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ABSTRACT

Seismic monitoring systems sift through seismograms in real-time,
searching for target events, such as underground explosions. In this
monitoring system, a burst of aftershocks (minor earthquakes occur
after a major earthquake over days or even years) can be a source
of confounding signals. Such a burst of aftershock signals can over-
load the human analysts of the monitoring system. To alleviate this
burden at the onset of a sequence of events (e.g., aftershocks), a
human analyst can label the first few of these events and start an
online classifier to filter out subsequent aftershock events. We pro-
pose an online few-shot classification model FewSig for time series
data for the above use case. The framework of FewSig consists of
a selective model to identify the high-confidence positive events
which are used for updating the models and a general classifier to
label the remaining events. Our specific technique uses a selective
model based on sliding DTW distance and a general classifier model
based on distance metric learning with Neighborhood Component
Analysis (NCA). The algorithm demonstrates surprising robustness
when tested on univariate datasets from the UEA/UCR archive.
Furthermore, we show two real-world earthquake events where
the FewSig reduces the human effort in monitoring applications by
filtering out the aftershock events.
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1 INTRODUCTION

In offline semi-supervised few-shot classification, a classification
model is learned from a small number of positive instances, an
arbitrary number of negative instances, and a sufficiently large
number of unlabeled instances. In online few-shot classification,
the unlabeled instances are time ordered and are only available
to the model when they occur. The model is then incrementally
updated with unlabeled data over time, unlike PU-learning [23]
and other semi-supervised learning approaches [29, 34, 35] that
exploit unlabeled data all at once. Moreover, in the online setting,
a human expert labels only the first few instances from a stream
instead of a few of the most representative instances from a large
pool of unlabeled instances.

In addition to the small number of training instances, online
few-shot learning poses two key challenges. First, the online classi-
fication process requires each test instance to be classified before
the next instance arrives. This imposes a serious efficiency con-
straint, challenging computationally expensive algorithms for this
task. Second, it must be determined whether the newly classified
positive instances are classified with sufficiently high confidence
that they should be added to the training set before potentially
re-training the model.

In this paper, we propose a two-level framework. In the first level,
a classifier exploits a pre-computed distance matrix under dynamic
time warping (DTW) [26] distance to identify the high-confidence
positive instances from unlabeled instances by bounding the false-
positive rate at a maximum and adding them to the training set. In
the second level, an ensemble classifier based on distance metric
learning with Neighborhood Component Analysis (NCA) is trained
with Focal Loss to tackle class imbalance. This classifier evaluates
the unclassified instances from the first level. We demonstrate that
this framework is significantly more accurate than existing semi-
supervised algorithms in the online few-shot setting.

1.1 Motivation

We consider online few-shot classification for time series data with
application to seismic monitoring. Seismic monitoring is an on-
line task essential for national security and public safety. Current
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seismic monitoring systems are not fully automated and require
human analysts to review the information produced by algorithms
to ensure accuracy. The amount of time an analyst takes to review
a block of data (i.e., time series) is driven mainly by the number
of events in that block and the amount of manual work needed to
form each event completely. Large events can take longer to review
as they are observed at more stations, and many of these arrivals
may not be detected and associated automatically.

For example, prior to the 2011 Tohoku Earthquake and Tsunami
event (the strongest earthquake recorded in Japanese history), the
Late Event Bulletin (LEB [1]) of the International Data Center (IDC
www.ctbto.org) averaged 120 events per day with approximately
2,000 time-defining associated arrivals (i.e., seismic signals). In the
immediate aftermath of Tohoku, the LEB contained 830 events per
day with approximately 20,000 time-defining associated arrivals.
This alone is a 7X to 10X increase in the analyst workload [25].
In addition, the standard STA/LTA [2, 15] detectors become less
effective in detecting rapid aftershocks, requiring the analysts to
add more signals manually and associate them to these aftershocks.

With an increasing streaming workload, possible mediations
are increasing the number of analysts (i.e., resource) and/or delay
reporting (i.e., admit vulnerability). A real-time aftershock detector
can reduce the manual workload significantly if it does not admit
more errors than humans. However, such a detector poses several
computational challenges. First, there is no training data until the
main event happens. The old/historical events and their aftershocks
are worthless because their epicenters are unlikely to be the same
as the epicenter of the current event. Hence, historical signals do
not bear any more similarity to the aftershocks than the similarity
they bear to any other earthquakes. Second, the waveforms of the
same event vary when observed at different stations because the
waves take different paths through the earth. However, the current
number of stations on Earth is too little to capture enough training
data for a station-agnostic model. Therefore, the classical computer
vision approach[31] that trains an offline model and adapts it to
new events is not an option.

