Bioinformatics, 39(2), 2023, btad074
https://doi.org/10.1093/bioinformatics/btad074
Advance Access Publication Date: 7 February 2023

OXFORD

Original Paper

Sequence analysis
Optimal gap-affine alignment in O(s) space

12.%, Jordan M. Eizenga ® 3, Andrea Guarracino ® *>,

1,6

Santiago Marco-Sola
Benedict Paten ® 3, Erik Garrison ® °® and Miquel Moreto

Computer Sciences Department, Barcelona Supercomputing Center, Barcelona 08034, Spain, 2Departament d’Arquitectura de
Computadors i Sistemes Operatius, Universitat Autonoma de Barcelona, Barcelona 08193, Spain, 3Genomics Institute, University of
California Santa Cruz, Santa Cruz, CA 95064, USA, *Genomics Research Centre, Human Technopole, Milan 20157, ltaly, 3Department of
Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA and ®Departament
d'Arquitectura de Computadors, Universitat Politecnica de Catalunya, Barcelona 08034, Spain

*To whom correspondence should be addressed.
Associate Editor: Pier Luigi Martelli

Received on August 17, 2022; revised on January 2, 2023; editorial decision on January 30, 2023

Abstract

Motivation: Pairwise sequence alignment remains a fundamental problem in computational biology and bioinfor-
matics. Recent advances in genomics and sequencing technologies demand faster and scalable algorithms that can
cope with the ever-increasing sequence lengths. Classical pairwise alignment algorithms based on dynamic pro-
gramming are strongly limited by quadratic requirements in time and memory. The recently proposed wavefront
alignment algorithm (WFA) introduced an efficient algorithm to perform exact gap-affine alignment in O(ns) time,
where s is the optimal score and n is the sequence length. Notwithstanding these bounds, WFA’s O(s?) memory
requirements become computationally impractical for genome-scale alignments, leading to a need for further
improvement.

Results: In this article, we present the bidirectional WFA algorithm, the first gap-affine algorithm capable of comput-
ing optimal alignments in O(s) memory while retaining WFA’s time complexity of O(ns). As a result, this work
improves the lowest known memory bound O(n) to compute gap-affine alignments. In practice, our implementation
never requires more than a few hundred MBs aligning noisy Oxford Nanopore Technologies reads up to 1 Mbp long
while maintaining competitive execution times.

Availability and implementation: All code is publicly available at https://github.com/smarco/BiWFA-paper.

Contact: santiagomsola@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction these methods compute the optimal alignment score for progressive-
ly longer prefixes of g and ¢, which correspond to the cells of the DP

Pairwise sequence alignment provides a parsimonious transformation . 1 a .
matrix. Thus, an optimal alignment can then be read out by tracing

of one string into another. From this transformation, we can under-

stand the relationship between pairs of sequences. Because similarities
and differences between biosequences (DNA, RNA, protein) relate to
variation in function and evolutionary history of living things, pair-
wise sequence alignment algorithms are a core part of many essential
bioinformatics methods in read mapping (Li, 2013; Marco-Sola et al.,
2012), genome assembly (Koren et al., 2017; Simpson et al., 2009),
variant calling (Garrison and Marth, 2012; McKenna et al., 2010;
Rodriguez-Martin et al., 2017) and many others (Durbin et al., 1998;
Jones et al., 2004). Its importance has motivated the research and de-
velopment of multiple solutions over the past 50 years.

Classical approaches to derive alignments involve the application
of dynamic programming (DP) techniques. These methods require
computing a matrix whose dimensions correspond to the lengths of
the query g and target ¢ sequences. Using DP recurrence relations,

©The Author(s) 2023. Published by Oxford University Press.

the recurrence back through the matrix.

Selecting a suitable alignment score function is essential to obtain
biologically meaningful alignments, as it determines the characteristics
of optimal alignments. In effect, the alignment score function encodes
prior expectations about the probability of certain kinds of sequence
differences. It has been observed that, in many contexts, insertions
and deletions are non-uniformly distributed; they are infrequent but
tend to be adjacent so that they form extended gaps with a long-tailed
length distribution. This motivated the development of gap-affine
models in which the penalty of starting a new gap is larger than that
of extending a gap (Gotoh, 1982). Crucially, gap-affine penalties can
be implemented efficiently using additional DP matrices.

Problematically, the efficiency of classical gap-affine DP-based
methods is constrained by their quadratic requirements in time and

1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-
stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

20z AINf Gz uo 1senb Aq 0690€0./L0PEIA/Z/GE/PI0IHME/SOIBWIONUIOIG/ W00 dNO"dlWapEo.//:SAY WOl POPEO|UMOQ

S.Marco-Sola et al.

memory with respect to the lengths of the sequence pair.
Consequently, multiple optimizations have been proposed over the
years. Notable examples include bit-parallel techniques (Loving
et al., 2014), data-layout transformations to exploit SIMD instruc-
tions (Farrar, 2007; Rognes and Seeberg, 2000; Wozniak, 1997),
difference encoding of the DP matrix (Suzuki and Kasahara, 2018),
among other methods (Altschul ez al., 1990; Kietbasa et al., 2011;
Xia et al., 2021; Zhao et al., 2013). Nonetheless, all these exact
methods retain the quadratic requirements of the original DP algo-
rithm and therefore struggle to scale when aligning long sequences.

In many cases, when two sequences are homologous, the majority
of possible alignments are largely sub-optimal, having a substantially
worse score than the optimal one. For this reason, heuristic methods
are usually employed to find candidate alignment regions when the
cost of exact algorithms becomes impractical. Most notable
approaches use adaptive band methods (Suzuki and Kasahara, 2017)
or pruning strategies [e.g. X-drop (Zhang et al., 2000) and Z-drop
(Li, 2018)] to avoid the computation of alignments extremely unlikely
to be optimal. These heuristic methods have been implemented within
many widely used tools (Altschul ez al., 1990; Li, 2018).

