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Abstract: The COVID-19 pandemic highlighted the need to quickly respond, via public policy, to
the onset of an infectious disease breakout. Deciding the type and level of interventions a population
must consider to mitigate risk and keep the disease under control could mean saving thousands of
lives. Many models were quickly introduced highlighting lockdowns, testing, contact tracing, travel
policies, later on vaccination, and other intervention strategies along with costs of implementation.
Here, we provided a framework for capturing population heterogeneity whose consideration may be
crucial when developing a mitigation strategy based on non-pharmaceutical interventions. Precisely,
we used age-stratified data to segment our population into groups with unique interactions that policy
can affect such as school children or the oldest of the population, and formulated a corresponding
optimal control problem considering the economic cost of lockdowns and deaths. We applied our
model and numerical methods to census data for the state of New Jersey and determined the most
important factors contributing to the cost and the optimal strategies to contained the pandemic impact.

Keywords: epidemiological compartmental model; COVID-19; sociodemographic variables; optimal
control

1. Introduction

The human population is no stranger to a modern epidemic, with resurgences of Dengue fever
throughout hundreds of years of history [47], repeated Ebola outbreaks since 1976 [21], the AIDS
epidemic beginning in 1981 [19], and more recently the COVID-19 pandemic, which took center stage
in the year 2020 [42] and has been a unifying motivation of researchers across all scientific fields. With
each surge of virus comes a desire to understand both its biology and transmission. Different viruses
can be transmitted differently; via direct physical contact, airborne droplets produced from coughing,
sneezing, etc [32], and in some cases via a nonhuman vector population [44]. Understanding the
transmission route is imperative to developing a mitigation strategy. For example, in the case of the
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West Nile Virus, it is more important to control the human interactions with the vector population than
to control human-to-human contact [14]. However, in the case of a virus like COVID-19, it is very
important to understand human-to-human contact to make forecasts and ultimately policy decisions
that are best for both a population and its economy [1, 18].

In this paper, we introduce a general model for studying interactions between people of different
sociodemographic categories in the case of a virus where transmission occurs during a human-to-
human interaction. We start by developing the model which uses an interaction matrix to govern
interaction levels based on a sociodemographic characteristic. Next, an optimal control problem is
considered with regards to optimizing demographic-targeted lockdowns, followed by simulations to
test the model and, lastly, a conclusion with future steps.

1.1. Epidemiological modeling of populations and optimal control

Epidemiological models representing a population in terms of interacting susceptible/infected sub-
populations date back to Kermack and McKendrick who subdivided populations into compartments
and provided differential equations driven by infection and recovery rates [27]. The model type that
was born from this work is often called a “SIR” model or “SEIR” model standing for Susceptible,
Exposed, Infected, and Recovered which are the labels representing the compartments of the model.
The equations of such a model read Ṡ = −

βS I
N , Ė = βS I

N −δE, İ = δE − γI, Ṙ = γI, where β and γ are
the infection rate, and recovery rate respectively, with δ being the latent period of the virus, or the time
between exposure and infectivity. The key parameter R0 =

β

γ
[15] represents the “basic reproduction

number”, that is, the number of secondary cases in which one case would produce in a completely
susceptible population.

This basic model has been adapted in many ways by increasing the number and complexity of
compartments to: capture disease progression [20], consider undetectable infections or asymptomatic
infections [11, 36], consider social parameters such as age-structure and spatial distribution of
populations [8, 26, 53], control vaccination and other mitigation strategies [13, 35], consider in-host
dynamics [4, 43], and more.

SIR models are used as a basic logic for many modeling efforts, including those that do not
necessarily use differential equations to govern movement. With the increasing computing power
available to researchers, Agent-Based Modeling (ABM), otherwise known as individual-based
modeling, has gained quite a bit of interest [5]. In [22], for example, an ABM’s ability to easily model
spatial parameters is employed to study indoor non-pharmaceutical interventions of contagious
respiratory diseases. These types of models also allow for easy parameterization of a unique
population and the characteristics identified as important to viral transmission.

Model results, including forecasts, are improved by more descriptive parameters. In the case of
a SEIR model, once such population-specific information is provided, and the researcher can answer
questions and make forecasts based on model results. In [52], optimal control is implemented to
measure the impact that awareness has on a population being plagued by AIDS. In [6] Pontryagin’s
Maximum Principle (PMP) is applied to a control problem for disease in livestock where the controls
involve vaccination, isolation, culling, and reduction of transmission. The optimal lockdown schedule
was shown in [49] to depend strongly on the mutation of the virus itself over a time period. In fact,
when viral mutation is considered, waves of virus can match very closely to the waves seen during the
COVID-19 pandemic.
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1.2. Paper’s contributions

In this paper, we propose a general SEIR model that uses a sociodemographic interaction matrix to
capture the interaction levels between subpopulations. The additional parameterization of
subpopulation allows us to track more specifically the disease progression and allows the description
of targeted non-pharmaceutical measures. The availability of specific data is usually limited, thus we
focus on age-brackets to subdivide the population in groups which match well the US census data.
The mathematical approach is easily adaptable to other sociodemographic variables.

Then, we formulate an optimal control problem, where the control variables are the level of severity
of a finite set of possible lockdown interventions. We choose three specific interventions: general
lockdown, school closures, and restriction to elderly interactions. In practice, the latter can be achieved
via food delivery services, home care, and retirement homes policies. With a virus pandemic in mind,
as the recent COVID-19 one, the selection of the three interventions allows to capture the importance of
protecting vulnerable subpopulations (elderly had a much higher death rate) as well as understanding
the role played by intense social interactions (as those happening in schools). The cost function is
designed to capture the economic cost of interventions. More precisely, a first component accounts
for the cost of interventions, due to production loss and increased costs, while a second component
accounts for cost of deaths.