To address these challenges, we aim to exploit the similarities
of the main earthquake and the first several aftershocks to the
later aftershock signals and do so in real-time. The similarity of
the aftershock signals is due to the source characteristics and the
propagation paths from the sources to the stations, which are the
two factors that control the waveforms, being similar. We must use
only a few training instances of the aftershocks (i.e., the positive
class) that we can collect shortly after the main shock. The detector
must work in real-time to reduce human workload as well as to
improve itself by learning from recent events. In other words, each
event must be classified before the next one arrives.

The main contributions of this work are summarized below:

e We develop a novel online few-shot time series model (FewSig),

that can be trained on a few positive signals, and adapt to
the new unlabeled signals iteratively.

o We evaluate FewSig on 68 datasets and compare them with
online versions of existing semi-supervised time series clas-
sification algorithms. The comprehensive evaluation details
the parameter sensitivity, efficiency, and effectiveness of the
proposed model.
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e We evaluate the online performance of FewSig for the after-
shock detection task on two earthquakes, the 2015 Gorkha
earthquake in Nepal (Mw 7.8) and the 2017 Chiapas earth-
quake in Mexico (Mw 8.2).

2 RELATED WORK

2.1 Semi-supervised learning on time series

Semi-supervised learning (SSL) methods have been proposed to
avoid poorly generalizable models due to insufficient labeled data to
train a supervised model. Wei’s Algorithm [34] and DTWD [4] are
examples of self-training methods, a well-known semi-supervised
learning approach. Souza et al. [30] perform clustering to select
the most representative instances from an unlabeled dataset to be
labeled by an expert and then perform label propagation to classify
the remaining instances. Nguyen et al. [23] proposed a solution
based on clustering and self-training, considering only positive
and unlabeled instances. Marussy et al. proposed SUCCESS [16], a
model based on constrained hierarchical clustering. Xu et al. pro-
posed [36] based on the graph-theoretic SSL algorithm. SSSL [32]
performs self-training with shapelet classification on unlabeled in-
stances. Several state-of-the-art deep-learning models have shown
dominance in recent works. For example, Jawed et al. proposed a
multi-task learning network (MTL) [12] to jointly train the ConvNet
with classification and forecasting by sharing latent representations.
SemiTime [6] shows better results than MTL on some datasets, the
model learns past-future temporal relations from the unlabeled data,
and the backbone feature extractor is shared with the TSC module
which is trained on the labeled dataset. SSTSC [35] increases the
richness of the temporal context by splitting a time series into past-
anchor-future, making the model learn a higher-quality semantic
context from the unlabeled dataset.

Even with good results in the semi-supervised scenario, it is
worth mentioning that none of these works are adequate for the
online few-shot learning setting proposed in this work, in which
an unlabeled dataset does not exist to help train the initial model.

2.2 Few-shot learning

A wide range of applications encounters inherent constraints such
as privacy and safety issues, ethical issues, or prohibitive costs of
manual analysis, which require training a supervised model using
a limited number of labeled instances per class. The paradigm of
few-shot learning [33] has been designed to tackle this challenge.
Existing models, such as MAML [7] and ProtoNet [28], exploit task-
agnostic knowledge acquired during the meta-training stage for
faster learning in new tasks, assuming the data for the training and
testing tasks are from the same distribution [10, 24]. However, af-
tershock sequences inherently present out-of-distribution datasets.
The origins of different aftershock sequences are seldom in the same
region, and a single event may not manifest any similarity across
seismometers located in different places due to path variation. The
complexity of the Earth and the sparse distribution of seismometers
make this task exceedingly challenging for these models.

The complexity further amplifies when considering cross-domain
learning [10]. As noted by Gao et al. in work [10], the performance
of the same meta-learning model can drastically differ across vari-
ous target domains. This is also true for time series data, as indicated
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by [22], where the meta-learning approach did not significantly
differ from the DTW-based 1-NN classifier when the meta-training
and meta-testing data exhibit different distributions.

In contrast, FewSig is designed to train with a few initial pos-
itive instances and some negative instances from the target task,
eliminating the need for either pre-training or meta-learning.

2.3 Aftershock Detection

The existing aftershock detection works can be grouped into two
categories, one is template matching [27], and the other one is
deep neural networks [5, 37]. The template matching techniques
have high interpretability, but the performance relies on the quality
and the quantity of the templates, which are very challenging to
acquire in a short period after the main shock. For instance, Seiscorr
[27] needed hundreds of aftershocks following a large earthquake,
which occurred over the first six hours of data. That requirement
makes this method inadequate for online monitoring applications.

