=p ln(RehU), ln(Rah), Frw, ln(Euh), cosu ln(CD), ln(Nuh)
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by the SHAP values (Shapley 1953). We refer interested
readers to Štrumbelj and Kononenko (2014) for the detailed
equations. The primary concept of the SHAP value is to
quantify how a variation in an input feature contributes to a
variation in the output. A SHAP value is assigned to each
feature for a particular event, and the distribution of SHAP
values provides a measure of the overall importance and cor-
relation (positive or negative) of each feature on a specific
output.

The SHAP values and related figures in this work are pro-
duced mainly by the SHAP package for Python (Lundberg
and Lee 2017). Although the SHAP values are standardized
when directly computed from the input and output for NN,
those presented in this work are scaled back by the output
standard deviation to better quantify their contribution.

f. A posteriori test

To perform a posteriori tests, we implement the trained
wall models in SAM LES, which uses the same solver and
configuration as SAM DNS with a few modifications. The
grid spacing is coarsened to 3.125 cm, and we use an anelastic
approximation (as originally adopted in SAM LES for cloud
chambers; Thomas et al. 2019, 2023; Wang et al. 2024), a
turbulent-kinetic-energy (TKE) subgrid-scale (SGS) model
(Deardorff 1980), and either a MOST or NN wall model. The
upper boundary adopts the same wall model as the lower sur-
face but with reverse values of DT̃ and w̃. LESs are carried
out for the same two bottom–top temperature differences as
DNS: the DT 5 12 K simulations evaluate the performance of
the NN models in the same type of flow that is used for the
training, and the DT 5 24 K runs explore the performance of
the NN models in the extrapolated regime when applied out-
side of the training parameter space.

While the evaluations of LES of some flows are based on
systematic behavior at certain locations (e.g., the flow over
hills; Zhou et al. 2021), this is not the case for RBC in this
work. The locations of updraft and downdraft plumes shift
with time, making it challenging to compare the LES and
DNS results at specific locations. Instead, we compare the
results based on the mean and distribution of local t̃ and Q̃.
To evaluate LES results, t̃ and Q̃ in DNS are also filtered
with a filter length of 3.125 cm before calculating the distri-
bution. To compare the surface fluxes and near-surface
quantities during the quasi-steady states (Figs. A1a,b), the
results during t 5 5–10 min for the DT 5 12 K runs and
t 5 1–4 min for the DT 5 24 K runs are analyzed.

3. Results

The snapshot of the DNS run reveals a turbulent convective
layer with updraft and downdraft plumes (Fig. 1a). The con-
centration of turbulent vortex tubes is higher along these
plumes. Near the lower surface, the turbulent coherent struc-
ture is characterized by sparse vortex tubes below the down-
draft plume and abundant vortex tubes being drawn into the
updraft plume. This structure differs from regularly organized
hairpin vortices in a horizontally homogeneous boundary

layer, implying that MOST’s assumption of horizontal statisti-
cal homogeneity is not satisfied in this case.

The results of the a priori tests in sections 3a to 3c demon-
strate the inadequacy of MOST in modeling local surface
shear stress and heat flux, the better results obtained by the
NN models, and the gradual improvement of the NN models
with the inclusion of additional input features. Later in
sections 3d and 3e, we present the a posteriori tests and evalu-
ate the ability of the PAFNN models to extrapolate.

a. A priori test: The Monin–Obukhov similarity model

Figure 2 presents a comparison between t̃ and Q̃ filtered
from DNS and those modeled by MOST. Regarding t̃

(Fig. 2a), the main peak occurs at t̃ 5 0 to 0:2 mPa for DNS,
whereas for MOST, it is almost always ;0 mPa. This discrep-
ancy can be attributed to |Ũ |, which can approach zero and re-
sult in a negligible t̃ according to MOST, while the turbulent
motion within the filter grid cell may still produce a noticeable
t̃. This phenomenon is an example of how RBC differs from a
shear-dominated boundary layer flow. When |Ũ | increases,
the modeled t̃ grows and gradually fits the filtered DNS val-
ues. For Q̃ (Fig. 2b), a distribution trend similar to that of t̃ is
observed (i.e., growing from the bottom and then turning
right in the two-dimensional histogram), except that the main
peak now lies in the range where MOST overestimates Q̃.
The overestimated peak results from the strong |Ũ | owing to
Eq. (13) which assumes that the horizontal velocity increases
the near-surface mixing, leading to a higher value of Q̃. Addi-
tionally, another local peak located at Q̃ , 5Wm22 as mod-
eled by MOST can reach .30 W m22 as filtered from DNS,
indicating that some grid cells can reach relatively high heat
flux even with very low |Ũ |. This again suggests the limitation
of MOST to represent the near-surface turbulence in a non-
shear-dominated flow.

