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Abstract

Motivation: Pairwise sequence alignment remains a fundamental problem in computational biology and bioinfor-

matics. Recent advances in genomics and sequencing technologies demand faster and scalable algorithms that can

cope with the ever-increasing sequence lengths. Classical pairwise alignment algorithms based on dynamic pro-

gramming are strongly limited by quadratic requirements in time and memory. The recently proposed wavefront

alignment algorithm (WFA) introduced an efficient algorithm to perform exact gap-affine alignment in OðnsÞ time,

where s is the optimal score and n is the sequence length. Notwithstanding these bounds, WFA’s Oðs2Þ memory

requirements become computationally impractical for genome-scale alignments, leading to a need for further

improvement.

Results: In this article, we present the bidirectional WFA algorithm, the first gap-affine algorithm capable of comput-

ing optimal alignments in OðsÞ memory while retaining WFA’s time complexity of OðnsÞ. As a result, this work

improves the lowest known memory bound OðnÞ to compute gap-affine alignments. In practice, our implementation

never requires more than a few hundred MBs aligning noisy Oxford Nanopore Technologies reads up to 1 Mbp long

while maintaining competitive execution times.

Availability and implementation: All code is publicly available at https://github.com/smarco/BiWFA-paper.

Contact: santiagomsola@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Pairwise sequence alignment provides a parsimonious transformation
of one string into another. From this transformation, we can under-
stand the relationship between pairs of sequences. Because similarities
and differences between biosequences (DNA, RNA, protein) relate to
variation in function and evolutionary history of living things, pair-
wise sequence alignment algorithms are a core part of many essential
bioinformatics methods in read mapping (Li, 2013; Marco-Sola et al.,
2012), genome assembly (Koren et al., 2017; Simpson et al., 2009),
variant calling (Garrison and Marth, 2012; McKenna et al., 2010;
Rodr�ıguez-Mart�ın et al., 2017) and many others (Durbin et al., 1998;
Jones et al., 2004). Its importance has motivated the research and de-
velopment of multiple solutions over the past 50years.

Classical approaches to derive alignments involve the application
of dynamic programming (DP) techniques. These methods require
computing a matrix whose dimensions correspond to the lengths of
the query q and target t sequences. Using DP recurrence relations,

these methods compute the optimal alignment score for progressive-

ly longer prefixes of q and t, which correspond to the cells of the DP
matrix. Thus, an optimal alignment can then be read out by tracing

the recurrence back through the matrix.
Selecting a suitable alignment score function is essential to obtain

biologically meaningful alignments, as it determines the characteristics
of optimal alignments. In effect, the alignment score function encodes

prior expectations about the probability of certain kinds of sequence

differences. It has been observed that, in many contexts, insertions
and deletions are non-uniformly distributed; they are infrequent but

tend to be adjacent so that they form extended gaps with a long-tailed
length distribution. This motivated the development of gap-affine
models in which the penalty of starting a new gap is larger than that
of extending a gap (Gotoh, 1982). Crucially, gap-affine penalties can

be implemented efficiently using additional DP matrices.
Problematically, the efficiency of classical gap-affine DP-based

methods is constrained by their quadratic requirements in time and

VC The Author(s) 2023. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 39(2), 2023, btad074

https://doi.org/10.1093/bioinformatics/btad074

Advance Access Publication Date: 7 February 2023

Original Paper

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
9
/2

/b
ta

d
0
7
4
/7

0
3
0
6
9
0
 b

y
 g

u
e
s
t o

n
 2

5
 J

u
ly

 2
0
2
4



memory with respect to the lengths of the sequence pair.
Consequently, multiple optimizations have been proposed over the
years. Notable examples include bit-parallel techniques (Loving
et al., 2014), data-layout transformations to exploit SIMD instruc-
tions (Farrar, 2007; Rognes and Seeberg, 2000; Wozniak, 1997),
difference encoding of the DP matrix (Suzuki and Kasahara, 2018),
among other methods (Altschul et al., 1990; Kiełbasa et al., 2011;
Xia et al., 2021; Zhao et al., 2013). Nonetheless, all these exact
methods retain the quadratic requirements of the original DP algo-
rithm and therefore struggle to scale when aligning long sequences.

