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Abstract

Given a long time series, the distance profile of a query time series computes dis-
tances between the query and every possible subsequence of a long time series.
MASS (Mueen’s Algorithm for Similarity Search) is an algorithm to efficiently
compute distance profile under z-normalized Euclidean distance [1]. MASS is
recognized as a useful tool in many data mining works. However, complete
documentation of the increasingly efficient versions of the algorithm does not
exist.
In this paper, we formalize the notion of a distance profile, describe four versions
of the MASS algorithm, show several extensions of distance profiles under vari-
ous operating conditions, describe how MASS improves performances of existing
data mining algorithms, and finally, show utility of MASS in domains including
seismology, robotics and power grids.

Keywords: Time Series, Distance Profile, Correlation, Euclidean Distance,
Convolution

1 Introduction

Time series is a sequence of observations made in time order. Given a query time
series, the similarities or distances of the query to all possible subsequences of a time
series constitute a distance profile of the query. Computing distance profile is a funda-
mental task in time series data mining and has been utilized in many existing works
[2][3][4]. For example, to compute the Matrix Profile of a time series, the STAMP
algorithm [5] repeatedly computes the distance profiles of subsequences of the given
series. However, even though a rising interest in profiling time series data [6] has been
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observed, the literature does not present a formal and comprehensive understanding
of the algorithms for distance profiling of a query over a time series.

In this paper, we define the time series distance profile under various operating
requirements and provide detailed discussions on the algorithms, extensions, utility
and use cases. We describe four algorithms to compute the distance profile under
Euclidean distance. The algorithms are incrementally efficient and uniquely useful.
We describe four different extensions of the distance profile: weighted Euclidean dis-
tance profile, un-normalized Euclidean distance profile, correlation profile and partial
correlation profile for dual queries. We present faster algorithms for time series dis-
cord discovery and time series subsequence clustering exploiting distance profiles than
the traditional search-and-prune algorithms. We finally show three novel use cases of
distance profiles in the domains of seismology, power consumption, and robotics.

2 Related Work

The distance profile serves as a foundational element in time series data mining and
machine learning. It measures the similarities between a query sequence and subse-
quences within a longer time series. This measurement is integral to a range of critical
tasks, including motif discovery, anomaly detection, and classification. MASS signifi-
cantly boosts the efficiency of distance profile computation without compromising the
precision of the results. The subsequent sections will provide an overview of the wide-
ranging applications of the MASS algorithm, illustrating its significance in diverse
data mining and machine learning tasks.

Pattern recognition: A fundamental application of the MASS algorithm lies in
its ability to identify specific patterns that are related to certain events or character-
istics. An example of this is its use in recognizing the actions of electrical appliances
within a household by computing distance profiles of unique power consumption pat-
terns against smart meter measurements [7]. The authors claim that this approach
boosted by MASS can be carried out in (near) real-time using edge computing. Addi-
tionally, MASS can also help with real-time defect detection during metal additive
manufacturing [8].

Matrix profile calculation for motif discovery: When identifying motifs with-
out the knowledge of the specific pattern to query, the matrix profile (MP) [5] becomes
an invaluable tool. The construction of MP involves determining the distance pro-
file for every possible subsequence within a time series. Here, the MASS algorithm is
crucial, serving as a key component in efficient MP calculation. It is integrated into
algorithms such as STAMP [5] and SCRIMP++ [9], where it significantly enhances
their performance. Although not directly incorporated in STOMP [10], the optimiza-
tion methods used for calculating dot products in MASS versions 3 and 4 are still
influential and relevant.

Domain-specific variations of matrix profile: Beyond the standard matrix
profile, the MASS algorithm facilitates the development of specialized profiles tailored
to specific fields of study. Notable examples include: similarity matrix profile (SiMPle)
for cover song identification [11, 12], this variant leverages MASS to analyze and com-
pare musical pieces, demonstrating its effectiveness in the field of musicology. In-phase
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matrix profile applied in EEG data analysis [13]. Radius profile employed for identi-
fying repeating subsequences useful in various analytical, MASS aids in recognizing
patterns that recur within time series. Analog ensemble profile used in meteorological
analysis [14], MASS contributes to the creation of analog ensembles, enhancing the
accuracy and depth of weather-related predictions and studies.

Classification and clustering: Many time series classification and clustering
methods that rely on the distance profile can benefit from MASS. For instance, Abdoli
et al. leveraged MASS to classify chicken behaviors [15]. They utilized a labeled sub-
sequence representing a specific behavior as a query. MASS computed the distance
profile against a streaming time series of chicken movements within a certain period.
Subsequences similar to the query were classified accordingly. Heo et al. demonstrated
the application of MASS in music. They used the algorithm to calculate the distance
profile for individual songs in a test set against a composite time series created by con-
catenating all songs from a training set [16]. Lin et al. developed improved embeddings
for classification tasks based on the distance profiles computed by MASS, showcas-
ing its potential in refining data representation for better classification accuracy [17].
Emerging research continues to explore the capabilities of MASS in handling vast vol-
umes of time series data for classification, One study [17] demonstrated MASS enables
classification on time series with billions of samples, underscoring its scalability and
efficiency.

Prediction: A key use of MASS in prediction involves comparing recent observa-
tions with historical data to identify similar past scenarios and use them to forecast
near-future states. This approach is particularly effective when a substantial amount
of historical data is available, which inherently demands more computational power.
MASS demonstrates its significant utility in this process, for instance, MASS was
employed to compare current weather data against a dataset containing the past
20 years’ historical observations for solar power prediction [14]. Further research
indicates that MASS can enhance resolution by up to 400%, transforming hourly
forecasts into more precise 15-minute intervals [18] which is crucial for applications
requiring high-resolution data and timely decision-making. The accuracy can be fur-
ther improved by incorporating data from various sources, such as a sensor network.
MASS’s adaptability to different data dimensions makes it well-suited for analyzing
complex, multi-source datasets [19, 20].

