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Abstract

Gyrochronology, the field of age dating stars using mainly their rotation periods and masses, is ideal for inferring
the ages of individual main-sequence stars. However, due to the lack of physical understanding of the complex
magnetic fields in stars, gyrochronology relies heavily on empirical calibrations that require consistent and reliable
stellar age measurements across a wide range of periods and masses. In this paper, we obtain a sample of consistent
ages using the gyro-kinematic age-dating method, a technique to calculate the kinematics ages of stars. Using a
Gaussian process model conditioned on ages from this sample (∼1–14 Gyr) and known clusters (0.67–3.8 Gyr), we
calibrate the first empirical gyrochronology relation that is capable of inferring ages for single, main-sequence stars
between 0.67 and 14 Gyr. Cross-validating and testing results suggest our model can infer cluster and asteroseismic
ages with an average uncertainty of just over 1 Gyr, and the inferred ages for wide binaries agree within 0.83 Gyr.
With this model, we obtain gyrochronology ages for ∼100,000 stars within 1.5 kpc of the Sun with period
measurements from Kepler and Zwicky Transient Facility and 384 unique planet host stars. A simple code is
provided to infer gyrochronology ages of stars with temperature and period measurements.

Unified Astronomy Thesaurus concepts: Stellar ages (1581); Stellar rotation (1629); Catalogs (205); Gaussian
Processes regression (1930); Main sequence stars (1000)

Supporting material: machine-readable tables

1. Introduction

Gyrochronology (Barnes 2003) is a method to age date stars
mainly using their rotation periods (Prot) and mass–temperature
(Teff) measurements. It is based on the principle that stars lose
angular momentum through magnetized winds and therefore,
spin-down with time (Kraft 1967). The simplest form of
gyrochronology relation is discovered by Skumanich (1972),
stating that Prot∝Age1/2.

Unfortunately, This simple picture is heavily challenged by
the emergence of large photometric surveys in the recent
decade such as Kepler (Borucki et al. 2010), K2 (Howell et al.
2014), Transiting Exoplanet Survey Satellite (TESS; Ricker
et al. 2015), MEarth (Berta et al. 2012), and Zwicky Transient
Facility (ZTF; IRSA 2022a, 2022b). These photometric surveys
provided valuable data to measure stellar rotation in mass
quantities (e.g., McQuillan et al. 2013, 2014; García et al.
2014; Santos et al. 2019, 2021; Gordon et al. 2021; Holcomb
et al. 2022; Lu et al. 2022; Claytor et al. 2024). These catalogs
show substructures in the density distribution of stars in
Prot–Teff space, suggesting not all stars spin-down “Skumanich
style.” Some of the discoveries include: the upper boundary or
pileup of solar-like stars with intermediate ages (Angus et al.
2015; Hall et al. 2021; David et al. 2022) that could be caused
by weakened magnetic braking (e.g., van Saders et al. 2016;
Metcalfe et al. 2022) or perhaps the transition of latitudinal
differential rotation (Tokuno et al. 2022); the intermediate
period gap in partially convective GKM dwarfs (McQuillan

et al. 2013; Gordon et al. 2021; Lu et al. 2022) most likely
caused by stalled spin-down of low-mass stars (Curtis et al.
2020; Spada & Lanzafame 2020); the bimodality of fast and
slow-rotating M dwarfs that is difficult to explain with
traditional models of angular-momentum loss (Irwin et al.
2011; Berta et al. 2012; Newton et al. 2017; Garraffo et al.
2018; Pass et al. 2022; Sarkar et al. 2023); and the abrupt
change in stellar spin-down across the fully convective
boundary (Lu et al. 2024; F. Chiti et al. 2024, in preparation).
Therefore, modern-day gyrochronology heavily relies on
empirical calibrations with benchmark stars such as those with
asteroseismic ages (e.g., Angus et al. 2015; Hall et al. 2021),
those in wide binaries (Otani et al. 2022; Pass et al. 2022;
Silva-Beyer et al. 2023; Gruner et al. 2023; F. Chiti et al. 2024,
in preparation), and open-cluster members (e.g., Agüeros et al.
2018; Curtis et al. 2020; Dungee et al. 2022; Bouma et al.
2023; Gaidos et al. 2023). Asteroseismic ages can be accurate
and precise to the 10% level with time series from Kepler.
Unfortunately, asteroseismic signal strength/frequency
decreases/increases dramatically as the mass of a star
decreases, and no signals have been detected for low-mass M
dwarfs. Open clusters are generally young as they typically
dissolve in the Milky Way on a timescale of ∼200Myr. Much
effort has been put into calibrating gyrochronology with wide
binaries; however, no large catalog of consistent ages for wide
binary stars currently exists. As a result, none of the above
benchmark stars can provide a consistent sample of reliable
ages for stars of vastly different masses and periods that can be
used to calibrate empirical gyrochronology relations across a
wide range of ages.
Recently, gyro-kinematic age-dating (Angus et al. 2020; Lu

et al. 2021), a method to obtain kinematic ages from stars with
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similar Prot–Teff–MG–Rossby Number (Ro; Prot divided by the
convective turnover time), provide an opportunity to obtain a
consistent benchmark sample for calibrating a fully empirical
gyrochronology relation. One discovery using the ages
obtained from this method is the fundamentally different
spin-down law for fully and partially convective stars (Lu et al.
2024), as a result, it is important to obtain gyrochronology ages
separately for partially and fully convective stars. By combin-
ing period measurements from Kepler and ZTF, we obtain
gyro-kinematic ages for ∼50,000 stars and present the first
fully empirical gyrochronology relation that can infer ages for
single main-sequence stars of age 0.67–14 Gyr. In Section 2,
we describe the data set, the method used to calibrate this
gyrochronology relation, and the cross-validation test. In
Section 3, we present the testing set and a catalog of
∼100,000 stars with gyrochronology ages. In Section 4, we
discuss the limitations, including the effect of metallicity, and
future improvements.