In many cases, when two sequences are homologous, the majority
of possible alignments are largely sub-optimal, having a substantially
worse score than the optimal one. For this reason, heuristic methods
are usually employed to find candidate alignment regions when the
cost of exact algorithms becomes impractical. Most notable
approaches use adaptive band methods (Suzuki and Kasahara, 2017)
or pruning strategies [e.g. X-drop (Zhang et al., 2000) and Z-drop
(Li, 2018)] to avoid the computation of alignments extremely unlikely
to be optimal. These heuristic methods have been implemented within
many widely used tools (Altschul et al., 1990; Li, 2018).

Recently, we proposed the wavefront alignment algorithm
(WFA) (Marco-Sola et al., 2021) to compute the exact alignment be-
tween two sequences using gap-affine penalties. WFA reformulates
the alignment problem to compute the longest-possible alignments
of increasing score until the optimal alignment is found. Notably,
WFA takes advantage of homologous regions between sequences to
accelerate alignment’s computation. As a result, WFA computes op-
timal gap-affine alignments inOðnsÞ time andOðs2Þmemory, where
n is the sequence length and s the optimal alignment score. Being an
exact algorithm, WFA provides the same guarantee for optimality as
classical algorithms (Gotoh, 1982; Needleman and Wunsch, 1970;
Smith and Waterman, 1981), but does away with the quadratic
requirements in time.

WFA unlocked the path for optimal alignment methods capable
of scaling to long sequences. Nevertheless, the Oðs2Þ memory
requirements quickly become the limiting factor when aligning suffi-
ciently long or noisy sequences (Eizenga and Paten, 2022). As it hap-
pens, WFA’s memory requirements can be impractical when
aligning through large structural variations or highly divergent gen-
ome regions. Given that we use alignment to understand variation,
these are some contexts in which optimal alignment could be most
useful, but its memory requirements make it prohibitive.

To address this problem, this article presents the first gap-affine
alignment algorithm to compute the optimal alignment in OðnsÞ time
andOðsÞ memory (excluding the storage of the input sequences). Our
method, the bidirectional WFA algorithm (BiWFA), computes the
WFA alignment of two sequences in the forward and reverse direction
until they meet. Using two wavefronts of OðsÞ memory, we demon-
strate how to find the optimal breakpoint of the alignment at score
�s=2 and proceed recursively to solve the complete alignment in
OðnsÞ time. To our knowledge, this work improves the lowest known
memory bound to compute gap-affine alignments OðnÞ (Myers and
Miller, 1988) to OðsÞ, while retaining the time complexity of the ori-
ginal WFA OðnsÞ. Furthermore, our experimental results demonstrate
that the BiWFA delivers comparable, or even better, performance
than the original WFA, outperforming other state-of-the-art tools
while using a minimal amount of memory.

The rest of the article is structured as follows. Section 2 presents
the definitions, algorithms and formal proofs supporting BiWFA.
Section 3 shows the experimental evaluation of our method, com-
paring it against other state-of-the-art tools and libraries. Lastly,
Section 4 presents a discussion on the BiWFA method and summa-
rizes the contributions and impact of this work.

2 Materials and methods

2.1 Wavefront alignment algorithm
Let the query q ¼ q0q1 . . .qn�1 and the text t ¼ t0t1 . . . tm�1 be
strings of length n and m, respectively. Likewise, let v½i; j� ¼
viviþ1 . . . vj denote a substring of any string v from the ith to the jth

character. We will use ðx; o; eÞ to denote the gap-affine penalties. A
mismatch costs x, and a gap of length l costs oþ l � e. We assume
that x > 0 and e > 0, and further that all of the score parameters are
constants.

Basically, WFA computes partial optimal alignments of increas-
ing score until an alignment with score s reaches coordinate ðn;mÞ
of the DP matrix. In this way, the algorithm determines that s is the
minimal alignment score. Moreover, it can derive the optimal align-
ment by tracing back the partial alignments that led to score s at
ðn;mÞ.

LetMs;k, X s;k, I s;k and Ds;k denote the offset within diagonal k
in the DP-matrix to the farthest-reaching (f.r.) cell that has score s
and ends with a match, mismatch, insertion or deletion, respectively.
In general, we denote by wavefront the tuple of offsets for a given
score Ws ¼ ðMs;X s;I s;DsÞ. We refer to the four elements in this
tuple as its components, and we associate a corresponding sentinel
value to specify each component: c 2 fM;X; I;Dg.

