
ABSTRACT

NUMERICAL TECHNIQUES FOR IMPROVING SIMULATIONS OF
TROPICAL CYCLONES

by
Yassine Tissaoui

The increasing frequency and intensity of tropical cyclones (TCs) due to climate

change pose significant challenges for forecasting and mitigating their impacts.

Despite advancements, accurately predicting TC rapid intensification (RI) remains

a challenge. Large eddy simulation (LES) allows for explicitly resolving the large

eddies involved in TC turbulence, thus providing an avenue for studying the

mechanisms behind their intensification and RI. LES of a full tropical cyclone is

very computationally expensive and its accuracy will depend on both explicit and

implicit dissipation within an atmospheric model. This dissertation presents two

novel numerical methodologies with the potential to improve the efficiency of tropical

cyclone LES in the future. The first is a pioneering non-column based implementation

of the Kessler warm rain microphysics parametrization, a method which would

allow for the use of three-dimensional (3D) adaptive mesh refinement (AMR) in

the simulation of moist tropical cyclones. The second is an implementation of

Laguerre-Legendre semi-infinite elements for use in the damping layers of atmospheric

models, a method which was shown to be capable of improving the efficiency of

benchmark atmospheric simulations. Finally, the dissertation presents a study of

two-dimensional (2D) AMR applied to simulations of a rapidly intensifying dry

tropical cyclone and shows that AMR is able to accurately reproduce the results

of simulations using static grids while demonstrating considerable cost savings.



NUMERICAL TECHNIQUES FOR IMPROVING SIMULATIONS OF
TROPICAL CYCLONES

by
Yassine Tissaoui

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Mechanical Engineering

Department of Mechanical and Industrial Engineering

August 2024



Copyright © 2024 by Yassine Tissaoui

ALL RIGHTS RESERVED



APPROVAL PAGE

NUMERICAL TECHNIQUES FOR IMPROVING SIMULATIONS OF
TROPICAL CYCLONES

Yassine Tissaoui

Dr. Simone Marras, Dissertation Co-Advisor Date
Assistant Professor of Mechanical and Industrial Engineering, NJIT

Dr. Stephen R. Guimond, Dissertation Co-Advisor Date
Associate Professor of Atmospheric and Planetary Sciences,
Hampton University, Hampton Virginia

Dr. Shawn Chester, Committee Member Date
Associate Professor of Mechanical and Industrial Engineering, NJIT

Dr. Samaneh Farokhirad, Committee Member Date
Assistant Professor of Mechanical and Industrial Engineering, NJIT

Dr. David G. Shirokoff, Committee Member Date
Associate Professor of Mathematics, NJIT



BIOGRAPHICAL SKETCH

Author: Yassine Tissaoui

Degree: Doctor of Philosophy

Date: August 2024

Undergraduate and Graduate Education:

• Doctor of Philosophy in Mechanical Engineering,

New Jersey Institute of Technology, Newark, NJ, 2024

• Master of Science in Modeling for Industry and Services,
National Engineering School of Tunis, Tunisia, 2018

• Bachelor of Science in Modeling for Industry and Services,
National Engineering School of Tunis, Tunisia, 2018

Major: Mechanical Engineering

Presentations and Publications:

A. Sridhar, Y. Tissaoui, S. Marras, Z. Shen, C. Kawczynski, S. Byrne, K. Pamnany,
M. Waruszewski, T. H. Gibson, J. E. Kozdon, V. Churavy, L. C. Wilcox, F. X.
Giraldo, T. Schneider, “Large-eddy simulations with ClimateMachine v0.2.0:
a new open-source code for atmospheric simulations on GPUs and CPUs,”
Geoscientific Model Development, p 335, 2022.

Y. Tissaoui, S. Marras, A. Quaini, F. A. V. De Bragança Alves, and F. X.
Giraldo, “A non-column based, fully unstructured implementation of Kessler
microphysics with warm rain using continuous and discontinuous spectral
elements,” Journal of Advances in Modeling Earth Systems, 2023.

Y. Tissaoui, J. F. Kelly, and S. Marras, “Efficient Spectral Element Method for the
Euler Equations on Unbounded Domains in Multiple Dimensions” Journal of
Applied Mathematics and Computation, 2024, in review.

Reddy, S., Tissaoui, Y., F. A. V. De Bragança Alves, Marras, S., Giraldo,
F. X., “Comparison of Sub-Grid Scale Models for Large-Eddy Simulation
using a High-Order Spectral Element Approximation of the Compressible
Navier-Stokes Equations at Low Mach Number” Arxiv, 2021, preprint.

Y. Tissaoui, S. R. Guimond, S. Marras, and F. X. Giraldo, “Accelerating Simulations
of Tropical Cyclones using Adaptive Mesh Refinement”, 2024, in preparation.

iv



To climbing, a sport where falling down and getting
back up is expected, encouraged and also necessary (how
else are we supposed to get off the wall). Putting this
together was not unlike solving a climbing problem,
occasionally very frustrating and resulting in a few
mental scrapes and bruises. I still love climbing and
I love science, the challenge was always part of the appeal.

To my wife Emna, you’re the only reason I haven’t lost
my mind yet.

v



ACKNOWLEDGMENTS

I would like thank my dissertation advisor, Dr. Simone Marras for his guidance,

support and patience throughout the years it took to complete this thesis. I would

also like to thank him for the enriching discussions we’ve had throughout the years.

I would also like to thank Dr. Stephen Guimond my co-advisor for his insight and

guidance, this work would not have been possible without his unique expertise.

I would like to express my gratitude to my PhD thesis committee members Dr.

Shawn Chester, Dr. Samaneh Farokhirad, and Dr. David G. Shirokoff. Thank you

for your time and effort.

I would also like to thank Dr. Shawn Chester and Dr. Vejlko Samardzic for

their advice and help throughout my first years at NJIT. I would like to thank Dr.

Abhishek Mukherjee for showing me the ropes when I first started the program and

for always offering reliable support whenever it was needed and I would like to thank

Dr. Keven Alkhoury at NJIT for the many fruitful discussions we’ve had as colleagues

and for providing this thesis template.

I would like to thank Dr. Tapio Schneider, Dr. Akshay Sridhar, and the Climate

Modeling Alliance team for their mentorship, help, and support. I would like to

express my sincere gratitude to Dr. Francis X. Giraldo and Dr. James Kelly for their

support and for their help the many times I needed their assistance with technical

problems.

I would like to acknowledge the partial support by the National Science

Foundation through Grant PD-2121367.

I want to express my deepest gratitude to my wife, Emna Sahraoui for always

believing in me, for always making my day brighter, for never letting me give up on

myself and for reminding me that I’m human and that I too need breaks. I would like

vi



to thank my sibling, Yassmine Tissaoui for always providing interesting conversation

and for being excited about the work I do even when I’m in a rut. Finally I would like

to thank my parents, Luz Tissaoui and Jassem Tissaoui, I wouldn’t be here without

their emotional support and them indulging my curiosity and my interest in science

while I was child.

vii



TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 SPECTRAL ELEMENTS METHODS . . . . . . . . . . . . . . . . . . . . 7

2.1 The Spectral Elements Method on Finite Domains . . . . . . . . . . . 7

2.1.1 Continuous Galerkin . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Discontinuous Galerkin . . . . . . . . . . . . . . . . . . . . . . 14

2.2 A Galerkin Method for Modeling Semi-infinite Spaces . . . . . . . . . 16

2.2.1 Constructing element matrices . . . . . . . . . . . . . . . . . . 20

2.2.2 Direct stiffness summation . . . . . . . . . . . . . . . . . . . . 21

3 GOVERNING EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Microphysical Parameterization . . . . . . . . . . . . . . . . . . . . . 29

4 LAGUERRE SEMI-INFINITE ELEMENTS AS A POTENTIAL SOURCE
OF COMPUTATIONAL EFFICIENCY FOR ATMOSPHERIC FLOWS 30

4.1 A Semi-infinite Rising Thermal Bubble Test . . . . . . . . . . . . . . 30

5 NON-COLUMN BASED SIMULATIONS OF THUNDERSTORMS . . . . 44

5.1 Non-column Based Rain Sedimentation . . . . . . . . . . . . . . . . . 44

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 2.5D squall line . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.2 3D supercell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 ACCELERATING SIMULATIONS OF TROPICAL CYCLONES USING
ADAPTIVE MESH REFINEMENT . . . . . . . . . . . . . . . . . . . . 62

6.1 Adaptive Mesh Refinement (AMR) . . . . . . . . . . . . . . . . . . . 62

6.1.1 The AMR procedure . . . . . . . . . . . . . . . . . . . . . . . 62

6.1.2 The AMR algorithm and workflow . . . . . . . . . . . . . . . . 64

6.2 Simulations and Results . . . . . . . . . . . . . . . . . . . . . . . . . 66

viii



TABLE OF CONTENTS
(Continued)

Chapter Page

6.2.1 Time to solution comparison . . . . . . . . . . . . . . . . . . . 69

6.2.2 Accuracy of AMR simulations . . . . . . . . . . . . . . . . . . 73

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.1 Criteria for adaptive mesh refinement . . . . . . . . . . . . . . 77

6.3.2 LES simulations of tropical cyclones with AMR . . . . . . . . . 77

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

APPENDIX A RIGHT HAND SIDE CONSTRUCTION FOR SEMI-INFINITE
ELEMENTS USING THE LAGUERRE FUNCTION BASIS . . . . . . . 87

APPENDIX B EXTENDING THE LAGUERRE-LEGENDRE SEMI-INFINITE
ELEMENT METHOD TO 3D . . . . . . . . . . . . . . . . . . . . . . . 89

APPENDIX C SOUNDINGS FOR TROPICAL CYCLONE SIMULATIONS
AND FOR THE SQUALL LINE AND SUPER-CELL TEST CASES . . 90

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

ix



LIST OF TABLES

Table Page

4.1 Timings of Linear Hydrostatic Mountain Simulations With and Without
Laguerre Semi-infinite Elements in the Absorbing Layer. . . . . . . . . 36

4.2 Timings of Linear Non-hydrostatic Mountain Wave Simulations With and
Without Laguerre Semi-infinite Elements in the Absorbing Layer. . . . 37

4.3 Timings of Schär MountainWave Simulations With andWithout Laguerre
Semi-Infinite Elements in the Absorbing Layer. . . . . . . . . . . . . . 43

5.1 Total Number of Hexahedral Elements, Effective Resolutions, and Time
Steps for All the Meshes Used for the Squall Line Simulations. . . . . 50

C.1 Jordan 1958 [49] Mean Hurricane Season Sounding Used to Initialize the
Background State for the Tropical Cyclone Simulations presented in
Chapter 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

C.2 Sounding Used for the Squall Line and Super-Cell Simulations of Chapter 5 91

x



LIST OF FIGURES

Figure Page

2.1 Examples of a structured (left) and an unstructured grid (right) made of
quadrilateral elements. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Example of a finite spectral element domain ΩF with NF = 16 connected
to a semi-infinite element domain ΩS with NS = 4. . . . . . . . . . . . 16

2.3 First six scaled Laguerre functions (SLFs) specified by Equation (2.33). . 19

4.1 Potential temperature perturbations for the rising thermal bubble at t =
1000 s for semi-infinite elements of different orders. . . . . . . . . . . . 32