Low values of the coefficient of determination for t̃ (R2 5 0.34)
and Q̃ (R2 , 0.1) clearly illustrate the inadequacy of MOST in
accurately modeling these variables. This inadequacy can be
attributed to two reasons: 1) MOST cannot represent the
near-surface turbulence in this flow, which is a well-known
MOST limitation (see section 1), and 2) the three input fea-
tures, h, |Ũ |, and DT̃ , are insufficient to capture the details in
the filter grid cell. The first reason can be assessed by compar-
ing the results of case FNN_basic to those of MOST, while the
second reason can be explored by comparing the results of
cases FNN_1w and FNN_1w1=p with FNN_basic.

b. A priori test: Feedforward neural network trained with
primitive flow quantities

Figures 3a and 3b present the results for FNN_basic. For a
better comparison, the color-bar scales remain the same for
all the similar two-dimensional histograms (Figs. 2–9). Com-
pared to the MOST results shown in Fig. 2, the R2 values for t̃
and, especially, for Q̃ are significantly improved. The influ-
ence of individual input variables can be understood from the
corresponding SHAP values. Figures 3c–f show that, for both
t̃ and Q̃, the most important feature is DT̃ , followed by |Ũ |
and h. DT̃ is positively correlated with t̃ and Q̃, which is
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consistent with MOST. |Ũ |, on the other hand, is positively corre-
lated with t̃ but negatively correlated with Q̃, so MOST-modeled
Q̃ is biased with |Ũ | (Fig. 2b). Last, h is negatively correlated
with t̃ and Q̃, consistent with MOST. Although the R2 value
yielded by FNN_basic is better than MOST, the two-dimensional
histograms reveal its limitation in modeling the lower ranges
of the distributions (t̃ � 0:1mPa and Q̃ , 10Wm22). This
limitation may be due to the inability of current features to repre-
sent the turbulence or the inability of the filtered feature to repre-
sent the details of weak turbulence.

With the addition of w̃ to the inputs, FNN_1w can notice-
ably improve R2 compared to FNN_1basic (13.4% and 9.7%
increase for t̃ and Q̃, respectively), although the improve-
ments in the lower range of t̃ and Q̃ are minor (cf. Figs. 4a,b
to Figs. 3a,b). The SHAP values reveal that w̃ is the most im-
portant feature for t̃ and the second most important feature
for Q̃. Additionally, a downdraft (low feature values of w̃ in
Figs. 4c,d) increases both t̃ and Q̃. Traditionally, vertical ve-
locity near the surface is not taken as an input of the wall
model because of the assumption of horizontal homogeneity
(i.e., the horizontal convergence/divergence is negligible). The
importance of w̃ again proves the limitation of applying the
wall model derived for shear-dominated flows to a convection-
dominated flow. Because w̃ and DT̃ are not independent, the

relative importance of DT̃ is reduced compared to FNN_basic (cf.
Fig. 4e to Fig. 3e). The negative correlation between w̃ and DT̃
(as indicated by the inverse correlation of w̃ and DT̃ with t̃ or Q̃,
as shown in Figs. 4c,d) suggests that w̃ is the primary mechanism
that influences DT̃ (otherwise, an increase in DT̃ should increase
buoyancy and thus strengthen w̃). Consequently, the influence of
w̃ cannot be incorporated through DT̃ into the inputs.

Figure 5 shows that the results can be further improved
considering the influence of the pressure gradient via two in-
put variables, r21|=p̃| and cosu, in the FNN_1w1=p case
(Table 2). Specifically, R2 for t̃ increases by;18.7% (Fig. 5a).
At the same time, R2 for Q̃ changes very little. Consistent
with these R2 changes, SHAP value analysis shows the rela-
tively high importance of r21|=p̃| and cosu for t̃ and their neg-
ligible importance for Q̃ (Figs. 5c–f). The SHAP values of
r21|=p̃| show its positive correlation with both t̃ and Q̃. Al-
though the mean SHAP value of r21|=p̃| is not the highest for
t̃, several instances with exceedingly high SHAP values of
r21|=p̃| reveal the contribution of r21|=p̃| to the extreme
range of t̃ (Fig. 5c). The SHAP values of cosu show that the
acceleration of an air parcel leads to higher t̃ and lower Q̃,
but the influence on Q̃ is almost negligible (Figs. 5d,f).