2. Data and Method

2.1. Data

2.1.1. Rotation Period (Prot), Rossby Number (Ro), Temperature (Teff),
Absolute G Magnitude (MG), and Radial Velocity (RV) Data

We dereddened GBP−GRP, MG measurements from Gaia
DR3 using dustmap (Green et al. 2018; Green 2018). The
temperature is then calculated from GBP−GRP using a
polynomial fit taken from Curtis et al. (2020). Ro is calculated
as Ro= Prot/τc, in which τc is the convective turnover time
that depends only on the temperature of the star (V. See et al.
2024, in preparation).

ZTF is a ground-based optical time-domain survey that uses
the Palomar 48 inch Schmidt telescope with a wide-field
camera that has a 47 deg2 field of view (Bellm et al. 2019).
With more than three years of observation data, ZTF can be
used to obtain long rotation periods for faint, low-mass stars,
supplementing periods measured with Kepler and TESS.
Obtaining rotation periods using ground-based photometry
data is more likely to be subjected to period systematics (e.g.,
the 1 day systematic and the orbital period of the Moon) due to
the long cadence and uneven sampling of the light curves.
Ground-based light curves also suffer from Lomb-Scargle
“failure modes,” which can scatter short period systematic (e.g.,
the 1 day systematic) to long periods (>10 days). Lu et al.
(2022) has found a series of vetting criteria that can effectively
select reliable rotation periods. In this paper, we obtained
rotation periods for ZTF stars with Gaia G band magnitude
between 13–18 and GBP−GRP< 1 using the method described
in Lu et al. (2022). For ZTF stars with GBP−GRP > 1, we
adapted the rotation period measurements (before vetting) from
Lu et al. (2022). From the full sample, we selected stars with
agreeing periods from at least two seasons. By comparing 1270
overlapping period measurements from ZTF and Kepler
(Santos et al. 2021), we found an 81% agreement within
10% for stars with ZTF period measurements >4 days (see
Figure 1). As a result, we rejected stars with ZTF period
measurements <4 days. To roughly select dwarf stars, we also
excluded stars with MG < 4.2 mag. This yielded ∼55,000 ZTF
stars with RV measurements from Gaia DR3 (Gaia Collabora-
tion et al. 2021). Combining ∼30,000 Kepler stars with MG

> 4.2 mag from Lu et al. (2021) with RV measurements from
Gaia DR3, LAMOST (Cui et al. 2012), and inferred RV from

Angus et al. (2022), we obtained a total of ∼85,000 stars with
RV and relatively reliable period measurements (see Figure 2
top plot).
We then excluded equal-mass binaries by fitting a sixth-

order polynomial ( f6(Teff)) to the entire sample and only
selecting stars with MG> f6(Teff)− 0.4 (shifted by eye). We
also excluded stars with Ro> 10. This left us with a final
sample of 68,378 stars (ZTF: 49,928; Kepler: 18,450). The
period distribution for the final sample is shown in the bottom
plot of Figure 2. The overall period distribution agrees with that
of McQuillan et al. (2014) and Santos et al. (2021), except for
an overdensity at ∼4000 K with Prot< 10 days. Since we did
not impose conservative vetting criteria, this overdensity is
most likely caused by systematic. We also see a systematic
overdensity at ∼30 days, this is a known systematic in ZTF,
which is caused by the orbit of the moon (Lu et al. 2022).

2.1.2. Cluster Data

Period measurements for the 4 Gyr open cluster, M67, are
taken from Dungee et al. (2022). The rest of the cluster data is
taken from Curtis et al. (2020), which includes Praesepe (670
Myr; Douglas et al. 2019), Hyades (730 Myr; Douglas et al.
2019), NGC 6811 (1 Gyr; Curtis et al. 2019), NGC 6819
(2.5 Gyr; Meibom et al. 2015), and Ruprecht 147 (2.7 Gyr;
Curtis et al. 2020). We then performed a 3σ clipping to exclude
stars that had not converged onto the slow-rotating sequence.
The final cluster sample used in training the model included
660 stars ranging from 670Myr to 4 Gyr (see Figure 3). This
selection assumes the distribution around the slow-rotating
sequence to be Gaussian, which might not be true, especially
for younger clusters (Lanzafame & Spada 2015). A more
rigorous selection of the slow-rotating sequence could
potentially improve the model in the future.

2.2. Methods

2.2.1. Gyro-kinematic Age Data

We determined gyro-kinematic ages following the procedure
described in Lu et al. (2021), where the vertical velocity
dispersion for each star is calculated from vertical velocities of
stars that are similar in Prot, Teff, MG, and Ro to the targeted
star. We then converted the velocity dispersion measurements
into stellar ages using an age-velocity-dispersion relation in Yu
& Liu (2018). The vertical velocities are calculated from Gaia
DR3 proper motions (Gaia Collaboration et al. 2021) and RVs
from various sources (data sample see Section 2.1.1) by
transforming from the solar system barycentric ICRS reference
frame to Galactocentric Cartesian and cylindrical coordinates
using astropy (Astropy Collaboration et al. 2013; Price-
Whelan et al. 2018). The bin size to select similar stars to the
targeted star in order to calculate gyro-kinematic ages was [Teff,
log 10(Prot), Ro, MG]= [177.8 K, 0.15 dex, 0.15 dex, 0.2 mag].
This bin size is optimized by performing a grid search in the
binning parameters (Teff, log 10(Prot), Ro, MG) and minimizing
the total χ2 in predicting individual cluster ages >1.5 Gyr with
MG> 4.2 and Ro< 2 (data sample see Section 2.1.2). We did
not use clusters with age <1.5 Gyr in this process as gyro-
kinematic ages for stars <1.5 Gyr is heavily contaminated by
binaries, and will overestimate cluster ages and produce
unreliable results (See Figures 4 or A1 in Lu et al. 2021).
Figure 4 shows the final optimization result.