Anomaly detection: While prediction with MASS is about forecasting future
states based on historical data, its use in anomaly detection serves a different pur-
pose. In this context, the MASS algorithm is adept at identifying patterns that are
unprecedented or deviate from the norm. In environments where data is continually
updated and immediate response is required, MASS’s ability to quickly and accurately
identify anomalies is invaluable. MASS also excels in analyzing vast datasets where
manual detection of anomalies would be impractical or impossible. Referenced studies
[8, 21–24] highlight the above scenarios where MASS has been successfully applied in
anomaly detection, demonstrating its versatility and effectiveness in this area.
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3 Background

In this section, we define the necessary terms and concepts to describe the algorithms
in Section 3.

Definition 1 (time series): A time series T of length n is an ordered sequence of
real numbers T [i] measured in equally spaced time, in which T = (T [1], T [2], . . . , T [n]).

Definition 2 (subsequence): A subsequence Ti,L is a continuous segment of
length L from a time series T starting from position i. Ti,L = (T [i], T [i+1], . . . , T [i+
L−1]), where 1 ≤ i ≤ n− L+ 1. For a time series of length n, there can be a total of
n(n+1)

2 subsequences of all possible lengths.
Definition 3 (query): A time series Q of length m, which is searched within a

time series T of length n >> m.
Definition 4 (distance profile): Given a time series T and a queryQ the distance

profile is another sequence D of length n−m+ 1 such that D[i] = dist(Ti,m, Q).
Here, dist is a distance function that defines the distance between two equal-

length time series. Typical distance functions include Euclidean distance, Pearson’s
correlation coefficient, cosine similarity and angular distance. Some distance functions
can compare two unequal length time series such as dynamic time warping (DTW) [25],
longest common subsequence (LCSS) [26] and move-split-merge (MSM) [27]. One can
consider more variations of the distance profile by allowing the distance function more
flexibility, such as by removing the end-point constraint [28]. However, the definition of
distance profile is not limited to how the distance function operates on the pair of time
series. The distance functions can also differ in their ranges. Closed ranges increase the
utility of the distance profile (as we describe later) by allowing meaningful aggregation
operations such as MIN and MAX. The distance function can be discontinuous by
generally treating all dissimilar subsequences in the same way by assigning∞ distance
allowing us to speed up computation.

In most parts of this paper, we consider z-normalized Euclidean distance as our
distance measure without any discontinuity. The z-normalized Euclidean distance
between two time series x and y of length m is defined in Equation 1. Here X is the
normalized time series, and x is the original time series.

dist(x, y) =

√√√√ m∑
i=1

(X[i]− Y [i])2 (1)

where X[i] = x[i]−µx

σx
for i = 1, 2, . . . ,m. µx is the mean and σx is the sample standard

deviation of x. This distance function is bounded between zero and 2m [29]. A simple
set of steps can lead us to the following working formula for z-normalized Euclidean
distance [10].

dist(x, y) =

√
2m(1−

∑
i x[i]y[i]−mµxµy

mσxσy
) (2)

The Algorithm 1 describes the brute force way to compute the distance profile. The
algorithm scans the time series T once. At each position, the algorithm normalizes the
subsequence Ti,m and computes the distance to the normalized query. The algorithm
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Algorithm 1: BruteForce(T ,Q)

Input: A time series T of length n and a query Q of length m
Output: D, the distance profile of Q in T
/*Index starting at 1 */

1 D[1 : n−m+ 1]← 0 //D has length n−m+ 1
2 Q← zNorm(Q)
3 for i← 1 : n−m+ 1 do
4 T ′ ← zNorm(Ti,m)

5 D[i]←
√∑m

j=1 (T
′[j]−Q[j])2

6 end

saves all distances in the array D. The computational complexity of the algorithm is
O(nm). Precisely, the algorithm needs 2m arithmetic operations at each iteration. To
avoid 2m operations in each iteration, we can exploit just-in-time normalization [30]
that computes and stores two arrays of cumulative sums that can be used to obtain
normalized distances. Since we normalize the query before scanning T , the working
formula can be further simplified by assigning µy = 0 and σy = 1

dist(x, y) =

√
2m(1−

∑
i x[i]y[i]

mσx
) (3)

To exploit this simplified formulation, we need to compute dot products over sliding
windows and obtain the standard deviation of the sliding window just in time. We use
the following working formula for standard deviation.

σx[i] =

√√√√ 1

m

i+m−1∑
j=i

x[j]2 − (
1

m

i+m−1∑
j=i

x[j])2 (4)

The function movstd from Algorithm 2 demonstrate how to compute the σ by visiting
each element T [i] once. This is achieved by computing the array of cumulative sums
S and an array of cumulative sums of squares, S2, over the time series T .

Although the Algorithm 2 does not reduce the overall time complexity of Algorithm
1, there is a 2× speedup that we consider as the baseline algorithm that one would
consider for computing distance profile.

4 MASS: Mueen’s Algorithm for Similarity Search

We describe an O(n log n) algorithm to compute the distance profile under z-
normalized Euclidean distance. We claim the proposed approach is faster than the
baseline approach (Algorithm 2) that has a time complexity of O(nm) since m > log n
holds for most real-world applications. The core idea is to use convolution operation.
We explain an intuitive example and then formally describe the algorithm.
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Algorithm 2: JustInTime(T ,Q)

Input: A time series T of length n and a query Q of length m
Output: D, the distance profile of Q in T

1 D[1 : n−m+ 1]← 0
2 Q← zNorm(Q)
3 σT ← movstd(T , m)

4 for i← 1 : n−m+ 1 do

5 D[i]←
√

2∗(m−
∑m

j=1(T [i+j−1]∗Q[j])/σT [i])

6 end
7 Function movstd(T , m)

8 N ← length(T )
9 S[1 : N + 1]← 0

10 σ[1 : N −m+ 1]← 0
11 for i← 2 : N + 1 do
12 S[i]← S[i− 1] + T [i− 1]
13 end
14 S2 ← S2

15 for i← m+ 1 : N + 1 do
16 j ← i−m

17 σ[j]←
√

1
m (S2[i]−S2[j])−( 1

m(S[i]−S[j]))2

18 end
19 return σ

20 end

4.1 MASS V1

We apply two optimizations to achieve O(n log n). First, we use convolution to compute
the dot products in Equation 3. Second, we utilize the properties of the Discrete
Fourier Transform to compute the convolution.