Recently, we proposed the wavefront alignment algorithm
(WFA) (Marco-Sola et al., 2021) to compute the exact alignment be-
tween two sequences using gap-affine penalties. WFA reformulates
the alignment problem to compute the longest-possible alignments
of increasing score until the optimal alignment is found. Notably,
WFA takes advantage of homologous regions between sequences to
accelerate alignment’s computation. As a result, WFA computes op-
timal gap-affine alignments in O(ns) time and O(s?) memory, where
n is the sequence length and s the optimal alignment score. Being an
exact algorithm, WFA provides the same guarantee for optimality as
classical algorithms (Gotoh, 1982; Needleman and Wunsch, 1970;
Smith and Waterman, 1981), but does away with the quadratic
requirements in time.

WFA unlocked the path for optimal alignment methods capable
of scaling to long sequences. Nevertheless, the O(s?) memory
requirements quickly become the limiting factor when aligning suffi-
ciently long or noisy sequences (Eizenga and Paten, 2022). As it hap-
pens, WFA’s memory requirements can be impractical when
aligning through large structural variations or highly divergent gen-
ome regions. Given that we use alignment to understand variation,
these are some contexts in which optimal alignment could be most
useful, but its memory requirements make it prohibitive.

To address this problem, this article presents the first gap-affine
alignment algorithm to compute the optimal alignment in O(#ns) time
and O(s) memory (excluding the storage of the input sequences). Our
method, the bidirectional WFA algorithm (BiWFA), computes the
WFA alignment of two sequences in the forward and reverse direction
until they meet. Using two wavefronts of O(s) memory, we demon-
strate how to find the optimal breakpoint of the alignment at score
~s/2 and proceed recursively to solve the complete alignment in
O(ns) time. To our knowledge, this work improves the lowest known
memory bound to compute gap-affine alignments O(#) (Myers and
Miller, 1988) to O(s), while retaining the time complexity of the ori-
ginal WFA O(#ns). Furthermore, our experimental results demonstrate
that the BiWFA delivers comparable, or even better, performance
than the original WFA, outperforming other state-of-the-art tools
while using a minimal amount of memory.

The rest of the article is structured as follows. Section 2 presents
the definitions, algorithms and formal proofs supporting BiWFA.
Section 3 shows the experimental evaluation of our method, com-
paring it against other state-of-the-art tools and libraries. Lastly,
Section 4 presents a discussion on the BIWFA method and summa-
rizes the contributions and impact of this work.

2 Materials and methods

2.1 Wavefront alignment algorithm

Let the query ¢ =qoq1...g»—1 and the text #=1tot;...t,_1 be
strings of length 7 and m, respectively. Likewise, let v[i,j] =
vivit1 .. .v; denote a substring of any string v from the ith to the jth

character. We will use (x, 0, ¢) to denote the gap-affine penalties. A
mismatch costs x, and a gap of length / costs 0 + [- e. We assume
thatx > 0 and e > 0, and further that all of the score parameters are
constants.

Basically, WFA computes partial optimal alignments of increas-
ing score until an alignment with score s reaches coordinate (1, m)
of the DP matrix. In this way, the algorithm determines that s is the
minimal alignment score. Moreover, it can derive the optimal align-
ment by tracing back the partial alignments that led to score s at
(n,m).

Let Mg, Xk, Zsx and D,y denote the offset within diagonal &
in the DP-matrix to the farthest-reaching (f.r.) cell that has score s
and ends with a match, mismatch, insertion or deletion, respectively.
In general, we denote by wavefront the tuple of offsets for a given
score W, = (M, X5, Zs, Ds). We refer to the four elements in this
tuple as its components, and we associate a corresponding sentinel
value to specify each component: ¢ € {M, X,I,D}.

In Marco-Sola et al. (2021), we proved that the f.r. points of W,
can be computed using previous wavefronts W, _,_,, W,_, and
Ws_x, using Equation 1 where LCP(v,w) is the length of longest
common prefix between substrings v and w. The base case for this
recursion is given by X = 0.

Is,k = maX{Ms—o—e.k—l + 1aIs—e.k—l + l}

Ds,/e = maX{Ms—o—e‘kJrl s Ds—e,k+1} (1)
Xs‘k = maX{Ms—x.k + 171—5.1@ Ds,k}

Ms.k = Xs‘k + LCP(q[Xsle - k,ﬂ - l]:t[Xs‘kvm - 1])7

Equation 1 shows that the computation of a given wavefront
depends only on the previous p = max{x,o0 + e} wavefronts. We
refer to p as the wavefront scope or, in other words, the maximum
score increase between partial alignments. Moreover, note that X,
does not need to be explicitly stored as its values can be inferred
using M, Z; 5 and D .

In the worst case, WFA requires computing s wavefronts of
increasing length, totalling $°5_;(1 + 2i) = O(s?) cells. Moreover,
the LCP must be computed once for each cell. However, within a di-
agonal, the total number of offset increments cannot exceed the
length of the sequences. Hence, WFA requires O(#s) time and O(s?)
memory in the worst case (Marco-Sola et al., 2021). Since s < pn,
the O(ns) factor of the execution time, due to the LCP, dominates
over the O(s?) factor in the worst case. However, in practice, the
time is often closer to O(s? 4). This is because spurious matches
between high-entropy sequences are short in expectation.
Accordingly, the LCP computations often finish after performing
only a few character comparisons, except along the optimal align-
ment in which O(#) comparisons are required.