The problem is exacerbated in deep learning solutions. Super-
vised deep neural networks suffer when the training set has only
a few instances of aftershocks which leads to a long waiting time
to collect enough data. Consider Zhang et al. [37], where authors
trained on thousands of aftershocks from the first 25 days to achieve
only a 67.5% F1-score at the highest on the last five days of after-
shocks. In comparison, FewSig achieves the high nineties even with
a few positive instances shortly after the main shock. Realizing this
caveat in using historical data, other researchers [5] have developed
PNN(paired neural network) to learn a similarity function from
historical events, however, the trained model is yet to be evalu-
ated on real earthquake events, while we assess on multiple large
scale real seismic events. The problem is too complex to be solved
using available historical data, which prevents us from exploiting
attractive alternatives such as rule-based classifiers, support vector
machines, etc.

3 ONLINE FEW-SHOT TIME SERIES
CLASSIFICATION

In this section, we formulate the problem and then introduce the
technical framework of FewSig. Table 1 summarizes the notations
and abbreviations.

We define the online few-shot classification task as follows; there
are three datasets, a labeled set L, an online testing set O, and a
training set T. L = {(t\,y1), (1%, 4?), ..., (tl,yl)} with true labels
available, only a few (i.e., five) times series in L belong to ¢*, and
the remaining belong to ¢™; O is the online testing set that saves all
the new time series pending to be classified; T is the training set for
training a model. Initially, O is empty, and the model is trained on
T,and T = L. During the online testing phase, each new time series
t/ will be added to O, 0 = O U {tj }, and the model predicts its label
§/. Finally, the model performance is evaluated by comparing the
predicted label with the true label for all time series in O. During
the online evaluation process, the model can be retrained at any
moment with T that contains L and any number of time series
from O that have already been classified. Note that # is immutable,
which means the model cannot leverage the current time series to
update the previously predicted results.

5709

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Table 1: Symbols and notations.

Symbol Definition

tt Time series i
tho, A sub-sequence of length m in t* that contains ¢![s : s +m — 1]
m <length of time series, assuming equal length for all time series
y' True label for ¢
it Predicted label for ¢
T Training set.
N Size of the training set T, which is the number of time series in T
L Labeled set
o Online testing set
di; Distance between #* and #/.
D! Distance feature array of ¢!, D’ = [d;1,di2, ....diN ]
ct Positive class
c” Negative class
d{.‘* Average distance between ¢! and k nearest neighbors from class c¢*
d:." Average distance between ¢! and k nearest neighbors from class ¢~
tFPR Target FPR for the selective model
Retrain
A
[ Y )
J — — =c*? 2 . ‘
t iSelective Model , {t),c} v L
No Retrain

Figure 1: Online classification with self-training,.

We propose a general framework shown in Figure 1 for this
task. There are two models: a selective model to identify the high-
confidence positive time series and a general classifier model to
re-evaluate the rest of the time series, the high-confidence positive
time series will be added to T for retraining. Initially, both models
are trained on T and T = L. For each new time series ¢/, the solid
orange path in Figure 1 represents the case when ¢/ is identified as a
high-confidence positive by the selective model, T will be expanded
with {(#/, ¢*)} and both models will be retrained on the updated T
and finally §/ = ¢*; The green dotted path demonstrates the other
case when ¢/ is not a high-confidence positive, the general classifier
will evaluate t/ independently for the second time and yield the
final label 3/

The framework does not add an explicit stopping criteria for the
growth of the training set, T. This is rather an empirical choice be-
cause the frequency of aftershocks is the highest immediately after
the main shock and decreases rapidly over days. Thus, although
the training set is growing, the time between events to exploit the
training set is also increasing. Hence, we avoid limiting the growth
of the T. If event frequency stays high for longer, we recommend
limiting the training set to maintain the required rate.

3.1 Distance/Dissimilarity as features

We use sliding Dynamic Time Warping (DTW) as a shift and warp-
ing invariant distance metric to compute the distance among time
series. The sliding Euclidean distances effectively correct alignment
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Figure 2: Two real aftershock signals show the highest corre-
lation of 80.84% when one is shifted in time relative to the
other to correct for human error in picking, and near 0% cor-
relation if not shifted.

Figure 3: The DTW alignment between the middle segments
of signals in Figure 2, the warping band is limited to 3 points.
The blue signal exhibits warping due to the variation in wave
propagation from the event origin to the seismometer. The
correlation after correcting warping is 89.85%.

errors [21]. Still, it is very sensitive to small mismatches [13] due
to signal warping. We use sliding DTW distances to address two
sources of errors in the time series. The first is due to errors in
alignment. For example, human analysts often pick the onset time
of a seismic phase’s arrival in seismograms, and any picking error
can alter results dramatically, as shown in Figure 2. The second
error is due to the inherent complexity of the system being moni-
tored. For example, the earth’s non-uniformity changes the waves’
propagation from neighboring events. Figure 3 shows how DTW
deals with warping by allowing one to many alignments to correct
tiny variations in the time series.