If x and y are vectors of polynomial coefficients, convolving them is equivalent to
multiplying the two polynomials. An example of convolving two vectors x and y of
size four is shown in Figure 1.

We exploit convolution operation to compute sliding dot products between a query
(Q) and subsequences of a time series T . To achieve that, we reverse the query and
pad the query with zeros to match the length of the time series T . Consider a small
time series T of length four and a query Q of length two. The convolution operation
between T and reversed and padded Q produces the three sliding dot products of Q
over T . In addition, a few useless values are also produced, including some trailing
zeroes. Thus, one convolution operation provides all sliding dot products of Q in T .

To compute the convolution operation in O(n log n), we utilize the convolution
theorem [31], which states the Fourier transform of a convolution between x and
y equals the pointwise multiplication of their Fourier transform. To avoid the time

6



Fig. 1 Convolving a time series with a reversed and padded query produces necessary sliding dot
products (results from step 2, 3, 4) for distance profile.

Algorithm 3: MASS V1(T ,Q)

Input: A time series T of length n and a query Q of length m
Output: D, the distance profile of Q in T

1 D[1 : n−m+ 1]← 0
2 Q← zNorm(Q)

3 Q← reverse(Q)

4 Q[m+ 1 : 2 ∗ n]← 0 //Tail padding zeroes

5 σT ← movstd(T , m)

6 T [n+ 1 : 2 ∗ n]← 0 //Tail padding zeroes

7 dotPs← frequencyConv(T , Q, n, m)

8 D ← normEuclidean(dotPs, σT )

9 Function frequencyConv(T , Q, n, m)

10 TF ← FFT(T )
11 QF ← FFT(Q)
12 DP = TF. ∗QF //element-wise products

13 return IFFT(DP )[m : n]

14 end
15 Function normEuclidean(dotPs, σ)

/*element-wise operations */

16 return
√

2∗(m−dotPs./σ)

17 end

domain aliasing [32] from multiplying DFTs and maintain the integrity of the convo-
lution results, we need to zero-pad [33] x and y. This process can be summarized in
Equation 5 and the detailed padding operations are described in line 4 and 6 in MASS
V1 (Algorithm 3).

conv(x, y) = IDFT(DFT(pad(x)). ∗ DFT(pad(y)) (5)

MASS V1 exploits Fourier Transform, convolution theorem and cached cumulative
sums for sliding standard deviation to compute the distance profile. The overall time
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complexity is O(n log n) when using the Fast Fourier Transform algorithm(FFT)

[34]. This can be seen easily because each of the lines in the algorithm, except the call
to frequencyConv in line 7, is a linear operation with a worst-case time complexity
of O(n).

The Algorithm MASS V1 is rather a simplified description of the exact algorithm.
There are corner cases that need separate handling. If a subsequence is a constant
time series, the standard deviation is zero, causing divide by zero errors. To avoid such
cases, MASS needs to check the standard deviations ahead of the division operation
in Line 16. In some applications, the query Q comes from the time series T , resulting
in trivial matches [5] that must be excluded by setting ∞ as distance values in the
distance profile. For brevity, we omit these corner cases in the Algorithm 3.

4.2 MASS V2

Fig. 2 Valid convolution produces necessary information for distance profiling in half space and time
required by full convolution.

Algorithm 4: MASS V2(T ,Q)

Input: A time series T of length n and a query Q of length m
Output: D, the distance profile of Q in T

1 D[1 : n−m+ 1]← 0
2 Q← zNorm(Q)

3 Q← reverse(Q)

4 Q[m+ 1 : n]← 0 //only padding query

5 σT ← movstd(T, m)

6 dotPs← frequencyConv(T , Q, n, m)

7 D ← normEuclidean(dotPs, σT )
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Convolution defined using DFT produces more useless numbers than the necessary
ones. We can improve MASS V1 by reducing the padding size. We define an operation
named valid convolution shown in Equation 6. We demonstrate MASS V2 in Algorithm
4.

valid conv(x, y) = IDFT(DFT(x). ∗ DFT(pad(y))) (6)

This operation only needs to tail pad y with zeros to match the length of x. There-
fore, the output size is immediately reduced to half of that of a full convolution. This
reduction does not change the overall time complexity of the algorithm; however, a 2×
speedup can be observed based on this simple change. Figure 2 depicts a valid convo-
lution operation that slides the query over the time series. Note that valid conv(x,y)

is not symmetric and it is different from valid conv(y,x).