2.2 Bidirectional wavefront alignment algorithm

The core idea of the BIWFA algorithm is to perform WFA simultan-
eously in both directions on the strings: from start to end (i.e. for-
ward) and from end to start (i.e. reverse). Each direction will only
retain p wavefronts in memory. This is insufficient to perform a full
traceback. However, when they ‘meet’ in the middle, we can infer a
breakpoint in the alignment that divides the optimal score roughly
in half. Then, we can apply the same procedure on the two sides of
the breakpoint recursively. We will show that this results in only a
constant-factor slowdown. This technique was previously employed
to a similar end with the Myers O(ND) difference algorithm
(Myers, 1986).

Figure 1 presents a graphical example of BiWFA computing a
breakpoint in the optimal alignment between two sequences. The
figure shows the DP cells computed by the forward and reverse
wavefronts. Alignments in both directions progress until they over-
lap on cell (4,4) with score 8 + 8 = 16 corresponding to the optimal
alignment (s, = 16).

First, let us define the WFA equations for the forward and re-
verse alignment directions. The recursions for the forward direction
are equivalent to those of the standard WFA presented above
(Equation 1). However, to highlight the distinction, we will denote
them W, = (T, Dy, X5, M;). The recursions for the reverse

20z AINF Gz uo 1senb Ag 06900/t L0PEIN/Z/6E/OI01HE/SOIEULIOJUIOIG/ WO dNO"OlWapED.//:SdRY WO} POPEOIUMOQ

Optimal gap-affine alignment in O(s) space

Forward Wavefront Reverse Wavefront

TGGTXAAG TGGTKAAG
TN 3 7 3 T
c| 3 C
T 7 g T
EA| 5! EA B) 7| 8
G 5 G 3 7
C C 6!
G G)7 6

Fig. 1. Example of BiWFA aligning g = “TCTAGCG” against t = “TGGAAAG”
under the penalties (x = 4,0 = 5,e =1)

direction are very similar (Equation 2), using ?o‘m,n =m as the
base case and LCS(v, w) to denote the length of the longest common
suffix of v and w. Note that the same argument used in Marco-Sola
et al. (2021) applies to the reverse recursions to prove that they are
f.r. in the reverse direction.

— L —

A sk = mln{ M s—o—ek+1 — 17 T s—ek+1 T 1}

— L e —

Ds,k = mln{ M s—o—ek—1 Ds—e.k—l}

— L — =

Xs,k = mln{M s—x,k 17 Is‘ka Ds,k}

— — — —

M sk = Xs.k - LCS(q[O Xs.lz —k— 1]7 t[oa Xs.k - 1])

Algorithm 1 presents the BIWFA algorithm to compute a break-
point in the optimal alignment at ~s/2. Using forward and reverse
wavefronts, the algorithm proceeds by alternatingly computing

forward and reverse alignments (i.e. Wl,Wl,Wz,Wz, ...). To
this end, BiWFA relies on the operators WF_NEXT() and
WEFE_EXTEND() from the standard WFA [see Marco-Sola et al.
(2021)] to compute successive wavefronts using Equaions 1 and 2.
The process is halted after their offsets overlap to compute the pos-
ition of a breakpoint in the optimal alignment. This algorithm iter-
ates until it is guaranteed that the optimal breakpoint has been
found. However, there are some technical details involving the de-
tection of overlaps and the computation of the optimal breakpoint,
which we cover in Sections 2.3 and 2.4.

2.3 Finding a score-balanced breakpoint in the optimal

alignment

The first technical detail involved in finding an alignment break-
point between the two directions is that it is often not possible to
split an alignment into an equally scoring prefix and suffix. In gen-
eral, two prefixes of the optimal alignment that differ by one charac-
ter can have scores that differ by as much as p. Accordingly, we will
demand a weaker notion of balance. If sy and s, are the forward and
reverse scores, respectively, we will aim to have [sf —s,| < p.

The second technical detail is that the optimal score is not always
the sum of the two scores. This occurs because the forward iteration
incurs the gap open penalty o at the beginning of gaps, but the re-
verse incurs it at the end of gaps (or rather, at the beginning in the
reverse direction). Thus, if the two directions meet in a gap, then we
have s,p; = s¢ + s, — o rather than soy; = s¢ + s,, where s,; is the op-
timal alignment score.

The final technical detail is that offsets of the two directions may
not precisely meet. WFA proceeds by greedily taking matches in
both directions. This makes it possible for the two directions to
shoot past each other without actually meeting. It turns out that it is
sufficient to detect that such an overshoot has occurred, as will be
shown in Section 2.4.

In Algorithm 2, we reconcile these three difficulties. Without loss
of generality, we assume that a forward wavefront W, has been
computed (Algorithm 1), and we want to detect overlaps against the

previously computed reverse wavefronts WS, s—p- First, if W
belongs to a score-balanced breakpomt (with [sf —s,| < p), itis suf—
ficient to check for overlaps against W s, and the previous p — -1 re-
verse wavefronts. Second, for every diagonal k in wavefront Ws,,
Algorithm 2 checks of overlaps in all wavefront components. This
way, the algorithm keeps track of the overlap with the minimum
score detected so far. Last, note that overlaps on Z and D compo-
nents account twice for the gap-open score o. Hence, the score from
overlaps at indel components has to be decreased by o.

Algorithm 1: Compute optimal alignment breakpoint using BiWFA.