To better understand how each input variable affects t̃ and
Q̃, we examine the vertical profiles of |U| and T within

FIG. 3. (a),(b) As in Fig. 2, but for FNN_basic instead of MOST. (c),(d) The distribution of SHAP values, and
(e),(f) their average magnitudes (overall importance) for (e) t̃ and (f) Q̃. In (c) and (d), the color indicates each fea-
ture’s relative value (high or low); the width of each feature’s bar represents the distribution of the data, and the
x axis denotes the feature’s contribution to the deviation of the target from the target’s mean value.
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selected filter grid cells (Fig. 6). The angle brackets in the figure
and hereafter indicate the temporal and horizontal mean. The
values of t̃ and Q̃ are determined by­|U|/­z and2­T/­z immedi-
ately above the surface (denoted as ­|U|s/­z and 2­Ts/­z, respec-
tively). We choose grid cells based on high (above the 90th
percentile) or low (below the 10th percentile) feature values, and
then apply the conditional average. We use a filter length of
3.125 cm (i.e., the influence of h is disregarded) to simplify the
analysis and better visualize­|U|s/­z and2­Ts/­z.

Figure 6 reveals the deviation of the mean |U| and T profiles
simulated by DNS from those suggested by MOST (compar-
ing the red solid line to the blue line in each panel). Figure 6a
shows that high |Ũ | implies enhanced ­|U|s/­z, which leads to
enhanced t̃. For the T profile, although DT̃ increases with |Ũ |,
2­Ts/­z remains nearly unchanged (Fig. 6f). In other words,
with given DT̃ , higher |Ũ | implies a lower magnitude of
2­Ts/­z and thus lower Q̃, leading to the negative correlation
between |Ũ | and Q̃ (Figs. 3d, 4d, and 5d). Regarding the influ-
ence of DT̃ , high DT̃ implies sharpened ­|U|s/­z and 2­Ts/­z
(Figs. 6b,g), indicating enhanced t̃ and Q̃. The influence of w̃
is illustrated by Figs. 6c and 6h, which show that downdrafts
bring high |U| and low T values closer to the surface, leading
to higher ­|U|s/­z and 2­Ts/­z. This effect of near-surface w is
consistent with previous studies (Brown and Thomas 1977;
Raupach 1981; Adrian et al. 2000; Ganapathisubramani et al.
2003; Salesky and Anderson 2018), and leads to enhanced t̃

and Q̃. On the contrary, an updraft (ejection) has the

opposite influence. Additionally, because downdrafts result in
a high value of DT̃ , the low w̃ condition and the high DT̃ con-
dition have qualitatively similar |U| and T profiles near the
surface (cf. Figs. 6b,g with Figs. 6c,h). Last, high r21|=p̃| and
an accelerating forcing (i.e., high cosu) both increase ­|U|s/­z,
while 2­Ts/­z is barely affected (Figs. 6d,e,i,j), consistent with
the corresponding SHAP values (Fig. 5).

c. A priori test: Physics-aware feedforward
neural network

The performance of the NN can be improved by incorpo-
rating information about the physical system, e.g., by forming
a reduced set of input variables using dimensional analysis
(Gunaratnam et al. 2003). Nondimensionalizing FNN_basic
inputs using Eqs. (4) and (5) reduces the number of input fea-
tures from three to two in the PAFNN_basic case (2). How-
ever, as shown in Figs. 7a and 7b, the R2 of PAFNN_basic is
inferior to FNN_basic with much narrower ranges of modeled
t̃ and Q̃ and smaller R2 values. Specifically, t̃ in DNS ranges
from 0 to more than 1 mPa, but the values modeled by
PAFNN_basic fall almost entirely between 0.1 and 0.6 mPa.
Similarly, Q̃ in DNS ranges from approximately 5 to more
than 50 W m22, but the values modeled by PAFNN_basic
only have a range of approximately 10–30 W m22. Note that
the PAFNN models are trained using ln(CD) and ln(Nuh), but
the results are converted back to t̃ and Q̃ for a fair

FIG. 4. As in Fig. 3, but for the case FNN_1w.
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comparison with the previous results and for the subsequent
implementation in LES. The least errors measured in the
training process in the ln(CD) and ln(Nuh) spaces are not nec-
essarily the cases in the t̃ and Q̃ spaces, so the conversion may
partly contribute to the poorer performance of the PAFNN
models. Ranking the importance of input features using the
SHAP values reveals that RehU is the more influential parame-
ter for CD and Rah is more important for Nuh (Figs. 7c–f).
Low RehU and high Rah contribute to both high CD and Nuh.