d,-,j=min{SS(ti,tj,sl,Sg,q,m,r), SS(tj,ti,sl,sz,q,m,r)} (1)

SS(ti, tj,sl,sz,q, m,r) = min{DTW(tSi’m, t{l.’m, r), s SsSsz} (2)

We formalize d; ; as the distance between t* and t/ in Equation 1.
d; j is the smallest DTW distance between two subsequences tfl’m
in ¢! and tg’m in ¢/ for given g, m, s1, s2, 7. We perform a similarity
search with a sliding window to find this subsequence pair. The
search process defined in Equation 2 is the same approach employed
in [26]. We take one subsequence from a time series as a query and
search for the most similar one in another time series and vice versa,
d; j is the minimum distance during this process. r in Equation 2 is
the Sakoe-Chiba Band [19], ¢, m defines the query sub-sequence,
and sy, s2 defines the search boundaries. We recommend readers to
tutorials [19, 20] for details of these parameters.
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We perform a search with some candidate values to find the
optimal parameter configuration {k*, ¢*, m*, s;‘ , s;‘ ,r*} that yields
the lowest loss defined in Equation 4 for a given dataset. The train-
ing set only contains instances from L with true labels available
at this stage. dl{“' defined in Equation 3 is the mean value of the
k smallest distances between t* and other positive time series in
T; dlk ~ is defined in a similar way. To handle the bias of different
query lengths m, each distance is normalized by m when computing
the loss. The optimal parameter configuration remains constant
during the online evaluation phase. We set k* = 1 for simplicity,
the candidate values for the query are the middle subsequences
with a length of 80% to 90% of the entire time series, the searching
boundaries are a few seconds wider than the query on both ends,
and the Sakoe-Chiba Band in a few samples range, i.e., from 0 to 10.
More parameter candidates will increase the model initiation time,
and some domain knowledge can be applied here for a smaller set
of parameter candidates that yield faster model launching time.

3.2 Selective model
{c+ ifd¥ < b & dfT >=ht

Al

©)

¢~ other cases

The selective model must have a very low FPR since any false-
positive instance can have long-term detrimental effects. We pro-
pose amodel that classifies events based on the conditions expressed
in Equation 5. Two thresholds A} and h* are established based on
the training set for a given tFPR (target FPR) value.

We demonstrate the learning process with the entire T of size
N. We enumerate all possible split values, {h1,0 < i < N} and
{hL,0<i< N}.hi and ki are defined in Equation 6, dsf+, 1<i<N
is the ith smallest value in the sorted df" array for all ! € T, § is
a very small number. The learning process can be summarized in
Equation 7 as finding two thresholds h}, h* such that the FPR is
closest to tFPR while TPR is highest when evaluated with the entire
training set. ¢’ will be classified as positive only when d{” <h} and

dk=>hr.

ds{“' -4
(dsl’F:l +dslk+)/2 0<i<N
dskr +68

hL (6)

| ==

hi, h* = arg max TPR(1— [FPR— tFPR|)
{hi,hl}

)

The optimal k* in both dll.” and dlk_ are selected from a candidate
set k = {1,2, ..., 8} with highest F1 score by performing Leave-One-
Out evaluation on T. Once k* is estimated, h}, h% are selected again
with loss function in Equation 7 on the entire training set T. Note
that the k* needs to be re-calculated each time when retraining the
model.
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3.3 General time series classifier

i M.Di=ldi,l [dia [dis | . [din]

Figure 4: Distance features for a time series t'.
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Figure 5: Proposed general time series classifier.

We utilize the distance feature D’ to represent ¢ as shown in
Figure 4 for our proposed general classifier enlightened by the
existing time series classification works [8, 11, 13]. Each element
in D' is the distance between t and a time series in T. The length
of D' is dependent on the size of T. If a new time series t/ is added
to T, then all the time series in T need to update the features by
appending d; ; at the tail. The feature for each upcoming new time
series is computed with the latest T.

Jain pointed out in [11] that not all the dimensions in D con-
tribute equally during the classification, thus we consider removing
less significant dimensions and boosting significant dimensions by
performing Neighborhood Component Analysis (NCA [9]) with
Focal-Loss [14]. This is achieved by learning a linear transformation
matrix A such that the 1-NN classifier performs well under this
transformed space. We define the learning process in Equations 8,
9,10,11. FL is Focal loss, py, is the probability that ¢t is correctly
classified. a € [0, 1] is a balancing factor for addressing the class
imbalance. y is the focusing parameter that can make learning more
focused on the hard misclassified positive ones rather than numer-
ous simple negative ones. We use & = 0.5, y = 2 recommend in the
original work [14] across all the experiments.