Once the model is detailed, we perform standard analysis using mathematical control theory. The
existence of optimal control follows from classic results and we point out that the PMP suggests that
optimal control is likely bang-bang, i.e., for most of the time, the intervention will be either not
performed or performed to its maximum extent. More conclusive results are impeded by the
high-dimensionality and nonlinearity of the dynamics, thus we resort to numerical methods.

Extensive simulations allows us to study both the importance of various factors on the efficiency
of interventions, as well as the characteristics of optimal policies. We first compare the cost of no
intervention with the optimal one for R0=1.7 (similar to COVID-19 in some of the pandemic phases),
showing an improvement of 90% of the cost. Even for more aggressive viruses (R0=2.5) the cost
reduction is of 80%. Interestingly, the optimal lockdown policies include an initial general lockdown,
restrict the elderly interactions for most of the time horizon, and include alternating closure and opening
of schools. Subsequently, we show how the timing of interventions is more critical than their intensity.
As expected, if limited interventions are allowed, then the optimal policy tends to extend them over
time.

The cost per person of each intervention is estimated from literature, thus we include an
investigation of the impact of daily costs over optimal policies. The total cost here is the sum of the
costs of lockdown with the cost of death. This represents a realized economic cost of dealing with the
pandemic. The daily cost per person represents the cost, each day, of locking down that person. This
estimate includes things like not going to work, not using public resources, and not shopping/eating at
public establishments. An estimated cost of future deaths has been included in order to deal with poor
behavior of the optimizer in the final few days since the simulation ends before the final infected can
pass to recovered and subsequently be included in deaths calculations. The general conclusion is that
the optimal policies are very consistent for different daily costs, with optimal policies always
consisting of initial general lockdowns limited in time, lengthy restrictions to elderly, and intermittent
school closures. We finally look at the different interventions separately. School closures are the least
effective when used as only measures, while restrictions for elderly and general lockdowns provide
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significant cost reductions. We also observe that general lockdowns may happen to be intermittent.
Our main conclusion is that models including sociodemographic information can be of paramount

importance in highlighting key factors in pandemic management. We compute optimal policies for
non-pharmaceutical interventions, and estimate the economic and social impact on the population.
Future development will include the exploration of different sociodemographic variables and a wider
set of interventions.

It is worth noting that when attempting to model the lockdown of a population via specific
sociodemographic characteristics using equation-based modeling, things can get more complicated
when overlap exists between two subpopulations. For example, if rather than age we chose to
parameterize based on “beach goers” and “restaurant goers”, a nonzero lockdown in both could have a
double counting effect on a person that eats at restaurants and goes to the beach. Naive attempts at
addressing such cases may result in unrealistic dependencies such as a model that can only limit
attendance of either restaurants or beach visits, but not both at the same time. For this reason, the
decisions of which variables to consider when labeling populations as well as how to incorporate such
labels into the modeling effort are extremely important.

2. A sociodemographic SEIR model

We incorporate sociodemographic variables into a classical SEIR model in such a way that a more
complex mitigation strategy can be found. We augment the basic SEIR model to differentiate between
subgroups of the population who may have unique interactions, as for instance, those due to school
activities, and focus on age groups. However, our method may be adapted to other types of
sociodemographic variables, such as geographic location, income, health access, and others, which
plays an important role in pandemic progression. Our model will be fit to census data for the state of
New Jersey (but could be easily adapted to other states and countries), thus we consider 7 different
groups corresponding to age brackets of census data denoted by a subscript, e.g., S j, j = 1, . . . , 7. See
Section 5 for the specific age brackets.

The interactions among different age groups will be encoded by a matrix l = (lk, j), where lk, j

quantifies the interactions that group k is having with group j. In particular, lk, j will be used to weight
the infections resulting from susceptibles in group j, i.e., S j, interacting with the infected in group k,
i.e., Ik. For the sake of generality, we will state our problem with a number h ∈ N of groups, while
simulations will be performed using census data, thus with h = 7. Let us denote by
N j = S j + E j + I j + R j the total population in the j-th age group (which is constant), and set
Ñ j =

∑h
k=1 lk, j Nk, which represents the total number of individuals the j-th susceptibles are interacting

with. Then, we set: 

Ṡ j = −u
βS j

Ñ j

h∑
k=1

lk, j Ik

Ė j = u
βS j

Ñ j

h∑
k=1

lk, j Ik − δE j

İ j = δE j − γI j

Ṙ j = γI j

(2.1)

Networks and Heterogeneous Media Volume 19, Issue 2, 500–525.



504

for j = 1, . . . , h, where 1 − u is the lockdown rate, β the infection rate, l the interaction matrix, δ
the latent period, and γ the recovery rate. Often, as in the case of the simulations here, interaction
information is available for the general population but not exactly available for the interactions between
susceptible and infected people. A more severe symptomatic virus would have fewer interactions due
to the realization that the infectious person is infected but a higher infection rate per interaction, while a
less severe virus might have more interactions but less infectivity. One method that could be employed
to capture such nuances is separating asymptomatic versus symptomatic infection into two separate
compartments [33]. Here, we introduce the model in its most basic state, so the assumption is that the
parameter choice of our infection rate and interaction matrix capture these nuances.