2

The Astronomical Journal, 167:159 (15pp), 2024 April Lu et al.



We excluded stars with gyro-kinematic age <1.5 Gyr or
>14 Gyr as it is possible that a significant number of the
youngest stars have not yet converged onto the slow-rotating
sequence, and those that are very old are likely outliers. The
sample of 46,362 stars with corrected gyro-kinematic ages
between 1.5 and 14 Gyr and cluster ages between 0.67 and
4 Gyr are shown in Figure 5 top plot.

2.2.2. A Fully Empirical Gyrochronology Relation with Gaussian
Process

Gaussian processes (GPs) are a generic supervised learning
method designed to solve regression or classification problems.
It has been applied frequently in time-domain astronomy (e.g.,
Foreman-Mackey et al. 2017; Angus et al. 2018; Gilbertson
et al. 2020) as it can model the covariance between the noise in
the data. Typically, a GP regressor is composed of a mean
function (m; Equation (1)), which is ideally physically
motivated, and a covariance function (k; Equation (2)) that
captures the details that the mean function has missed. For a
more detailed review of GP and its applications in astronomy,
we direct the readers to Aigrain & Foreman-Mackey (2023). In
this paper, we used the PYTHON package tinygp (Foreman-
Mackey 2023) to construct our GP model.

Since there is an abrupt change in the spin-down law across
the fully convective boundary (Lu et al. 2024), we fitted
separate GP relations to the partially and fully convective stars.
The division was made using the gap discovered in the color–
magnitude diagram (CMD). This gap is an underdensity in the
CMD near the fully convective boundary and can be
approximated by a line connecting [MG, GBP−GRP]
∼[10.09 mag, 2.35 mag] and [MG∼ , GBP−GRP]
∼[10.24 mag, 2.55 mag] (Jao et al. 2018). It is thought to be
caused by structural instabilities due to the nonequilibrium
fusion of 3He (van Saders & Pinsonneault 2012; Baraffe &
Chabrier 2018; MacDonald & Gizis 2018; Feiden et al. 2021).

As fitting a multidimensional GP requires a large amount of
computational resources, and it is not possible to fit to all
∼46,000 stars with gyro-kinematic ages within a reasonable

Figure 1. One-to-one comparison between 1270 stars with period measured
from Kepler (Santos et al. 2021) and ZTF (Lu et al. 2022, This work). We
found a 81% agreement within 10% for stars with ZTF period measurements
>4 days.

Figure 2. Top: MG–Teff for the full sample of ∼85,000 dwarf stars with period
measurements from ZTF and Kepler (García et al. 2014; McQuillan et al. 2014;
Santos et al. 2019; Lu et al. 2022, this work). The red dashed line shows the
shifted sixth-order polynomial ( f6(Teff)) fitted to the entire sample that separates
the equal-mass binaries from the rest of the sample. Middle: similar to the top
plot but after excluding equal-mass binaries (a total of 68,378 dwarf stars).
Bottom: period distribution of the 68,378 dwarf stars.
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amount of time, we constructed the final training sample by
dividing the stars with gyro-kinematic ages into bins with size
[Teff, log10(Prot)] ∼[50 K, log10(1 Days)] and calculating the
median age in each bin if more than 10 stars were included.
The fit was done separately for fully and partially convective
stars as some of them overlap in Teff–Prot space. The
temperature bin size is chosen based on the estimated
uncertainty in temperature measurements of ∼50 K, and the
period bin size is chosen so that we can obtain enough training
samples for the GP. The uncertainties associated with the
training sample are measured with the standard deviation on the
gyro-kinematic ages for stars in each bin. We then added all the
individual cluster stars to the training sample and inflated their
age uncertainty to be 0.5 Gyr to ensure a smooth GP fit. We
found that using the true cluster age uncertainties reported in
the literature, the GP overfits the cluster data. The training
sample for the partially (circles; 1109 data points) and fully
convective (crosses; 96 data points) stars colored by the median

gyro-kinematic or the cluster ages are shown in Figure 5
bottom plot.
Classical gyrochronology relations assume the age of a star

can be approximated with a separable function in temperature
and period, and we constructed our mean function motivated
by this relation. We formulated the mean function to be a
double broken power law in Prot and Tn for partially convective
stars to capture the sudden increase of rotation periods of M
dwarfs at ∼3500 K and the plateauing of the rotation periods
for G/K stars at ∼5000 K. We define Tn as the normalized
temperature given by Tn:=(7000− Teff)/(7000− Tbreak) for the
partially convective stars, and Tn:=(3500− Teff)/500 for the
fully convective stars, in which Tbreak is the temperature at
which the temperature power law changes. For fully convective
stars, we used a single power law in Tn and a double broken
power law in rotation period, P or Prot, since the temperature
range for the fully convective stars is small.

Figure 3. Full cluster sample (small points) and the final 660 cluster stars (large
points) used in training. The cluster ages range from 670 Myr to 4 Gyr, and the
final training set is selected with 3σ clipping to exclude fast-rotating stars that
have not converged onto the slow-rotating sequence.