4.2 Time converged vertical velocity contours for the linear hydrostatic
mountain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Time converged vertical velocity for the linear non-hydrostatic mountain
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Comparison of vertical velocity contours of the numerical and analytical
solutions for the linear hydrostatic and linear non-hydrostatic mountain
wave cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Time converged vertical velocity contours for the Schär mountain waves
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Comparison of vertical velocity contours of the numerical solution and
semi-analytical Fourier solution for the Schär mountain test. . . . . . 42

5.1 qc and qr over an unstructured grid with ∆x = 150 m. . . . . . . . . . . 50

5.2 Storm evolution obtained with a CG approximation and mesh with
resolution ∆x = 100 m. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Storm evolution obtained with a DG approximation and mesh with
resolution ∆x = 100 m. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Comparison of squall line storms at t = 9000 s computed with the CG
method and different meshes. . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 Comparison of squall line storms at t = 9000 s computed with the DG
method and different meshes. . . . . . . . . . . . . . . . . . . . . . . . 57

5.6 Maximum vertical velocity obtained over the course of the CG and DG
simulations as a function of the resolution. . . . . . . . . . . . . . . . 58

xi



LIST OF FIGURES
(Continued)

Figure Page

5.7 3D mature supercell at t = 7200 s. . . . . . . . . . . . . . . . . . . . . . 60

5.8 Horizontal and vertical cross sections of a mature supercell at t = 7200 s. 60

6.1 Workflow of the adaptive mesh refinement procedure. . . . . . . . . . . . 65

6.2 Time to solution comparison of static and AMR simulations in normalized
time for the first set of tests. . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Time to solution comparison of static and AMR simulations in normalized
time for the second set of tests. The strict 2-level AMR uses thresholdst,
while the lenient 2-level AMR uses thresholdln . . . . . . . . . . . . . 71

6.4 Evolution of number of element columns over time for AMR simulations
of tropical cyclones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.5 Maximum of horizontally averaged horizontal velocity over the course of
the 6 hour simulation period. . . . . . . . . . . . . . . . . . . . . . . . 74

6.6 Maximum value of horizontal velocity over the course of the 6 hour
simulation period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.7 Horizontal winds taken at height z = 1000 m above sea level at different
stages of the tropical cyclone simulation. . . . . . . . . . . . . . . . . 79

6.8 Velocity Magnitude taken at x = 0 m at different stages of the tropical
cyclone simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.9 Vorticity magnitude taken at height z = 1000 m above sea level at different
stages of the tropical cyclone simulation. . . . . . . . . . . . . . . . . 81

6.10 Velocity magnitude and AMR grid at the first instance of refinement to
500 m of horizontal resolution. . . . . . . . . . . . . . . . . . . . . . . 82

6.11 AMR capturing a powerful updraft: velocity magnitude, vertical velocity
and grid at the first instance of AMR refining to 250 m of horizontal
resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.12 A 4 level AMR grid at the end of a six hour tropical cyclone simulation. 84

6.13 Cloud cover of a moist tropical cyclone simulation with up to six levels of
AMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xii



CHAPTER 1

INTRODUCTION

It is a matter of fact that the climate is warming and it is expected that this will

lead to an increase in the number of highly intense weather events across the globe.

An example of such events are tropical cyclones for which the most intense season

on record was in 2020 only a few years ago. Even with modern forecasting systems

recent examples such as Hurricane Harvey in 2017, Hurricane Micheal in 2018 and

Hurricane Ian in 2022 show the devastation that tropical cyclones can leave in their

wake. The warming climate makes tropical cyclones more likely to occur, more likely

to cause more intense flooding rainfall, and more likely to progress deeper inland

which can cause further devastation through the appearance of tornadoes even after

the tropical cyclone itself clears [67, 58, 57].

With these potential disasters becoming more probable it is important to be

appropriately prepared and to respond to incoming tropical cyclones as effectively

as possible. Preparation and timely evacuation has the potential to save many lives

and prevent billions of dollars in damages. To this end, accurate forecasts of tropical

cyclone track, storm surge, intensity and rainfall is of the utmost importance. One of

the most significant issues with current and past operational weather forecast models

is the ability to predict tropical cyclone rapid intensification (RI). This area of research

had been stagnant for a significant length of time [69, 89], and according to DeMaria

et al., (2014) [18] the ability to forecast RI was completely absent from deterministic

operational models up to around 2015. Current models do present the ability to

forecast rapid intensification, but this phenomenon still remains under-predicted [17].
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Tropical cyclone intensification and RI, depend not only on large scale environ-

mental factors such as high sea surface temperatures, but also on a multitude of

dynamical and physical processes occurring over a range of scales extending from

tens of kilometers to a few meters. Intensification is also highly dependent on the

latent heating generated from the phase changes occurring in the moist atmosphere.

Tropical cyclones are affected by vortex Rossby waves [32, 36, 108, 80], barotropic

instabilities along the eyewall and the turbulence caused by them [94, 62, 39, 31, 16],

boundary-layer roll vortices [35, 22], air-sea interaction [114, 20], eyewall replacement

cycles [113, 46] and deep convective bursts [90, 77, 38, 32]. Three dimensional deep

rotating convection in tropical cyclone intensification has drawn special interest from

the tropical cyclone modeling community [33, 78, 84, 86, 88, 79], with some recent

studies highlighting its effect on intensification[88, 33, 78]. Tropical cyclone intensity

is also affected by planetary boundary layer (PBL) turbulence. While energy can be

dissipated by surface friction and turbulent eddies in the PBL, recent work has shown

that energy can also be ”backscattered” through coherent turbulent structures in the

hurricane boundary layer [104]. Furthermore, turbulence in the eyewall region has

been shown to significantly impact intensification [88, 91, 21, 12]. Most simulation of

tropical cyclones are done with horizontal resolutions around 1− 2 km which makes

these simulations highly sensitive to the turbulence parametrizations being used and

can lead to potential inaccuracies [42, 10].

The simplest approach to avoid relying on parametrizations is to increase the

span of scales being explicitly resolved by the numerical model. To this effect,

performing high-order large eddy simulation (LES) of TCs with grids of around

100 m resolution would allow for explicitly resolving the large eddies involved in

TC turbulence and thus explicitly take into account more of the dynamics involved

[11, 64]. These types of simulations are very computationally demanding particularly
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when done at resolutions less than 100 m and when they have been performed in the

past it’s only over short periods of time, with some groups performing LES on the

entire inner-core of a TC (50 km radius or larger) [91, 47, 34].

Two main challenges come to mind when thinking of simulating an entire

tropical cyclone domain at LES resolutions: The expense of performing the

simulation, and having its results be as accurate as possible. This work focuses

on studying and developing numerical methods that can improve the efficiency of

atmospheric models in general, but with a special interest given to their applicability

in speeding up the simulations of hurricanes.

Simulations of tropical cyclones have been shown to be sensitive to the implicit

numerical dissipation (IND) of the models being used [29, 37]. This dissipation

primarily stems from the order of the discretization being used and causes simulations

of tropical cyclones to exhibit weaker responses to asymmetric heating perturbations

when compared to less dissipative models. As such, this work uses high order Galerkin

spectral elements methods to discretize the compressible Euler equations in space.

These methods’ ability to extend to arbitrarily high-order while possessing minimal

dissipation and dispersion errors, and their scalability and efficiency on massively

parallel architectures [2, 1, 3, 71] make them a suitable testing bed for developing

numerical techniques for tropical cyclone simulations.

Adaptive mesh refinement (AMR) is a powerful tool with the potential to

improve the time to solution for otherwise much more costly simulations. AMR

also allows for obtaining the desired resolution where it is required by making the

computational grid finer around specific flow features characterized by predefined

criteria. AMR in atmospheric modeling has existed since the seminal works of

Berger and Oliger [8], Skarmarock et al., (1989) [99] and Skamarock and Klemp

(1993) [98] proposed adaptive meshes for hyperbolic equations with applications
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to atmospheric problems. Bacon et al., (2000) [4] developed the first operational

model that used horizontally adaptive meshes and used to successfully simulate

tropical cyclone storm tracks. AMR has been shown to be effective for simulations

of the shallow water equations [7, 65, 76] and AMR has been tested with Galerkin

methods for meteorological applications [81, 60, 15]. Recent advances with AMR

have allowed for improving and unstructured meshes have allowed for improvements in

modeling atmospheric flows around topography [115, 66]. In terms of tropical cyclone

simulations Hendricks et al., (2016) [40] demonstrated that idealized simulations of

tropical cyclones could be sped up by 4 − 15 times using adaptive mesh refinement

with a shallow water spectral elements model.

AMR would make it possible to simulate a large tropical cyclone domain at lower

costs while obtaining LES resolution in regions of interest. To this effect, it would

be advantageous to be able simulate tropical cyclones with three dimensional AMR

which allows for both the horizontal and vertical resolutions in different areas of the

domain to adapt over time. However, a challenge that prevents us from being able to

do this is that more realistic tropical cyclone simulations require a microphysical

parametrization for moisture and these parametrizations require the presence of

vertically structured grids with coherent column data structures whereas 3D AMR

would generate vertically non-conforming elements and make a column data-structure

impossible on the native dynamics grid. These parametrizations have relied on grids

with column-based structures for their implementation since the first microphysical

parametrizations were utilized for early simulations of clouds and precipitation in the

1960s and 1970s [53, 102, 52, 109]. As part of this dissertation the first non-column

based implementation of Kessler microphysics was developed. This novel approach

which was first introduced by the author and collaborators in [105]. This approach
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allows for solving moist atmospheric problems on unstructured grids and was tested

on thunderstorm problems.

While not directly tied to AMR, another challenge to the efficiency of

atmospheric simulations in general and tropical cyclone simulations in particular

is the need for damping layers to prevent the reflection of outgoing waves (gravity

waves especially). This approach involves augmenting the computational domain

by adding absorbing layer designed to damp these outgoing waves towards a

reference state [19, 55, 54, 63]. This presents a significant drawback in terms of

computational efficiency since it enlarges the computational domain outside the

region of interest for a given simulation. This cost is further compounded in large

multidimensional high-resolution problems. As a cost-effective approach to Rayleigh

damping, Benacchio and Bonaventura [5] introduced a scaled Laguerre spectral

collocation approach to prevent the reflection one-dimensional(1D) shallow water

waves. This approach was extended to 1D discontinuous Galerkin spectral elements by

[6], then to two dimensions for the advection-diffusion equation in [107] and to general

hyperbolic problems in [106]. As part of this dissertation, this approach is extended

to the compressible Euler equations using continuous Galerkin spectral elements on a

Laguerre-Legendre basis and demonstrates the ability of this methodology to be cost

effective for benchmark atmospheric problems.