In Marco-Sola et al. (2021), we proved that the f.r. points ofWs

can be computed using previous wavefronts Ws�o�e, Ws�e and
Ws�x, using Equation 1 where LCPðv;wÞ is the length of longest
common prefix between substrings v and w. The base case for this
recursion is given by X0;0 ¼ 0.

I s;k ¼ maxfMs�o�e;k�1 þ 1; I s�e;k�1 þ 1g
Ds;k ¼ maxfMs�o�e;kþ1;Ds�e;kþ1g
X s;k ¼ maxfMs�x;k þ 1; I s;k;Ds;kg
Ms;k ¼ X s;k þ LCPðq½X s;k � k;n� 1�; t½X s;k;m� 1�Þ;

(1)

Equation 1 shows that the computation of a given wavefront
depends only on the previous p ¼ maxfx; oþ eg wavefronts. We
refer to p as the wavefront scope or, in other words, the maximum
score increase between partial alignments. Moreover, note that X s;k

does not need to be explicitly stored as its values can be inferred
usingMs;k, I s;k and Ds;k.

In the worst case, WFA requires computing s wavefronts of
increasing length, totalling

Ps
i¼0ð1þ 2iÞ ¼ Oðs2Þ cells. Moreover,

the LCPmust be computed once for each cell. However, within a di-
agonal, the total number of offset increments cannot exceed the
length of the sequences. Hence, WFA requires OðnsÞ time and Oðs2Þ
memory in the worst case (Marco-Sola et al., 2021). Since s � pn,
the OðnsÞ factor of the execution time, due to the LCP, dominates
over the Oðs2Þ factor in the worst case. However, in practice, the
time is often closer to Oðs2 þ nÞ. This is because spurious matches
between high-entropy sequences are short in expectation.
Accordingly, the LCP computations often finish after performing
only a few character comparisons, except along the optimal align-
ment in whichOðnÞ comparisons are required.

2.2 Bidirectional wavefront alignment algorithm
The core idea of the BiWFA algorithm is to perform WFA simultan-
eously in both directions on the strings: from start to end (i.e. for-
ward) and from end to start (i.e. reverse). Each direction will only
retain p wavefronts in memory. This is insufficient to perform a full
traceback. However, when they ‘meet’ in the middle, we can infer a
breakpoint in the alignment that divides the optimal score roughly
in half. Then, we can apply the same procedure on the two sides of
the breakpoint recursively. We will show that this results in only a
constant-factor slowdown. This technique was previously employed
to a similar end with the Myers OðNDÞ difference algorithm
(Myers, 1986).

Figure 1 presents a graphical example of BiWFA computing a
breakpoint in the optimal alignment between two sequences. The
figure shows the DP cells computed by the forward and reverse
wavefronts. Alignments in both directions progress until they over-
lap on cell ð4;4Þ with score 8þ 8 ¼ 16 corresponding to the optimal
alignment (sopt ¼ 16).

First, let us define the WFA equations for the forward and re-
verse alignment directions. The recursions for the forward direction
are equivalent to those of the standard WFA presented above
(Equation 1). However, to highlight the distinction, we will denote
them W

�!
s ¼ ðI

!
s;D
!

s;X
!

s;M
�!

sÞ. The recursions for the reverse
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direction are very similar (Equation 2), using X
 

0;m�n ¼ m as the
base case and LCSðv;wÞ to denote the length of the longest common
suffix of v and w. Note that the same argument used in Marco-Sola
et al. (2021) applies to the reverse recursions to prove that they are
f.r. in the reverse direction.

I
 

s;k ¼ minfM
 �

s�o�e;kþ1 � 1; I
 

s�e;kþ1 � 1g

D
 

s;k ¼ minfM
 �

s�o�e;k�1; D
 

s�e;k�1g

X
 

s;k ¼ minfM
 �

s�x;k � 1; I
 

s;k;D
 

s;kg

M
 �

s;k ¼ X
 

s;k � LCSðq½0;X
 

s;k � k� 1�; t½0;X
 

s;k � 1�Þ

(2)

Algorithm 1 presents the BiWFA algorithm to compute a break-
point in the optimal alignment at �s=2. Using forward and reverse
wavefronts, the algorithm proceeds by alternatingly computing

forward and reverse alignments (i.e. W
�!