Input: g, t strings, co, cy begin and end components
Output: s;, score, kp, diagonal, [}, offset, and ¢; component of a
breakpoint in the alignment A at ~ s/2 (A being the
optimal alignment between ¢ and ¢ under {x, o, e}
penalties, starting at component cg and ending at
component cy).
Function BIWFA_BREAKPOINT(q, t, co, cs) begin
// Initialise components cg,cy from Mo, Mo
— —
WF_INIT (Mo, cp,0); WF_EXTEND (Mo, q,t)
— “—
WE_INIT (Mo, cy,0); WE_EXTEND (Mo, q, 1)
// Best breakpoint so far
=
(sb, kb, lp, cp) «WF_OVERLAP (Wo, Wo)
// Compute forward and reverse wavefronts
(sg,sr) < (0,0)
while sy + s —0o—p+ 1< s, do
// Compute VVSf+1 and find overlaps
Sf —sf +1
st —WF NEXT (W sf,q,t)
WE_EXTEND (Msf ,q,t)
if ANTIDIAG (Ms,) >ANTIDIAG(MST) then
(s, k,l,c) «+WF_OVERLAP (st,Wsr r—p)
if s < sp then
L (Sbv kb7 lb7 Cb) «—
// Best breakpoint found?
if sf+sr—o0—p+ 12> s,then break;
// Compute Ws, 41 and find overlaps
(s_r — sp+1
Ws,. <WF NEXT (W Sryq,t)
WE_EXTEND (Mér,q, t)
if ANTIDIAG (M) >ANTIDIAG(M9T) then
(s,k,l,c) <WF OVERLAP(WM,st sp—p)

if s < sp then
L (sb, kb, b, cp) <

(87 k? l7 c)

(s,k,1,c)

return (sy, kp, Iy, Cp)
end

In practice, Algorithm 1 can avoid most calls to
WF_OVERLAP(). An efficient implementation can keep track of
the farthest reached antidiagonal by each wavefront. If the most
advanced antidiagonal reached by the forward and reverse wave-
fronts do not overlap (ANTIDIAG() on Algorithm 1), it follows
that no offsets from any diagonal can overlap, rendering the call to
WEF_OVERLAP() unnecessary.

2.4 Correctness of the breakpoint detection
The correctness of the Algorithm 1 stems from the following lemma.

Lemma 2.1. The optimal alignment score sopy < s if and only if
there exist s, s, and k such that |sf — s,| < p and at least one of the
following is true:

20z AINF Gz uo 1senb Ag 06900/t L0PEIN/Z/6E/OI01HE/SOIEULIOJUIOIG/ WO dNO"OlWapED.//:SdRY WO} POPEOIUMOQ

S.Marco-Sola et al.

. —
1ospts,=sand My, > My,
— —
2. spts,=s+oand Ty, > Iy,
— —
3. sp+s,=s+oand Dy, > Dy,

and further, My, (resp. I s, Dys,) is included in the traceback of
an alignment with score at most s if the first (resp. second, third)
condition is true.

Proof.
See Supplementary Material.

Algorithm 2: Detect overlaps and compute optimal breakpoint
between forward and reverse wavefronts.

— —
Input: W, 5 last computed wavefront, Ws,....s,.—p last p
wavefronts in the opposite direction
Output: Breakpoint’s s score, kp, diagonal, [, offset, and cp
component of the overlap with least score
=
Function WF_OVERLAP(W, o Wspiisp— p) begin
(b, kb, lp, cp) < (00, none, none, none)
for Diagonals k included in VW4 ; do
for s «+ s, to s, — pdo
— —
if Mk,sf > My, Nsp+s <i§’ then
L (b, kv, b, cp) <= (57 + 8,k My s, M)
F
if ?k,Sf > Tks, N Sfts—o<sy then
L (Sbv klﬂ lb7 Cb) <~ (Sf +s—o, k: ?k,a‘f) I)
if Bk,sjz > %k&, A sy +s—o0< s, then
L (sb, kv, Iy, cp) < (sy +5—o0,k, 3k,sf713)

return (syp, kp, lp, cp)
end

This lemma implies that the minimum value s for which the ‘only
if’ condition holds is the optimal score. Moreover, if the first of
the three conditions is found to hold for some values s and s,,
then s,p; < s¢ 4 s, + 0. Therefore, Algorithm 1 is guaranteed to find
part of a minimum-scoring alignment based on the following
features:

e Algorithm 2 checks a window of p score values on each iteration.

* Algorithm 1 iterates through alternatingly increasing values of s
and s,, detecting breakpoints with scores of at least sy +5, —0 —p +
1 in each iteration.

* After finding some s¢ and s, that satisfy the overlap condition,
Algorithm 1 continues for additional iterations until it is no longer
possible to find a lower score.

2.5 Combining breakpoints into an alignment
Algorithm 3 shows how to use BiWFA to recursively split align-
ments into smaller subproblems until the remaining alignment can
be trivially solved.

Note that a breakpoint computed by BiWFA can be found on the
I or D components. Thus, those alignments that connect with this
breakpoint have to start or end at the given component. This way,
Algorithm 3 considers the starting and ending component of each
alignment, and forces the underlying WFAs to use different initial
conditions depending on the alignment starting at the M (X = 0),
I (Zopo =0) or D component (Dgo = 0). A similar argument applies
to the ending conditions of each alignment ending at the M
(Msm—n =m), I (Zs,y—, = m) or D component (D ,,—,, = m).

2.6 BiWFA uses O(s) space and O((m + n)s) time

The memory complexity of Algorithm 1 is relatively simple to char-
acterize. The range of diagonal values k increases by at most two
every time s is incremented, and each forward and reverse search
only needs to store the last p wavefronts. Thus, the memory use is
proportional to the optimal alignment score, O(s), excluding the
storage of the input sequences. Also, note that the output alignment
only requires storing the position (i,7) for the mismatches, insertions
and deletions (matches can be inferred from the gaps). Concerning
Algorithm 3, data structures are discarded before entering a recur-
sive call. Therefore, the maximum memory use occurs in the outer-
most call, in which s is the optimal score of the full alignment.