Al = argmin Z FL(t;) (8)
MxN tieT
FL(t;) = —a(1 = py,)¥ log pr, ©)
; ifyl =ct
i, = {Pl : yi ) (10)
1-p; ify'=c
¢ lAD-ADI |2

pi = — (11)

yj=C+,j¢i Zkii e_”AD —AD"

— N

M= {GL%J, a€{1,2,3,..,19}} (12)

Instead of using only one matrix A € RMXN , N is number of
time series in T, and M is the reduced feature dimension, we learn
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nineteen A with various dimensions M = {Mq, Ma, ..., M19}. M can
be estimated based on the best Cross Validation performance on
the training set or based on a certain level of randomness. For this
work, we applied the same approach described in [11] that can be
expressed in Equation 12. Each matrix A is trained separately, and
each space will have an independent 1-NN classifier trained with
transformed distance features of T. The final predicted label i’ is
voted on among the 19 1-NN classifiers. vote = v means the i’ = ¢*
as long as there are v 1-NN classifiers classifying ¢! as c¢*. The final
structure with our proposed model is shown in Figure 5.

4 EXPERIMENTAL EVALUATION

We compare FewSig with four semi-supervised models adapted for
the online few-shot classification settings on 68 datasets from the
UEA/UCR Time Series Repository [3] covering various domains.
All our experiments are reproducible, the source code, data, and
additional results are available on our supporting website [38]. We
performed all the experiments on an AMD EPYC 7402 server (24
cores) with a 4xRTX3090 GPU and 128GB RAM.

4.1

We select three traditional semi-supervised time series classifica-
tion models: Wei’s model [34], DTWD [4], SUCCESS [16] and one
state-of-the-art semi-supervised model SSTSC [35] based on deep
learning. Next, we briefly describe the original algorithms and how
we adopt them in the online setting.

Wei’s model uses a one-nearest-neighbor (1-NN) classifier as
the base model. Initially, L contains only a few labeled positive time
series and T = L. To expand T, the algorithm iteratively selects the
high-confidence positive time series from the unlabeled set mea-
sured by the nearest neighbor Euclidean distance. When iteration
stops, all time series in T are labeled as ¢, and the remaining ones
in the unlabeled set are ¢~

We take the following procedures to adapt the model for the
online setting: 1) Initially T = L, L includes both ¢ and ¢~. 2) The
1-NN classifier will classify each new time series t/, if §/ = c*, t/
will be added to T and retrain the model. 3) If the model is updated,
then all the previous ¢! € O that are not in T will be reconsidered
whether to add in T. 4) The model will be retrained immediately
after T is expanded in step 3, and step 3 is repeated. 5) The iteration
will stop when T is not expanded in step 3.

DTWD applied a similar approach for augmenting T via self-
training on an unlabeled set. It employs a new distance measure
and a one-class classifier. The distance measure is the ratio of DTW
distance to Euclidean distance. The one-class classifier relies on
the entire unlabeled set to pick the optimal parameters however,
this is impractical in the online scenario. Thus, we consider Wei’s
approach with the distance measure employed by DTWD.

SUCCESS is based on the constrained single-linkage hierarchi-
cal agglomerative clustering algorithm with DTW distance. One
constraint when linking the instances is that instances from L can
not be linked. The final label of a cluster is decided by the majority
class of instances in L. The unlabeled instances in a cluster share
the same cluster label. Then a 1-NN classifier will be trained for
testing. To work in the online setting, we first utilize SUCCESS
to classify a new time series t/, then rebuild the cluster hierarchy

Models for comparison
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with L and the existing O including #/, and finally retrain the 1-NN
classifier.

SSTSC learns an encoder that can capture the temporal context
based on the unlabeled dataset in a self-supervised manner. This
encoder will be used as a backbone for the supervised TSC module
that is trained on the labeled dataset L. We consider the same
approach employed for SUCCESS to adapt SSTSC for the online
setting.

4.2 Online experimental protocols

We select 68 out of 128 univariate time series datasets from the
UEA/UCR repository [3]. The selection is based on the size of the
datasets, which should be less than 800 time series since FewSig
trains on five positive time series, and increasing the number of test
instances does not significantly impact the performance. Hence,
we chose a cut-off for the datasets. For each dataset, we re-assign
the labels, the minority class is considered as ¢t for unbalanced
datasets, and a randomly chosen class as ¢* for balanced datasets.
All other classes are considered as ¢~.

We randomly order all the time series in a dataset due to the
absence of event time. L consists of the first five positive time
series and the first half of the negative time series; O consists of
the rest of the time series. The time series in O is fed to the model
sequentially in assigned order to simulate online scenarios. The
scores are computed by comparing the i/ with y/ for all t/ € O.
To diminish the random bias, we perform 30 trials for each dataset,
and we verify that none of the trials share more than two positive
time series in L with other trials. The final scores of a model are
averaged among 30 trials.