1; W
 �

1; W
�!

2; W
 �

2; . . .). To
this end, BiWFA relies on the operators WF_NEXT() and
WF_EXTEND() from the standard WFA [see Marco-Sola et al.
(2021)] to compute successive wavefronts using Equaions 1 and 2.
The process is halted after their offsets overlap to compute the pos-
ition of a breakpoint in the optimal alignment. This algorithm iter-
ates until it is guaranteed that the optimal breakpoint has been
found. However, there are some technical details involving the de-
tection of overlaps and the computation of the optimal breakpoint,
which we cover in Sections 2.3 and 2.4.

2.3 Finding a score-balanced breakpoint in the optimal

alignment
The first technical detail involved in finding an alignment break-
point between the two directions is that it is often not possible to
split an alignment into an equally scoring prefix and suffix. In gen-
eral, two prefixes of the optimal alignment that differ by one charac-
ter can have scores that differ by as much as p. Accordingly, we will
demand a weaker notion of balance. If sf and sr are the forward and
reverse scores, respectively, we will aim to have jsf � srj � p.

The second technical detail is that the optimal score is not always
the sum of the two scores. This occurs because the forward iteration
incurs the gap open penalty o at the beginning of gaps, but the re-
verse incurs it at the end of gaps (or rather, at the beginning in the
reverse direction). Thus, if the two directions meet in a gap, then we
have sopt ¼ sf þ sr � o rather than sopt ¼ sf þ sr, where sopt is the op-
timal alignment score.

The final technical detail is that offsets of the two directions may
not precisely meet. WFA proceeds by greedily taking matches in
both directions. This makes it possible for the two directions to
shoot past each other without actually meeting. It turns out that it is
sufficient to detect that such an overshoot has occurred, as will be
shown in Section 2.4.

In Algorithm 2, we reconcile these three difficulties. Without loss
of generality, we assume that a forward wavefront W

�!
sf has been

computed (Algorithm 1), and we want to detect overlaps against the

previously computed reverse wavefronts W
 �

sr ...sr�p. First, if W
�!

sf

belongs to a score-balanced breakpoint (with jsf � srj � p), it is suf-

ficient to check for overlaps against W
 �

sr and the previous p� 1 re-

verse wavefronts. Second, for every diagonal k in wavefront W
�!

sf ,

Algorithm 2 checks of overlaps in all wavefront components. This

way, the algorithm keeps track of the overlap with the minimum

score detected so far. Last, note that overlaps on I and D compo-

nents account twice for the gap-open score o. Hence, the score from

overlaps at indel components has to be decreased by o.

In practice, Algorithm 1 can avoid most calls to

WF_OVERLAP(). An efficient implementation can keep track of

the farthest reached antidiagonal by each wavefront. If the most

advanced antidiagonal reached by the forward and reverse wave-

fronts do not overlap (ANTIDIAG() on Algorithm 1), it follows

that no offsets from any diagonal can overlap, rendering the call to

WF_OVERLAP() unnecessary.

2.4 Correctness of the breakpoint detection
The correctness of the Algorithm 1 stems from the following lemma.

Lemma 2.1. The optimal alignment score sopt � s if and only if

there exist sf , sr and k such that jsf � srj � p and at least one of the

following is true:

Fig. 1. Example of BiWFA aligning q ¼ “TCTAGCG” against t ¼ “TGGAAAG”

under the penalties ðx ¼ 4; o ¼ 5; e ¼ 1Þ

Optimal gap-affine alignment in O(s) space 3
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1. sf þ sr ¼ s and M
�!

k;sf � M
 �

k;sr

2. sf þ sr ¼ sþ o and I
!

k;sf � I
 

k;sr

3. sf þ sr ¼ sþ o and D
!

k;sf � D
 

k;sr

and further, M
 �

k;sr (resp. I
 

k;sr , D
 

k;sr ) is included in the traceback of
an alignment with score at most s if the first (resp. second, third)
condition is true.

Proof.

See Supplementary Material.