To study how the control of interactions amongst different groups could affect the system, we sub-
divide the interaction matrix l = (lk, j) into a well-known socially driven subset of uniquely interacting
groups. We define a set of li to be n interaction matrices where li

k, j encodes some portion of the
interaction between groups k and j due to the i-th subset of interactions. For example, if there are four
sociodemographic variables that are known to drive the interactions between age groups, to capture the
different interactions, n = 4. Notice that while li is the same size as l, each element is either a portion
of the corresponding element of l or 0. It holds that

n∑
i=1

li
k, j = lk, j (2.2)

for every k, j and, thus, l =
∑n

i=1 li. Each new interaction matrix brings the ability to encode the
regulation of that subgroup of interactions, and we will denote by ui the “amount of allowed
interactions” such that the severity of lockdown for each group of interactions is 1 − ui. Therefore, our
final model reads

Ṡ j = −β
S j

Ñ j

u1

h∑
k=1

l1
k, j Ik + u2

h∑
k=1

l2
k, j Ik + ... + un

h∑
k=1

ln
k, j Ik


Ė j = β

S j

Ñ j

u1

h∑
k=1

l1
k, j Ik + u2

h∑
k=1

l2
k, j Ik + ... + un

h∑
k=1

ln
k, j Ik

 − δE j

İ j = δE j − γI j

Ṙ j = γI j

(2.3)

with j = 1, . . . , h and other parameters set as in Eq (2.1).

2.1. Optimization of lockdown policies

We consider an optimal control problem for the system (2.3) representing the interactions between
the various age groups. For this, we define a cost functional with two main goals; minimizing the
economic cost of locking down a population or subpopulation, and minimizing the deaths that the
whole population will incur over a given time horizon. Because this model has no reinfection
considered, the recovered compartment is monotonically increasing and accounts for all people who
have experienced the full tenure of the virus. We then can compute deaths simply by multiplying
death rates with the total recovered at the end of a simulation. This total deaths is represented in the
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following by the variable “D”.

As is customary in optimal control, we will consider a running cost L to be integrated over the time
horizon and a final cost ψ depending on the state at the end of the time horizon. Specifically, we set

L =

n∑
i=1

ci(1 − ui)Pi + cn+1D, ψ = cn+2Iend (2.4)

with Pi as the total population isolated due to the i-th control action (lockdown), ci is the cost of the
i − th lockdown per person, usually ranging between USD 10 and USD 100, and cn+1 the cost per
death, usually set to USD 1, 500, 000. Additionally, Iend represents the total infected at the end of the
simulation. This part of the cost function takes into account the cost of deaths that will happen beyond
the simulation horizon. The weight cn+2 needs to take into account future deaths due to current and
future infected and will be calibrated in simulations.

The values of ci are typically estimated in terms of the economic impact of the lockdown measure
for lost production output or increased costs. For instance, isolating workers will likely decrease the
production rate, while school closure will increase childcare costs. A more complex phenomenon may
be measured as the loss in educational outcomes due to online school activities compared to in-class
ones; see [16]. Many studies have shown that disparities in education between vulnerable and non-
vulnerable populations grow substantially during events like school closure events [17]. Therefore,
similar to assigning a cost of mortality, the true cost of school closure must incorporate not only a
financial value but also a social value (which in the end may result in financial deficits as well).

3. Model analysis

The proposed optimal control problem can be stated as follows:

ẋ = f (x) +
n∑

i=1

ui fi(x), min
u(·)∈U

J(u), J(u) =
∫ T

0
L(x, u) + ψ(T, x(T )), (3.1)

where f is the drift term, fi the controlled fields, u = (u1, . . . , un) the control vector, U the set of
admissible controls, T the time horizon, J(u) the cost functional, L the Lagrangian or running cost,
and ψ the final cost.

Referring to model (2.3), the system can be written in the general form Eq (3.1) with the following
choices: x = (S j, E j, I j,R j)1≤ j≤7, f and fi are defined by Eq (2.3), U is the set of measurable functions
u : [0,T ] → ([0, 1])n, and L and ψ are given in Eq (2.4).

Due to the specific properties of Eqs (2.3) and (2.4), we get the following:

Theorem 1. Consider the optimal control problem (3.1) with dynamics given by (2.3) and cost function
by (2.4). There exists an optimal control for every time horizon T > 0 and initial conditions x(0) = x0.

Proof. For every i = 1, . . . ,N, we have ui ∈ [0, 1], thus the control set U = ([0, 1])N is compact
and convex. Moreover, the dynamics (2.3) is linear in the control, thus the associated multifunction
F(x) = { f (x) +

∑n
i=1 ui fi(x) : ui ∈ [0, 1]} has compact and convex values.
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The dynamics (2.3) is smooth in all variables and admits the natural invariant region
{x = (S j, E j, I j,R j)1≤ j≤7 : S j ≥ 0, E j ≥ 0, I j ≥ 0,R j ≥ 0, S j + E j + I j + R j = N j} where N j > 0; thus,
for every initial condition, the support of trajectories on [0, T ] is uniformly bounded. Moreover, the
cost function (2.4) is smooth in all variables.

We can apply Theorem 5.2.1 of [7], obtaining the existence of an optimal control. □

Being that the optimal control problem is linear in the controls, one may attempt to use necessary
conditions, such as the PMP, (see Theorem 6.5.1 of [7]) to find optimal controls. However, the number
of variables (7 age groups with 4 populations each) and the nonlinearity w.r.t. state variables (e.g., terms
S I to describe infections) render the problem too complex to obtain detailed information. Therefore, to
compute optimal controls we will resort to numerical methods described in the next section. However,
we provide some information derived from PMP for the general case and some results for a special
case. Let us start recalling that, from the PMP, there exists a covector (λ0, λ) so that the optimal control
minimizes the Hamiltonian:

H(λ0, λ, x, u) = λ · ( f (x) +
n∑

i=1

ui fi(x)) + λ0 · L(x, u). (3.2)

Since both the dynamics (2.3) and the cost function (2.4) are linear in u, this condition implies ui ∈

{0, 1} unless the corresponding switching function vanishes:

ψi(λ0, λ, x, u) = λ · fi(x) + λ0 · Li(x, u) = 0

where we use the fact that we can write L = L0 +
∑

i uiLi being the running cost linear in the control.
This is indeed confirmed by simulations of Section 4, where we observe ui ∈ {0, 1} at all times.
However, the number of switchings, i.e., changes from the value u(t) = 1 to the value u(t) = 0 and
vice versa, is difficult to bound as observed in Figure 2. The resulting number of oscillations could be
too frequent to be considered as actual policy changes over a time horizon.