There is no parameter configuration for Wei’s model, DTWD,
and SUCCESS. For SSTSC, we use the same configuration described
in the original paper [35]. We use the following settings for FewSig
across all datasets: tFPR=1%, @ = 0.5,y = 2, and SDG with Ir=0.02,
the final F1 score is averaged when vote={1, 2, 3,4} separately.

4.3 Experimental Results

5 4 3 2 1
L L | L | L | L |

SSTSC OLQV“ [ o FewsSig

SUCCESS_OL %1165 21059 \jaj's_OL
22647 HTWD_OL

Figure 6: Critical difference diagram of 5 models on the 68
UEA&UCR benchmark datasets. p=0.05 for Nemenyi test.

4.3.1 Ranking comparison. We conduct the Friedman test and Ne-
menyi post-hoc test on all 68 datasets across five models. The
ranking is computed with the mean F1 scores of 30 trials per
dataset. We show the critical difference diagram in Figure 6 in
which FewSig ranks at the top with a significant statistical differ-
ence to the rival models. The average F1 for 68 datasets between
FewSig and Wei’s model, SSTSC are shown in Figure 7, FewSig has
a higher F1 for most of the datasets in both cases. The results for
each dataset are available on the supporting website [38].

4.3.2 Time complexity. We present the average running time of 68
datasets for each model in Table 2. We consider the time of initial
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Figure 7: Mean F1 scores of 30 trails on 68 datasets compari-
son between FewSig and Wei’s model (left), SSTSC (right).

Table 2: Average running time in seconds. k is the number of
candidate parameter sets to find the optimal one.

Model Initial time Ave. Time per +/
Distance | Train | Distance | Train+Infer
Wei’s 1.49 0.0004 | 0.019 0.006
DTWD 5.01 0.0005 [ 0.049 0.006
SUCCESS | 3.517 |0.0003| 0.041 0.050
SSTSC 0 26.78 0 36.68
FewSig | 8.571"k | 14.46 0.057 0.79

training on L, the time for inferring each instance in O, and the time
for model retraining. Since the model does not need to be retrained
on each instance t/ € O for Wei’s model, DTWD, and FewSig, the
time is amortized on the entire testing set.

Although FewSig performs significantly more accurately, FewSig
is not as efficient as existing methods. This highlights that FewSig
trades a bit of speed to gain accuracy. However, FewSig takes sev-
eral minutes to initiate and processes roughly one event per second.
This speed is sufficient for our target domain because the shortest
time between successive events is 16 seconds in our online testing
sets for both Nepal and Chiapas aftershock sequences.

4.3.3  Parameter sensitivity. In this section, we discuss the FewSig sen-
sitivity to three design parameters: i) different vote numbers for
the general classifier, ii) tFPR, and iii) the initial number of positive
time series in L.

9 8 7 6 5 4 3 2 1
I 1 I 1 I 1 I 1 I 1 II 1 1 I 1 I
Vg Al L 39322 mean(V1,V2,V3,V4)
\/7 68765 3.2574\/]
\/6 1838 3.0368\/7
\/5 52721 4.2794\/3
4.9191y/4

Figure 8: Critical difference of FewSig with the different num-
ber of votes on 68 datasets, vote = 2 yield highest rank.

4 3 2 1

L 1 | L | | L ]
0.1%3'2059 1 2.1691 1%
0.5%2'?353 1.88972%

Figure 9: Critical difference diagram of FewSig with four
different tFPR values.
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Figure 10: F1 score comparison between labeled sets L with
the different number of positive instances for 68 datasets.

i) Figure 8 shows the F1-score ranking of FewSig with the dif-
ferent number of votes for the ensemble. If two classifiers agree
on a positive instance, it gives the best overall results across all 68
datasets. ii) Figure 9 shows there is a significant difference in rank-
ing when tFPR goes from one extreme (0.1%) to the other (2%). iii)
In Figure 10 we show the F1 comparison with the different number
of positive time series in L. The figure shows that doubling this
number from 5 to 10 has more impact than doubling from 10 to 20.

5 AFTERSHOCK DETECTION

In this section, we evaluate FewSig performance for the online after-
shock detection on two major earthquakes Mw 7.8 Nepal (Gorkha)
earthquake in 2015 and the Mw 8.2 Chiapas earthquake in 2017.