Algorithm 3: BiWFA recursive computation of the optimal
alignment in O(s) space

Input: g, t strings, co, ¢y begin and end components
Output: A optimal gap-affine alignment between ¢ and ¢

Function BIWFA_ALIGN(q, t, co, c5) begin

// Base cases

if n = O then return D x m;

if m = O then return I X n;

// Find optimal breakpoint at ~ s/2
(s,7,k,c) «<BIWFA_BREAKPOINT (q,t,co,cCf)

// Align the first A and second Aj; half
i+ j—k;// Breakpoint at (i,7)
ifc#Itheni =i—lelsei’ =i

ifc#ADthenj =j—lelsej =

Ao +BIWFA_ALIGN (qq.. i, tg...j/5C0,C)

Aj <BIWFA_ALIGN (Gi41...n—1,tj4+1...m—1,C; Cf)
return Ag + c+ A

end

The time complexity is more complicated to analyze. Our proof
follows similar arguments as those from Myers (1986).

Theorem 2.2. BiWFA’s time complexity is O((m + n)s), being n and
m the sequences’ length and s the optimal alignment score.

Proof.

Let ¢ = m + n, and let T (¢, s) be BIWFA’s execution time with score
s. A call to BiWFA can result in two recursive calls. Let ¢, and ¢, be
the combined length of the sequences in the two calls, and similarly
let sy and s, be the two alignment scores. Following Lemma 2.1, we
know that these variables obey the following inequalities:

© b <t

IN

* spts <s
* |5f_5r| < P

Because each direction of WFA executes in O(s¢) time (Marco-Sola
et al., 2021), we can choose a constant ¢; large enough that the fol-
lowing inequality holds for all s > 3p:

T(ls) < cysl+T(ly,sp) +T(Ly,s,) (3)
We can also choose a constant ¢, large enough that for alls < 3p
T,s) < cf (4)

This follows because the recursion depth depends only on s, which
we have given an upper bound. Therefore, this term includes a
bounded number of calls that all have linear dependence on ¢.

20z AINF Gz uo 1senb Ag 06900/t L0PEIN/Z/6E/OI01HE/SOIEULIOJUIOIG/ WO dNO"OlWapED.//:SdRY WO} POPEOIUMOQ

Optimal gap-affine alignment in O(s) space

Next, we argue that T(¢,s) < 3¢1sl + c2¢ by induction on s. The
base cases for s = 0,1,...,3p follow trivially from the latter of the
previous inequalities. Assume then that s > 3p and the induction hy-
pothesis holds for 0,1,...,s—1. Note that we then have
sf, sy < 2s/3, else either [sy —s,| > p or sf +s, > 5. Thus,

T(l,s) < cisl+ (3c1(2s/3)e + caly) + (3c1(25/3)lr + c24r)

< 3cisl+ b (3)

This proves the claim.

3 Results

We implement the BIWFA algorithm described in this work in C.
The code and the scripts required to reproduce the experimental
results presented in this section are publicly available and can be
found at https://github.com/smarco/BiWFA-paper. Moreover, the
code has been integrated into the WFA2-lib alignment library (as
ultralow memory mode) at https://github.com/smarco/WFA2-lib.

3.1 Experimental setup

We evaluate the performance of our BIWFA implementation com-
pared to the state-of-the-art and other high-performance sequence
alignment libraries. We select the original WFA (Marco-Sola et al.,
2021) (wfa-high) and its new low-memory modes (wfa-med and
wfa-low) implemented in WFA2-lib (https://github.com/smarco/
WFA2-lib). Also, we select the efficient wfalm (Eizenga and Paten,
2022) (wfalm) and its low-memory modes (wfalm-low and wfalm-
rec). Moreover, we include the highly optimized KSW2-Z2
(ksw2_extz2_sse), from the KSW2 library (Li, 2018; Suzuki and
Kasahara, 2018), as the best representative of DP-based methods
due to its exceptional performance and widely usage within bio-
informatics tools. In addition, we include the Edlib (Sosi¢ and Sikié,
2017) and BitPal (Loving et al., 2014) libraries, which implement
bit-parallel alignment strategies for edit and non-unitary penalties
(i.e. gap-linear), respectively. Although they solve a considerably
easier problem (i.e. Edlib is restricted to edit-alignments and BitPal
only computes the alignment score), and thus are not directly com-
parable, we included them in the evaluation to provide a perform-
ance upper bound.

We considered including other popular methods like those
implemented in the Parasail (Daily et al., 2015; Daily, 2016; Farrar,
2007; Wozniak, 1997), SeqAn (Rahn et al., 2018) and Gaba (Suzuki
and Kasahara, 2018) libraries. However, these libraries were not
designed to align long and noisy sequences, and failed to complete

the executions. Therefore these methods were discarded from the
evaluation.

All the presented methods have been configured to generate glo-
bal alignments. These algorithms are grouped in two categories:
‘Gap-affine Exact’ for exact algorithms that use gap-affine penalties
(i.e. BIWFA, WFA and its low-memory modes, wfalm and its low-
memory modes and KSW2-Z2), and ‘Others’ for methods that use
simpler penalty models or can only compute the alignment score
(i.e. Edlib and BitPal).

For the evaluation, we use simulated and real datasets. For the
simulated datasets, we simulate several datasets of various sequence
lengths (i.e. 100K, 500K, 1M and 2M bases) and different error rate
(i.e. e=10% and 20%) randomly generated. Regarding the evalu-
ation with real datasets, we use a first set of sequences generated by
the Human Pangenome Reference Consortium (Miga and Wang,
2021), consisting of long reads sequenced using Oxford Nanopore
Technologies (ONT), PromethION platform, with an average error
rate of 5-10%. The sequences are derived from the human cell line
HGO002, subset to chromosome 12 and restricted to those at least 10
kbp long, for a total number of 1312 sequence pairs of average
length equal to 172 kbp (maximum ~306 kbp). In addition, we use a
second dataset comprising ONT MinION reads from Bowden et al.
(2019), with an average error rate of 5% and restricted to those at
least 500 kbp long, for a total number of 48 sequence pairs of aver-
age length equal to 630 kbp (maximum ~1 Mbp).