After considering the influence of vertical velocity,
PAFNN_1w significantly improves the results (cf. Fig. 8 to
Fig. 7). Specifically, R2 for t̃ and Q̃ are improved by 99% and
30%, respectively. These R2 values are comparable to those
obtained by FNN_1w, even though PAFNN_1w is trained
with one less feature and the target values in the logarithmic
nondimensional parameter space. The SHAP values suggest
that Frw is the second most important feature for both CD and
Nuh, again demonstrating the importance of accounting for
vertical velocity near the surface. However, it should be noted
that the comparison of SHAP values for Frw and cosu with
other variables on a logarithmic scale is less clear, in contrast
to the primitive flow quantities depicted in Figs. 4 and 5 where
all the features are in a linear scale. Last, Frw exhibits a nega-
tive correlation with both CD and Nuh, supporting the obser-
vation made in section 3b.

Accounting for the influence of pressure gradient force fur-
ther improves the R2 values for both t̃ and Q̃ (cf. Figs. 9a,b to

Figs. 8a,b). The improvement in R2 values from PAFNN_1w
to PAFNN_1w_1=p is more significant for t̃ (;19.4%) than
for Q̃ (;0.8%), similar to the improvements of FNN_1w_1=p
over FNN_1w. Regarding the importance of features to CD,
cosu and Euh rank second and fourth. Both features are pos-
itively correlated with CD, similar to the influence of cosu
and r21|=p̃| on t̃ (as revealed in Fig. 5c). Overall, based on
the distribution of SHAP values, only RehU is significantly
more important to CD than other features (Figs. 9c,e). Re-
garding the importance of the features in Nuh, the influence
of Rah and Frw is significantly greater than the other fea-
tures, again highlighting the importance of vertical velocity.
The importance of Euh and cosu is the lowest, and the im-
portance of RehU is in the middle, similar to the relation-
ships among the primitive flow quantities and Q̃, as revealed
in Fig. 5c.

In summary, when comparing the PAFNN with the FNN
models, only PAFNN_basic shows noticeably poorer perfor-
mance than FNN_basic. To ensure a fairer comparison be-
tween the FNN and PAFNN models, their results are
evaluated against the number of features (Fig. 10, which is
also known as the elbow method; Thorndike 1953). We see
that 1 2 R2 is reduced significantly as the number of input
features increases from 2 to 3, and then declines slowly as
the number of features increases further. This suggests that
including more than three input features increases the risk
of overfitting, especially for Q̃.

FIG. 5. As in Fig. 3, but for the case FNN_1w1=p.
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d. A posteriori baseline tests

In this section, we subject the NN models to a posteriori
tests by implementing these models in SAM, performing
LES, and comparing the simulated distributions of t̃ and Q̃
among these runs, as well as with the original LES (applying
the MOST-based model) and DNS simulations. Figures 11a
and 11c show that the distribution of t̃ modeled by MOST
(green lines) has a wider range than that obtained from DNS
(black lines). Specifically, the MOST model overestimates the
probability of t̃ values near 0 mPa, while capturing the higher
values slightly better, consistent with the a priori test de-
scribed earlier (Fig. 2a).

The distribution of t̃ modeled by FNN_basic (Figs. 11a,c,
solid blue lines) has an overpredicted and unsmooth peak
near t̃ ; 0:35mPa with the underestimated probability of t̃

smaller than 0.1 mPa, resulting in an overestimated ht̃i. The
unsmooth distribution suggests limitations in the NN models
with insufficient input features, and such unsmoothness al-
ways appears somewhere in the probability density functions
(PDF) after retraining the FNN_basic model, even after test-
ing several different combinations of neurons and hidden
layers (not shown). Additionally, the lower ranges of t̃ and Q̃
are barely captured, which has been revealed in the a priori
study [see panels (a) and (b) in Figs. 3–5 and 7–9]. With the
additional input of vertical velocity (FNN_1w), the mean
value of t̃ is underestimated, the peak position approaches
that of the DNS (Fig. 11a, dashed blue line), and the distribu-
tion is smoother, though the small value tail deviates further
from DNS (Fig. 11c). Adding the =p input (FNN_1w1=p)
matches the DNS peak well and improves the small value

tails, although the mean value is further underestimated
(Figs. 11a,c, dotted blue lines).