Finally, a study of the application of 2D adaptive mesh refinement to a dry but

rapidly intensifying tropical cyclone is presented in this work. 2D AMR is shown

to be able to reproduce the results of much more costly static grid simulations at a

fraction of the computational cost. AMR is also demonstrated to be able to effectively

refine around areas of interest in tropical cyclone simulations and detect important

flow features like large intense updrafts which could play a role in intensification.
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The remainder of this dissertation is organized as follows: Chapter 2 describes

the continuous and discontinuous Galerkin methods as well the Laguerre-Legendre

semi-infinite element approach. Chapter 3 describes the different atmospheric models

used in this work and highlights the differences between them. Chapter 4 shows

the potential improvements in efficiency from using Laguerre-Legendre semi-infinite

elements for the damping layers of atmospheric flows. Chapter 5 showcases a novel

method for the simulation of precipitating atmospheres without the need for column

based data structures and presents its results for simulations of squall lines and

supercells. Chapter 6 presents adaptive mesh refinement and highlights its ability to

reproduce accurate simulations of hurricanes at a fraction of the cost. This is followed

by a conclusion. Appendix A presents the pseudo code to compute the element

right-hand side on semi-infinite elements, Appendix B provides a description of how

to extend the Laguerre-Legendre semi-infinite element method to three dimensions,

and Appendix C presents two soundings, the first of which is used for the tropical

cyclone simulations and the second of which is used for the squall line and supercell

simulations.
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CHAPTER 2

SPECTRAL ELEMENTS METHODS

The work being presented here relies heavily on the spectral elements method for the

spatial discretization of the governing equations. As such, this chapter presents the

reader with a brief overview of the method and outlines how to derive the spectral

element approximation for a given system of partial differential equations (PDEs).

To make the description of the numerical method easy to follow, let us consider a

generic equation of the form:

∂f

∂t
+G(f) = 0, (2.1)

where f is the unknown variable and G is a linear functional that may contain first

and second derivatives of f . If the equations to be solved are written in conservation

form, then G is the divergence of a flux.

2.1 The Spectral Elements Method on Finite Domains

Let us subdivide the domain Ω into a set of conforming 1 Ne hexahedral elements Ωe

of arbitrary orientation to create the discrete domain Ωh as

Ω ≈ Ωh =
Ne⋃

e=1

Ωe. (2.2)

Figure 2.1 shows examples of a structured and unstructured grid in 2D. Using a

fully unstructured grid means that structures such as the rows or columns that are

seen on the left side of Figure 2.1 are no longer present. Let us define the reference

1The condition of conformity is not strictly necessary, although it simplifies the discussion
of the method. For results with non-conforming grids, the reader is referred to, e.g., [59].
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For every element, we seek an approximation fh of a variable f of the form:

fh(ξ, t) =

(N+1)3∑

l=1

ψl(ξ)f̂l(t), (2.4)

where ξ = (ξ, η, ζ), f̂l are the expansion coefficients, and ψl are nodal basis functions

defined as tensor products of the Lagrange polynomials

ψl = hi[ξ(x)]⊗ hj[η(x)]⊗ hk[ζ(x)], l = i+ 1 + j(N + 1) + k(N + 1)(N + 1), (2.5)

where x = (x, y, z). The Legendre-Gauss-Lobatto (LGL) points are used as the

interpolation points on each element. LGL points are not equidistant and represent

the solutions of the following equation:

(1− ξ2)P
′

N(ξ) = 0,

where PN(x) is the Legendre polynomial of order N . These polynomials and their

first derivative are computed recursively via

P0(ξ) = 1 (2.6a)

P1(ξ) = ξ (2.6b)

Pk(ξ) =
2k − 1

k
ξPk−1(ξ)−

k − 1

k
Pk−2(ξ), ∀k ≥ 2 (2.6c)

P ′

k(ξ) = (2k − 1)Pk−1(ξ) + P ′

k−2(ξ). (2.6d)

See, e.g., [26, 50]. Finally, the corresponding quadrature weights are given by:

ω(ξi) =
2

N(N + 1)

[
1

PN(ξi)

]2

9



The weights are used to approximate the integrals with a Gauss quadrature rule

of accuracy O(2N − 1). Over a generic element Ωe, this is done as follows:

∫

Ωe

f(x)dx =

∫

Ωref

f(ξ)|J(ξ)|dξ ≈
N+1∑

i,j,k=1

ω(ξi)ω(ηj)ω(ζk)f(ξi, ηj, ζk)|J(ξi, ηj, ζk)|,

(2.7)

where |J| is the determinant of the Jacobian matrix.

To approximate the solution of Equation (2.1), let (·, ·) be the Legendre inner

product on a given element Ωe:

(f, g)e =

∫

Ωe

f(x)g(x)dx.

If in Equation (2.1) we replace f with fh as defined in Equation (2.4), we will obtain

the following residual:

R =
∂fh

∂t
+G(fh), (2.8)

which is orthogonal to the expansion functions in Galerkin methods, i.e.,:

(R,ψk)e = 0, k = 1, . . . , (N + 1)3. (2.9)

Taking Equation (2.9) into account, let us now write an approximation of Equation (2.1)

on each element Ωe as follows :

∫

Ωe

ψi(x)
∂fh(x, t)

∂t
dx = −

∫

Ωe

ψi(x)G(f
h(x, t))dx, i = 1, . . . , (N + 1)3. (2.10)

Let us first consider the case where G(f) = ∇ · f , where ∇ =
(
∂
∂x
, ∂
∂y
, ∂
∂z

)
and

f = (f, f, f).

We can use the polynomial expansion to write Equation (2.10) as follows:

∫

Ωe

ψi(x)

(N+1)3∑

j=1

ψj(x)
∂f̂ ej (t)

∂t
dx = −

∫

Ωe

ψi(x)

(N+1)3∑

j=1

∇ψj(x)·̂f
e
j (t)dx, i = 1, . . . , (N+1)3,

(2.11)
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where the superscript e is used to denote that the expansion is defined on an element

basis and f̂ej (t) = (f̂ ej (t), f̂
e
j (t), f̂

e
j (t)). We can now define the mass matrix Me and

the differentiation matrix De on each element through their components:

M e
ij =

∫

Ωe

ψi(x)ψj(x)dx =

∫

Ωref

ψi(ξ)ψj(ξ)|J(ξ)|dξ, (2.12)

De
ij =

∫

Ωe

ψi(x)∇ψj(x)dx =

∫

Ωref

ψi(ξ)
(
∇ξψj(ξ)J

−1(ξ)
)
|J(ξ)|dξ, (2.13)

with i, j = 1, . . . , (N + 1)3 and ∇ξ =
(
∂
∂ξ
, ∂
∂η
, ∂
∂ζ

)
. By approximating the integrals

with a quadrature rule, we obtain:

M e
ij ≈

N+1∑

k=1

N+1∑

m=1

N+1∑

n=1

ω(ξk, ηm, ζn)ψi(ξk, ηm, ζn)ψj(ξk, ηm, ζn)|J(ξk, ηm, ζn)|, (2.14)

De
ij ≈

N+1∑

k=1

N+1∑

m=1

N+1∑

n=1

ω(ξk, ηm, ζn)ψi(ξk, ηm, ζn)∇ψj(ξk, ηm, ζn)|J(ξk, ηm, ζn)|. (2.15)

Remark 2.1.1 The difference in notation between M e
ij and De

ij is due to the

components of the mass matrix being scalars while those of the differentiation matrix

are vectors.

Note that ∇ψj(ξk, ηm, ζn) = ∇ξψj(ξk, ηm, ζn)J
−1(ξk, ηm, ζn). Then, the matrix

form of Equation (2.11) is:

M e
ij

∂f̂ ej (t)

∂t
= −Dij · f̂

e
j (t), i, j = 1, . . . , (N + 1)3. (2.16)

Let us now consider G(f) = ∇ · f −∇
2f in Equation (2.1), where ∇2 = ∇ ·∇.

In this case, Equation (2.10) becomes:

∫

Ωe

ψi(x)

(N+1)3∑

j=1

ψj(x)
∂f̂ ej (t)

∂t
dx =−

∫

Ωe

ψi(x)

(N+1)3∑

j=1

∇ψj(x) · f̂
e
j (t)dx

+

∫

Ωe

ψi∇ ·




(N+1)3∑

j=1

∇ψj(x)f̂
e
j (t)


 dx, (2.17)
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where i, j = 1, . . . , (N + 1)3. After integrating by parts the second term on the

right-hand side, we can rewrite Equation (2.17) as:

M e
ij

∂f̂ ej (t)

∂t
=−De

ij · f̂
e
j (t) +

[
ψin

e(x) ·
N+1∑

j=1

∇ψj(x)f̂
e
j (t)

]

Γe

−

∫

Ωe

∇ψi(x) ·
N+1∑

j=1

∇ψj(x)f̂
e
j (t)dΩe i, j = 1, . . . , (N + 1)3, (2.18)

where Γe represents the element boundary and ne is the boundary normal vector.

For the sake of brevity, let us assume that the boundary term, i.e., the second term

on the right-hand side in Equation (2.18), vanishes at all element boundaries. We

refer the reader to, e.g., [26] and [51] for a detailed explanation of how this term is

handled when it is not zero, as is the case for DG. Under the assumption of vanishing

boundary terms, Equation (2.18) becomes:

M e
ij

∂f̂ ej (t)

∂t
= −De

ij · f̂
e
j (t)−

∫

Ωe

∇ψi(x) ·∇ψj(x)dxf̂
e
j , i, j = 1, . . . , (N + 1)3. (2.19)

We define the Laplacian element matrix Le through its components as follows:

Leij =

∫

Ωe

∇ψi(x) ·∇ψj(x)dx ≡

∫

Ωref

(∇ξψi(ξ)J
−1(ξ)) · (∇ξψj(ξ)J

−1(ξ))|J(ξ)|dξ

(2.20)

≡

∫

Ωref

J−T (ξ) (∇ξψi(ξ))
T (∇ξψj(ξ))J

−1(ξ)|J(ξ)|dξ,

where the superscript T denotes the transpose operator and i, j = 1, . . . , (N + 1)3.

By approximating the integral in Equation (2.20) with a quadrature rule, we obtain:

Leij ≈
N+1∑

k=1

N+1∑

m=1

N+1∑

n=1

ω(ξk, ηm, ζn)∇ψi(ξk, ηm, ζn) ·∇ψj(ξk, ηm, ζn)|J(ξk, ηm, ζn)|. (2.21)

Then, we write Equation (2.19) as:

12



M e
ij

∂f̂ ej (t)

∂t
= −De

ij · f̂
e
j (t)− Leij f̂

e
j (t) , i, j = 1, . . . , (N + 1)3. (2.22)

Next, we present briefly how the global solution is calculated depending on the

choice of continuous Galerkin (CG) or discontinuous Galerkin (DG) spectral elements.

The reader interested in more details on Galerkin spectral element methods is referred

to, e.g., [26, 41, 61, 97].

2.1.1 Continuous Galerkin

Let M, D, and L be the global mass matrix, global differentiation matrix, and global

Laplacian matrix. These matrices are, assembled using Direct Stiffness Summation

(DSS):

M =
Ne∧

e=1

Me, D =
Ne∧

e=1

De, L =
Ne∧

e=1

Le

where Me is the element mass matrix from Equation (2.14), De is the element

differentiation matrix from Equation (2.15), and Le is the element weak Laplacian

matrix from Equation (2.21). Since the same set of Legendre-Gauss-Lobatto (LGL)

points are used for both interpolation and integration, the global mass matrix M

is diagonal and thus easy to invert. This is only the case if we integrate using

N + 1 LGL points as shown in Equation (2.7). This type of integration is known as

inexact numerical integration, since the number of LGL quadrature points necessary

to integrate a polynomial of order 2N (such as is the case for the mass matrix) up

to machine precision is N + 2. We choose to sacrifice accuracy in favor of obtaining

an easily invertible mass matrix, which allows us to save considerable computational

time. Additionally, it has been shown that when using polynomials of order N ≥ 4

this type of integration has a minimal impact on accuracy, with the impact decreasing

13



as the polynomial order is increased [26]. It should be noted, however, that no

global matrix is actually constructed (except for the diagonal mass matrix); the

differentiation and Laplacian global matrices are never stored, only the action of

these matrices on the solution vector is computed (see, e.g., [26]). The global form

associated with Equation (2.1) for G(f) = ∇ · f +∇
2f can be written as:

∂fh

∂t
+M−1(Dfh + Lfh) = 0, (2.23)

where fh is a global vector containing the nodal values of fh.