4.3 MASS V3

Algorithm 5: MASS V3(T ,Q)

Input: A time series T of length n, a query Q of length m and a given batch
size k that ≥ m

Output: D, the distance profile of Q in T
1 D[1 : n−m+ 1]← 0
2 Q← zNorm(Q)

3 Q← reverse(Q)

4 Q[m+ 1 : k]← 0
5 T ′[1 : k]← 0
6 for i← 1 : k −m+ 1 : n−m+ 1 do
7 j ← i+ k − 1
8 T ′[1 : k]← T [i : j]
9 if j > n then

//handle the last batch

10 j ← n
11 T ′[1 : k]← 0
12 T ′[1 : j − i+ 1]← T [i : j]

13 end
14 σT ← movstd(T ′, m)

15 dotPs← frequencyConv(T ′, Q, j − i+ 1, m)

16 D[i :j−m+1]← normEuclidean(dotPs, σT )

17 end

When a time series T cannot fit in the computer memory, MASS V2 will not work
as defined. However, the distance profile can be computed in batches and concatenated
to produce the final distance profile. In addition, it is well explored and understood
that the FFT algorithm can benefit from aligning the input along the word boundaries
in the computer memory [35]. Moreover, the latest work [36] shows that when the
input size satisfies N = 2n the performance of FFT can be further improved by around
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25%. To achieve the power of 2 input sizes and process large time series by parts, we
describe the MASS V3 (Algorithm 5). In section 3.5, we show that MASS V3 has an
average 31% speed improvement over MASS V2 and an average 96% improvement
over our baseline just-in-time approach.

We start by describing the splitting process. We split T into segments of length
that is a suitable power of two fitting in the memory. Subsequent segments must
overlap m−1 observations to ensure we can concatenate the resulting distance profiles
produced by MASS V2. The last segment can be of arbitrary length, as needed for
the input time series. See Figure 3 for the splitting process.
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Fig. 3 (left) Splitting the long time series into segments of length K. (right) The best value of K
depends on the hardware. In this example, K = 216 produces the fastest execution.

We explore the sensitivity of the segment size K on the overall performance of
MASS V3. Figure 3 shows how the execution time of our MATLAB implementation
changes when increasing K. The best batch size must vary among systems and must
not have any impact on the accuracy of the output.

The linear space complexity of the algorithm ensures extreme parallelism. We can
use GPUs to speed up MASS V3 by simply storing the data in GPU shared memory
and using FFT operations that can exploit parallel processing on a GPU.

4.4 MASS V4

Time series similarity search is a time domain operation focusing only on the real
parts of the output produced by a DFT-based fast convolution operation. Although
theoretically, the output of the convolution operation must not have any imaginary
part, we observe complex numbers with leakage in the imaginary part due to round-off
errors. This can be eliminated by using real data FFT based on Hermitian symmetry.
However, this solution comes with certain trade-offs. It sacrifices the simplicity of the
transformation, and the space efficiency of in-place transformation [35, 37], and limits
the potential for parallel computing using multiple graphics processing units [38, 39].
In addition, the complex numbers will inevitably bring in additional data structure and
algorithms for related operations, which may increase the overhead cost, for instance,
implementation on dedicated hardware (e.g., FPGA). We introduce a Discrete Cosine
Transformation (DCT) based version of MASS that only uses the real parts of the
complex numbers, and guarantees zero leakage to the imaginary parts.
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Algorithm 6: MASS V4(T ,Q)

Input: A time series T of length n, a query Q of length m and a given batch
size that satisfies k ≥ ⌊(3m+ 1)/2⌋

Output: D, the distance profile of Q in T
1 D[1 : n−m+ 1]← 0
2 Q← zNorm(Q)

3 for i← 1 : k −m+ 1 : n−m+ 1 do
4 j ← i+ k − 1
5 if j > n then
6 j ← n
7 end
8 T ′ ← T [i : j]
9 σT ← movstd(T ′, m)

10 dotPs← DCTDotProduct(T ′, Q, j−i+1, m)

11 D[i :j−m+1]← normEuclidean(dotPs, σT )

12 end
13 Function DCTDotProduct(T ′, Q, n′, m)

14 Tpad, Qpad, si← DCTPadding(T’, Q, n’, m)

15 N ← length(Tpad)
16 Tc ← DCT type2(Tpad) //Orthogonal DCT applied here

17 Qc ← DCT type2(Qpad)
18 dotPs[1 : N + 1]← 0
19 dotPs[1 : N ]← Tc . ∗Qc

20 dotPs[1]← dotPs[1] ∗
√
2

21 dotPs← DCT type1(dotPs)
22 dotPs[1]← dotPs[1] ∗ 2
23 return

√
2N ∗ dotPs[si : si+ n′ −m]

24 end
25 Function DCTPadding(T ′, Q, n′, m)

26 p2 ← ⌊(n′ −m+ 1)/2⌋
27 p1 ← p2 + ⌊(m+ 1)/2⌋
28 p3 ← 0
29 p4 ← n′ −m+ p1 − p2
30 Tpad[1 : n′ + p1]← 0 //padding p1 zeros at head of T’

31 Tpad[1 + p1 : n′ + p1]← T ′

/*padding p2 zeros at head of Q and p4 zeros at tail */

32 Qpad[1 : m+ p2 + p4]← 0
33 Qpad[1 + p2 : 1 + p2 +m− 1]← Q
34 start index← p1 − p2 + 1
35 return Tpad, Qpad, start index

36 end

The convolution between x and y can be computed with DCT type-1 of element-
wise multiplication of DCT type-2 transformed x and y with zero-padding. The
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process is shown in Equation 7. The detailed padding procedures described in function
DCTPadding from Algorithm 6.

conv(x, y) = DCT1(DCT2(pad(x)). ∗ DCT2(pad(y)) (7)

Unlike in MASS V2, where the valid conv does not pad the x, MASS V4 pads
both x and y. Hence, the batch size, K, to slice the time series T , must be selected
considering the padded data for computing the DCT. We omit this calculation in
Algorithm 6 for simplicity. However, we provide well-documented code for MASS V4
that automatically selects the best K on a given system. One worth mentioning note is
that the DCT transformations in function DCTDotProduct are orthogonal transforms.
One can think of using non-orthogonal transforms with scaling factors, however, we
leave it as future work at this point.

4.5 Algorithmic Complexity

The performances of the MASS algorithms have never been documented before. In
this section, we provide computational complexity, theoretical FLOPs (Floating Point
Operations) count and stopwatch timing of MASS running on various data sizes.