This lemma implies that the minimum value s for which the ‘only
if’ condition holds is the optimal score. Moreover, if the first of
the three conditions is found to hold for some values sf and sr,
then sopt � sf þ sr þ o. Therefore, Algorithm 1 is guaranteed to find
part of a minimum-scoring alignment based on the following
features:

• Algorithm 2 checks a window of p score values on each iteration.

• Algorithm 1 iterates through alternatingly increasing values of sf
and sr, detecting breakpoints with scores of at least sf þ sr � o� pþ
1 in each iteration.

• After finding some sf and sr that satisfy the overlap condition,
Algorithm 1 continues for additional iterations until it is no longer
possible to find a lower score.

2.5 Combining breakpoints into an alignment
Algorithm 3 shows how to use BiWFA to recursively split align-
ments into smaller subproblems until the remaining alignment can
be trivially solved.

Note that a breakpoint computed by BiWFA can be found on the
I or D components. Thus, those alignments that connect with this
breakpoint have to start or end at the given component. This way,
Algorithm 3 considers the starting and ending component of each
alignment, and forces the underlying WFAs to use different initial
conditions depending on the alignment starting at the M (X0;0 ¼ 0),
I (I0;0 ¼ 0) or D component (D0;0 ¼ 0). A similar argument applies
to the ending conditions of each alignment ending at the M
(Ms;m�n ¼ m), I (I s;m�n ¼ m) orD component (Ds;m�n ¼ m).

2.6 BiWFA uses OðsÞ space and Oððm þ nÞsÞ time
The memory complexity of Algorithm 1 is relatively simple to char-

acterize. The range of diagonal values k increases by at most two

every time s is incremented, and each forward and reverse search

only needs to store the last p wavefronts. Thus, the memory use is

proportional to the optimal alignment score, OðsÞ, excluding the

storage of the input sequences. Also, note that the output alignment

only requires storing the position ði; jÞ for the mismatches, insertions

and deletions (matches can be inferred from the gaps). Concerning

Algorithm 3, data structures are discarded before entering a recur-

sive call. Therefore, the maximum memory use occurs in the outer-

most call, in which s is the optimal score of the full alignment.

The time complexity is more complicated to analyze. Our proof

follows similar arguments as those fromMyers (1986).

Theorem 2.2. BiWFA’s time complexity is Oððmþ nÞsÞ, being n and

m the sequences’ length and s the optimal alignment score.

Proof.

Let ‘ ¼ mþ n, and let Tð‘; sÞ be BiWFA’s execution time with score

s. A call to BiWFA can result in two recursive calls. Let ‘f and ‘r be
the combined length of the sequences in the two calls, and similarly

let sf and sr be the two alignment scores. Following Lemma 2.1, we

know that these variables obey the following inequalities:

• ‘f þ ‘r � ‘

• sf þ sr � s

• jsf � srj � p

Because each direction of WFA executes in Oðs‘Þ time (Marco-Sola

et al., 2021), we can choose a constant c1 large enough that the fol-

lowing inequality holds for all s > 3p:

Tð‘; sÞ � c1s‘þ Tð‘f ; sf Þ þ Tð‘r; srÞ (3)

We can also choose a constant c2 large enough that for all s � 3p

Tð‘; sÞ � c2‘ (4)

This follows because the recursion depth depends only on s, which

we have given an upper bound. Therefore, this term includes a

bounded number of calls that all have linear dependence on ‘.

4 S.Marco-Sola et al.
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Next, we argue that Tð‘; sÞ � 3c1s‘þ c2‘ by induction on s. The
base cases for s ¼ 0; 1; . . . ;3p follow trivially from the latter of the
previous inequalities. Assume then that s > 3p and the induction hy-
pothesis holds for 0;1; . . . ; s� 1. Note that we then have
sf ; sr � 2s=3, else either jsf � srj > p or sf þ sr > s. Thus,

Tð‘; sÞ � c1s‘þ ð3c1ð2s=3Þ‘f þ c2‘f Þ þ ð3c1ð2s=3Þ‘r þ c2‘rÞ
� 3c1s‘þ c2‘

(5)

This proves the claim.