2.1.2 Discontinuous Galerkin

For this kind of approximation, the global matrices are not constructed since an

element communicates only with the neighboring elements through inter-element

numerical fluxes. Thus, we write a local approximation of Equation (2.1), instead of

a global one as in Equation (2.23).

Let us apply integration by parts to the entries of the differentiation matrix:

De
ij =

∫

Ωe

ψi(x)∇ψj(x)dx =

∫

Γe

ψi(x)ψj(x)n
(F,e)dΩe−

∫

Ωe

∇ ·ψi(x)ψj(x)dx, (2.24)

where i, j = 1, . . . , (N +1)3, n(F,e) is the outwards facing normal of inter-element face

F of the element e. The first term of the right-hand side in Equation (2.24) represents

an inter-element flux or a boundary flux, if the element is a boundary element and

it enforces the continuity of the global solution. Notice that in a CG discretization

this term vanishes at the interior faces (but not along boundary faces) as continuity

is enforced via DSS. We define the corresponding element flux matrix Fe as follows:

Fe
ij =

∫

Γe

ψi(x)ψj(x)n
(F,e)dx

≈
NF∑

F=1

N+1∑

k=1

N+1∑

m=1

ω(ξF,km)ψi(ξF,km)ψj(ξF,km)|J(ξF,km)|n
(F,e),

(2.25)
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where i, j = 1, . . . , (N+1)3, NF is the number of faces for element e and ξF,km denotes

an integration point on the face F of the element. The second term on the right-hand

side in Equation (2.24) is called the weak differentiation matrix and is approximated

as follows:

D̂e
ij =

∫

Ωe

∇ψi(x)ψj(x)dx

≈
N+1∑

k=1

N+1∑

m=1

N+1∑

n=1

ω(ξk, ηm, ζn)|J(ξk, ηm, ζn)|∇ψi(ξk, ηm, ζn)ψj(ξk, ηm, ζn),

(2.26)

where i, j = 1, . . . , (N + 1)3.

We can now rewrite Equation (2.22) for a DG discretization taking G(f) =

∇ · f +∇
2f , which holds on each element as follows:

Me
ij

∂f̂ ej (t)

∂t
= −D̂e

ij · f̂
e
j (t) + Fe

ij · f
∗

j (t)− Leij f̂
e
j (t) = 0, i, j = 1, . . . , (N + 1)3,

where f∗ represents the inter-element interface values of f̂ ej . We define f∗ as follows:

f∗j = C(f̂ ej )−P(f̂ ej )

where P is a penalty term and the central term C is defined as follows:

C(f̂ ej ) = (g(f̂ e,Rj ) + g(f̂ e,Lj ))/2,

where L and R refer to the left and right sides of a given inter-element interface.

The function g is dependent on the first derivative component of G in Equation (2.1)

where, in this case, G(f) = ∇ · f +∇
2f and g(f) = f . The definition of P depends

on the choice of numerical flux. The simplest and most commonly used flux for DG

is the Rusanov flux [26] and [72], which gives:

P(f̂ ej ) = n(F,e)ws(f̂
e,R
j − f̂ e,Lj )/2,
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Figure 2.2 Example of a finite spectral element domain ΩF with NF = 16 connected
to a semi-infinite element domain ΩS with NS = 4.

where ws is the wave speed across the interface, which depends on the specific equation

to be solved. This gives the following equation for f∗:

f∗j =
1

2

(
f̂ e,Rj + f̂ e,Lj − nF,ews(f̂

e,R
j − f̂ e,Lj )

)
, j = 1, . . . , (N + 1)3, (2.27)

where f̂ ej = (f̂ ej , f̂
e
j , f̂

e
j ). We note that in the DG formulation for G(f) = ∇ · f +∇

2f

the boundary term in Equation (2.18) does not vanish and needs to be evaluated.

Such term is treated in a similar fashion as the boundary term in Equation (2.24).

For the details, we refer the interested reader to [26, 41].

2.2 A Galerkin Method for Modeling Semi-infinite Spaces

It is also possible to use the Galerkin methodology to discretize semi-infinite domains.

In our case, this is done using semi-infinite elements. An example of this type of

element is presented in Figure 2.2 The semi infinite domain uses both a different set of

basis functions and integration points than its finite domain counterpart. First, define

the Laguerre polynomials using their three term recurrence relation [96, Equation
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(3.3)]:

L0(ξ) = 1 (2.28a)

L1(ξ) = 1− x (2.28b)

Lk(ξ) =
2k − 1− ξ

k
Lk−1(ξ)−

k − 1

k
Lk−2(ξ), ∀k ≥ 2. (2.28c)

Additionally the first derivative of the k-th Laguerre polynomial is [96, Equation

(3.5)]:

L′

k(ξ) = −
k−1∑

n=0

Ln(ξ). (2.29)

The Laguerre polynomials are orthogonal on the semi-infinite interval [0,∞)

with respect to an exponentially decaying weight. This orthogonality property can

be written as follows:

∫
∞

0

Li(ξ)Lj(ξ)e
−ξdξ = δij, ∀i, j ≥ 0. (2.30)

The Laguerre-Gauss-Radau (LGR) points are the roots of ξL′

N+1(ξ) for a fixed

integer N. The LGR points {ξj}j=0,N will be used to construct a nodal spectral element

on the semi-infinite elements. We compute the LGR points using the Eigenvalue

Method [28, 96], which forms a tridiagonal matrix using the coefficients in the three-

term recurrence relationship Equation (2.28) and solves an eigenvalue problem. This

method is stable and robust at very high-order and we have tested it for orders up to

60. Following [95], the scaling factor λ adjusts the LGR nodes, such that the physical

nodes on the semi-infinite element are {x}N+1
i=1 = λ{ξ}N+1

i=1 . This scaling factor allows

us to adjust the effective length of the semi-infinite element for a given problem.
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Next, we construct the Lagrange-Laguerre interpolating polynomials associated

with the LGR points {ξj}j=0,...,N points following [95]:

hLagj (ξ) = −
ξL

′

N+1(ξ)

(N + 1)LN+1(ξj)(ξ − ξj)
. (2.31)

We can then write their derivatives as follows:

h
′Lag
j (ξi) =





LN+1(ξi)

LN+1(ξj)(ξi−ξj)
if i ̸= j

1
2

if i = j ̸= 0

N
2

if i = j = 0.

(2.32)

We now introduce the scaled Laguerre function (SLF) [95, 96, 5]

L̂i(ξ) = e−
ξ
2λLi

(
ξ

λ

)
, (2.33)

where λ is a scaling factor and represents a characteristic length. Note that this

notation is equivalent to the notation in [5] for λ = β−1. Applying Equation (2.30)

yields ∫
∞

0

L̂i(ξ)L̂j(ξ)dξ = λδij, ∀i, j ≥ 0, (2.34)

indicating that the SLFs form an orthogonal basis on L2(R+). Each SLF decays

exponentially as ξ → ∞ for any λ > 0. This property is illustrated in figure 2.3, which

shows the first six Laguerre functions L̂i(ξ) for λ = 1. Thanks to this property, the

SLFs Equation (2.33) are ideal for approximating functions in an absorbing layer; the

layer damps any outgoing perturbations by enforcing the exponential decay property.

Remark: We limit the use of damping terms to ΩS and essentially overlap

the sponge layer with the semi-infinite elements. In the results, we will describe the

damping coefficients used for each test and we will show that minimal reflection can

be obtained while relying on this approach. We can now construct the Lagrange-
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Figure 2.3 First six scaled Laguerre functions (SLFs) specified by Equation (2.33).

Laguerre interpolant associated with LGR points {ĥLagj }Nj=0 such that ĥLagj (ξi) = δij,

and

ĥLagj (ξ) =
exp(−ξ/2)

exp(−ξj/2)
hLagj (ξ). (2.35)

Their derivatives are:

ĥ
′Lag
j (ξi) =





L̂N+1(ξi)

L̂N+1(ξj)(ξi−ξj)
if i ̸= j

0 if i = j ̸= 0

−N+1
2

if i = j = 0.

(2.36)

The quadrature weights {ω̂(ξi)}
N
i=0 associated with the LGR points are defined as

ω̂(ξi) =
exp(ξi)

(N + 1)[LN(ξi)]2
. (2.37)

Let us now consider the reference 2D semi-infinite element ΩS
ref such that it is

only semi-infinite in the direction of the outgoing waves. In its finite direction, the
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LGL nodes and their associated bases are used, and in its semi-infinite direction the

LGR nodes and their associated SLF bases are used. As such, for an integration

point ξ ∈ ΩS
ref , we can write ξ = (ξLGL, ηLGR). The nodal basis functions ψSl on

the semi-infinite element are the tensor product of the 1D Lagrange polynomials

associated with the LGL nodes and the 1D Lagrange-Laguerre interpolating functions

associated with the LGR nodes giving us the following:

ψSl (x)ΩS
ref

= hi[ξ(x)]⊗ ĥj[η(x)], l = i+ 1 + j(NLGL), (2.38)

where i ∈ {1, . . . , NLGL}, j ∈ {1, . . . , NLGR}, NLGL is the number of LGL nodes and

NLGR is the number of LGR nodes. This makes it so that Equation (2.7) remains

valid on semi-infinite elements provided the appropriate substitutions of nodes and

weights is performed.

2.2.1 Constructing element matrices

In this section, we present the reader with a template for how an element matrix

is constructed for elements of the finite and semi-infinite domains. In what follows

we will discuss the construction of the mass matrix. We refer the reader to [26] for

constructions of the differentiation or laplacian matrices on the finite domain. The

extension of these constructions to the semi-infinite domain is done similarly to the

construction of the mass matrix. Let us first define every component of the mass

matrix on a given spectral or semi-infinite element Ωe ∈ Ωh = ΩF ∪ ΩS:

Me
ij =

∫

Ωe

ψi(x)ψj(x)dx =

∫

Ωref

ψi(ξ)ψj(ξ)|J(ξ)|dξ ∀i, j = 1, . . . , NξNη, (2.39)

where ψi is defined using a generalized form of Equation (2.5) as follows:
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ψl(x) = hi[ξ(x)]⊗ hj[η(x)], l = i+ (j − 1)Nη, (2.40)

and where,

Ωref , Nξ, Nη, hj =





ΩF
ref , NLGL, NLGL, hj if Ωe ∈ ΩF

ΩS
ref , NLGL, NLGR, ĥ

Lag
j if Ωe ∈ ΩS

. (2.41)

By approximating Equation (2.40) using an inexact quadrature rule (i.e., the

quadrature and interpolation points coincide) we obtain the following:

Me
ij =

Nξ∑

k=1

Nη∑

m=1

ω(ξk, ηm)ψi(ξk, ηm)ψj(ξk, ηm)|J(ξk, ηm)|, (2.42)

ω(ξk, ηm) = ωξ(ξk)ωη(ηm), (2.43)

ωξ, ωη =





ω, ω if Ωe ∈ ΩF

ω, ω̂ if Ωe ∈ ΩS

, (2.44)

Nξ, Nη =





NLGL, NLGL if Ωe ∈ ΩF

NLGL, NLGR if Ωe ∈ ΩS

. (2.45)

Next, we present the pseudo-code for constructing the mass matrix of an element

in the semi-infinite domain using inexact integration. Let us define MLag as the mass

matrix of an element of the semi-infinite domain, ηLGR as the LGR nodes, and ξ as

the LGL nodes:

2.2.2 Direct stiffness summation

In order to couple the element local Galerkin expansion given by Equation (2.4)

between adjacent elements, we need to construct a direct stiffness summation (DSS)
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Algorithm 1 Construction of the mass matrix of a semi-infinite element

MLag = zeros(NLGLNLGR, NLGLNLGR)

for l = 1, NLGR do

for k = 1, NLGL do

I = k + (l − 1)(NLGL)

ω = ω(ξk)ω̂(η
LGR
l )

x = (ξk, η
LGR
l )

for j = 1, NLGR do

for i = 1, NLGL do

J = i+ (j − 1)(NLGL)

Me,Lag
IJ = Me,Lag

IJ + ωψI(x)ψJ(x)|J(ξk, η
LGR
l )|

end for

end for

end for

end for

operator. The DSS operator enforces the continuity of the global solution by averaging

the state variable on nodes shared by multiple elements. As shown in the next two

paragraphs, this DSS operator couples the finite domain ΩF and the semi-infinite

domain ΩS illustrated in Figure 2.2 in a straight-forward manner.