For the physics-aware models, PAFNN_basic overestimates
the probability for 0:1, t̃ , 0:4mPa and underestimates the
probability outside of this range (Figs. 11a,c, solid red lines),
consistent with the narrow range observed in the a priori
study (Fig. 7a). The underprediction of large t̃ values also
leads to a significantly underestimated mean (0.29 mPa) com-
pared to the DNS (0.37 mPa). The unsmooth distribution
around the peak reveals the same concern of insufficient input
features as revealed by the FNN_basic model. Including the
vertical velocity input (PAFNN_1w) improves both the dis-
tribution shape and the mean value, although near the peak
some unsmoothness is still observable (Figs. 11a,c, red dashed
lines). After accounting for the =p input (PAFNN_1w1=p),
the distribution slightly shifts to the left (Fig. 11c, dotted red
line), leading to a slightly reduced mean value, but the distri-
bution is the smoothest.

Regarding the surface heat flux, Figs. 11b and 11d show
that the LES with the MOST model (green lines) predicts a
negatively skewed distribution compared to a positively skewed
PDF from DNS and overestimates the mean hQ̃i. FNN_basic
results in a nearly symmetric PDF (Fig. 11b, solid blue lines),
with better hQ̃i than that obtained by MOST. Taking into
account the vertical velocity (FNN_1w) improves the Q̃ distri-
bution, with reduced probability near Q̃ ; 22Wm22 and a bet-
ter mean value (Figs. 11b,d, dashed blue lines). When the
pressure gradient force is taken into account (FNN_1w1=p),
the value of hQ̃i slightly decreases and further approaches the
DNS value (Fig. 11b, blue dotted line). For the PAFNNmodels,
with the basic inputs (PAFNN_basic), the peak location and

FIG. 6. Vertical profiles of (a)–(e) h|U|i and (f)–(j) hTi from DNS (red lines), including the mean (solid line) and conditionally averaged
profiles with low (i.e., values below the 10th percentile; dotted line) and high (i.e., values above the 90th percentile; dashed line) values of
five FNN input variables: (a),(f) |Ũ |, (b),(g)2DT̃ , (c),(h) w̃, (d),(i) r21 |=p̃ |, and (e),(j) cosu. The MOST profiles of |U| and T that yield the
mean t̃ and Q̃ in DNS are plotted for comparison (blue lines). Note that the MOST profiles of |U| and T, calculated for given u∗ and u∗
using Eqs. (10) and (11), are defined only for z$ z0 and z$ zT, respectively.
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mean value of Q̃ are better than those obtained by MOST, but
the distribution is relatively narrow, with very few Q̃ values
above 30 W m22 (Figs. 11b,d, solid red lines), as observed in
the a priori tests in Fig. 7b. After taking into account the vertical
velocity (PAFNN_1w), the resulting Q̃ has a much wider distri-
bution, a peak closer to that of DNS, and a much improved
mean value (Figs. 7b,d, red dashed lines). With the influence of
pressure gradient force (PAFNN_1w1=p), the right tail
slightly deviates from that of DNS (Fig. 7d, red dotted line),
and the hQ̃i value decreases while still well matching the DNS
value.

The performance of the wall models heavily depends on
the quality of the input variables. During the NN training and
in the a priori testing, these variables are taken from a refer-
ence DNS and are the same for all wall models, while in the a
posteriori (interactive) testing the inputs, provided now by
LES, are affected by the employed wall models. Figure 12
shows the primitive flow quantities on the first LES grid level
that contribute to the input layer of the NN models. The dis-
tributions of |Ũ | in LES runs match that from DNS relatively
well (Fig. 12a). However, all LES runs overemphasize the
peak of the PDF and underpredict frequency of occurrence of
DT̃ below 4.5 K (Fig. 12b). This may worsen the limitation of
the NN models in capturing the lower ranges of t̃ and Q̃,
which are positively correlated with DT̃ . The overpredicted
DT̃ may result from overly active mixing in the interior of the
domain in LES, possibly due to the overestimated dissipative

effect of the SGS model or numerical diffusion in the advec-
tion scheme (Pressel et al. 2017; Wang et al. 2021). Although
the dissipative and diffusive effects of SGS models and advec-
tion schemes are beyond the scope of this study, they can also
contribute to the PDF of w̃ being too narrow, (Fig. 12c), and
the PDF of r21|=p̃| being shifted to smaller values relative to
that in DNS (Fig. 12d). Because r21|=p̃| is underestimated in
LES, including its influence reduces the mean value of the t̃

and Q̃ distributions (Fig. 11), regardless of whether the values
are improved or not.