3 Results

We implement the BiWFA algorithm described in this work in C.
The code and the scripts required to reproduce the experimental
results presented in this section are publicly available and can be
found at https://github.com/smarco/BiWFA-paper. Moreover, the
code has been integrated into the WFA2-lib alignment library (as
ultralow memory mode) at https://github.com/smarco/WFA2-lib.

3.1 Experimental setup
We evaluate the performance of our BiWFA implementation com-
pared to the state-of-the-art and other high-performance sequence
alignment libraries. We select the original WFA (Marco-Sola et al.,
2021) (wfa-high) and its new low-memory modes (wfa-med and
wfa-low) implemented in WFA2-lib (https://github.com/smarco/
WFA2-lib). Also, we select the efficient wfalm (Eizenga and Paten,
2022) (wfalm) and its low-memory modes (wfalm-low and wfalm-
rec). Moreover, we include the highly optimized KSW2-Z2
(ksw2_extz2_sse), from the KSW2 library (Li, 2018; Suzuki and
Kasahara, 2018), as the best representative of DP-based methods
due to its exceptional performance and widely usage within bio-
informatics tools. In addition, we include the Edlib (�So�si�c and �Siki�c,
2017) and BitPal (Loving et al., 2014) libraries, which implement
bit-parallel alignment strategies for edit and non-unitary penalties
(i.e. gap-linear), respectively. Although they solve a considerably
easier problem (i.e. Edlib is restricted to edit-alignments and BitPal
only computes the alignment score), and thus are not directly com-
parable, we included them in the evaluation to provide a perform-
ance upper bound.

We considered including other popular methods like those
implemented in the Parasail (Daily et al., 2015; Daily, 2016; Farrar,
2007; Wozniak, 1997), SeqAn (Rahn et al., 2018) and Gaba (Suzuki
and Kasahara, 2018) libraries. However, these libraries were not
designed to align long and noisy sequences, and failed to complete

the executions. Therefore these methods were discarded from the
evaluation.

All the presented methods have been configured to generate glo-
bal alignments. These algorithms are grouped in two categories:
‘Gap-affine Exact’ for exact algorithms that use gap-affine penalties
(i.e. BiWFA, WFA and its low-memory modes, wfalm and its low-
memory modes and KSW2-Z2), and ‘Others’ for methods that use
simpler penalty models or can only compute the alignment score
(i.e. Edlib and BitPal).

For the evaluation, we use simulated and real datasets. For the
simulated datasets, we simulate several datasets of various sequence
lengths (i.e. 100K, 500K, 1M and 2M bases) and different error rate
(i.e. e¼10% and 20%) randomly generated. Regarding the evalu-
ation with real datasets, we use a first set of sequences generated by
the Human Pangenome Reference Consortium (Miga and Wang,
2021), consisting of long reads sequenced using Oxford Nanopore
Technologies (ONT), PromethION platform, with an average error
rate of 5–10%. The sequences are derived from the human cell line
HG002, subset to chromosome 12 and restricted to those at least 10
kbp long, for a total number of 1312 sequence pairs of average
length equal to 172 kbp (maximum �306kbp). In addition, we use a
second dataset comprising ONT MinION reads from Bowden et al.
(2019), with an average error rate of 5% and restricted to those at
least 500kbp long, for a total number of 48 sequence pairs of aver-
age length equal to 630 kbp (maximum �1Mbp).

All the executions are performed single-thread on a node running
CentOS Linux (release 8.1.1911) equipped with an AMD EPYC
7742 CPU and 1 TB of DRAM (distributed in 16 dimms�64GiB
@3200MHz).

3.2 Evaluation on simulated data
Table 1 shows the performance results (i.e. execution time and
memory) for the different methods using simulated datasets.
Overall, the results show that BiWFA is faster and uses less memory
than all other methods in the ‘Gap-affine Exact’ category. In par-
ticular, BiWFA requires 32� 1000� less memory than KSW2-Z2,
while being 1:4� 4:7� faster. Compared to original WFA-based
methods (i.e. WFA-high and wfalm), BiWFA uses 9� 9620� less
memory, being up to 4:4� faster. Similarly, BiWFA outperforms the
other memory-efficient WFA-based methods (i.e. WFA-med, WFA-
low, wfalm-low and wfalm-rec), reducing memory requirements
down to 438� while being 2:7� 26:5� faster. More importantly,
most of the pairwise alignment methods evaluated fail to scale
megabases-long sequences, requiring more memory than available
in the node (i.e. 1TB). As opposed, BiWFA only requires a few