First, we must define mappings from local elements to global nodes. Let I =

HF (e, i) be the map from the local element-wise node i on the e-th finite element ΩF
e

and let I = HS(e, i) be the corresponding map from the e-th semi-infinite element

ΩS
e . For H

F , i runs from 1 to N2
LGL, while for H

S, i runs from 1 to NLGLNLGR. These

mappings contain the connectivity information in the finite and semi-infinite grids,

respectively.
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We can now illustrate how the global problem is assembled by considering the

mass matrix. Let Me
i be a local diagonal mass matrix corresponding to element

e (either finite or semi-infinite). We construct the global mass matrix via a DSS

operator

MIJ =
Ne∧

e=1

Me
ij, (2.46)

where the DSS operator
∧Ne

e=1 consists of a local-global mapping and appropriate

summation. For additional details, see Section 5.8 in [26] or [51] for the parallel MPI

implementation. This DSS operator may be decomposed into two independent DSS

operators, the first over the collection of N f finite elements, and the second over the

collection of N s semi-infinite elements via

MIJ =




Nf∧

ef=1

M
ef
ij


∧

[
Ns∧

es=1

Mes
ij

]
. (2.47)

Hence, the DSS operation consists of three stages: 1) perform a DSS over the finite

domain ΩF using the local to global mapping HF , 2) perform a DSS over the semi-

infinite domain ΩS using the mapping HS, and finally 3) DSS the nodes shared by

both the finite and semi-infinite domains ΩF ∩ ΩS using both HF and HS. Since

the only coupling between the finite and semi-infinite grids is via this final DSS ope

rator, the proposed semi-infinite approach may be retrofitted to an existing spectral

element solver with only minor modifications.

Low pass spectral filter To control unresolved grid-scale noise and aliasing, low-

pass spectral filters are typically used with the spectral element method (SEM) [Sec.

18.3][26]. Spectral filters employ a three-step process to damp/remove unphysical

high-frequency components: 1) the element-local nodal solution is transformed into

modal space, 2) a low-pass filter is applied in modal space, 3) the filtered modal
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representation is inverse transformed to nodal space. The nodal to modal transform

requires defining a set of modal basis functions. As discussed in Section 3d of [27],

the low-pass filter should not violate the continuity requirement of SEM. One way to

enforce this is by choosing modal functions such that most of the modes are zero at

the element boundary. For a 1D element using LGL points, an appropriate choice is

ϕk(ξ) = Pk(ξ) for k = 0 or 1 and ϕk(ξ) = Pk(ξ)−Pk−2(ξ) for k ≥ 2. Since ϕk(±1) = 0

for k ≥ 2, these higher-order modes do not effect the boundary of the element, and

hence may be damped by an appropriate filter function. The resulting transform (or

Legendre) matrix is given by Equation (31) in [27].

For a 1D semi-infinite element using LGR points, a similar choice of modal

functions is ϕ0(ξ) = e−ξ/2 and ϕk(ξ)e
−ξ/2 [Lk(ξ)− Lk−1(ξ)]. Since Lk(0) = 1 for all

k ≥ 0, we have ϕk(0) = 0 for k ≥ 1. The Legendre matrix is then constructed by

evaluating ϕk(ξj), where ξj are the LGR points. Since we employ a tensor product of

LGL and LGR points within semi-infinite element, we construct a corresponding 2D

tensor product of modal functions in order to transform the nodal representation. A

Boyd-Vandeven filter [9] is applied to the modal representation, and then the solution

is inverse transformed to nodal space.
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CHAPTER 3

GOVERNING EQUATIONS

3.1 Problem Definition

Moist air is a mixture of dry air with density ρ, water vapor with density ρv, and

suspended cloud condensate with density ρc. The mass fractions of water vapor and

cloud water are defined as qv = ρv/ρ and qc = ρc/ρ, respectively. In addition, let ρr

be the rain density and qr = ρr/ρ the rain mass fraction. Warm rain is assumed (no

ice formation or precipitation take place). We denote by cp and cv the specific heat

capacities at constant pressure and volume for dry air. The specific gas constants of

dry air and vapor are denoted by Rd and Rv and set ϵ = Rd

Rv
. Let:

θ = (1 + ϵqv)
T

π
, with π =

(
p

ps

)Rd
cp

, (3.1)

be the virtual potential temperature, where T is the absolute temperature and ps =

105 Pa is the ground surface pressure. Finally, let u be the wind velocity.

We consider a fixed spatial domain Ω and a time interval of interest (0, tf ].

Balance of mass, momentum, and potential temperature for moist air in terms of

prognostic variables ρ, u, and θ in conservative form are given by:

∂ρ

∂t
+∇ · (ρu) = 0 in Ω× (0, tf ], (3.2)

∂(ρu)

∂t
+∇ · (ρu⊗ u) = −∇p+ ρb in Ω× (0, tf ], (3.3)

∂(ρθ)

∂t
+∇ · (ρθu) = ρSθ in Ω× (0, tf ]. (3.4)

where ⊗ denotes the tensor-product operator (i.e., the Kronecker product) and b is

the total buoyancy. We have b = −(1 + ϵqv − qc − qr)gk̂, where g = 9.81 m/s2 is the
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magnitude of the acceleration of gravity, and k̂ is the unit vector aligned with the

vertical axis z. Finally, the source/sink term Sθ in Equation (3.4) describes latent

heat release–uptake during phase changes of moisture variables and is detailed in

Section 3.2. Equation (3.3) and Equation (3.4) can be rewritten in non-conservative

form as follows:

∂u

∂t
+ u · ∇u = −

1

ρ
∇p+ b in Ω× (0, tf ], (3.5)

∂θ

∂t
+ u · ∇θ = Sθ in Ω× (0, tf ]. (3.6)

A thermodynamics equation of state for the pressure of moist air p is needed

for closure. We assume that p is the sum of the partial pressures of dry air and vapor

(pd and pv, respectively), both taken to be ideal gases. Thus, neglecting the volume

of the condensed phase, the equation of state relating p to ρ and T is given by:

p = pd + pv = ρRdT + ρqvRvT = ρRdT (1 + ϵqv). (3.7)

To facilitate the numerical solution of the system of Equations (3.2)-(3.4) or

(3.2), (3.5)-(3.6), we write density, pressure, and potential temperature as the sum of

their mean hydrostatic values and fluctuations:

ρ(x, y, z, t) = ρ0(z) + ρ′(x, y, z, t), (3.8)

θ(x, y, z, t) = θ0(z) + θ′(x, y, z, t), (3.9)

p(x, y, z, t) = p0(z) + p′(x, y, z, t). (3.10)

Note that the hydrostatic reference states are functions of the vertical coordinate z

only. Hydrostatic balance relates p0 to ρ0 as follows:

dp0
dz

= −ρ0g. (3.11)
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Plugging Equations (3.8)- (3.10) into Equations (3.2)-(3.4) and accounting for

Equation (3.11) leads to:

∂ρ′

∂t
+∇ · ((ρ0 + ρ′)u) = 0, (3.12)

∂((ρ0 + ρ′)u)

∂t
+∇ · ((ρ0 + ρ′)u⊗ u) + ρ′gk̂ = −∇p′ + (ρ0 + ρ′)b̃, (3.13)

∂((ρ0 + ρ′)(θ0 + θ′))

∂t
+∇ · ((ρ0 + ρ′)θ′u) +∇ · ((ρ0 + ρ′)θ0u) = (ρ0 + ρ′)Sθ, (3.14)

where b̃ = −
(

ρ′

ρ0+ρ′
+ ϵqv − qc − qr

)
gk̂ is a modified total buoyancy. Following a

similar procedure for Equations (3.5)-(3.6), we obtain

∂ρ′

∂t
+∇ · ((ρ0 + ρ′)u) = 0, (3.15)

∂u

∂t
+ u · ∇u = −

1

ρ0 + ρ′
∇p′ + b̃, (3.16)

∂θ′

∂t
+ u · ∇θ0 + u · ∇θ′ = Sθ. (3.17)

Remark 3.1.1 To preserve numerical stability of the solution, we add an artificial

diffusion term with a diffusivity coefficient β to Equations (3.12)-(3.14) and (3.15)-

(3.17); the units of β are given consistently with the equations at hand. The term

β∇2u is added to the right-hand side of the momentum equation, while the term

β∇2θ′ is added to the right-hand side of the equation of the potential temperature.

Next, we write the balance equations for qv and qc in conservative form:

∂(ρqv)

∂t
+∇ · (ρqvu) = ρSv in Ω× (0, tf ], (3.18)

∂(ρqc)

∂t
+∇ · (ρqcu) = ρSc in Ω× (0, tf ], (3.19)

and non-conservative form:

∂qv
∂t

+ u · ∇qv = Sv in Ω× (0, tf ], (3.20)

∂qc
∂t

+ u · ∇qc = Sc in Ω× (0, tf ]. (3.21)
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The source/sink terms on the right-hand side in the equations above are related

to conversion rates. In particular, we have:

Sv = C(qc → qv) + C(qr → qv), Sc = C(qv → qc) + C(qr → qc), St = Sv + Sc,

(3.22)

where the terms C(qφ → qψ) = −C(qψ → qφ) represent the conversion of species ϕ

to species ψ. All of these terms, which account for processes such as evaporation

of cloud condensate, are provided by the microphysics equations reported in Section

3.2.