All the executions are performed single-thread on a node running
CentOS Linux (release 8.1.1911) equipped with an AMD EPYC
7742 CPU and 1 TB of DRAM (distributed in 16 dimms x 64 GiB
@3200 MHz).

3.2 Evaluation on simulated data

Table 1 shows the performance results (i.e. execution time and
memory) for the different methods using simulated datasets.
Overall, the results show that BiIWFA is faster and uses less memory
than all other methods in the ‘Gap-affine Exact’ category. In par-
ticular, BIWFA requires 32 — 1000x less memory than KSW2-Z2,
while being 1.4 —4.7x faster. Compared to original WFA-based
methods (i.e. WFA-high and wfalm), BiWFA uses 9 — 9620 less
memory, being up to 4.4 faster. Similarly, BIWFA outperforms the
other memory-efficient WFA-based methods (i.e. WFA-med, WFA-
low, wfalm-low and wfalm-rec), reducing memory requirements
down to 438x while being 2.7 — 26.5x faster. More importantly,
most of the pairwise alignment methods evaluated fail to scale
megabases-long sequences, requiring more memory than available
in the node (i.e. 1TB). As opposed, BiWFA only requires a few

Table 1. Time and memory performance of pairwise alignment implementations on simulated data

Time (s)

Memory (MBs)

10Kbp 100 Kbp 1 Mbp 2 Mbp

10Kbp 100 Kbp 1 Mbp 2 Mbp

10% 20% 10% 20% 10% 20% 10%

20% 10% 20% 10% 20% 10% 20% 10% 20%

edlib 04 0.6 2.5 4.5 17.9 35.3 35.4
bitpal 1.3 1.2 123 12.3 123.8 123.7 248.0
ksw2-extz2 9.8 99 96.7 97.5 nla n/a n/a
WFA-high 2.0 5.7 285 84.1 3129 n/a n/a
WFA-med 6.6 20.2 89.5 272.8 1922.1 3690.1 n/a
WFA-low 8.0 24.1 101.4 301.1 43949 4857.0 7710.2
wfalm 6.4 19.2 90.2 268.7 841.0 n/a n/a

wfalm-low 10.1 30.4 164.1 494.8 1525.1 4418.7 2990.1
wfalm-rec 22.3 70.7 447.5 1402.6 5792.7 177529 11979.6
BiWFA 24 69 208 61.0 218.3 680.4 466.9
BiWFA.score 1.1 3.1 10.2 30.2 112.2 355.8 245.4

69.1 4 4 N N 13 13 22 23
2471 4 4 4 6 10 10 15 13
n/a 193 196 19081 19083 n/a n/a n/a n/a
n/a 128 313 8981 26667 932199 n/a n/a n/a
n/a 35 81 830 1620 42464 24874 nla n/a
9813.1 25 60 554 884 25321 12539 52551 26067
n/a 54 148 8968 26575 898770 n/a n/a n/a
8779.4 10 16 443 823 10435 30817 36299 69312

37747.7 6 7 43 73 497 904 1064 1787
1429.0 6 5 19 27 97 180 202 267
7502 3 4 16 23 97 186 204 256

Note: Execution time (in seconds) and memory (in MBs) required per 1M bases aligned, using different pairwise alignment implementations on simulated data-

sets. Executions that failed appear as ‘n/a’. Best performing implementation in the ‘Gap-affine Exact’ category is marked in bold. Although Edlib and BitPal are

not directly comparable to the other implementations, we included them in the comparison as a reference. Similarly, we include executions of BiWFA limited to

compute the alignment score as ‘BiWFA.score’.

20z AINF Gz uo 1senb Ag 06900/t L0PEIN/Z/6E/OI01HE/SOIEULIOJUIOIG/ WO dNO"OlWapED.//:SdRY WO} POPEOIUMOQ

S.Marco-Sola et al.

hundred MBs of memory. Note that, computing the full alignment
(BiWFA) requires a similar amount of memory as computing only
the alignment score (BiWFA.score). Nonetheless, computing the
alignment score is ~2x faster than computing the full alignment.

For completeness, we present a comprehensive experimental
evaluation on a wider range of sequence lengths (i.e. 100 bp, 1 Kbp,
10Kbp, 100Kbp, 1 Mbp and 2 Mbp) and error rates (0.1%, 1%,
5%, 10%, 20% and 40%) on Supplementary Material
(Supplementary Tables S1 and S2). For short sequences (i.e.
<1 Kbp), the results show that BiWFA delivers similar performance
as the original WFA (1.25 — 2x slower) while reducing the memory
requirements up to 60x. Our experiments indicate that BiWFA
starts outperforming the original WFA when aligning sequences lon-
ger than ~30 Kbp. Nevertheless, the exact performance breakpoint
can vary depending on the error rate, implementation and processor
specifics. Similarly, for smaller error rates (i.e. <1%), WFA-based
methods largely outperform other approaches, being 2 — 3 orders of
magnitude faster than other methods like KSW2-Z2, bitpal and
edlib. In addition, for low error rates, memory-efficient WFA-based
methods require a minimal amount of memory.

3.3 Evaluation on real data

Figure 2 shows the performance results obtained for all the eval-
uated algorithms in terms of execution time and consumed memory.
BiWFA uses many times less memory than other methods. In par-
ticular, when aligning ultra-long ONT sequences (Fig. 2B), BIWFA
requires between 68 — 93x less memory compared to wfalm and
WFA low-memory modes. Furthermore, BiWFA uses 3.5x less
memory compared to the efficient recursive mode from wfalm (most
memory-efficient gap-affine algorithm to date).

At the same time, BIWFA proves to be one of the fastest imple-
mentations aligning long sequences. Using ultra-long sequences, our
method is 25.7x faster than wfalm’s recursive mode. Moreover,
BiWFA’s execution times are similar to those of BitPal (sometimes

even faster, 1.1 — 1.28x faster on average) computing exact align-
ments (not just the score) under the gap-affine model.