Figure 4. Optimization result comparing individual cluster ages >1.5 Gyr
with MG > 4.2 and Ro < 2 (Curtis et al. 2020; Dungee et al. 2022) and gyro-
kinematic ages (this work). The red squares show the mean gyro-kinematic
ages for individual clusters.

Figure 5. Top: 46,362 stars with corrected gyro-kinematic ages between 1.5
and 14 Gyr (background histogram) and individual cluster stars (circles) with
literature ages between 0.67 and 4 Gyr. Bottom: GP training set for the partially
(circles; 1109 data points) and fully convective (crosses; 96 data points) stars
colored by the median gyro-kinematic ages in each [Teff, log10(Prot)] ∼[50 K,
log10(1 days)] bin or the cluster ages.
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In the equations, the mean function (in units of Gyr) is
defined to be:

m P T a f P g Tlog , log , 1n10 eff 10* *=( ) ( ) ( ) ( )

where the broken power law in rotation, f Plog10( ), is defined
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f P S P w P

S P w P P

log log ,

log , ,

h
P

P
d

l
P

P
d d d

10
log

10

log
10

break

P

P P P

1

2 1 2

=

+ -

( ) ( )

( )

where Pbreak is the rotation period at which the rotation power
law changes. S P wlog ,h

P
P

log
10( ) and S P wlog ,l

P
P

log
10( ) are the

smoothing functions in period space, defined to be:

S P w

S P w

log ,

log ,

.

l
P

P

h
P

P

log
10

1

1 exp log P log P w

log
10

1

1 exp log P log P w

P

P

10
break

10

10
break

10

=

=

+ - -

+ - - +

( )

( )
( ( ( ) ))

( ( ( ) ))

/

/

The broken power law in temperature, g(Tn), is defined to be:
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The variables and their initial values are defined in Table 1.
The smoothing functions (e.g., Sh

Plog and Sh
T) can be viewed as

switches for the broken power laws. wP and wT dictate how
smooth the broken power laws are (e.g., wP= 0 or wT= 0
indicate a sharp transition between the power laws). Since the
fully convective stars only span a small range in temperature,
we used a single power law, so that g T T cn n T

dT
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For the covariance function of the GP model (in units

of Gyr), we used a 2D uncorrelated squared exponential kernel,
meaning we assume no correlation between the temperature
and period measurements. The function is defined to be:
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where Teff, Teff¢ are two different data points in temperature
space (same for Plog10 rot( ) and Plog10 rot ¢( ) ). lT and lP determine
the length scale of the correlation between temperature
measurements and period measurements, respectively. σ2

determines the strength of the correlation. In other words, the
covariance function determines how the response at one
temperature and period point is affected by responses at other
temperature and period points.

The initial values for the parameters used in the mean
function are determined by trial and error until the mean
function can represent the flaring up in rotation periods of the
cluster sample around 4000 K. These initialized and optimized
values are shown in Table 1. Figure 6 shows the mean function

(background) calculated with the initial values and the cluster
members overlayed on top (red points).
We built the GP model using tinygp (Foreman-

Mackey 2023). tinygp is a PYTHON library for building
GP models. It is built on jax (Bradbury et al. 2018), which
supports automatic differentiation that enables efficient model
training. We first optimized the parameters by maximizing the
log-likelihood function, conditioned on the data described at
the beginning of this section. The optimized parameters were
then used as initial inputs for the Markov chain Monte Carlo
(MCMC) model to obtain the true distributions for the
parameters. The priors are Gaussians centered around the
optimized parameters with a width described in Table 1. We
implemented the MCMC model in numpyro (Phan et al.
2019) for partially and fully convective stars separately. The
best-fit parameters for partially and fully convective stars are
shown in Table 1, and the corner (Foreman-Mackey 2016)
plots are shown in Figures 7 and 8 for partially and fully
convective stars, respectively.

2.2.3. Cross Validation

To ensure our model did not overfit the data, we performed
the cross-validation test by first excluding a random 20% of the
gyro-kinematic ages sample and optimized the model following
the procedure described in the last section. The ages of these
stars were then predicted using the trained model. We also
carried out a leave-one-out cross-validation test for the cluster
sample by excluding a single cluster at a time, retraining the
model, and predicting the age of that cluster with the trained
model. The cross-validation results are shown in Figure 9. The
x-error bars for the cluster sample are taken from the literature,
and the y-error bars are calculated by taking the standard
deviation of the predicted ages of all the cluster members. The
average standard deviation (y-error bars) for the cluster cross-
validation result is 0.62 Gyr. The bias and variance for the
cluster sample are −0.24 Gyr and 0.43 Gyr, respectively, and
those for the gyro-kinematic ages are 0.37 Gyr and 0.85 Gyr,
respectively. The cross-validation results suggest that our
model is able to predict ages within ∼1 Gyr for main-sequence
stars with reliable Prot, GBP−GRP, and MG measurements.
However, there exists a systematic at ∼1 Gyr in predicting
gyro-kinematic ages, this systematic is most likely caused by
the fact that the cluster sample between 0.67 and 1 Gyr
occupies similar Prot–Teff space (see Figure 3), creating
degeneracy in age predictions for stars younger than 1 Gyr.
As a result, age predictions for stars < 1 Gyr might be biased.
Stars around this age also occupies the Prot–Teff space where
stars are expected to go through stalled spin-down (Curtis et al.
2020). Looking only at stars > 5000 K greatly reduces the
pileup.