Singular controls, i.e., in ]0, 1[, may appear if the functions ψi vanish identically on an interval.
While a general analysis is out of scope, we provide a result for the simple case of one control and one
age group, thus we consider the dynamics:

Ṡ = −u
βS I
N

, Ė = u
βS I
N

− δE, İ = δE − γI (3.3)

where we omit the dynamics of R (not influencing the system). The system can be written compactly
as ẋ = f (x) + u1 f1(x) with x = (S , E, I) and f , f1 defined by (3.3). Singular controls may appear
only if trajectories run on singular points, i.e., points x = (S , E, I) such that the vectors f (x), f1(x) and
[ f , f1](x) do not span the whole space [31,34]. Here, as usual, [ f , f1] indicates the Lie bracket of f and
f1; see [7] for details. We have the following:

Theorem 2. Consider the optimal control problem (3.1) with dynamics given by (3.3). Then, the only
singular points in the first orthant satisfy either S = 0 or I = 0.

Proof. We can easily compute:

f =


0

−δE
δE − γI

 , f1 =


−
βS I
N

βS I
N
0

 , [ f , f1] =


−
βS
N (δE − γI)

βδS I
N +

βS
N (δE − γI)
−
βδS I

N

 . (3.4)

Networks and Heterogeneous Media Volume 19, Issue 2, 500–525.



507

If the vectors are linearly dependent, then the matrix formed with columns f , f1, and [ f , f1] must have
determinant equal to zero. A simple computation shows that the determinant is given by a constant
times S 2I3, thus we conclude. □

The consequence of Theorem 2 is that trajectories corresponding to singular controls, also called
singular trajectories, may only run on the coordinate axes S = 0 or I = 0. Now, if S ≡ 0, then we are
in the case of whole population exposed, infected, or recovered, thus the control policy is not much
relevant. If I ≡ 0 on a time interval, then, necessarily, E ≡ 0, thus we are in the case of no disease.
Concluding in all relevant cases, singular trajectories do not appear.

4. Simulation of optimal control policies

In this Section, we provide simulation results obtained using the numerical algorithms described in
Section 4.3. The values of parameters are reported in the Appendix A.

4.1. Description of lockdown policies

We now look at the case where n = 3. Our focus is on the three possible lockdown strategies:
(1) general lockdown with home mandate for the whole population;
(2) school closure affecting school-age population;
(3) restriction of elderly interaction (for instance, by retirement homes policies, food delivery, home
care, and others.).

The second strategy corresponds to control u2 and an interaction matrix l2 defined as the 7×7 matrix
with nonzero elements in the upper left 3×3 square representing interactions between groups 1–3. This
group represents “school interactions”.

The third strategy corresponds to control u3 and the matrix l3 is defined as the 7 × 7 matrix with
nonzero elements in the final column and row, representing all interactions the elderly have with each
other and the other age groups.

It was clear during the COVID-19 pandemic that curfews and social distancing measures
specifically targeted at the elderly communities were crucial in slowing the virus spread and
mortality [3]. Interestingly, the elderly represent the most vulnerable population while the school-age
children represent the population with the strongest interaction coefficients. We assume that not all
interactions are affected by the second and third lockdown measure, thus will use parameters τi,
i = 2, 3, to represent the amount of interactions cancelled by the lockdown. We set l2

k, j = τ2lk, j for the
indices k, j = 1, . . . , 3 (and zero elsewhere), and l3

k, j = τ3lk, j for the indices k, j such that k = 7 or j = 7
(and zero elsewhere). Finally, because of Eq (2.2), we have for every k and j,

l1
k, j = lk, j − l2

k, j − l3
k, j. (4.1)

Thus, l1 is the matrix representing the remaining interactions not affected by the second and third
strategy. We choose τ2 = .66 in our simulations. In the case of a lockdown, children will likely still
see certain friends and family in their age ranges as well as their siblings. We choose τ3 = .8. This is
because a lockdown of the elderly will result in continued interactions with the elderly person’s family
or the staff at any institution providing care.
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4.2. Description of analyzed scenarios

In Section 4.4 we study how the optimal lockdown changes depending on the delayed response to
the virus. We start with immediate response and then take a look at how the optimal changes if it takes
some months to identify the virus and pass legislation to begin a lockdown. We also explore how a
more severe R0 or a less intense maximum lockdown affect the optimal lockdown’s plan.

In Section 4.5, we then study the impact that the cost per person has on the policy surrounding
each of our populations being locked down. There are varying opinions about how much a lockdown
at different levels costs a society, so we explore how these shifting numbers might change optimal
strategies.

Lastly, in Section 4.6, we perform a cost analysis of optimal lockdown strategies for each of our
three populations asking the questions “If only one type of lockdown is employed, how is the cost
affected ?” and “Which lockdown on its own impacts the population in the most positive way? ”

All simulations are parametrized and assumed to be starting on December 20 2019. All simulation
time horizons are discretized on the order of days.