5.1 Data preparation

We use the Late Event Bulletin (LEB) [1], which provides infor-
mation about events such as time, location, and magnitude. The
seismograms (i.e. time series data) are collected from the Inter-
national Monitoring System (IMS), operated by the Preparatory
Commission of the Comprehensive Nuclear-Test-Ban Treaty Or-
ganization (CTBTO). For both major earthquakes, we use local
catalogs to confirm the aftershocks. We use the catalog from McNa-
mara et al. [17] for the Nepal earthquake, and the catalog from the
Mexican Servicio Sismolégico Nacional (SSN) [18] for the Chiapas
earthquake. We describe our data preparation procedures in the
following steps.

Aftershock association We select the ground truth aftershock
events by joining the local catalog with LEB. We call this process
aftershock association. The association process is necessary to
double confirm that an event was truly an aftershock. We use each
aftershock event from the local catalog as a query to search for an
associated event in the LEB. The join condition for an association is
that the events must be within 200km of their Great-circle distance
and their origin times are within 5 seconds. We break ties by taking
the events that are closest in time.

Non-aftershock selection We consider all the seismic events
in the LEB that are outside the geographical region of aftershock
events as non-aftershocks. For this experiment, we only select non-
aftershock events with similar origin-to-station distances compared
to the aftershock events to create challenging cases for the classifier.

Arrival selection We get signal arrival times for the aftershock
and non-aftershock events at a target seismometer in the LEB. For
this experiment, we only use P phase signals, as P is the most
common phase in the LEB.
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Waveform processing Based on the arrival time, we extract
three 60-second time series for each event from the continuous
waveforms of three broadband channels BHZ (vertical), BHN (north-
south), BHE (east-west) of a single seismometer. Thus, the time se-
ries contains 30 seconds of pre-arrival and 30 seconds of post-arrival
signal. This time window is large enough to capture the initial com-
pressional seismic waves generated by any regional earthquake. If
the waveforms are sampled at 40Hz, the length of each waveform
is 2,400 real numbers. Following conventional seismic signal pre-
processing techniques, we remove the linear trend, and the mean
value of each waveform, then taper the waveforms before filtering.
We applied a 0.4Hz to 10Hz second-order Butterworth bandpass
filter in both directions to cancel the phase shift. Next, we compute
the Signal to Noise Ratio (SNR) on the filtered waveforms as the
ratio of the standard deviation of the signal part (post-30 seconds)
over the noise part (pre-30 seconds). For the experiments, we only
use waveforms that have SNR > 2.

5.2 Features for multidimensional time series
. . ; i j
SS(i, j,s1.82.q,m) = mln{z a;gDTW(ts,ﬁm, tqu, r),s1<s< sz} (13)
Be{Z.N.E}

e max(|t"])
P max (072 ) +max [N ) +max [

,p€{Z,N,E} (14)

To accommodate three channel/dimension time series data, we
modify Equation 2 to Equation 13 by combining three weighted
distances of time series from the same channel. 5, pe{Z N,E}
represents the time series from f channels for the event i. Equation
14 defines o}, which are the proportional weights of each channel.

We applied the same procedures described in section 3.1 to select
the optimal parameters {q*, m*, sf, s;, r*} for Equation 13. In here
we fix g=5, m=50, s =4 and s =6 seconds and compute the loss
value defined in Equation 4 for each r € {0, 1, ..., 10} in number of
points. We report {g*, m*, s], s}, 7"} applied in the result sections.

5.3 Experimental Settings

We reproduced the scenario when an earthquake happens to eval-
uate the real-world performance of FewSig. Initially, we have the
labeled set containing the non-aftershocks before the main shock
and the first five aftershocks. All the later events are in the online
testing set O without knowing their labels. The model will sequen-
tially classify each event in O based on their event time. Finally, we
show the performance of each model over time regarding TPR, FPR
and F1 scores.

Parameters for FewSig are constant for all the experiments:
tFPR=0.5%, vote=2, learning rate(lr) =0.02, epoch=250,y =
2, =0.5. The warping banding for computing the DTW varies at
each station. We report the exact number in corresponding sections.

5.4 Results for the 2015 Nepal Earthquake

The origins of the events in LEB and the local catalog [17] are shown
in Figure 11. The MKAR seismic station has the highest number of
recorded arrivals in LEB among other IMS stations for the ground
truth aftershock events. Thus we fetch all the seismograms for the
experiment at MKAR.
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Figure 11: The distribution of origins for events in the LEB
and the local catalog [17]. The events in the LEB for the 2015
Nepal earthquake are selected by limiting the origins to the
red rectangular region and limiting the origin time from 2015-
04-25T06:11:24.290000Z to 2016-05-14T22:45:53.330000Z.
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Figure 12: Left figure shows the geographical distribution
of origins for extracted arrivals at MKAR. The right figure
shows some example waveforms from the BHZ channel at
MKAR. The first five aftershocks are in red. They were fil-
tered with a 0.4Hz to 10Hz Butterworth bandpass filter.