Precipitating water (rain) is treated in the same manner. Letting wr be the fall

speed of rain (provided by the microphysics equations), we can write the conservation

law for rain in conservative form:

∂(ρqr)

∂t
+∇ · (ρqr(u− wrk̂)) = ρSr in Ω× (0, tf ], (3.23)

and non-conservative form:

∂qr
∂t

+ u · ∇qr = Sr +
1

ρ

∂

∂z
(ρqrwr) in Ω× (0, tf ], (3.24)

with

Sr = C(qv → qr) + C(qc → qr). (3.25)

In summary, the conservative form of the atmospheric model considered in this

work is given by Equations (3.12)-(3.14), (3.18)-(3.19), (3.23) and (3.7), while its

non-conservative form is given by Equations (3.15)-(3.17), (3.20)-(3.21), (3.24) and

(3.7). In both cases, the problem has to be supplemented with proper initial and

boundary conditions that are problem dependent.
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3.2 Microphysical Parameterization

The terms on the right-hand sides of Equations (3.14), (3.18), (3.19), and (3.23),

and their respective non-conservative counterparts are defined according to [53]. Let

qvs be the saturation water vapor fraction. To determine qvs we use Teten’s formula

following [53]. The evaporation of cloud water is given by:

C(qc → qv) = −C(qv → qc) =
∂qvs
∂t

. (3.26)

This is computed with the saturation adjustment approach of [102]. The evaporation

of rain, i.e., conversion rate C(qr → qv) = −C(qv → qr), is taken directly from [53],

which use an approach similar to [87]. We have

C(qc → qr) = −C(qr → qc) = Ar + Cr, (3.27)

where Ar and Cr represent rain auto-conversion and rain accretion [52], respectively.

The source/sink term in Equation (3.17) is given by:

Sθ = −γ

(
∂qvs
∂t

+ C(qr → qv)

)
, γ =

L

cpπ
, (3.28)

where L is the latent heat of vaporization and π is the Exner pressure defined in

Equation (3.1).

Finally, we define the terminal velocity of rain following [102, 52, 53]:

wr = 3634(ρq0.1346r )

(
ρ

ρg

)
−

1

2

, (3.29)

where ρg is the reference density at the surface.
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CHAPTER 4

LAGUERRE SEMI-INFINITE ELEMENTS AS A POTENTIAL
SOURCE OF COMPUTATIONAL EFFICIENCY FOR

ATMOSPHERIC FLOWS

This chapter presents the results of applying the Laguerre-Legendre semi-infinite

elements approach to benchmark atmospheric test cases with and without topography.

All the tests in this chapter are done in a dry atmosphere where qv = 0.0, qc = 0.0,

and qr = 0.0 everywhere and at all times. These tests were run on Jexpresso [75], a

new open-source spectral element code written in performant Julia.

4.1 A Semi-infinite Rising Thermal Bubble Test

We validate the Laguerre-Legendre semi-infinite element approach on the compressible

Euler equations by using it to simulate a classic rising thermal bubble case. In this

test a perturbation ∆θ is introduced to a neutral atmosphere with uniform potential

temperature θ0 = 300 K. The finite domain is ΩF = [−5, 5] km × [0, 5] km, which

is subdivided into Nz = Nx = 20 elements of order N = 4. This yields a horizontal

resolution ∆x = 125 m and a vertical resolution ∆z = 62.5 m. The potential

temperature perturbation and initial pressure are defined as follows:

∆θ = θc

(
1−

r

r0

)
(4.1a)

r =
√

(x− xc)2 + (z − zc)2 (4.1b)

p = p0

(
1−

gz

cpθ

)cp/R

, (4.1c)
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where θc = 2 K, r0 = 2000 m, xc = 0 m, zc = 2500 m, and p0 = 1000 hPa. The initial

potential temperature is θ = θ0+∆θ, and the initial density can be deduced through

the ideal gas law (3.7).

A set of 20 Laguerre-Legendre semi-infinite elements of order 24 is added on

top of ΩF to build the semi-infinite domain ΩS = [−5, 5] km × [5,∞) km. To verify

that this approach is able to solve the Euler equations without adversely affecting

the solution, we do not use a damping layer for this test and simply verify that the

rising thermal crosses the ΩF −ΩS boundary without being affected by the change in

element type and drastic change in resolution. To stabilize the solution past t = 500 s

a viscosity coefficient ν = 30 m2s−1 is used in conjunction with a constant thermal

diffusivity κ = 2ν. This is standard and would be required even for simulations

without a semi-infinite element. Free-slip type boundary conditions are used at all

domain edges.

The initial potential temperature perturbation generates positive buoyancy,

which causes the bubble to rise. Figure 4.1 shows the solution at t = 1000 s after a

significant portion of it has transported through the interface between ΩF and ΩS at

z = 5 km. The figure shows that the solution is correctly transported and diffused

through the interface. The symmetry of the bubble in the x direction is maintained,

and the interface does not introduce spurious noise or discontinuities. The figure

also highlights the improvement in solution quality as the order of the semi-infinite

element is increased. The sharpest solution is obtained using a semi-infinite element

of order 48 which is displayed in the right panel of Figure 4.1. With this approach

validated for the Euler equations, we move on to demonstrating that we can use it

for effective absorbing layers in atmospheric flows.
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Figure 4.1 Potential temperature perturbations for the rising thermal bubble at t =
1000 s using semi-infinite elements of order 24 (left), 36 (middle), and 48 (right). In all
three cases the bubble rises correctly and is able to pass through the interface between
ΩF and ΩS at z = 5 km without any issues. Note that a higher order semi-infinite
element yields a sharper, higher resolution solution. The grid used for this test is
fully visible to visually show the transition between the two domains. Note that no
absorbing layer is used in this test since the goal is not that of testing non-reflecting
conditions, but to assess the sanity of the Legendre-Lagerre discretization.
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Linear hydrostatic mountain waves In this test, a constant horizontal flow with

velocity U = 20 ms−1 impinges on a mountain in a stratified atmosphere. These flow

conditions and the mountain’s size determines the structure of the resulting waves.

As soon as the flow encounters the mountain, gravity waves quickly propagate both

horizontally and vertically. In a proper implementation, these waves should leave the

domain with no reflection.

The background state for this test is a hydrostatically balanced atmosphere

whose pressure and potential temperature are:

p = p0

[
1 +

g2

cpθ0N2

(
exp

(
−zN 2

g

)
− 1

)]cp/R
(4.2a)

θ = θ0 exp

(
zN 2

g

)
, (4.2b)

where p0 = 1000 hPa and θ0 = 250 K are the sea level values of pressure and potential

temperature, and

N =
g√
cpθ0

= 0.0196 s−1

is the Brunt-Väisälä frequency. An Agnesi mountain with height h = 1 m and

half-width a = 10, 000 m is located at the center of the domain xc = 0 m with shape

z =
ha2

(x− xc)2 + a2
. (4.3)

For this test as well as for all other cases involving topography, a terrain

following sigma coordinate [24] is used. We consider a finite domain ΩF =

[−120, 120] km × [0, 15] km, and subdivided it into Nx × Nz = 120 × 21 elements

of order 4, which lead to the resolution (∆x,∆z) = (500 m, 178 m). A set of

120 Laguerre-Legendre semi-infinite elements are added on top of ΩF yielding the

semi-infinite domain ΩS = [−120, 120] km× [15,∞) km. In the horizontal direction,
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each semi-infinite element uses an order four spectral element discretization using

LGL nodes, and in the vertical direction it uses an order 14 Laguerre function basis

on LGR nodes and a scaling factor λ = 300 m which yields an end point Zend = 28853.

Due to prevalence of both acoustic waves and gravity waves, as well as the sensitivity

of high order numerical methods, we make use of the spectral low pass Boyd-Vandeven

filter [9] to help insure the stability of the simulation (this approach is standard for

spectral element simulations of the atmosphere). The filter on the elements in ΩS is

different from that in ΩF and the continuity of the solution at shared interface nodes

is insured by the DSS operation.

To trigger the hydrostatic waves, a uniform eastward wind with speed U =

20.0 ms−1 impinges the mountain. We use a sine squared function to define the

damping coefficient in the vertical absorbing layer:

γ(z) = ∆γ sin2

(
π

2

z − zs
zmax − zs

)
, (4.4)

where zs = 15000 m, ∆γ = 0.1s−1 and zmax is the top of the absorbing layer. The

lateral boundaries are periodic and lateral damping layers are used on each side (these

damping layers are in ΩF and are not on semi-infinite elements). These boundary

conditions are also used for the remaining other mountain tests presented in this

paper.

Figure 4.2 shows the contours of the vertical velocity at t = 30, 000 s. The

solution is stable, the outgoing waves are effectively damped within ΩS, and the

solution is physically meaningful when compared to other numerical solutions of

atmospheric models using spectral elements see e.g., [103].

Table 4.1 shows the time per time step for different configurations of the linear

hydrostatic mountain test case. A fixed domain end point Zend = 30, 000 m is
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Figure 4.2 Time-converged numerical vertical velocity w for the linear hydrostatic
mountain. The numerical solutions are displayed at t=30,000 s for ∆x = 500 m,
∆z = 178 m. The contours of the vertical velocity range between -0.005 and +0.005
with interval 0.0005. The dashed line shows where ΩF meets ΩS. In ΩS there is only
one element of order 14 along the vertical direction (see Figure. 2.2 for reference).

maintained for the cases where no semi-infinite element is used and instead only

the number of vertical elements is changed. Even while only using ten additional

order 4 spectral elements in the vertical direction to replace the Laguerre semi-infinite

element the time per time step remains about 10% higher than running a single order

20 Laguerre element. If we would seek to run the entire vertical domain at the same

resolution as the finite domain of these simulations utilizing a Laguerre semi-infinite

element, the cost increase would be nearly 50% higher. Considerably few additional

vertical spectral elements (we estimate no more than three) would have to be used

to obtain a similar time per time step as using a single semi-infinite element in this

case and this would also yield a much lower order discretization within the absorbing

layer.
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Table 4.1 Timings of Linear Hydrostatic Mountain Simulations With and Without
Laguerre Semi-infinite Elements in the Absorbing Layer.

Absorbing layer type T ∗ Zend T ∗

Finite % T ∗

Laguerre % Nz

Semi-infinite elements of order 14 1 28853 90.41 9.59 21
Semi-infinite elements of order 18 1.02 33279 87.97 12.03 21
Semi-infinite elements of order 20 1.04 35513 86.49 13.51 21
Extended finite domain of order four 1.14 30000 100 N/A 31
” 1.29 ” ” ” 35
” 1.47 ” ” ” 40

Note: A fixed vertical domain end point is used for simulation using only a finite
domain while the simulations using semi-infinite elements are allowed to have
varying Zend depending on the order of the semi-infinite elements. In this case the
number of elements in the x-direction Nx remains the same but the number of
elements in the z-direction Nz is adjusted. The additional elements are all of order
N = 4 but the vertical resolution ∆z is allowed to change.

Linear non-hydrostatic mountain waves For this test, we modify the background

parameters and the mountain profile of the previous test such that we obtain Nac
u

= 1

corresponding to nonhydrostatic flow conditions. As such, the mountain profile

described in Equation (4.3) from the previous test is modified by making a = 1000 m.

The background state is changed by taking N = 0.01 s−1, θ0 = 280 K, and

U = 10 ms−1. All other parameters remain the same as the previous test.

We consider a finite domain ΩF = [−72, 72] km × [0, 15] km and subdivide

it with Nx × Nz = 40 × 5 elements of order 10, leading to the effective resolution

(∆x,∆z) = (360 m, 300 m). A set of 40 Laguerre-Legendre semi-infinite elements are

added on top of ΩF yielding the semi-infinite domain ΩS = [−72, 72] km×[15,∞) km.

In the horizontal direction each semi-infinite element has order 10 on LGL nodes with

an order 14 Laguerre function basis on LGR nodes and a scaling factor of λ = 300 m

which yields an end point Zend = 28853. Similarly to the previous mountain wave

test a Boyd-Vandeven filter [9] is used to help insure the stability of the simulation

and the damping layer uses the same sine squared function as the previous test case.