4.3. Numerical methods for optimization

To compute the optimal controls for this problem, we use CasADi, an open-source tool for
nonlinear optimization and algorithmic differentiation with a large degree of flexibility [2] . The
dynamics of (2.3) are implemented with controls using an implicit Runge-Kutta 2nd order method
and the cost functional with the trapezoidal rule. All controls are initialized with a “best guess” of the
maximum control over the time horizon where each time-step represents one day. We then use
IpOpt [46] (the interior-point optimization routine) to solve the optimization problem. The
discretization of the controls is chosen to be half of the number of days, meaning over 180 days, and
the control is updated 90 times. This is more than sufficient for our purposes (no government will
update policy more than every other day) and reduces run-time from a model that would choose
optimal controls daily.

4.4. Optimal lockdown varying pandemic stages, infectivity, intervention delays, and lockdown
intensity

We first study the difference in costs, lockdown dynamics, and virus trajectories when allowing the
lockdown to begin at different initial times. For new types of viruses, the initial time is affected by
recognizing the new infection and devise screening methods.

To start the analysis, we report in Figure 1 a simulation of the age-based SEIR model (2.3) with
no lockdown intervention, a replication rate, R0, of 1.7 and initial S, E, I, and R values taken directly
from COVID-19 data for the state of New Jersey. We take the total population of New Jersey from the
2021 census, and develop our exposed and infected as approximations of 14 days of COVID-19 data.
Specifically, we begin simulations with a total population of 9.267 million people with initial infected
across all age groups totaling 13736. We see that essentially all people in age groups one and three
are infected over the time horizon of the virus. These dynamics mimic closely to that of a classic SIR
model with a wave of cases emerging from few initial infections and then the virus dying out. Under
the curtain, this model is enriched with the interactions between the various subpopulations at each
time step, driven by our interaction matrix. In this case, the corresponding total cost consists only of
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the cost of deaths, being the lockdown controls set to zero. This cost represents an upper limit for any
control policy representing non-pharmaceutical intervention and is around USD 183 billions.

Figure 1. Dynamics of S, E, I, and R for a model with no lockdown. Here, R0 = 1.7, γ = 0.2,
β = 0.34, δ = 0.25, τ2 = .66, τ3 = .8 and the cost of death is 1.83 × 1011.

In each of the following simulations, the lockdown cost is $70 per person for a general lockdown,
$40 per person to lockdown the elderly, and $25 per student to lockdown schools [9,12,28,38], unless
otherwise stated. There is a wide range of suggested costs in the literature where a more severe
lockdown costs more per person than a less severe. We consider a lockdown of only the elderly to be
a first step and, thus, a less severe mitigation strategy than locking down the entire population.
Therefore the cost per person should be on the lower side of the estimates. Quantifying the “cost of
death” in an economic sense can be tricky. This value is assumed in the literature to be anywhere from
hundreds of thousands of dollars to the assumed VSL (value per statistical life ) of $10 million
dollars [24, 29]. Because most COVID-19 deaths occur in the elderly, the VSL may be an
inappropriately high measure of the average cost of a COVID-19 death. Therefore, while we explore
the parameter in this section, we choose to follow the estimated value of $1.5 million dollars to be the
average cost of a COVID-19 death in the United States [10]. We incorporate a “cost of future deaths”
to dampen end behavior effects of a lockdown fully dismissing with an influx if infected who do not
have time (on the chosen time horizon) to be moved to recovered. This cost is exactly
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Cn+2 = 100Cn+1. For brevity, some figures of dynamics are omitted for each simulation. For example,
because the exposed mimics so closely to the infected, in future figures, the exposed compartment
will be omitted.

In Figure 2, we report the best case scenario: A situation where every type of lockdown is available
at a 100% level at any instant of time. Notice that this is an idealized situation for various reasons:
(1) A 100% level lockdown may be not feasible; (2) usually lockdowns need to be limited in time;
(3) different types of lockdowns may need coordination; and (4) change in lockdown policies cannot
occur too frequently. Interestingly, if we can start our lockdown policies early, the optimal case is
to have intermittent lockdowns for school activities, keeping the exponential growth of a full wave
of virus under control from the beginning. This, in a sense, was adopted by many states and school
districts who chose to creatively reduce school interactions by splitting students into groups and having
certain groups attend on certain days, taking certain days off to do remote instruction, etc. We also see
that the optimal solution reduces interactions with the elderly as much as possible. We assume the
ability to lockdown 100% of each population, which may be unrealistically effective, to create a lower
bound for the realized cost to the population, while we consider differing levels of lockdown in future
simulations. The total cost for New Jersey is now reduced to USD 31.4 billion, with a reduction of
more than 80% of the cost without intervention.

Figure 2. Dynamics of I, R (top) and optimal lockdowns policies (bottom). Here R0 = 1.7,
γ = 0.2, β = 0.34, δ = 0.25, τ2 = .66, τ3 = .8. The total cost is 3.14 × 1010.

In Figure 3, we see that when the virus is more aggressive (R0 = 2.5), the optimal lockdown of
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schools and the elderly remains fairly similar while the general public must get more severe restrictions
with recurring lockdowns. Even so, there is still almost an 80% reduction in cost compared to a less
aggressive virus with no mitigation strategy employed. This highlights the important point that a
lockdown is crucial as a first mitigation; even a much more aggressive virus has a fraction of the
impact of a less aggressive virus if a lockdown is employed for the former.

Figure 3. Optimal lockdowns with R0 = 2.5, γ = 0.2, β = 0.50, δ = 0.25, τ2 = .66, τ3 = .8.
The total cost is 3.90 × 1010.