3. Result

Figure 10 shows the modeled isochrones for the cluster
sample (left column) and the isochrones for 0.7–10 Gyr with
1.55 Gyr separations (right column) overlaid on the training
sample of stars with gyro-kinematic ages that are partially
convective (top row) and fully convective (bottom row). Since,
unlike most gyrochronology models, the model produced in
this work infers ages from Prot and Teff instead of predicting
rotation periods from age, as a result, constructing isochrone is
not straightforward as we cannot input age as a direct input.
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The isochrones were calculated by first randomly drawing 100
model parameters from the MCMC fit and calculating the ages
using these 100 models for the grid points in Teff–log10(Prot)

space, with the size of the grids to be [Teff, log10(Prot)]= [52 K,
log10(1.1 days)]. We then selected all (Prot, Teff) points that had
predicted ages within 5% of the desired age. The running
median (solid lines) and standard deviation (shaded area) of
these grid points were finally calculated to be the model
prediction and model uncertainty, respectively. Overall, our
model traces the cluster sample well. However, the model for
fully convective stars cannot reproduce the one fully
convective star in the open-cluster M67 (green point). This
could be caused by the “edge effect” of the GP model or the
gyro-kinematic ages used for training. In detail, since GPs
cannot extrapolate, they tend adapt values that are close to the
mean function outside of the range of the training data.
Moreover, since obtaining gyro-kinematic ages requires
binning stars in similar Prot, Teff, and MG, they are less reliable
at the edges because there are fewer stars in those bins. In
addition, since fully convective stars could spin-down faster
than partially convective stars (e.g., Lu et al. 2024), the bin size
used to calculate gyro-kinematic ages could induce blurring as
it will include stars of different ages. Interestingly, there are
stars with ages that match the M67 open-cluster age in the
background gyro-kinematic age sample. This suggests some
stars in this temperature and period range could be mis-
classified as fully convective stars. However, looking at these
stars in the CMD, they are far away from the gap that is

Table 1
Gaussian Processes Gyrochronology Model Parameter Fits

Parameters for Mean
Function Descriptions

Initial
Value

Gaussian Prior
Width

Best-fit Value (Partially Con-
vective Stars)

Best-fit Value (Fully Con-
vective Stars)

a Amplitude of the mean function 0.3 40 118.969 35.128
36.161
- 0.774 0.008

0.008
-

dP
1 Power index for stars with Prot

> Prot
break

1 0.5 0.405 0.118
0.1117- - 0.376 0.004

0.004
-

dP
2 Power index for stars with Prot

< Prot
break

0.8 0.2 1.822 0.112
0.122
- 1.811 0.018

0.018
-

c Shift in the temperature scale −0.5 0.2 0.399 0.105
0.097- - 0.223 0.002

0.002- -

dT
1 Power index for stars with Teff

> Tbreak
−1 0.5 1.646 0.478

0.486
- 0.687 0.007

0.007- -

dT
2 Power index for stars with Teff

< Tbreak
−10 6 17.779 3.545

3.043- - L

Pbreak Prot at which the period power-
law breaks

30 30 100.836 15.663
21.173
- 73.322 0.700

0.727
-

Tbreak Teff at which the temperature
power-law breaks

4000 500 3713.699 49.993
53.318
- L

wT Smoothness of the temperature
power-law transition

0.1 0.01 0.062 0.007
0.008
- L

wP Smoothness of the period
power-law transition

0.1 0.01 0.111 0.010
0.010
- 0.068 0.001

0.001
-

Parameters for the kernel
function

Descriptions Initial
value

Gaussian prior
width

Best-fit value (partially con-
vective stars)

Best-fit value (fully con-
vective stars)

ln(σ) log of the kernel amplitude 0 0.5 2.070 0.260
0.282- - 1.004 0.099

0.102- -

ln(lT) log of the scaling in temperature 1 1 5.619 0.223
0.214
- 6.532 0.875

0.909
-

ln(l Plog ) log of the scaling in Plog10 rot( ) 1 1 2.573 0.236
0.254- - 1.001 0.097

0.098- -

Note. Initial values for maximizing the log-likelihood function, Gaussian prior width used in the MCMC fits, and final values for the mean function (Equation (1); in
unit of Gyr) and GP squared exponential kernel (Equation (2) in unit of Gyr) parameters after the MCMC fitting.

Figure 6. Age predicted from the mean function calculated using the initial
values shown in Table 1. The red points show the cluster star sample. The mean
function is flexible enough to capture the cluster shapes.
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typically used to distinguish partial and fully convective stars
(van Saders & Pinsonneault 2012; Jao et al. 2018). One other
possibility is stars in that temperature and period range can
have multiple ages. Further study of the data and fully
convective stars is needed to disentangle these scenarios.

3.1. Predicting Ages for the LEGACY Dwarfs

To test our model, we predicted ages for 51 LEGACY dwarf
stars with asteroseismic ages derived from Kepler (Silva
Aguirre et al. 2017), Prot, Teff, and MG data available from
Santos et al. (2021). Figure 11 shows the one-to-one

comparison between the LEGACY asteroseismic ages and
the gyrochronology ages from our model colored by Teff (left;
Curtis et al. 2020) and [Fe/H] (right; Silva Aguirre et al. 2017).
The uncertainties for the asteroseismic ages were calculated by
taking the standard deviation of the age predictions from
various pipelines from Silva Aguirre et al. (2017). The ages and
uncertainties for the gyrochronology ages were calculated by
first calculating the ages for each star using 100 realizations of
the model where the parameters are taken randomly from the
MCMC fit. The 16th, 50th, and 84th percentile of the age
predictions were then used to calculate the lower age limit, age,

Figure 7. Parameter posterior distributions for the mean function of the Gaussian Process model for the partially convective stars after the MCMC has converged. The
parameter descriptions are shown in Table 1.
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and higher age limit for each star. The crosses show the stars
with MG< 4.2 mag, which are outside of our training set. The
bias and median absolute deviation for the entire testing sample
are −0.07 Gyr and 1.35 Gyr, respectively. This test suggests
our model can estimate ages for single field dwarf stars with
uncertainties just over 1 Gyr.