Table 1 Time complexity in Big-O notation

Algo. JIT V1 V2 V3 V4

Complexity O (nm ) O (n logn ) O (n logn ) O ( n−k
k−m

k log k ) O ( n−k′

k′−m
k log k )

Table 1 shows the time complexity in Big-O notation. Our baseline approach
JustInTime takes O(nm). V1 and V2 decrease the m term to log n since for most real-
world applications m > log n. V1 has a larger constant coefficient than V2 due to extra
padding. For V3, the number of loops is ⌈ n−k

k−m+1 +1⌉ k is batch size and for each loop,
FFT operations take O(k log k) of length k input. V4 shares the same time complexity
as V3, although the batch size k′ for V4 is generally smaller than the k for V3.

Table 2 FLOPs comparison when m = 100, k = 215 for V3

n 220 222 224 226 228 230 232

JIT 2.233E8 8.934E8 3.574E9 1.429E10 5.718E10 2.287E11 9.148E11

V1 2.508E8 1.098E9 4.774E9 2.062E10 8.855E10 3.786E11 1.612E12

V2 1.263E8 5.527E8 2.401E9 1.036E10 4.450E10 1.902E11 1.612E12

V3 7.320E7 2.841E8 1.130E9 4.515E9 1.805E10 7.220E10 2.888E11

V4 1.072E8 4.200E8 1.677E9 6.704E9 2.681E10 1.072E11 4.289E11

Table 2 shows FLOPs for various time series lengths when query length m and
batch size k are fixed. For the JustInTime algorithm, we count the total number of
additions and multiplications; both are counted as 1 FLOP. For DFT-based MASS,

12



We use the state-of-the-art FLOPs formula for computing the real data FFT given by
[36]. For DCT-based MASS, we applied the FLOPs formula in work [40], which is the
follow-up work of [36] to compute the FLOPs count for DCT. In Table 2, we see V1
has around 12% more operation counts than JIT when n = 220 and 76% when n = 232.
However, in Figure 4, we see V1 is 88% faster than JIT since additional overheads are
not counted as FLOPs count, including memory operations, execution of branches and
implementation of underlying libries[41]. The V3 executes the smallest FLOPs counts
among all the algorithms. V4 executes 46% to 48% more FLOPs than V3 due to the
extra padding with zeros and most importantly, the DCT always executes more FLOPs
than FFT [36][40]. The performance show in Figure 4, matches the observations made
in Table 2. Overall, V3 is the fastest in all three metrics: time complexity, stopwatch
time and FLOPs count.

The code used for this experiment is available on this project site [1].

Fig. 4 The stopwatch time in seconds for different algorithms and different input lengths when
m = 100, k = 215. The platform has an I9-9900k CPU with 128GB RAM, the Matlab version is
2021b.

5 Extensions of Distance Profile

5.1 Weighted Distance Profile

Often practitioners have prior knowledge about the importance of various segments
in the query. To exploit that knowledge, we consider setting a weight vector w =
w[1], w[2], . . . , w[m] that modifies the distance function by weighing each squared error
differently, as shown in Equation 8. We can then expand the distance function in the
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sum of product form, as shown in Equation 9. An application demonstrating the usage
of the weighted distance profile is available in Section 7.2.

weight dist(x, y) =

√√√√ m∑
i=1

w[i](
x[i]− µx

σx
− y[i])2 (8)

1

σ2
x

m∑
i=1

w[i]x[i]2−2µxw[i]x[i]−2σxw[i]x[i]y[i]+µ2
xw[i]+2µxσxw[i]y[i]+σ2

xw[i]y[i]2 (9)

In the above summation, the left three terms have x[i]’s, hence they need to calcu-
late sliding dot products. The remaining terms on the right are free of xi, hence they
are pre-calculated before convolving. The first two terms are calculated by taking the
sliding dot products of the weight vector over the time series x and its squared form
x2. The term w[i]x[i]y[i] is calculated by taking the element-wise dot product w ◦ y
first and then calculating the sliding dot product over the x. Note that vectors w and
y are of identical size, hence, we can perform element-wise dot product.

5.2 Absolute Distance Profile

A common variation of the distance profile looks for the absolute distance between the
query and the subsequences. This approach is particularly useful in two scenarios: 1)
Instances where the absolute magnitudes of data points are crucial often do not require
normalization. For example in aviation, particularly for flight trajectory altitude time
series data, the absolute altitude values during crucial phases like takeoff and landing
are more important than the normalized shape. Altitude variations must be analyzed
as such to distinguish different geographical locations. Similarly, for solar power pre-
diction involving Global Horizontal Irradiation (GHI) time series analysis also benefits
from this, as absolute irradiation values directly impact power generation predictions
[18]. 2) When data is pre-normalized using methods other than z-normalization, direct
computation of the Euclidean distance is often adequate. An example is in cover song
identification tasks [11, 12], where MASS computes the absolute distance profile on
chroma-based features. These features undergo normalization using Chroma Energy
Normalized Statistics (CENS), eliminating the need for additional z-normalization.

Calculating the distance profile without normalization is simpler. Only the moving
sum of squares is needed in addition to the sliding dot product over the x. The distance
values can be calculated using Equation. 10.

absolute dist(x, y) =

√√√√ m∑
i=1

(x[i]2 − 2x[i]y[i] + y[i]2) (10)
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5.3 Correlation Profile

The relationship between z-normalized Euclidean distance and Pearson’s correlation
enables simple transformations from one another [42].

corr(x, y) = 1− dist(x, y)2

2m
(11)

Therefore, if we have a distance profile D for a query Q and a time series T , we
can produce a correlation profile in one scan. An application demonstrating the usage
of the correlation profile is available in Section 7.4.