Overall, including the input from vertical velocity into the
NN wall models improves the peak and smoothness of the
considered PDFs. In terms of the mean value, FNN_1w yields
the best result for t̃; PAFNN_1w and PAFNN_1w1=p per-
form similarly well for Q̃. Since the analysis is based on a set
of simulations of one specific case, and the performance of
the NN models can vary if the models are trained again
(because of the randomness inherent in the training process), it
is fair to conclude that, for the training scenario (DT 5 12 K),
the NN wall models perform well after considering the vertical
velocity.

e. A posteriori extrapolation tests

In the final set of tests in this study, we investigate the per-
formance of the NN wall models when they operate on input
variables outside the ranges for which they were trained. In

FIG. 7. As in Fig. 3, but for the case PAFNN_basic.
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these extrapolation tests, we conduct simulations of more un-
stable RBC by doubling the temperature difference between
the bottom and top boundaries (from 12 to 24 K), while keep-
ing the rest of the model setup unchanged.

First, we note that the MOST model cannot accurately
capture either the mean or the PDF shape of ht̃i and hQ̃i
(Fig. 13, green lines), suggesting that z0 and zT of the MOST
model may need case-specific adjustments (Wang et al.
2024). The FNN models operating on primitive flow quanti-
ties perform even worse, overestimating ht̃i and hQ̃i by
about a factor of 2 or more (Fig. 13, blue lines). In contrast,
the PAFNN models demonstrate good extrapolation abilities
(Fig. 13, red lines). PAFNN_basic still predicts relatively nar-
row ranges, and PAFNN_1w and PAFNN_1w1=p perform
similarly well in reproducing the distributions of t̃ and Q̃
from DNS.

Figure 14 shows the near-surface primitive flow quantities
for examining the input features. Here, we focus only on the
distribution obtained by the PAFNN models compared to
that in the DNS (represented by the red and black lines in
Fig. 14, respectively). Similar to the training case as shown in
Fig. 12, DT̃ is overpredicted, w̃ is closer to zero, and r21|=p̃| is
underpredicted in the LES runs compared to that obtained by
the DNS run. The underpredicted r21 |=p̃| still reduces the re-
sulting mean values of t̃ and Q̃ (Fig. 13).

In summary, although comparing the different LES runs
with DNS is complicated by the difference in the flow

quantities in each run, we can conclude that PAFNN models
possess the capability to extrapolate, at least within the RBC
regime considered in this study, and including vertical velocity
captures more details. Although including pressure gradient
force does not improve the mean surface shear stress and heat
flux, the smoothness of PDF is improved, and the local sur-
face shear stress is reproduced more accurately according to
the a priori tests. In a pressure-driven flow, including pressure
gradient force may be crucial.

4. Conclusions

Many traditional LES wall models rely on MOST, which is
derived for a shear-dominated flow and may not be well
suited for RBC. One important flow quantity in RBC is the
near-surface vertical velocity, which is not considered by
MOST. To explore alternative wall models, we perform DNS
to train the NN (including the FNN and PAFNN) models
with various input features for a better modeling of surface
shear stress and heat flux. To understand the influence of the
input flow quantities, the SHAP values and the conditional
average of the |U| and T profiles are investigated. For the a
priori study, we use the DNS-filtered data as inputs for the
MOST and NN models, and then compare the models’ out-
puts with the DNS-filtered data. For the a posteriori tests, we
implement the NN models in LES and evaluate the distribu-
tion of surface shear stress and heat flux against the DNS

FIG. 8. As in Fig. 3, but for the case PAFNN_1w.
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results. For the a posteriori extrapolation tests, additional
DNS and LES runs are performed with a doubled tempera-
ture difference between the bottom and top boundaries.

A priori tests show that, in the same scenario (temperature
difference between the bottom and top boundaries) as in the
training process, the NN models are able to capture the local
surface shear stress and heat flux. Incorporating vertical
velocity into the NN models enhances both the modeled sur-
face shear stress and heat flux. Meanwhile, the inclusion of
the horizontal pressure gradient force yields a noticeable
improvement in surface shear stress but only marginally

enhances the heat flux. An analysis of the input features
shows that a strong horizontal velocity magnitude is positively
correlated with surface shear stress (analogous to the MOST
model) but is negatively correlated with heat flux (contrary to
the MOST model). A pronounced vertical temperature differ-
ence is positively correlated with both surface shear stress and
heat flux. Negative near-surface vertical velocities, or down-
drafts, drive the high-|U| and low-T air toward the surface.
This enhances the vertical wind shear and temperature gra-
dient near the surface, subsequently amplifying both surface
shear stress and heat flux. A significant horizontal pressure

FIG. 9. As in Fig. 3, but for the case PAFNN_1w1=p.