Figure 4.3 shows the contours of vertical velocity for the time converged

numerical solution at t = 18, 000 s. The solution is stable, the outgoing waves are
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effectively damped within ΩS, and the structure and frequency of the wave is properly

captured by the simulation. The solution is physically meaningful and comparable to

other numerical solutions for the same test, see e.g [103].

Table 4.2 Timings of Linear Non-hydrostatic Mountain Wave Simulations With and
Without Laguerre Semi-infinite Elements in the Absorbing Layer.

Absorbing layer type T ∗ Zend T ∗

Finite % T ∗

Laguerre % Nz

Semi-infinite elements of order 14 1 28853 85.57 14.43 5
Semi-infinite elements of order 18 1.03 33279 82.49 17.51 5
Extended finite domain of order 10 1.01 30000 40 N/A 7
” 1.24 ” ” ” 8
” 1.58 ” ” ” 10

Note: A fixed vertical domain end point is used for simulation using only a finite
domain while the simulations using semi-infinite elements are allowed to have
varying Zend depending on the order of the semi-infinite elements. In this case the
number of elements in the x-direction Nx remains the same but the number of
elements in the z-direction Nz is adjusted. The additional elements are all of order
N = 10 but the vertical resolution ∆z is allowed to change.

Table 4.2 shows the time per time step for different configurations of the linear

non-hydrostatic mountain wave problem. A fixed domain end point Zend = 30, 000 m

is maintained for the cases where no semi-infinite element is used and instead only

the number of vertical elements is changed. For this case, even while using only

three additional elements to replace the Laguerre semi-infinite element and resulting

in nearly equivalent resolutions within the finite domain, the cost per time step is

nearly 25% higher than using semi-infinite elements of order 18 while also having a

smaller domain height. This becomes more than 50% more costly, if five additional

elements are used instead of 3. Only two additional elements of order 10 can be used

to replace the semi-infinite elements, if a similar time to solution is desired, but this

will come at the cost of the order of accuracy within the damping layer.

In order to complete the validation of the hydrostatic and non-hydrostatic

mountain wave simulations, we constructed a linear Fourier solution using the

approach outlined in [101]. The vertical velocity is expressed as a Fourier integral
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Figure 4.3 Linear non-hydrostatic mountain. Time-converged numerical solution at
t=18,000 s for ∆x = 360 m, ∆z = 300 m. The contours are in the range between
-0.005 m/s and +0.005 m/s with interval 0.001 m/s. The dashed line shows where
ΩF meets ΩS. In ΩS there is only one element of order 14 along the vertical direction
(see Figure 2.2 for reference).

under the Boussinesq approximation that is then evaluated using adaptive Gauss

quadrature in wavenumber space. Since this solution neglects vertical variations

in density, it is only valid for heights less than a scale height (∼9 km). Figure

4.4 compares vertical velocity profiles of the numerically obtained solution (in blue)

with the linear Fourier solution (in red). The figure shows a good overlap of the

two solutions and the existing deviations are expected. This is given that the two

models deviate due to the analytical solution relying on the linearization of the

Euler equations and the Boussinesq approximation. Furthermore, this deviation is

comparable to other atmospheric models.

Schär mountain waves The Schär test [93] consists of a uniform flow with a

reference horizontal velocity U = 10 ms−1 in a stratified atmosphere with Brunt-
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Figure 4.4 Comparison of vertical velocity contours of the numerical solution (blue)
of the linear hydrostatic (top) and nonhydrostatic (bottom) mountain wave problems
with an approximate linear Fourier solution (red). The contours are the same
contours used in the vertical velocity plot of Figure 4.2. The numerical solutions
compare favorably to the analytical approximation and display the expected vertical
wavelength λz = 2πU/N ∼ 6.4 km.
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Väisälä frequency N = 0.01 1/s, sea-level pressure p0 = 1000 hPa and and potential

temperature at sea-level θ0 = 280 K. The flow impinges the five-peak mountain

defined as

z = he−(
x
a)

2

cos2
(
πx

λc

)

with parameters h = 250 m, a = 5000 m, and λc = 4000 m.

We consider a finite domain ΩF = [−25, 25] km × [0, 15] km, and discretize it

using Nx = 20 elements in the x direction and Nz = 7 elements in the z direction.

These elements are of polynomial order 10 in both directions, leading to an effective

resolution (∆x,∆z) = (214 m, 250 m). A set of 20 Laguerre-Legendre semi-infinite

elements are added on top of ΩF which translates to the semi-infinite domain ΩS =

[−25, 25] km × [15,∞) km. In the horizontal direction, each semi-infinite element

uses an order 10 spectral element discretization using LGL nodes, and in the vertical

direction it uses an order 14 Laguerre basis function on LGR nodes and a scaling

factor λ = 300 m which yields an end point Zend = 28853 m. Similarly to the

previous mountain wave tests a Boyd-Vandeven filter [9] is used to help insure the

stability of the simulations and the a sine squared function is used in the damping

coefficient of the Rayleigh damping layer.

Figure 4.5 shows the vertical velocity of the time converged numerical solution

at t = 36, 000 s. The solution is stable and outgoing waves are effectively damped

withing ΩS. The solution is also physically meaningful and comparable to other

numerical solutions of atmospheric models, see e.g [93]. Figure 4.6 shows an

overlap of the numerical vertical velocity with a linear Fourier solution under the

anelastic approximation [56, Equation (A10)]. The figure shows a good overlap

of the two solution and the existing deviations are within expectations given the
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Figure 4.5 Schär mountain waves. Time-converged vertical velocity at t=36,000 s
for ∆x = 250 m, ∆z = 220 m. The contours of the vertical velocity range between
-2.0 m/s and +2.0 m/s with interval 0.1 m/s. The dashed line shows where ΩF meets
ΩS. In ΩS there is only one element of order 14 along the vertical direction (see
Figure 2.2 for reference).
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Figure 4.6 Comparison of vertical velocity contours of the numerical solution (blue)
and semi-analytical Fourier solution (red) for the Schär mountain test. As for those
shown in Figure 4.4, the discrepancy is due to the linearization of the Euler equations
and the anelastic approximation used to calculate the semi-analytic Fourier solution.
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Table 4.3 Timings of Schär Mountain Wave Simulations With and Without Laguerre
Semi-Infinite Elements in the Absorbing Layer.

Absorbing layer type T ∗ Zend T ∗

Finite % T ∗

Laguerre % Nz

Semi-infinite elements of order 14 1 28853 88.62 11.38 7
Semi-infinite elements of order 18 1.03 33279 86.02 13.98 7
Extended finite domain of order 10 0.92 21000 100 N/A 8
” 1.03 ” ” ” 9
” 1.14 ” ” ” 10
” 1.27 ” ” ” 11

Note A fixed vertical domain end point is used for simulation using only a finite
domain while the simulations using semi-infinite elements are allowed to have
varying Zend depending on the order of the semi-infinite elements. In this case the
number of elements in the x-direction Nx remains the same but the number of
elements in the z-direction Nz is adjusted. The additional elements are all of order
N = 10 but the vertical resolution ∆z is allowed to change.

differences between the models. Furthermore, these deviations are comparable to

other atmospheric models.

Table 4.3 shows the time per time step for different configurations of the schär

mountain problem. A fixed domain end point Zend = 21, 000 m is maintained for the

cases where no semi-infinite element is used and instead only the number of vertical

elements is changed. For this case, even while using only four additional elements

to replace the Laguerre semi-infinite element and resulting in nearly equivalent

resolutions within the finite domain, the cost per time step is nearly 25% higher than

using semi-infinite elements of order 18 while also having a smaller domain height.

Only two additional elements of order 10 can be used to replace the semi-infinite

elements, if a similar time to solution is desired, but this will come at the cost of the

order of accuracy within the damping layer.
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CHAPTER 5

NON-COLUMN BASED SIMULATIONS OF THUNDERSTORMS

In this chapter, we first present the approach utilized to obtain a non-column based

implementation of the Kessler warm rain microphysics. We then show how this

approach performs when used for simulating squall lines and a fully three-dimensional

super-cell thunderstorm. Simulations in this chapters are performed on a moist

atmosphere using the Non-hydrostatic Unified model for the atmosphere (NUMA)

[51].

5.1 Non-column Based Rain Sedimentation

The main novelty of the study presented in this chapter lies in the computation of the

sedimentation term for the rain equation (i.e., the last term on the right-hand side in

Equation (3.24)) which differs from the methods in, e.g., [52, 53, 102, 87, 45]. The

typical column-based approach to handle the sedimentation term is by computing the

spatial derivative along each individual column starting from the top of the domain

and descending. See, e.g., [23, 74] for a spectral element implementation of this

approach.

Although widely used, the traditional column-based implementation has a main

drawback: it requires the availability of column-aware data structures that may not

serve other purposes in the numerical method, thereby forcing the use of structured

grids. Unstructured grids are highly advantageous around topography. By forgoing

the use of columns, our approach to compute sedimentation could help yield more

accurate predictions for storm behavior in mountainous regions.

Computing the sedimentation term is done separately from the other micro-

physics calculations, and is done after solving the compressible Euler and moisture
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advection equations. This term is included by solving the following equation:

∂qr
∂t

=
1

ρ

∂

∂z
(ρqrwr) (5.1)

in non-conservative form and

∂(ρqr)

∂t
= ∇ · (ρqrwrk̂) (5.2)

in conservation form. Given that k̂ = (0, 0,−1)T for the domains we consider,

Equation (5.2) can be written as follows:

∂(ρqr)

∂t
=

∂

∂z
(ρqrwr).

This makes it so that for either the conservative or non-conservative form, solving the

sedimentation equation essentially amounts to calculating the term ∂
∂z
(ρqrwr).

We can rewrite the sedimentation equation in the form of Equation (2.1) by

taking G(f) = −c∂Fsed

∂z
, where Fsed = (ρqrwr), c = 1 and f = ρqr in conservation

form, while c = 1
ρ
and f = qr in non-conservative form. By multiplying by the

expansion functions and integrating, we get:

∫

Ωe

ψi(x)
∂fh(x, t)

∂t
dx =

∫

Ωe

ψi(x)

(N+1)3∑

j=1

∂ψj(x)

∂z
cF̂ e

j,sed(t)(x)dx, i = 1, . . . , (N + 1)3,

where F̂j,sed are the expansion coefficients of Fj,sed. Moving to the reference element

and identifying the mass matrix yields

Me
ij

∂f̂ ej (t)

∂t
=

∫

Ωref

ψ(ξ)

[
∇ξψj(ξ) ·

(
∂ξ

∂z
,
∂η

∂z
,
∂ζ

∂z

)
(ξ)

]
cF̂ e

j,sed(t)|J(ξ)|dξ, (5.3)

where i, j = 1, . . . , (N + 1)3. Let us call De
sed the element-wise differentiation matrix

for Equation (5.1) and write Equation (5.3) in matrix form:

M e
ij

∂f̂ ej (t)

∂t
= De

ij,sed · cF̂
e
j,sed(t), i, j = 1, . . . , (N + 1)3. (5.4)
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We can write De
sed discretely as follows:

De
ij,sed =

N+1∑

k=1

N+1∑

m=1

N+1∑

n=1

ω(ξk, ηm, ζn)ψi(ξk, ηm, ζn)∇ξψj(ξk, ηm, ζn)

·

(
∂ξ

∂z
,
∂η

∂z
,
∂ζ

∂z

)
(ξk, ηm, ζn)|J(ξk, ηm, ζn)|,

(5.5)

where i, j = 1, . . . , (N +1)3. From this point, if CG is used, then the global equation

can be solved using DSS as follows:

∂fh

∂t
−M−1Dsed(c⊙ Fh

sed) = 0, (5.6)

where Dsed =
∑Ne

e=1 D
e
sed, c is the vector containing the nodal values of c, Fsed is

the vector containing the nodal values of Fsed, and ⊙ denotes a component-wise

multiplication (i.e., the Hadamard product). The local DG problem is given by:

∂fh

∂t
−M−1(e)(D̂e

sed(c⊙ Fh
sed)− Fe(c∗ ⊙ F∗

sed)), (5.7)

where D̂e
sed is the weak form of De

sed, F
e is the flux matrix at each element, F∗

sed is

the interface value of Fsed, and c∗ is the interface value of c.