5.4 Partial Correlation Profile

Distance profiles are useful in computing the partial correlation between two time
series conditioned on any subsequence of a longer time series. The partial correlation
coefficient between two variables x and y, conditioned on a variable z is defined in
Equation 12.

ρxy.z =
ρxy − ρxzρyz√
1− ρ2xz

√
1− ρ2yz

(12)

Correlation profiles can be extended to compute the partial correlation profile
between two queries with respect to a long conditional time series z. The computation
can be done by computing the correlation profiles of x and y as queries in the time
series z. This provides ρxz and ρyz in the above equation. Since ρxy is constant for
queries x and y, the partial correlation profile can, thus, be calculated from the two
correlation profiles.

Partial correlation is crucial in scenarios where it’s necessary to measure the cor-
relation between two variables while controlling the effects of a third variable. This
measurement is especially relevant in cases where external factors influence the cor-
relation between primary variables. For instance, in the analysis of ECG patterns,
considering additional factors such as air pressure or body posture may be needed.
Omitting such factors can lead to inaccurate correlations. To illustrate the signifi-
cance of the partial correlation profile, we employed a 1-NN classifier, comparing its
accuracy using both partial and standard correlation profiles. The methodology is
detailed in Algorithm 7. We tested on the “ECG200” dataset from the UCR reposi-
tory [43], which includes data classified into two categories: ‘normal’ and ‘ischemia’,
with samples from both male and female subjects. We initially computed the standard
correlation profile between the testing and training datasets, employing labels from
the nearest neighbors for classification. This standard approach yielded an accuracy
of 88%. However, when incorporating gender as a factor through partial correlation,
the accuracy improved. For each test case, we computed the partial correlation with
respect to all training set cases to accommodate the absence of explicit gender infor-
mation in the dataset. The minimum correlation value was then selected, as specified
in line 15 of Algorithm 7. This incorporation of gender via partial correlation led to a
3% increase in accuracy compared to the standard correlation approach.
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Algorithm 7: Partial Corr Classification(X train, X test, Y train, Y test)

Input: X train is the training data with size N train×m.
X test is the testing data with size N test×m.
m is the time series length of each case.
Output: Accuracy of the 1-NN classifier with the partial correlation profile.

1 Train TS ← concat(X train) //concatenating rows in X train

2 mask ← [1 : m : N train ∗m−m+ 1]
3 M [1 : N test, 1 : N train]← 0
4 for i← 1 : N Test do
5 x test← X test[i, :]
6 C1 ← MASSCorr(Train TS, x test)
7 C1 ← C1[mask]
8 for j ← 1 : N Train do
9 x train← X train[j, :]

10 c1 ← C1[j]
11 C2 ← MASSCorr(Train TS, x train)
12 C2 ← C2[mask]

//.∗ is the Hadamard production

13 partical corr ← (c1 − C1. ∗ C2)./
√

(1− C2
1 ). ∗ (1− C2

2 )
14 partical corr[j]← Inf
15 M [i, j]← min(partical corr)

16 end

17 end
18 LOC ← argmax(M) //get index of maximum element in each row.

19 Ŷ ← Y train[LOC]

20 a← Y test− Ŷ
21 acc← sum(a ̸= 0)
22 return acc
23 Function MASSCorr(x, y)
24 D ← MASS(x, y)
25 C ← 1−D2./(2∗length(y)) //element-wise operations, Equation 11

26 return C

27 end

5.5 Multivariate Time Series

In certain applications, the analysis of multivariate time series data becomes essential.
One common approach for computing the distance profile of multivariate time series
is first computing the individual profiles of each dimension, and then integrating them
into a single, unified profile. The integration process typically involves merging these
profiles using a weighting factor [14, 44]. The weighting factor can either be assigned
uniformly across all dimensions or determined through a learning process from the
data.
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5.6 Discussion

All the versions of distance profiles can be efficiently computed using any version of
the MASS algorithm with little modifications, which are highlighted in Equations 9,
10, 11, 11. A key advantage of using MASS for these calculations is its consistency
in both space and time complexity across different types of correlation profiles. The
exact time complexity is available in Table 1.

6 Comparison with Indexing Solution

Distance profiling is different from indexing or index-based solutions to search for
the nearest neighbor. This is an important distinction to be made, hence, demands a
separate section.

An index is built on a large amount of data (typically larger than memory) in
order to search the nearest neighbor (or k-nearest neighbors) of any given query very
efficiently [45][46]. There are several parameters involved in building and using an
index: the time to build the index, the time to search for one query, and the number
and types of queries searched. The goal is to search for a query interactively, while the
time to create an index is generally long because of the involvement of the disk. Most
indexing works consider a wide variety of queries to demonstrate generalizability.

In practice, if an index is already built and only a few neighbors are needed for
each query, distance profiling is not suitable. In contrast, if the data and the query
both change frequently, distance profiling is suitable to offset the overhead of index
creation. What is the largest sized data that we can profile at interactive speed?
Roughly, profiling a one billion long time series takes less than a minute on an off-
the-shelf computer. We argue that any time series subsequence database less than one
billion observations does not warrant indexing.

7 Utility in Application Domains

The utility of a distance profile comes from the knowledge of the entire distribution
of distances between a query and a time series. When the frequency of the matches
is important and variable for different queries, the distance profile is a great tool
to exploit. We show three use cases of distance profiles in three different domains:
robotics, seismology and power grid management.