FIG. 10. The feature number vs the unexplained variation (i.e., 12 R2) for (a) t̃ and (b) Q̃.
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gradient force and its alignment with the horizontal velocity
both augment the near-surface vertical gradient of |U|,
thereby increasing surface shear stress. However, they exert
only a minimal impact on T and, consequently, the heat flux.

When trained with nondimensional parameters as data and with
more than three input features, the PAFNN models perform
comparably well to the FNN models in the scenarios of the
training process. Finally, all NN models exhibit shortcomings

FIG. 11. The distribution of (a),(c) t̃ and (b),(d) Q̃ in the LES runs with the MOST and newly implemented NN
models compared with that filtered from DNS. (c) and (d) use a logarithmic y axis to emphasize the small probabilities
in the tails. The mean values of t̃ and Q̃ are presented in the legend.

FIG. 12. The distributions of the first-grid-level primitive flow quantities that contribute to the inputs of the NNmodels obtained by each LES
run and filtered from DNS.
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when modeling the lower ranges of surface shear stress and heat
flux.

In the a posteriori tests simulating the same RBC scenario
used for the training, LES runs utilizing the newly imple-
mented NN models can achieve reasonable mean values of

surface shear stress and heat flux. Nevertheless, when includ-
ing only the same input as the MOST model, the NN models
exhibit unsmooth distributions near the peaks, revealing the
limitation owing to insufficient input features. The details in
the distributions of surface shear stress and heat flux are

FIG. 13. As in Fig. 11, but for the extrapolation runs (DT5 24 K).

FIG. 14. As in Fig. 12, but for the extrapolation runs (DT5 24 K).
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improved after including the influence of vertical velocity. In-
cluding the influence of pressure gradient force results in the
smoothest distribution of PDF, although the mean surface
shear stress and heat flux are underestimated. However, the
input features provided in LES are different from DNS, possi-
bly because of a greater dissipation from the SGS models and
advection schemes. The quality of the input features can affect
the performance of the wall models. For example, the limita-
tions of the NN models in modeling the lower ranges can be
worsened by the overestimated near-surface temperature dif-
ference in LES, and the lack of improvement after including
pressure gradient force may result from the underestimated
pressure gradient force in LES. Last, the a posteriori tests with
a more intense RBC scenario show that the FNN models are
incapable of extrapolating, whereas the PAFNN models dem-
onstrate the ability to do so.

This work contributes to advancing the understanding of
near-surface turbulence and applying ML techniques to the
development of NN-based wall models. Our analysis of fea-
ture importance highlights the negative correlation of the
near-surface vertical velocity with surface shear stress and
heat flux. The vertical velocity’s influence should exist and be
considered in the wall model of any flow where vertical veloc-
ity is nonnegligible. Furthermore, although vertical velocity
and near-surface temperature difference are not completely
independent in this study, they can be independent in flows
such as a tornado, where vertical velocity is driven by the
strong perturbation pressure gradient force (e.g., Wang et al.
2020, 2023). In terms of application, the PAFNN models have
successfully extrapolated to a more unstable flow, suggesting
their potential for use in other atmospheric conditions.

From the presented results, several directions for follow-up
research can be identified. To enhance the NN-based wall
models, a more systematic exploration of hyperparameters
for training is recommended, and testing different filter types
for DNS data, such as the Gaussian filter, is worth consider-
ing. Additionally, it remains to be explored whether the
means and standard deviations derived from the training data
are suitable for various flows. Regarding limitations, the NN
models do not currently account for surface roughness like
the MOST-based model. Also, the current PAFNN models
are not yet applicable to a stable boundary layer, because the
Rayleigh number is restricted to positive values when used in
logarithmic scale as an input. For application to atmospheric
flows, the temperature difference may need to be parameter-
ized for different hydrostatic regimes like MOST, and further
experiments are required to confirm its reliability. Finally, for
atmospheric applications, the proposed approach needs to be
expanded to include the development and testing of NN rep-
resentations for fluxes of moisture and other scalars.
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APPENDIX A

Flow Statistics

As introduced in section 2a, the focus of this study is on
near-surface turbulence. The domain aspect ratio with peri-
odic lateral boundaries is not ideal for examining the interior
structure of RBC. Keeping this in mind, the flow statistics of
the DNS runs and LES runs with two different wall models
(MOST and PAFNN_1w1=p) are provided for the readers’
information.