Since our model did not take into account the effects of
metallicity, we investigated this by plotting the absolute
difference between the LEGACY and gyrochronology age
against the metallicity of the star (Figure 12 left plot). There is
an obvious metallicity trend for stars with [Fe/H] < 0.0 dex,
suggesting future work of incorporating metallicity into this

model is necessary (also see Figure 9 in Claytor et al. 2020 for
how metallicity can affect age determination using gyrochro-
nology). However, metallicity measurements that currently
exist for low-mass stars are either limited in sample size or
inaccurate and imprecise due to the presence of starspots and
molecular lines in the spectra (e.g., Allard et al. 2011; Cao &
Pinsonneault 2022). As a result, we did not attempt to include
training with metallicity in this work.
As mentioned in the introduction, stars likely stop spinning

down due to weakened magnetic braking after reaching a
critical Rossby number, Rocrit (van Saders et al. 2016).
Recently, Saunders et al. (2024) fitted a magnetic braking

Figure 8. Same as Figure 7 but for the fully convective stars.
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model to asteroseismic and cluster data and concluded that
Rocrit/Roe=0.91± 0.03, which Rocrit∼ 1.866 using MESA
(Paxton et al. 2019). Indeed, the gyrochronology ages show
large deviations from the asteroseismic ages for stars with
Ro> 1.866 (Figure 12 right plot). This suggests gyrochronol-
ogy models should only be used to predict ages for stars with
Ro< 1.866.

3.2. Predicting Ages for Wide Binary Dwarfs

To further test the model, we predicted gyrochronology ages
for stars that are in wide binaries. To construct the testing
sample, we selected binary pairs from Gruner et al. (2023)
where both the primary and secondary stars are dwarfs and
have converged onto the slow-rotating sequence. We also
included new wide binary pairs from El-Badry & Rix (2018)
where new rotation periods are measured from ZTF (Lu et al.
2022; this work). We then excluded stars with Rossby
number > 1.866 as those stars are likely going through
weakened magnetic braking (e.g., van Saders et al. 2016;
Saunders et al. 2024). We also excluded stars with
MG< 4.2 mag as they lay outside of the model training
parameter space. This left us with 663 wide binary pairs with
period measurements for both stars. Using the same method
described in Section 3.1, we inferred gyrochronology ages for
stars in these wide binary pairs individually.

Figure 13 presents the testing result. The left plot shows the
gyrochronology ages for the secondary stars plotted against
those for the primary stars, colored by the differences in the
temperature measurements between the primary and secondary
stars in each wide binary pair. The solid red line shows the one-
to-one line. Since wide binaries are believed to coevolve, age
predictions for the secondary and primary should lay on or
close to the one-to-one line. The average age difference for our
testing sample of wide binary pairs is 0.83 Gyr, with no strong
correlation with the differences in temperature of the primary
and secondary. This suggests our model is reliable and self
consistent. However, it is also clear that the model uncertainty
is not enough to explain the discrepancy between the ages of
the primary and those of the secondary.

The right plot of Figure 13 shows the period and temperature
measurements for the wide binary pairs plotted on top of those
from Kepler (McQuillan et al. 2014; Santos et al. 2021). The
points are colored by the fractional difference between the
primary and secondary age measurements. Interestingly, stars
with large fractional differences in age lie in the intermediate
period gap (Teff between 4000–5000 K and Plog10 rot( ) ∼1.1;
Curtis et al. 2020), or around where stars are believed to go
through weakened magnetic braking (Teff between
5000–6000 K and Plog10 rot( ) ∼ 1.25; van Saders et al. 2016),
or near the fully convective boundary at temperature ∼3500 K.
The large fractional differences could be caused by the model
limitation (e.g., not enough training data for stars in or near the
intermediate period gap and that isochrone lines are close
together for higher temperature stars in Prot–Teff space), or
limitation in the gyrochronology age-dating method itself (e.g.,
gyrochronology could not predict ages for high-temperature
stars, those in the gap, or stars near the fully convective
boundary precisely). Further investigation needs to be done to
fully understand these possibilities.

3.3. Gyrochronology Ages for ∼100,000 Stars

With this new gyrochronology relation4, we predicted ages
for ∼100,000 stars from Kepler (McQuillan et al. 2014; Santos
et al. 2021) and ZTF (Lu et al. 2022; this work) with period
measurements, in which the ZTF periods were vetted using a
random forest (RF) regressor trained on Gaia bp-rp color,
absolute G magnitude, Renormalised Unit Weight Error, and
parallax. We did this by first training the RF on the ZTF
periods that are highly vetted (Lu et al. 2022). We then used the
RF to predict the periods of the ZTF stars with measured
periods described in Section 2.1. Finally, we selected period
measurements that agree within 10% of the predicted periods,
which left us with 58,462 vetted ZTF periods with bp-rp color
>∼ 1.3 mag and period >∼ 10 days. We excluded stars with
Ro> 1.866, this left us with a final sample of 94,064 stars with
periods from Kepler and ZTF. We calculated the ages by using
100 realizations of the model with parameters taken randomly
from the MCMC model after the chains had converged (same
as what was done for the cluster isochrones in Prot–Teff space
and stars with asteroseismic ages). We also tested how the
measurement uncertainty in temperature and period could
affect the ages by perturbing the measurements by 50 K and
10%*Prot, respectively, assuming Gaussian errors. We then
recalculated the ages using these perturbed values. We
performed this 50 times for each star and found that the age
uncertainty caused by the measurement error was negligible
compared to the uncertainty in the model parameters. Table 2
shows the column description for this final catalog.
Figure 14 shows the histograms for stars with inferred

gyrochronology ages using the calibrated relation from this
work. The black histogram shows the age distribution for the
full sample of ∼100,000 stars, the red histogram shows those
with Teff< 4000 K, and the blue histogram shows those with
Teff� 4000 K. The black dotted lines show the recent
enhancement of star-formation rate (SFR) shown in Ruiz-Lara
et al. (2020; 5.7, 1.9, and 1.0 Gyr). The peaks in the histograms
can correspond to the enhancements of the star-formation rate
in the Milky Way, changes in stellar spin-down, or systematic
bias. For example, the tail of the distribution at 5.7 Gyr could