7.1 Survey on applications

7.2 Robots

The accelerometer on a foot of a Sony AIBO robot records the walking cycles of the
robot. The accelerometer readings show signatures produced by the surface via the
reactive force on the foot. We take two cycles of a robot walking on a carpet and use a
weighted distance profile by having zero weightage for the segment when the foot is in
the air. The distance profile shows matches when the robot was walking on a carpet.
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Fig. 5 The query corresponds to the accelerometer signal of two steps taken by a SONY robot
walking on the carpet. The accompanying weighted vector preserves the periods where the robot’s
foot contacts the carpet and ignores periods where the foot is in the air. We applied MASS to calculate
the weighted distance profile of the query on the full sequence of the robot’s movements over time
(yellow time series), and the red time series is the result distance profile. In this profile, lower values
correspond to a closer match with the query signal. We use a grey-shaded area to denote the time
when the robot is moving on the carpet based on the ground truth data. The weighted distance profile
matches this ground truth, as multiple subsequences in this period have a weighted distance below
the threshold.

Fig. 6 The top plot illustrates the query pattern which represents the typical power consumption
of a house during idle or vacant periods. This pattern is characterized by its cyclic and consistent
nature with minimal variations, which is typical of a household when it is not actively being used.
The middle plot exhibits the power consumption time series data of a household over an extended
period. The fluctuations and spikes indicate varying levels of activity and usage within the household.
In the bottom plot, the distance profile calculated by the MASS algorithm is presented. The dashed
line represents a distance threshold set at 22.5. Periods, where the distance profile falls below this
threshold, are shaded in gray and labeled as Vacancy. These intervals signify times when the house-
hold’s power consumption pattern closely matches the idle or vacant query pattern, suggesting that
the house was likely unoccupied during these times.
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7.3 Solar Power

MASS can be used to create a distance profile of a power consumption time series [47].
The total power consumption of a household contains patterns of the idle state of the
house (i.e. when nobody is in the house). If the idle state pattern of a house is known,
the distance profile of the power consumption time series easily provides the number
of days (or percentage of days) the household was vacant. In figure 6, we show a power
consumption time series for six months and an idle state pattern. We also show the
distance profile, which can be thresholded at 22.8 to calculate the proportion of time
the house was vacant. In this example, 18.2% of the time, the house was vacant.

7.4 Seismology

Fig. 7 Two seismograph traces are presented at the top, the red trace denotes the mainshock, while
the blue trace represents an aftershock. These traces are extracted from a streaming time series
recorded at a seismic station running at 40 Hz. The displayed data includes the 30 seconds before
and after the arrival time of the seismic event, which has been identified by human analysts. Initially,
when compared directly, the two sequences exhibit a 0% correlation, indicating no direct similarity
between the mainshock and aftershock as captured by the seismographs. However, we use MASS
to compute the distance profile of a query, which is a 40-second subsequence from the mainshock,
against the 60-second sequence of the aftershock. The bottom figure showcases the 80% correlation
between the query and the best-matching subsequence from the aftershock data.

MASS can be used to match aftershocks to each other when a large earthquake
happens. Consider the two seismographs in Figure 7 recorded at the station MKAR
in Kazakhstan. The aftershock (shown in blue) does not align properly with the red
major earthquake (mainshock) if we use human-annotated wave arrival time [48]. In
this case, the arrival times are more than 250ms apart, resulting in a poor correlation
(0.08) coefficient. When we use sliding (or shifting) Euclidean distance [49], the two
aftershocks show an 80% correlation that confirms the closeness of the sources. MASS
is a great tool to compute sliding Euclidean distance in O(n log n) time as opposed to
the naive nested-loop algorithm.
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8 Utility in Algorithms

Distance profiles are good data structures to redesign and speed up existing data
mining algorithms. We pick Time Series Discord [50] and clustering [51] to demonstrate
the utility.

Algorithm 8: MASS Discord(T , m, best so far)

Input: A time series T of length n and a discord length m
Output: discordLocation and discordDistance in T

1 q ← T [1 : m]
2 i← 1
3 iLoc← [1, 2, . . . , n−m+ 1]
4 discordDistance← best so far
5 discordLoc← 0
6 while i <= n−m+ 1 do
7 D ←MASS(T, q)
8 D[max(i−m+ 1, 1) : min(i+m− 1, n)]←∞
9 if minimum(D) > discordDistance then

10 discordDistance← minimum(D)
11 discordLoc← i

12 end
13 for j ← 1 : n−m+ 1 do
14 if D[j] < discordDistance then
15 iLoc[j]← −1
16 end

17 end
18 i← Next positive index in iLoc
19 q ← T [i : i+m− 1]

20 end

Time series discord is the subsequence in a time series that has the furthest near-
est neighbor. The subsequence, whose nearest neighbor is the most dissimilar, is the
time series discord. Traditional discord discovery algorithms exploit pruning and early
abandoning strategies when computing individual distances. However, distance profiles
can merge many of these distance computations and speed up the search for discord.

In Algorithm 8, we show how distance profiles can be used to prune unpromis-
ing subsequences and hop over regions of repetitive segments of the time series. The
efficiency of the algorithm depends on data characteristics in the same way tradi-
tional algorithms depend. However, a traditional algorithm computes one distance
at a time and occasionally prunes candidate subsequences. The MASS Discord com-
putes one distance profile at a time and prunes as many candidates as possible. Thus,
MASS Discord spends less time in distance computation and more time in pruning.
We see a sizable speed-up over traditional pruning strategies when tested on the three
real datasets described in the previous section. In Figure 8, we vary the length of the
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Fig. 8 Execution time of MASS Discord in comparison to traditional discord discovery algorithm
on three real datasets.

discord and measure the time in seconds to find the discord by both traditional and
MASS Discord algorithms.

Fig. 9 Execution time comparison between MASS and a naive approach when applied to complete-
linkage clustering on streaming time series. The comparison spans three different real-world datasets
robots, solar data, and seismographs. The MASS algorithm demonstrates a considerable reduction in
execution time compared to the naive method, maintaining a consistent lead as the subsequence length
increases. The MASS-based approach is around 20 times faster on solar datasets and approximately
15 times faster on robot and seismograph datasets.