Figure 4. Dynamics of I, R, (top) and optimal lockdowns (bottom) with a 50 day delay
before the policy is implemented. R0 = 1.7, γ = 0.2, β = 0.34, δ = 0.25, τ2 = .66, τ3 = .8.
The total cost here is 8.98 × 1010.
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To further investigate real scenarios, we consider the case where a lockdown is a response to an
already propagating virus. It is known that a delay in the initial lockdown most likely results in a
higher number of cases [25]. In Figure 4, we consider a 50 days delay in interventions with an R0

of 1.7, and, as expected, the lockdowns start immediately after the delay. The COVID-19 pandemic
started in the United States with the first reported case in January, while the first lockdown of the
state of New Jersey was not until March, so a 50 day delay in response is a reasonable choice [50].
Additionally, the World Health Organization estimated COVID-19’s initial R0 to be between 1.4–2.4,
so a choice of 1.7 is in line with a real virus [40]. Moreover, there is a greater strain due to the virus’s
ability to propagate, thus the locking down of the most vulnerable population (the elderly) and school
activities are prolonged for almost the entire optimization horizon. We also see that the cost is much
larger when mitigation strategies are not employed early. The total cost is USD 89.8 billion. The main
message is that delays in policy activation are much more impactful than the virus infectivity.

Figure 5. Dynamics of I, R, (top) and optimal lockdowns (bottom) with a cap at 60%
maximum lockdowns at any given time. R0 = 1.7, γ = 0.2, β = 0.34, δ = 0.25, τ2 = .66,
τ3 = .8. The total cost here is 4.78 × 1010.

Additionally, for logistical, economic, or legal reasons, most populations may be unable to perform
a 100% lockdown. When we reduce the severity of possible lockdown from 100% to 60%, the optimal
policies correspond to lockdowns extended over time. In Figure 5, we see that even a reduced lockdown
rate can greatly curb the cost of a virus to a population with a total cost of USD 47.8 billion for
New Jersey. The optimal solution here is to lock down the elderly and school activities as much as
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possible for as long as possible with the rest of the public able to go back to no lockdown earlier.
However, with less severe lockdowns, the trade-off is that there must be infrastructure in place to
accommodate a longer lockdown for certain populations. In the case of school children, it is known
that a prolonged loss of in-person education can be detrimental, so a short but strong lockdown is likely
more beneficial [23]. However, it may be easier to accommodate a long-term but less severe lockdown
for the elderly. A key takeaway here is that early intervention may outweigh more intense intervention
in cost reduction. In fact, with the 50 day delay in Figure 4, there are 16, 322 deaths, whereas with our
60% lockdown allowed but with no delay, there are only 8, 298 deaths, as seen in Table 1.

Table 1. Data for Figures 1–5. Legend: OL = “Optimal Lockdown”.

Fig Case R0 Total Cost Deaths
1 No Lockdown 1.7 1.83 × 1011 122, 463
2 OL 1.7 2.2 × 1010 3, 921
3 OL 2.5 3.75 × 1010 4, 593
4 50-day delay OL 1.7 6.17 × 1010 16, 322
5 60% OL 1.7 4.78 × 1010 8, 298

Interestingly, by the end of 2020, the state of New Jersey had seen approximately 19, 200 COVID-19
deaths, with over 16, 000 after the first 6 months [51]. This suggests that a well-tuned delay in response
is important in parameterizing an epidemiological model. Earlier intervention almost assuredly would
have reduced deaths in the first year of the pandemic in a significant way. This is reflected in the fact
that when mimicking New Jersey parameters, the total deaths is very close to the realized COVID-19
deaths, while if we force earlier intervention in the model, the deaths are much smaller.

4.5. Impact of cost of lockdown

We now study how varying the cost of lockdown per person, differentiating among different type
of lockdowns, will affect the optimal control policy. In each simulation, our initial conditions are
employed to mimic a pandemic that, if left with no intervention, is on its ascent to a peak in cases.
Notice that without reinfection or more complex ways to choose parameters, a standard SIR model will
generally have one wave of cases where the endemic equilibrium has no infected (all of the population
has either stayed in susceptible, or moved through the system of equations to recovered) [30]. Figure
6 reports the optimal policy with equal daily cost of USD 10 per person for all the three types of
lockdown. We notice that, despite different death rates and population sizes, the optimal lockdowns
are very similar. In fact, all three run until exactly day 74, with a resurgence of only locking down the
elderly. This suggests that a general lockdown would make the most sense for this situation.

We then keep the daily cost constant across lockdown types, but increase it. This causes a a
differentiation in optimal lockdown policies, as seen in Figure 7. The higher daily cost, now USD 70,
causes a more subtle lockdown than in Figure 6. However, while there is a reduction in lockdown for
school age children and the general public, the lockdown in fact increases in time for the elderly who
have a much higher death rate than the younger populations.
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Figure 6. Optimal Lockdown with USD 10 daily cost per person. R0 = 1.7, γ = 0.2,
β = 0.34, δ = 0.25, τ2 = .66, τ3 = .8. The total cost is 1.39 × 1010.

Figure 7. Optimal Lockdown with equal daily cost of USD 70 for all types. R0 = 1.7,
γ = 0.2, β = 0.34, δ = 0.25, τ2,3 = 1. The total cost is 3.72 × 1010.

Figure 8. Optimal Lockdown with equal daily cost of USD 70 for all types, but with a cost
of death of $10 million dollars per person. R0 = 1.7, γ = 0.2, β = 0.34, δ = 0.25, τ2 = .66,
τ3 = .8. The total cost is 9.38 × 1010.