Figure 9. Cross-validation results for the 20% gyro-kinematic age sample
(black histogram) and individual clusters (red points). The systematic at 1 Gyr
indicates existing bias in predicting stars younger than 1 Gyr old.

4 A simple package is available on http://github.com/lyx12311/GPgyro.
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indicate time of SFR enhancement 5.7 Gyr ago. This only
shows up for stars <4000 K because most higher temperature
stars over ∼4 Gyr likely go through weakened magnetic
braking, thus will not indicate enhancements in SFR beyond
∼4 Gyr. However, it is still possibly that this tail in the low
temperature end is caused by other unknown systematic.
Looking at peaks in the histogram, some likely correspond to
limitations in the gyrochronology model. For example, the
peak around 2.5 Gyr exists only in stars �4000 K. This peak
most likely corresponds to the stall in spin-down for partially
convective stars (e.g., Curtis et al. 2020) that do not exist for
fully convective stars (Teff< 3500 K; Lu et al. 2022). The
stalling is thought to happen because the surface angular
momentum loss is replenished by the core while the core and

the envelope start recoupling. Depending on the recoupling
timescale, stars that span a range of ages will have very similar
rotation period measurements, meaning they will have the same
inferred age based on rotation and temperature alone. Future
work should include other age indicators (e.g., stellar activity)
to break this degeneracy.

3.4. Gyrochronology Ages for 384 Unique Planet-host Stars

To infer gyrochronology ages for confirmed exoplanet host
stars, we downloaded data from the NASA Exoplanet
Archive.5 We combined stars with period measurements
publicly available from the NASA Exoplanet Archive and

Figure 10. Running median (solid lines) and the standard deviation (shaded region) of 100 realizations of the GP models from this work for partially convective (top
row) and fully convective (bottom row) stars. The models are overlaid on the full sample with gyro-kinematic ages. The Jao’s gap is used to distinguish between
partially convective and fully convective stars. left column: modeled isochrones (solid lines; the shaded area representing the model uncertainty) for each cluster
(points). Right column: Isochrones between 0.7 and 10 Gyr with a 1.55 Gyr separation colored by age.

5 https://exoplanetarchive.ipac.caltech.edu as of 2023 September 26.
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from this work and inferred ages with 100 model realizations as
done in the rest of this paper. We excluded stars with age
prediction <0.67 Gyr and Ro> 1.866, which left us with 384
unique planet-host stars. Within these stars, 338 have new
rotation period measurements from Lu et al. (2022) and this
work. Figure 15 shows the age distribution of these stars, and
the column description for this catalog is shown in Table 3.

4. Limitations and Future Work

Some possible limitations and biases of this model include:

1. This model should only be applied to stars with
MG> 4.2mag, Prot< 200 days, ages > 0.67 Gyr (or
stars with Prot and Teff measurements above those of the

members of the Praesepe), Ro< 1.866, and
3000 K< Teff< 7000 K. Inferring age for stars outside
of this parameter space can lead to incorrect ages as the
model is fully empirical, and stars with Ro> 1.866
experienced weakened magnetic braking and stopped
spinning down. However, Figure 11 suggests the model
still has strong predicting power for stars with
MG> 3.5 mag.

2. A systematic exist at ∼1 Gyr for stars <5000 K. The
cluster sample suggests the isochrones for stars between
0.67 Gyr and 1 Gyr (or even to 2.5 Gyr for low-mass stars
due to stalling Curtis et al. 2020) in Prot–Teff space have
significant overlaps (see Figure 4); as a result, stars with a

Figure 11. Testing result for 51 LEGACY stars with asteroseismic ages (not included in our training sample) colored by Teff (left; this work) and [Fe/H] (right; Silva
Aguirre et al. 2017). Stars with MG < 4.2 mag (outside of the training sample) are shown in crosses. This result suggests our model can estimate ages for single dwarf
field stars with uncertainties just over 1 Gyr.

Figure 12. Absolute differences between the LEGACY ages and gyrochronology ages as a function of metallicity (left) and Rossby number (right). The red dotted
lines show where the difference is 0. The uncertainties are calculated assuming Gaussian uncertainty ( 2

LEGACY
2

gyro
2s s s= + ). There exists an obvious metallicity

trend for stars with [Fe/H] < 0.0 dex, in which the ages can deviate up to ∼2 Gyr as metallicity goes down to ∼−0.5 dex. Age prediction significantly worsens for
stars with Rossby number >Rocrit, which is ∼1.866 according to Saunders et al. (2024).
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range of ages but similar Prot and Teff measurements will
have similar age inference of around 1 Gyr.

3. Inferring ages ∼2.5 Gyr for partially convective stars
could be inaccurate. Partially convective stars ∼2.5 Gyr
start experiencing a stalled in their surface spin-down,
most likely due to core-envelope decoupling (Curtis et al.
2020). As a result, stars with a range of ages can overlap
in Prot–Teff space and create prediction biases at
∼2.5 Gyr.