Table 1. Time and memory performance of pairwise alignment implementations on simulated data

Time (s) Memory (MBs)

10Kbp 100Kbp 1Mbp 2Mbp 10Kbp 100Kbp 1Mbp 2Mbp

10% 20% 10% 20% 10% 20% 10% 20% 10% 20% 10% 20% 10% 20% 10% 20%

edlib 0.4 0.6 2.5 4.5 17.9 35.3 35.4 69.1 4 4 5 5 13 13 22 23

bitpal 1.3 1.2 12.3 12.3 123.8 123.7 248.0 247.1 4 4 4 6 10 10 15 13

ksw2-extz2 9.8 9.9 96.7 97.5 n/a n/a n/a n/a 193 196 19 081 19 083 n/a n/a n/a n/a

WFA-high 2.0 5.7 28.5 84.1 312.9 n/a n/a n/a 128 313 8981 26 667 932 199 n/a n/a n/a

WFA-med 6.6 20.2 89.5 272.8 1922.1 3690.1 n/a n/a 35 81 830 1620 42 464 24 874 n/a n/a

WFA-low 8.0 24.1 101.4 301.1 4394.9 4857.0 7710.2 9813.1 25 60 554 884 25 321 12 539 52 551 26 067

wfalm 6.4 19.2 90.2 268.7 841.0 n/a n/a n/a 54 148 8968 26 575 898 770 n/a n/a n/a

wfalm-low 10.1 30.4 164.1 494.8 1525.1 4418.7 2990.1 8779.4 10 16 443 823 10 435 30 817 36 299 69 312

wfalm-rec 22.3 70.7 447.5 1402.6 5792.7 17 752.9 11 979.6 37 747.7 6 7 43 73 497 904 1064 1787

BiWFA 2.4 6.9 20.8 61.0 218.3 680.4 466.9 1429.0 6 5 19 27 97 180 202 267

BiWFA.score 1.1 3.1 10.2 30.2 112.2 355.8 245.4 750.2 3 4 16 23 97 186 204 256

Note: Execution time (in seconds) and memory (in MBs) required per 1M bases aligned, using different pairwise alignment implementations on simulated data-

sets. Executions that failed appear as ‘n/a’. Best performing implementation in the ‘Gap-affine Exact’ category is marked in bold. Although Edlib and BitPal are

not directly comparable to the other implementations, we included them in the comparison as a reference. Similarly, we include executions of BiWFA limited to

compute the alignment score as ‘BiWFA.score’.

Optimal gap-affine alignment in O(s) space 5

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
9
/2

/b
ta

d
0
7
4
/7

0
3
0
6
9
0
 b

y
 g

u
e
s
t o

n
 2

5
 J

u
ly

 2
0
2
4



hundred MBs of memory. Note that, computing the full alignment
(BiWFA) requires a similar amount of memory as computing only
the alignment score (BiWFA.score). Nonetheless, computing the
alignment score is �2� faster than computing the full alignment.

For completeness, we present a comprehensive experimental
evaluation on a wider range of sequence lengths (i.e. 100bp, 1Kbp,
10Kbp, 100Kbp, 1Mbp and 2Mbp) and error rates (0.1%, 1%,
5%, 10%, 20% and 40%) on Supplementary Material
(Supplementary Tables S1 and S2). For short sequences (i.e.
�1 Kbp), the results show that BiWFA delivers similar performance
as the original WFA (1:25� 2� slower) while reducing the memory
requirements up to 60�. Our experiments indicate that BiWFA
starts outperforming the original WFA when aligning sequences lon-
ger than �30 Kbp. Nevertheless, the exact performance breakpoint
can vary depending on the error rate, implementation and processor
specifics. Similarly, for smaller error rates (i.e. �1%), WFA-based
methods largely outperform other approaches, being 2� 3 orders of
magnitude faster than other methods like KSW2-Z2, bitpal and
edlib. In addition, for low error rates, memory-efficient WFA-based
methods require a minimal amount of memory.