For completeness, Supplementary Figure S1 shows experimental
results limited to aligning sequences up to 10 Kbps. In this scenario,
BiWFA demonstrates to be one of the fastest implementations,
requiring less than 10 MB to execute.

4 Discussion

As long sequencing technologies improve and high-quality sequence
assembly decreases in cost, we anticipate that the importance of
pairwise alignment algorithm will continue to increase. To keep up
with upcoming improvements in sequencing and genomics, pairwise
alignment algorithms need to face crucial challenges in reducing exe-
cution time and memory consumption. In this work, we have pre-
sented the BiWFA, a gap-affine pairwise alignment algorithm that
requires O(ns) time and O(s) space, being the first algorithm to im-
prove the long standing space lower bound of O(#n). The BiWFA
answers the pressing need for sequence alignment methods capable
to scaling to genome-scale alignments and full pangenomes.

Most notably, BiWFA execution times are very similar, or even
better, than those of the original WFA (despite BIWFA requiring
2954x and 607x less memory when aligning ultra-long Min[ON
and PromethION sequences, respectively). This result can be better
understood considering the memory inefficiencies that the original
WFA experiences when using a large memory footprint. As the
sequence’s length and error increases, the original WFA uses a sub-
stantially larger memory footprint, putting a significant pressure on
the memory hierarchy of the processor. Due to the pervasive mem-
ory inefficiencies of modern processors executing memory intensive
applications, the original WFA’s performance is severely deterio-
rated when aligning long sequence datasets (like those from
Nanopore presented in the evaluation). In contrast, BIWFA relieves
this memory pressure using a minimal memory footprint. As a

A Maximum memory consumption
ONT PromethION reads vs CHM13 v1.1 > 10 kbps ONT Ultra Long > 500 kbps
1TB ——
100 GB- + ﬁ ¢
10 GB-
: - ===
1GB- i + < + I
[[
100 MB-| . ¢ I _L = N
[} Y]
10MB- _, -+ L | + - 3
1MB- ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
B Execution time
ONT PromethlON reads vs CHM13 v1.1 > 10 kbps ONT Ultra Long > 500 kbps
1,000.0- ! ! * 1
, ~ | dees
g = . == == o == L
8 10.04 ==
o + : . o
@ % SR I L '
01 1 : i : : + ° *
l L] L]
@) \xg\ @ g\\ ed W 2 ot > \\3\ 5@ N \s \«\ N \,e «<P~
07 o 5 S0 X ,«\ BN SR @ (\ .S ,x\\Q S o \ﬂ@ ,\0 RS \ﬂ
X e, 'L W A oo @\ G A W
O " o AW ARl R & o\%\ . *\’L a1l \N‘(\g\a
oG e B e e a
(4 (%)
Algorithm

Fig. 2. Experimental results from the execution of BiWFA and other state-of-the-art implementations aligning long sequences. Figure shows (A) memory consumption and (B)
execution time per sequence aligned. A vertical line on each panel separates algorithms that use simpler penalty models or can only compute the alignment score (i.e. edlib and

bitpal) from those that compute the full gap-affine alignment

20z AINF Gz uo 1senb Ag 06900/t L0PEIN/Z/6E/OI01HE/SOIEULIOJUIOIG/ WO dNO"OlWapED.//:SdRY WO} POPEOIUMOQ

Optimal gap-affine alignment in O(s) space

result, BIWFA is able to balance out the additional work induced by
BiWFA’s recursion, delivering a performance on-par with the origin-
al WFA.

We have presented the BiWFA using gap-affine penalties.
Nevertheless, these very same ideas can be translated directly into
other distances like edit, linear gap or piecewise gap-affine.
Moreover, it can be easily extended to semi-global alignment (a.k.a.
ends-free, glocal, extension or overlapped alignment) by modifying
the initial conditions and termination criterion. At the same time,
the BIWFA retains the strengths of the original WFA: no restrictions
on the sequences’ alphabet, preprocessing steps, nor prior estimation
of the alignment error.

Due to the simplicity of the WFA’s computational pattern,
BiWFA’s core functions can be easily vectorized to fully exploit the
capabilities of modern SIMD multicore processors. Our implemen-
tation, relies on the automatic vectorization capabilities of modern
compilers. As a result, the BIWFA implementation can exploit the
SIMD capabilities of any processor supported by modern compilers,
without rewriting any part of the source code.

Genomics and bioinformatics methods will continue to rely on
sequence alignment as a core and critical component. BiWFA paves
the way for the development of faster and more accurate tools that
can scale with longer and noisy sequences using a minimal amount
of memory. In this way, we expect BiWFA to enable efficient se-
quence alignment at genome-scale in years to come.

Acknowledgements

The authors thank Ragnar Groot Koerkamp and the anonymous reviewers
for making useful suggestions and contributing to improving the manuscript.

Funding

This research was supported by the European Union Regional Development
Fund within the framework of the ERDF Operational Program of Catalonia
2014-2020 with a grant of 50% of total cost eligible under the DRAC project
[001-P-001723] and Lenovo-BSC Contract-Framework Contract (2022). It was
also supported by the Ministerio de Ciencia e Innovacion MCIN AEI/10.13039/
501100011033 and NextGenerationEU/PRTR under contracts PID2020-
113614RB-C21, PID2019-107255GB-C21, and TED2021-132634A-100, by
the Generalitat de Catalunya GenCat-DIUIE (GRR) [contracts 2017-SGR-313,
2017-SGR-1328 and 2017-SGR-1414]. M.M. was partially supported by the
Spanish Ministry of Economy, Industry and Competitiveness under Ramon y
Cajal fellowship number RYC-2016-21104. S.M.-S. was supported by Juan de
la Cierva fellowship grant IJC2020-045916-1 funded by MCIN/AEI/10.13039/
501100011033 and by ‘European Union NextGenerationEU/PRTR’. B.P. and
J.M.E. were supported, in part, by the United States National Institutes of
Health [award numbers: ROITHG010485, U01HG010961, OT20D026682,
OT3HL142481 and U24HGO011853]. E.G. was supported by NIH/NIDA
U01DA047638 and NSF PPoSS Award #2118709. A.G. acknowledges Dr.
Nicole Soranzo’s efforts to establish a pangenome research unit at the Human
Technopole in Milan, Italy.