Now, a lockdown of the general public comes with a much higher cost than one of a subgroup of
the population, in part because there are more people affected, but also because when everybody is
affected, the economic strain begins to take hold on small businesses, public transportation, and more.
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For this reason, we see a tendency like in Figure 2 to minimize the lockdown of the public compared
to our subpopulations.

In Figure 8, we see an extreme case where the parameters are the same as Figure 7, but the cost of
a death is $10 million dollars instead of 1.5 million. Interestingly, while the total cost has a significant
increase, the optimal policy is not significantly different; a prolonged public lockdown and a slightly
lessened resurgence of lockdown for the elderly. This could indicate that the optimal policy is fairly
robust to a difference in cost of death.

4.6. Cost analysis by lockdown

A major goal of this work is to exemplify the power of stratifying the population into subgroups with
specific sociodemographic characteristics and using these characteristics to develop targeted mitigation
strategies when addressing an epidemic. In the following simulations, we will look at a situation where
it takes a month to start the first mitigation strategies, the maximum lockdown is 60%, and like in the
previous section, we will use a replication rate of 1.7. Now, we study the net benefit of a stratify-able
population in the face of lockdown measures through the study of the cases of no lockdown, single
targeted lockdowns, and when one can use the three lockdowns independently. To set the stage, we
refer back to Figure 1, which provides a baseline for how the virus would progress over the given time
horizon if there were no lockdown policies enacted at all. We see immediately the recognizable peak
and descent of a virus wave in the infected compartment.

Figure 9. Dynamics of I (left) and optimal school closure (right).R0 = 1.7, γ = 0.2, β = 0.34,
δ = 0.25, τ2 = .66. The maximum lockdown is 60% at any given time. The total cost between
lockdown and deaths is 1.54725 × 1011.

Researchers using a variety of models have reported conflicting results on the impact on the viruses
spread of school closures. In the case of COVID-19, many estimates show that a full school closure
results in less than 5% of prevented deaths [45]. In comparison, the costs of no lockdown outweigh
the costs in Figure 9 of a school lockdown by only about 15%, meaning that optimizing school closure
will at most reduce the direct societal cost by 15% (this does not take into account the loss of education
long-term). It is also worth noting that even when school closure is the only method used to mitigate
virus risk, the optimal strategy is not to fully lock down the school students for long-term.
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Figure 10. Dynamics of I (left) and optimal lockdown of the elderly (right). R0 = 1.7,
γ = 0.2, β = 0.34, δ = 0.25, τ3 = .8. The maximum lockdown is 60% at any given time. The
total cost between lockdown and deaths is 1.07 × 1011.

Comparing the results from the school-only lockdown in Figure 9 with those of an elderly-only
lockdown in Figure 10, we see an immensely more important role played by the elderly. While school
closure reduces cost by 15%, a full lockdown of the elderly over the time horizon (the optimal decision)
results in a 42% reduction in cost. Notice the steep reduction of slope in infected at the start of the
lockdown period.

Figure 11. Dynamics of I (left) and optimal lockdown of a general lockdown (right). R0 =

1.7, γ = 0.2, β = 0.34, δ = 0, τ3 = 0. The maximum lockdown is 60% at any given time.
The total cost between lockdown and deaths is 6.46 × 1010.

Next, we look at a situation where there is only the opportunity to lock down the entire population
to varying levels with no consideration of subpopulation targeting. We see from Figure 11 that a
general lockdown provides even stronger protection. In reality, locking down the public results in
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many unforeseen costs such as strain on small business and loss of education for children missing
school. These results also suggest that, if given the opportunity, a focus should be on maximizing the
possible lockdown of the elderly specifically, with this lockdown being almost the entire time horizon.

Figure 12. Dynamics of I (left) and optimal lockdown of all subpopulations (other panels).
R0 = 1.7, γ = 0.2, β = 0.34, δ = 0, τ2 = .66, τ3 = .8. The maximum lockdown is 60% at any
given time. The total cost between lockdown and deaths is 5.24 × 1010.

Lastly, we see from Figure 12 that when given the ability to lock down various parts of the
population separately, the cost is the lowest, resulting in a reduced cost of about 70%. While this is
expected to be the best-case scenario, it highlights not only the power of having a flexible population
lockdown but also the sheer importance of considering heterogeneity within a population.

Holding a population to a 60% lockdown across the board may be considered unrealistic, as, one
could consider the ability to close schools to be 100%, general population maybe only around 60%,
and the elderly somewhere in between since they can be supported in many ways by caretakers, say
80%. In Figure 13 we see that our model is able to handle such heterogeneity in order to better fit the
population being modeled and the sociodemographic variables being considered.
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Figure 13. Dynamics of I (left)and optimal lockdown of all subpopulations (other panels).
R0 = 1.7, γ = 0.2, β = 0.34, δ = 0, τ2 = .66, τ3 = .8. The maximum lockdown is 60%
for general public, 80% for the elderly, and 100% for school children at any given time. The
total cost between lockdown and deaths is 4.57 × 1010.

5. Conclusion

In this paper, we introduce a method of combining classical epidemiological models with data about
sociodemographic characteristics of a population to develop an information tool that maybe crucial to
public policymakers. We choose data related specifically to age and interactions between age groups,
and tune the model to census data of New Jersey. We then chose subsets of these interactions to
be governed by different levels of lockdown policies, namely general interactions with the elderly,
interactions most likely to occur in a school setting, and the remaining interactions after those two
are considered. Costs are developed and used to guide an optimal lockdown schedule for these three
strategies. We saw from preliminary COVID-19 data, that our model is strong at predicting deaths over
time. We found overwhelmingly that when lockdowns must be employed, there is a heightened effect
to lockdown not the most active interactions (school-age children), but the most vulnerable population
(the elderly). Also, it seems that early intervention is key in curbing a virus from spreading and
keeping the total mortality low. In fact, even a reduced lockdown (here 60%) greatly reduces mortality
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if employed early enough. Lastly, a lockdown of the general public is crucial in curbing virus spread,
but if given the opportunity to fit lockdown measures to specific sociodemographic groups, the cost to
the population is further lessened.