3.3 Evaluation on real data
Figure 2 shows the performance results obtained for all the eval-
uated algorithms in terms of execution time and consumed memory.
BiWFA uses many times less memory than other methods. In par-
ticular, when aligning ultra-long ONT sequences (Fig. 2B), BiWFA
requires between 68� 93� less memory compared to wfalm and
WFA low-memory modes. Furthermore, BiWFA uses 3.5� less
memory compared to the efficient recursive mode from wfalm (most
memory-efficient gap-affine algorithm to date).

At the same time, BiWFA proves to be one of the fastest imple-
mentations aligning long sequences. Using ultra-long sequences, our
method is 25:7� faster than wfalm’s recursive mode. Moreover,
BiWFA’s execution times are similar to those of BitPal (sometimes

even faster, 1:1� 1:28� faster on average) computing exact align-
ments (not just the score) under the gap-affine model.

For completeness, Supplementary Figure S1 shows experimental
results limited to aligning sequences up to 10Kbps. In this scenario,
BiWFA demonstrates to be one of the fastest implementations,
requiring less than 10MB to execute.

4 Discussion

As long sequencing technologies improve and high-quality sequence
assembly decreases in cost, we anticipate that the importance of
pairwise alignment algorithm will continue to increase. To keep up
with upcoming improvements in sequencing and genomics, pairwise
alignment algorithms need to face crucial challenges in reducing exe-
cution time and memory consumption. In this work, we have pre-
sented the BiWFA, a gap-affine pairwise alignment algorithm that
requires OðnsÞ time and OðsÞ space, being the first algorithm to im-
prove the long standing space lower bound of OðnÞ. The BiWFA
answers the pressing need for sequence alignment methods capable
to scaling to genome-scale alignments and full pangenomes.

Most notably, BiWFA execution times are very similar, or even
better, than those of the original WFA (despite BiWFA requiring
2954� and 607� less memory when aligning ultra-long MinION
and PromethION sequences, respectively). This result can be better
understood considering the memory inefficiencies that the original
WFA experiences when using a large memory footprint. As the
sequence’s length and error increases, the original WFA uses a sub-
stantially larger memory footprint, putting a significant pressure on
the memory hierarchy of the processor. Due to the pervasive mem-
ory inefficiencies of modern processors executing memory intensive
applications, the original WFA’s performance is severely deterio-
rated when aligning long sequence datasets (like those from
Nanopore presented in the evaluation). In contrast, BiWFA relieves
this memory pressure using a minimal memory footprint. As a

ONT PromethION reads vs CHM13 v1.1 > 10 kbps ONT Ultra Long > 500 kbps
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Fig. 2. Experimental results from the execution of BiWFA and other state-of-the-art implementations aligning long sequences. Figure shows (A) memory consumption and (B)

execution time per sequence aligned. A vertical line on each panel separates algorithms that use simpler penalty models or can only compute the alignment score (i.e. edlib and

bitpal) from those that compute the full gap-affine alignment
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result, BiWFA is able to balance out the additional work induced by

BiWFA’s recursion, delivering a performance on-par with the origin-

al WFA.
We have presented the BiWFA using gap-affine penalties.

Nevertheless, these very same ideas can be translated directly into

other distances like edit, linear gap or piecewise gap-affine.

Moreover, it can be easily extended to semi-global alignment (a.k.a.

ends-free, glocal, extension or overlapped alignment) by modifying

the initial conditions and termination criterion. At the same time,

the BiWFA retains the strengths of the original WFA: no restrictions

on the sequences’ alphabet, preprocessing steps, nor prior estimation

of the alignment error.
Due to the simplicity of the WFA’s computational pattern,

BiWFA’s core functions can be easily vectorized to fully exploit the

capabilities of modern SIMD multicore processors. Our implemen-

tation, relies on the automatic vectorization capabilities of modern

compilers. As a result, the BiWFA implementation can exploit the

SIMD capabilities of any processor supported by modern compilers,

without rewriting any part of the source code.
Genomics and bioinformatics methods will continue to rely on

sequence alignment as a core and critical component. BiWFA paves
the way for the development of faster and more accurate tools that

can scale with longer and noisy sequences using a minimal amount

of memory. In this way, we expect BiWFA to enable efficient se-

quence alignment at genome-scale in years to come.
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