Conflict of Interest: none declared.

References

Altschul,S. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,
403-410.

Bowden,R. et al. (2019) Sequencing of human genomes with nanopore tech-
nology. Nat. Commun., 10, 1869.

Daily,]. (2016) Parasail: SIMD C library for global, semi-global, and local
pairwise sequence alignments. BMC Bioinf., 17, 1-11.

Daily,]. et al. (2015) A work stealing based approach for enabling scalable op-
timal sequence homology detection. . Parallel Distributed Comput., 79,
132-142.

Durbin,R. et al. (1998) Biological Sequence Analysis: Probabilistic Models of
Proteins and Nucleic Acids. Cambridge University Press, Cambridge.

Eizenga,].M. and Paten,B. (2022) Improving the time and space complexity of
the WFA algorithm and generalizing its scoring. bioRxiv.

Farrar,M. (2007) Striped Smith-Waterman speeds database searches six times
over other SIMD implementations. Bioinformatics, 23, 156-161.

Garrison,E. and Marth,G. (2012) Haplotype-based variant detection from
short-read sequencing. arXiv preprint arXiv:1207.3907.

Gotoh,O. (1982) An improved algorithm for matching biological sequences. J.
Mol. Biol., 162, 705-708.

Jones,N. et al. (2004) An Introduction to Bioinformatics Algorithms. MIT
Press, Cambridge.

Kielbasa,S. et al. (2011) Adaptive seeds tame genomic sequence comparison.
Genome Res., 21,487-493.

Koren,S. et al. (2017) CANU: scalable and accurate long-read assembly via
adaptive k-mer weighting and repeat separation. Genome Res., 27,
722-736.

Li,H. (2013) Aligning sequence reads, clone sequences and assembly contigs
with bwa-mem. arXiv preprint arXiv:1303.3997.

Li,H. (2018) Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics, 34, 3094-3100.

Loving,]. et al. (2014) BitPAl: a bit-parallel, general integer-scoring sequence
alignment algorithm. Bioinformatics, 30, 3166-3173.

Marco-Sola,S. et al. (2012) The gem mapper: fast, accurate and versatile align-
ment by filtration. Nat. Methods, 9, 1185-1188.

Marco-Sola,S. et al. (2021) Fast gap-affine pairwise alignment using the wave-
front algorithm. Bioinformatics, 37,456-463.

McKenna,A. et al. (2010) The genome analysis toolkit: a mapreduce frame-
work for analyzing next-generation DNA sequencing data. Genome Res.,
20, 1297-1303.

Miga,K. H. and Wang,T. (2021) The need for a human pangenome reference
sequence. Annu. Rev. Genomics Hum. Genet., 22, 81-102.

Myers,E. W. (1986) An O(ND) difference algorithm and its variations.
Algorithmica, 1,251-266.

Myers,E. W. and Miller,W. (1988) Optimal alignments in linear space.
Bioinformatics, 4, 11-17.

Needleman,S. B. and Wunsch,C. D. (1970) A general method applicable to the
search for similarities in the amino acid sequence of two proteins. J. Mol.
Biol., 48, 443-453.

Rahn,R. et al. (2018) Generic accelerated sequence alignment in seqan using
vectorization and multi-threading. Bioinformatics, 34, 3437-3445.

Rodriguez-Martin,B. et al. (2017) Chimpipe: accurate detection of fusion
genes and transcription-induced chimeras from RNA-seq data. BMC
Genomics, 18, 7-17.

Rognes,T. and Seeberg,E. (2000) Six-fold speed-up of Smith-Waterman se-
quence database searches using parallel processing on common microproc-
essors. Bioinformatics, 16, 699-706.

Simpson,]. et al. (2009) ABYSS: a parallel assembler for short read sequence
data. Genome Res., 19, 1117-1123.

Smith,T. F. and Waterman,M. S. (1981) Comparison of biosequences. Adv.
Appl. Math., 2, 482-489.

Sosi¢,M. and Siki¢,M. (2017) EDLIB: a C/C++ library for fast, exact sequence
alignment using edit distance. Bioinformatics, 33, 1394-1395.

Suzuki,H. and Kasahara,M. (2017) Acceleration of nucleotide semi-global
alignment with adaptive banded dynamic programming. bioRxiv.

Suzuki,H. and Kasahara,M. (2018) Introducing difference recurrence relations
for faster semi-global alignment of long sequences. BMC Bioinformatics,
19, 33-47.

Wozniak,A. (1997) Using video-oriented instructions to speed up sequence
comparison. Bioinformatics, 13, 145-150.

Xia,Z. et al. (2021) A review of parallel implementations for the
Smith-Waterman algorithm. In: Interdisciplinary Sciences: Computational
Life Sciences, pp. 1-14.

Zhang,Z. et al. (2000) A greedy algorithm for aligning DNA sequences.
J. Comput. Biol., 7,203-214.

Zhao,M. et al. (2013) SSW library: an SIMD Smith—-Waterman C/C++- library
for use in genomic applications. PLoS ONE, 8, ¢82138.

20z AINF Gz uo 1senb Ag 06900/t L0PEIN/Z/6E/OI01HE/SOIEULIOJUIOIG/ WO dNO"OlWapED.//:SdRY WO} POPEOIUMOQ