Figure A1 displays the time series of both the DNS and
LES runs. For the LES runs, only two representative wall
models are chosen to maintain clarity in the figures. The
surface sensible heat flux can represent the steadiness of
near-surface turbulence, while the resolved TKE can repre-
sent the steadiness of the interior of the domain. In each
case, the quasi-steady states are reached in approximately
1 min. The LES runs achieve the quasi-steady states slightly
faster than the DNS runs, due to the assumption of com-
plete mixing within the LES grid cells.

Figure A2 depicts horizontally averaged vertical profiles
of flow statistics for the two a posteriori tests, with DT of
12 and 24 K. Figures A2a and A2b reveal that the tempera-
ture profile in the interior of the flow is slightly tilted, com-
plicating the definition of boundary layer depth. The tilt in
the temperature profile appears to be related to periodic
lateral boundaries, because an additional LES run with no-
penetration lateral boundaries shows no tilt (not shown). If
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the boundary layer is examined by the temperature gradi-
ent, before the temperature gradient reaches 99% close to
the centerline value, the LES runs consist of only one grid
point in the boundary layer, while the DNS runs have 12
and 11 grid points for the DT 5 12 K and DT 5 24 K cases,
respectively. Figures A2c and A2d present the temperature
variance. DNS resolves a much higher temperature variance
near the surface. In the LES, the MOST model produces a
slightly larger temperature variance than the PAFNN model.
Figures A2e and A2f illustrate that the DNS runs contain

more than 10 grid points below the near-surface peaks of
TKE, whereas in the LES runs the local maxima of TKE are
at levels closest to the walls. It is important to note that the
resolved TKE in LES should be less than the total TKE rep-
resented by DNS. Therefore, LES with the MOST wall model
that yields resolved TKE similar to, or greater than, that of
DNS is indicative of an overpredicted sensible heat flux (i.e.,
excessive energy input). This is further confirmed in Figs. A2g
and A2h, where the resolved vertical velocity variance in LES
with the MOST wall model exceeds that predicted by DNS.

FIG. A1. Time series of (a),(b) domain-mean surface sensible heat flux and (c),(d) domain-mean resolved TKE in
the (a),(c) DT 5 12 K and (b),(d) DT 5 24 K cases. The black lines represent the DNS runs, green lines represent the
LES runs with the MOST wall model, and the red lines represent the LES runs with the PAFNN_1w wall model.
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FIG. A2. Temporally (after t5 2 min) and horizontally averaged vertical profiles of (a),(b) temperature, (c),(d) tempera-
ture variance, (e),(f) resolved TKE, and (g),(h) resolved vertical velocity variance in the (a),(c),(e),(g) DT 5 12 K and
(b),(d),(f),(h) DT 5 24 K cases. The black markers represent the DNS runs, green markers represent the LES runs with
the MOST wall model, and the red markers represent the LES runs with the PAFNN_1w wall model. Note that in (a) to
(c), many red markers overlap with the green ones.
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APPENDIX B

Training Details

Figure B1 illustrates the reduction in loss over epochs.
The loss is determined by the mean squared error (MSE)
for each batch, which is defined as

MSEbatch 5
1
n
∑
n

i51
(yi 2 ŷi)2, (B1)

where n is the batch size, yi is the true target value, and ŷi
is the prediction. Within an epoch, all batches are proc-
essed, so the MSE at each epoch in Fig. B1 represents the

weighted average of MSEbatch, with the batch sizes acting as
weights. The last batch may have a different size if the entire
dataset size is not completely divisible by the batch size.

Using the early stopping criterion, the training for each
case halts when the loss stops decreasing for 20 consecu-
tive epochs. As the number of features increases, the loss
can reach a lower minimum, and the required number of
epochs increases.

Figures B2 and B3 display the distributions of features
versus targets used in the training of both the FNN and
PAFNN models. Generally, features that are more corre-
lated with targets result in higher feature importance, as
seen in Figs. 3–5 and 7–9.

FIG. B1. The decrease in loss (MSE) across epochs for each case. Blue lines represent the loss for the training data, while orange lines indi-
cate the loss for the validation data.
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