We extracted 217 aftershock arrivals and 1182 non-aftershock
arrivals at the MKAR based on the conditions described in the
data preparation section, each arrival has three corresponding time
series from three channels. Next, we put 5 aftershocks and 705
non-aftershocks in L, and 212 aftershocks and 477 non-aftershocks
in O based on the event time. Figure 12 shows the origins of the
extracted arrivals. We use g=5, m=50, s; =4, sy =6 seconds and
r=1 point for Equation 13.

We demonstrate the performance of FewSig and reference mod-
els over time regarding F1, TPR, and FPR in Figure 13 and 14. We can
conclude that FewSig consistently leads the other models by around
0.2 on F1, 20% on TPR, and essentially maintains the lowest FPR.
The F1-score of FewSig rapidly increases when more aftershocks
are selected for the training set. F1 reaches 89% at the peak point
after 157.2 hours since the main shock, then it gradually decreases
when there are more non-aftershock events. Finally, the F1-score
levels out at 0.85, the TPR does so at 82.55%, and the FPR at 5.4% for
FewSig. During the online training process, FewSig is retrained 127
times. The origins of false positives and false negatives obtained by
FewSig are demonstrated in Figure 15. False positives are harmful
because human analysts will have to spend time correcting such
errors if indeed they detect them. If they don’t detect them, then
target events could be missed. The scattering of false positives in
multiple locations suggests FewSig making unbiased mistakes.
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Figure 13: Online performance for classifying the Nepal af-
tershock sequence at MKAR. F1 scores of different models
are shown on the solid curves. A point on a curve shows the
score when testing the events at and before the time on the
x-axis. The accumulated number of testing aftershocks and
non-aftershocks are represented by the light green and blue
shaded areas respectively. Both SUCCESS_OL and SSTSC_OL
have F1 scores of zero throughout. We only use Z channel
time series data for SSTSC_OL since it only supports univari-
ate time series.
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82.55%

Figure 14: Online performance for classifying the Nepal af-
tershock sequence at MKAR. TPR and FPR scores of FewSig
and Wei_OL are shown on the solid and dotted curves.
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Figure 15: The origins of 26 false positives (red) and 37 false
negatives (blue) obtained by FewSig overall.

5.5 Results for the 2017 Chiapas Earthquake

To test the universality of FewSig, we further examine the 2017
Chiapas aftershock sequence. We use the catalog of the Mexican
Servicio Sismolégico Nacional (SSN) [18] as the local catalog. The
selection criteria we made on this catalog are: 1. The period from
2017-09-08 to 2018-03-08. 2. The latitude is from 14 to 17 and the
longitude is from -96 to -93. The origins of events in the local catalog
and LEB are shown in Figure 16. We choose the station TXAR for
this earthquake since it has the most number of arrivals.

We balanced the number of non-aftershocks in L and O due
to insufficient non-aftershock events after the main shock in the
LEB. Then we have 5 aftershocks and 280 non-aftershocks in L, and
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Figure 16: The origin distribution of events in LEB and the
local catalog [18]. The events in LEB are selected by limiting
the origins to the red rectangular region and limiting the
origin time from 2017-09-08T04:49:17.000000Z to 2018-03-
08T22:18:24.000000Z.

134 aftershocks and 280 non-aftershocks in O after balancing. The
distribution of origins is shown in Figure 17.
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Figure 17: Origins for extracted arrivals at TXAR station.
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Figure 18: Online performance of each model while classify-
ing the Chiapas aftershock sequence at TXAR.

Figures 18 and 19 are analogous to Figures 13 and 14, but for
the Chiapas earthquake, FewSig outperforms the reference models
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Figure 19: Online performance for classifying Chiapas af-
tershock sequence at TXAR. TPR, FPR scores of FewSig and
Wei_OL are shown on the solid and dotted curves.
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Figure 20: The origins of 10 false positives (red) and 13 false
negatives (blue) obtained by FewSig overall.

by achieving an overall 0.91 F1 score, 90.3% TPR, and 3.57% FPR.
During the online training process, FewSig is retrained 86 times.
The overall false positives in Figure 20 are scattered and suggest
FewSig is making unbiased errors.

6 CONCLUSION

In this paper, we present an online few-shot classifier for time series
data. Our method only requires a few labeled positive instances and
some labeled negative instances and can be gradually enhanced
with the new unlabeled instances automatically. FewSig outper-
forms existing methods on 68 datasets from the UEA/UCR reposi-
tory and achieves adequate performance for the online aftershock
detection task when evaluated with two real-world earthquakes.
Our model is lightweight and does not rely on a large labeled dataset
which makes it applicable for online seismic monitoring systems
to reduce the workload of analysts.
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