4. No metallicity information is taken into account as
reliable metallicity measurements for our sample are not
yet available. Theory and observations strongly suggest a
star with higher metallicity is likely to have a deeper
convective zone and thus, spin-down faster (e.g., van
Saders & Pinsonneault 2013; Karoff et al. 2018; Amard
et al. 2019; Amard & Matt 2020). As a result, strong bias
can exist in age estimations using gyrochronology if
assuming no metallicity variations exist in the sample

(e.g., Claytor et al. 2020). This means, all empirical
gyrochornology relations available in the literature,
calibrated on clusters or asteroseismic data, suffers from
this bias. Figure 12 shows the absolute differences
between the LEGACY ages and gyrochronology ages
(ΔAge) as a function of metallicity. An obvious trend is
observed that gyrochronology ages for lower metallicity
stars deviate more from the asteroseismic ages.

Figure 13. Age predictions for 663 wide binary pairs (403 from Gruner et al. 2023 and new 254 pairs after cross matched with El-Badry & Rix 2018). Left: age
prediction for the secondary vs. that for the primary colored by the difference in their temperature. The ages of wide binary pairs agree within 0.83 Gyr on average and
there is no strong correlation between the temperature difference between the secondary and primary stars and the average agreement in age. Right: Plog10 rot( ) and Teff
of the wide binary pairs plotted over those from Kepler (McQuillan et al. 2014; Santos et al. 2021), colored by the fractional age difference between the primary and
secondary stars. Stars in the intermediate period gap (Teff between 4000–5000 K and Plog10 rot( ) ∼1.1; Curtis et al. 2020), around where stars are believed to go through
weakened magnetic braking (Teff between 5000–6000 K and Plog10 rot( ) ∼ 1.25; van Saders et al. 2016), and stars near the fully convective boundary (∼3500 K) have
large fractional differences in age.

Table 2
Catalog Description of the Gyrochronology Ages for ∼100,000 Stars Derived

from this Work

Column Unit Description

source_id L Gaia DR3 source ID
KIC L Kepler input catalog ID if available
Prot days measured period
bprp0 mag dereddened GBP − GRP

absGMag mag absolute magnitude from Gaia DR3
Teff K temperature derived from bprp
Age Gyr gyrochronology age
E_Age Gyr gyrochronology age upper uncertainty
e_Age Gyr gyrochronology age lower uncertainty

(This table is available in its entirety in machine-readable form.)

Figure 14. Histograms of stars with inferred gyrochronology ages from this
work. The black dotted lines show the recent enhancement of SFR shown in
Ruiz-Lara et al. (2020; 5.7, 1.9, and 1.0 Gyr). The peaks in the histograms can
correspond to the enhancements of the star-formation rate in the Milky Way,
changes in stellar spin-down (e.g., the peak around 2.5 Gyr), or systematic bias
(e.g., the peak around 1 Gyr).
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5. Conclusion

Gyrochronology is one of the few promising methods to age
date single main-sequence field stars. However, gyrochronol-
ogy relies strongly on empirical calibrations as the theories
behind magnetic braking are complex and still unclear. The
lack of a relatively complete sample of consistent and reliable
ages for old, low-mass main-sequence stars with period
measurements has prevented the use of gyrochronology for
relatively old low-mass stars beyond ∼4 Gyr (the age of the
oldest cluster with significant period measurements Dungee
et al. 2022).

By combining period measurements from Kepler and ZTF,
using the gyro-kinematic age-dating method, we constructed a
large sample of reliable kinematic ages expanding the Prot–Teff
space that is most suitable for gyrochronology
(4 days< Prot< 200 days; 3000 K < Teff< 7000 K). By using
a Gaussian process model, we constructed the first calibrated
gyrochronology relation that extends to the fully convective
limit and is suitable for stars with ages between 0.67 and
14 Gyr. Cross-validation tests and predicting ages for dwarf
stars with asteroseismic signals suggest our model can provide

reliable ages with uncertainties on the order of 1 Gyr, similar to
that of isochrone ages (e.g., Berger et al. 2023, Figure 9). In
this paper, we provide ages for ∼100,000 stars with period
measurements from Kepler and ZTF, of which 763 are
exoplanet host stars with a total of 1060 planets.
Systematic exist at stellar age ∼1 (for Teff< 5000 K) and

2.5 Gyr (for partially convective stars) due to the fact that stars
with a range of ages overlap in Teff–Prot space, most likely due
to stalling caused by core-envelope decoupling. This causes the
model to infer similar ages for stars of a range of ages. Adding
other age indicators such as stellar activity in the future could
potentially break the degeneracy in Teff–Prot space for stars of a
certain range of ages. Obvious metallicity bias exists for this
model (see Figure 12 left plot; deviation of ∼2 Gyr from the
asteroseismic ages as the metallicity of the star reaches
−0.5 dex), as a result, future work should incorporate
metallicity measurements.
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Appendix
Visualizing the Gyrochronology Model

We can visualize the gyrochronology model by looking at
the best-fit mean and covariance functions separately. Figure 16
shows our full model in the training parameter space (left
column), the mean function prediction (second column), and
the covariance function correction (third column) for partially
convective (top row) and fully convective (bottom row) stars.
The last column shows the age uncertainty associated with the
model parameters. The uncertainty is calculated based on 100
realizations of the model with parameter drown from the
MCMC posterior distribution. The large fractional uncertainty
for partically convective stars around 6000 K is both caused by
the young age and the overlapping isochrones in the cluster
training data (see Figure 10).
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