The task of clustering within a single time series stream involves grouping
subsequences from the stream in a manner where the selected subsequences are non-
overlapping and may have gaps between them. This approach, based on the principle
that clustering of time series from a single stream of data requires ignoring some of
the data [51].

Contrasts with the clustering of individual time series, which requires computing
distances among independent time series of the same length. For time series stream
clustering, it is essential to consider the distance between all possible pairs of sub-
sequences. One method is to maintain all pairwise distances in a matrix, but this
approach has significant space complexity, O(n2) where n is the length of the time
series. For instance, a time series with a length of 46,340 would require approximately
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Algorithm 9: MASS Complete-linkage Clustering(T , m, δ)

Input: A time series T of length n, subsequence length m and a threshold of
maximum distance in a cluster.

Output: C
//First compute matrix profile.

1 MP,MPI ← SCRIMP++(T,m)
//iLoc maintains valid index in MP.

2 iLoc← ones(n−m+ 1)
3 for i← 1 : n−m+ 1:
4 C[i]← {};
5 while sum(iLoc) > 1 and min(MP ) < δ:
6 cmi← argmin(MP )
7 n1← min(cmi,MPI[cmi])
8 n2← max(cmi,MPI[cmi])
9 nc← n1

10 merge(C, m, n1, n2, iLoc)
11 md,mdi ← Update(T,m,C, n1, iLoc)
12 MP [n1]← md
13 MPI[n1]← mdi

//Update elements in MP, MPI
whose NN location is not valid.

14 for k ← 1 : n−m+ 1:
15 if iLoc[k] ̸= 0 and

(iLoc[MPI[k]] == 0 or
MPI[k] == nc):

16 MP [k],MPI[k]← Update(T,m,
C, n1, iLoc)

17 MP [iLoc == 0]← inf
18 MPI[iLoc == 0]← inf
19 return C

20 Function merge(C, m, n1, n2, iLoc)
21 if empty(C[n1]) and empty(C[n2]):
22 C[n1]← {n1, n2}
23 iLoc[n1−m+1 : n1+m+1]← 0
24 iLoc[n2−m+1 : n2+m+1]← 0
25 iLoc[n1]← 1
26 elif empty(C[n1]) and !empty(C[n2]):
27 C[n1]← C[n2] ∪ {n1}
28 C[n2]← {}
29 iLoc[n1−m+ 1 : n1 +m+ 1]← 0
30 iLoc[n1]← 1
31 iLoc[n2]← 0
32 elif !empty(C[n1]) and empty(C[n2]):
33 C[n1]← C[n1] ∪ {n2}
34 iLoc[n2−m+ 1 : n2 +m+ 1]← 0
35 else:
36 C[n1]← C[n1] ∪ C[n2]
37 C[n2]← {}
38 iLoc[n2]← 0
39 Function Update(T , m, C, ti, iLoc)

//ti is the target index in MP
pending to be updated.

40 if empty(C[ti]):
//ti is a sub-sequence

41 D ← MASS(T, T [ti : ti+m−1])
42 D[ti−m+1 : ti+m−1]← Inf
43 else:

//ti is a cluster
44 D ← −Inf(n−m+1)
45 for k ← 1:length(C[ti]):
46 si← C[ti][k]
47 cur dist← MASS(T, T (si :

si+m−1))
//element-wise maximum

48 D ← max(D, cur dist)
49 D[ti]← Inf
50 for i← 1 : length(D):
51 if !empty(C[i]) and i ̸= ti:
52 for k ← 1 : length(C[i]):
53 D[i]← max([D[i]], D[C[i][k]])
54 D[iLoc == 0]← Inf
55 [dm, dmi]← min(D)
56 return dm,dmi

16GB of RAM for the distance matrix. Thus, an algorithm with O(n) space complexity
is more practical for real-world applications.

We propose a complete-linkage clustering method for streaming time series that
utilizes only O(n) space, leveraging the MASS in Algorithm 9. The process starts by
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Fig. 10 The top graph shows the time series of the first dimension of the Winding dataset with
various segments color-coded to represent different clusters identified by Algorithm 9. The lower
graphs provide expanded views of identified clusters, showing the consistency within each cluster
despite the noisy environment. The subsequence length is set to 100.

computing the matrix profile using the SCRIMP++ algorithm [9] (line 1). In each
iteration of the While loop (line 5), a new cluster is formed or two existing clusters
are merged based on the matrix profile, as defined in the merge function (starting at
line 20). Any changes in the clusters trigger the update function (starting at line 39),
which updates certain matrix profile cells. Here, we use MASS to compute the distance
profile, and then employ a MAX aggregator to update cluster distances. This process
requires only n auxiliary space since only one distance profile is maintained at a time.
Overall, the space requirement to store iLoc,MP,MPI,D is 4n.

We benchmarked the performance of our MASS based algorithm against a naive
implementation that uses the pdist function in MATLAB to only compute the nec-
essary pairwise distances. This comparison was conducted by varying the length of
the subsequence and measuring the processing time in seconds for both algorithms
on three real-world datasets. Figure 9 demonstrates that MASS based approach is 20
times faster on solar dataset and around 15 times faster on robot and seismograph
datasets.

In Figure 10 we show the results of clustering an industrial dataset. The data
comes from an industrial wire winding process [52]. Note that the data has significant
non-uniform noise, including spikes and dropouts. Although ground truth data is not
available for verification, the clustering results visually demonstrate a clear distinction
between the different clusters, suggesting that the applied method effectively captures
the inherent similarities within clusters and differences across clusters.

9 Conclusion

We define the distance profile of a query over a time series and provide a series of
algorithms to compute distance profiles under Euclidean distance and its variants.
We discuss the performance of these algorithms both quantitatively and qualitatively.
We demonstrate the utility of distance profiles as a tool for data mining algorithms
in various real applications. The paper serves as the first complete documentation of
distance profiling algorithms, which had only partially been discussed in articles and
web pages.
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