Future work will focus on an advanced model able to handle multiple sociodemographic variables as
well as multiple lockdown policies. Different lockdowns may have overlapping effects, thus variables
and controls must be accurately defined in the development of the model itself. Other extensions will
focus on including virus mutation dynamics as well as vaccination.

All script files are written in the Python programming language and all code produced here is placed
on Github and made publicly available.
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Appendix A: Data, Parameters, and Contact Matrix

Each simulation reported in Section 4 uses the SEIR parameter set in Table A1 based on data
collected during the Covid-19 pandemic.

Table A1. Parameters for the SEIR model (2.3).

Name Description Estimate Units
β rate of infection 0.2–0.5 -
δ latent period 0.25 days
γ infectious period 0.2 days
τi isolated interactions 0–100 percent

To calibrate our model, we choose an age structure to drive the interactions and a lockdown as our
mitigation strategy. We begin by partitioning our population into the seven age groups in Table A2.

Table A2. Age brackets defining age groups.

Name Description
Group 1 Age 0–4 population
Group 2 Age 5–14 population
Group 3 Age 15–19 population
Group 4 Age 20–39 population
Group 5 Age 40–59 population
Group 6 Age 60–69 population
Group 7 Age 70+ population
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We partition the total population into these age groups based on percentages provided by the
United States census [9]. For each piece of information captured in a SEIR model, initial conditions
and parameters must be estimated. The Johns Hopkins University (JHU) repository of Covid-19 data
collected case and death numbers for each state in the US carefully from the start of the pandemic
until early 2023 [37]. We then choose a starting date and use the JHU data to get the number of
infected. From this, we build initial conditions for our compartments.

The number of exposed is set equal to a certain percent of the infected from the first 5 days of the
model (December 16–20 2019). Then, the number of infected is taken to be the number of cases from
the first 5 days of the model minus exposure assigned proportionally based on the number of people in
each age group. We consider the number of recovered to be the sum of cases reported from the start of
reporting until two weeks before the chosen start date. Lastly, we define the number of susceptibles to
be the sum of the population in each group minus the sum of the other compartments.

We take the general SEIR model and couple it with an age-based interaction matrix. Our interaction
matrix l is developed starting from data from [41], which takes data from population-based contact
diaries in eight countries and projects to various other countries using a Bayesian model. The contact
matrix is actually inferred data for the United States. The age groups in the original contact matrix
provided by the authors contains 16 age groups at a higher resolution than we include here, so averages
are taken where two of the original age groups make up our age group. For example, the second
element of l is 0.8003 which makes up two of the age groups in the original dataset; the 5–9 element
being 1.1013 and the 9–14 element being 0.4994, the average of which is 0.8003. Notice also that this
matrix is not symmetric. The data is used to develop vectors for each age group which represent
their interactions at home, interactions in the workplace, interactions at school, etc. Therefore, a
phenomenon occurs where, for example, the 70+ age group, in their daily interactions, are very likely
to interact with someone of the 40–59 age group, as these are often caretakers, children, or employees
at consumer establishments. So, their element of interacting with 40–59 is high. However, relative to
other interactions, 40–59 age group members are unlikely to interact with the 70+ age group the most,
resulting in their relative interactions with 70+ being much lower. It is worth noting that while we
used only data from a more recent source, the contact matrices found in other papers are very similar
in structure to the ones we use [8].

l =



2.5982 0.8003 0.3160 0.7934 0.3557 0.1548 0.0564
0.6473 4.1960 0.6603 0.5901 0.4665 0.1238 0.0515
0.1737 1.7500 11.1061 0.9782 0.7263 0.0815 0.0273
0.5504 0.5906 1.2004 1.8813 0.9165 0.1370 0.0397
0.3894 0.7848 1.3139 1.1414 1.3347 0.2260 0.0692
0.3610 0.3918 0.3738 0.5248 0.5140 0.7072 0.1469
0.1588 0.3367 0.3406 0.2286 0.3673 0.3392 0.3868


We then use matrix l coupled with general information about the population of the United States of
America to separate our subpopulations li.

Death rates are computed from CDC Covid-19 data, but follow the general pattern of many viruses
where as age increases, as does death rate [39]. They are as follows in order of our age groups: 0.00016,
0.00016, 0.00006, 0.00007, 0.00229, 0.01915, 0.13527.
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In the end, we would like to use optimal control to answer the question of which sub-groups
lockdown would be most impactful in curbing the effect a virus as on a population. As such, the cost
function must be developed carefully to reflect the population in question and the age categories being
locked down. To achieve this, we define the cost per child per day of a school lockdown by averaging
estimates provided by the Survey of Income and Program Participation and the Current Population
Survey [9, 28]. This number fell in the range of as low as $25 per day to as high as $60 per day. It is
important to note that this does not include the extremely high potential reduction of education. For
the cost of locking down the elderly populations, we consider the same cost as locking down another
adult person, which we find to be $40–$350. This number has a large range, with some reporting a
cost of as much as $350 per day for a strict lockdown and much less for a less severe, more flexible
lockdown [12, 38].

Lastly, choosing parameters such as costs for a cost function requires quantifying the “cost of death”
in an economic sense. We follow the estimates of one analyst who claims $1.5 million dollars to be the
average cost of a Covid-19 death in the United States [10]. All codes used to generate simulations are
available at [48].
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