In what follows, we present the procedure we use to solve the fully compressible

Euler equations with moisture, including rain. Algorithm 1 summarizes the entire

procedure. The algorithm makes use of the following quantities: NLGL = N +1 is the

number LGL points in each element, ∆t is the time step, fh,n is the approximation

of fh at the time tn = n∆t, Npoints the total number of points the domain has been

discretized into including repeating nodes at element edges and faces, tn the current

discrete time, and tn+1 = tn+∆t . We also define the sedimentation Courant number,

which we use to determine the time sub-step for the sedimentation problem:

Cr = wr
∆t

∆z
. (5.8)
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This number is used to determine the appropriate sedimentation time step as follows:

∆tsed =
∆t

max(1, 0.5 + Crmax/Crlimit)
, (5.9)

where:

Crmax = max([Cri]
Npoints

i=1 ), (5.10)

is the maximum sedimentation Courant number among all points in the domain and

Crlimit is the maximum allowable Courant number for the sedimentation problem.

The rest of the notation is defined in Section 2.1.

Next, we report on the results obtained with this algorithm and fully unstructured

grids.

5.2 Results

We assess the method presented in Section 5.1 with an idealized squall line test

from [23] and a fully 3D supercell problem. All the simulations are run with the

Nonhydrostatic Unified Model of the Atmosphere (NUMA) [51], which is designed to

solve the dry Euler equations, with the addition of artificial viscosity as described in

Section 2.1, on unstructured grids of hexahedra with arbitrary orientation. NUMA

enables the use of both CG and DG spectral elements and has been shown to scale

exceptionally well on CPUs and GPUs in [1, 2, 82].

5.2.1 2.5D squall line

The first benchmark we consider is an idealized test presented in [23]. While the

computational domain in [23] is two-dimensional, we run the same test in a 2.5 D

domain Ω = [150 × 12 × 24] km3. The domain is discretized with a single element

in the y direction and a resolution dependent number of elements in the x and z

directions. Periodic boundary conditions are applied to the lateral boundaries, a
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Algorithm 2 Simulation of moist-air and rain sedimentation with unstructured grids.

1: for time = 0,∆t, . . . , tf do
2: for e = 1, 2, . . . , Ne do
3: for node = 1, 2, . . . , NLGL do
4: Calculate contributions to element-wise derivatives from each LGL

point along
5: the reference element.
6: end for
7: Compute these local derivatives in physical space.
8: end for
9: Perform DSS for CG or calculate numerical fluxes for DG.
10: Solve the discrete version of the Euler equations: (3.2), (3.3) and (3.4), if using

conservation
11: form, and (3.2), (3.5) and (3.6), if using non-conservative form.
12: Solve the advection equations for qv, qc and qr by the flow velocity u: Equations

(3.18), (3.19) and
13: Equations (3.23), if using conservation form, and (3.20), (3.21) and (3.24), if

using non-conservative form.
14: for i = 1, 2, . . . , Npoints do
15: Determine wr using Equation (3.29)
16: Determine Crmax using Equation (5.10)
17: Determine ∆tsed using Equation (5.9)
18: end for
19: for ts = tn,tn +∆tsed,. . . ,tn+1 do
20: for e = 1, 2, . . . , Ne do
21: if space method == CG
22: Compute De

sed
23: else if space method == DG
24: Compute D̂e

sed
25: end if
26: end for
27: if space method == CG
28: Perform DSS.
29: else if space method == DG
30: Apply inter-element fluxes for the sedimentation equation using wr as

the wave
31: speed.
32: end if
33: Solve Equation (5.1)
34: end for
35: for e = 1, 2, . . . , Ne do
36: Update moisture variables and potential temperature to account for phase

changes
37: following Equations (3.28)-(3.27)
38: end for
39: end for
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free-slip type boundary condition is applied at the domain bottom and the domain

top utilizes a Rayleigh sponge for gravity wave damping. In this domain, a squall

line forms in a weakly stable atmosphere with Brunt-Väisälä frequency N = 0.01 s−1

below the tropopause and a more stable atmosphere with N = 0.02 s−1 above 12

km. The cloud begins to form around t ≈ 500 s, while rain starts to form and fall

at approximately t ≈ 900 s. The initial condition consists of a saturated boundary

layer typical of mid-latitude storms that has been used in several numerical studies

(see, e.g, [92] and [110]). A low altitude wind shear in the x direction is imposed to

break the cloud symmetry and allow for a continuous storm evolution. The initial

background sounding is tabulated in the Appendix.

The storm is triggered by a thermal perturbation of the background state [92]

centered at (xc, zc) = (75000, 2000) m and defined by:

∆θ =





θc cos
(
πr
2

)
if r ≤ rc,

0 if r ≥ rc,

(5.11)

where

r =

√
(x− xc)2

r2x
+

(z − zc)2

r2z
, θc = 3 K, rc = 1, rx = 10000 m, rz = 1500 m.

We generated seven grids using GMSH [25]. Table 5.1 lists the total number

of hexahedral elements and the effective resolution ∆x for each mesh. We choose

to report the effective resolution because the LGL points for an element are not

equidistant [26, 41, 61]. NUMA relies on P4est [14] to read unstructured meshes and

perform the graph partitioning for the parallel application.

Figure 5.1 shows an example of clouds and precipitation calculated on a fully

unstructured grid of hexahedra for an effective resolution of 150 m in both spatial

directions.
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We run this test using both the CG approach with the governing equations in non-

conservation form and the DG approach with the governing equations in conservation

form. Consistently with [23], a constant artificial viscosity of β = 200 (for the units

see Remark 3.1.1) is used to stabilize the simulations.

Let us examine the results obtained with the finest mesh, i.e., the one with ∆x =

100 m. Figures 5.2 and 5.3 show the stages of the storm evolution given by the CG

and DG simulations, respectively. Both simulations yield similar plots at t = 1500 s.

Additionally, in both cases we observe a downwind tilt of the convective tower, which

is caused by the horizontal wind-shear, and the eventual development of the anvil

cloud near the tropopause where the atmosphere offers higher stability. For the sake

of brevity, we do not show the plots associated with other meshes, but a similar early

storm evolution is observed in all the simulations at all resolutions with both the CG

and DG approaches. The differences between the CG and DG simulations remain

minimal even up to about t = 6000 s. This is a rather long period of time since by

then the storm has fully developed. Starting from t = 6000 s till the end of the time

interval of interest, some differences in the CG and DG simulations arise, as can been

seen by comparing Figures 5.2 and 5.3. At t = 9000 s, when additional convective

towers are observed, the DG simulation generates multiple convective towers, some of

which are significantly downwind. This is not as pronounced in the CG simulation.

Compare the bottom right panels in Figures 5.2 and 5.3.

Figures 5.2 and 5.3 also show the rain accumulated on the ground. At t =

1500 s, no rain has accumulated yet in either the DG or CG simulations. This is

confirmed by the rain contour plots, where we see that the contour lines have yet

to reach the ground (see top left panel in Figures 5.2 and 5.3). At t = 3000 s, the

accumulated rain is primarily near the center of the domain for both methods. Indeed,

from the top right panel in Figures 5.2 and 5.3 we see that rain accumulates at the
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Figure 5.2 Storm evolution obtained with a CG approximation and mesh with
resolution ∆x = 100 m at t =1500 s (top-left), 3000 s (top-right), 6000 s (bottom-left)
and 9000 s (bottom-right). In the top portion of each panel, the thick orange contour
line (qc = 10−5 kgkg−1) represents the outline of the cloud. The white and gray
contours represent the perturbation potential temperature, and the blue and green
contours represent qr. The bottom portion of each panel shows the rain accumulated
at the surface for each time as a function of horizontal distance from the point x = 0 m.
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Figure 5.3 Storm evolution obtained with a DG approximation and mesh with
resolution ∆x = 100 m at t =1500 s (top-left), 3000 s (top-right), 6000 s (bottom-left)
and 9000 s (bottom-right). In the top portion of each panel, the thick orange contour
line (qc = 10−5 kgkg−1) represents the outline of the cloud. The white and gray
contours represent the perturbation potential temperature and the blue and green
contours represent qr. The bottom portion of each panel shows the rain accumulated
at the surface for each time as a function of horizontal distance from the point x = 0 m.
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location of the convective tower, with a slight asymmetry that follows the asymmetry

of the convective tower seen at t = 1500 s. As time progresses, the convective tower

tilts. An early stage of this is visible at t = 3000 s, but the tilting becomes more

pronounced at t = 6000 s when the effect of the wind shear is more noticeable. The

rain accumulation reflects the tilting and location of the convective tower in both the

CG and DG simulations, as shown in the bottom left panel of Figures 5.2 and 5.3.

By t = 9000 s, we observe once again some differences in the results given by the two

methods. For the CG simulation, in the bottom right panel of Figure 5.2 we see a

much wider distribution of accumulated rain with a secondary peak below the new

location of the convective tower and a third peak appearing below the location of

the secondary convective tower. As for the DG simulation, in the bottom right panel

of Figure 5.3, we notice that the rain accumulation matches the downwind shifting

of the main column and small peaks appear where secondary convective towers are

present.

Regardless of the space discretization method, we see that once rain appears

within the convective tower it is correctly transported downward without the need for

a vertically structured grid. This holds true also when multiple, possibly disconnected,

sources of rain are present in the domain. In both sets of simulations, the rain

falls to the ground following the location of the convective towers and the effects

of the wind-shear. This gives us confidence that our algorithm is able to correctly

transport rain despite the lack of a vertically structured grid and regardless of the

space discretization method.

The results obtained with the ∆x = 250, 200, 150, 100 m meshes at t = 9000

s are compared in Figure 5.4 for the CG approximation and in Figure 5.5 for the

DG approximation. In Figure 5.4, we observe the same cloud structure (anvil extent,

downwind tilt of the convective tower) and similar profiles of perturbation potential
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temperature for all the meshes under consideration. However, the spatial distributions

of the rainfall accumulated at the ground show some differences: the simulations with

resolutions ∆x = 250 m and ∆x = 200 m have smaller peaks of rain accumulation

near the domain center than the simulations with ∆x = 150 m and ∆x = 100 m. The

simulations with the ∆x = 290, 500, 750 m meshes (not shown for brevity) give even

more intense rainfall than the ∆x = 250 m and ∆x = 200 m simulations. A similar

observation on rain accumulation and mesh resolution for this benchmark can be

found in [112, 23], where it is shown that higher resolutions are correlated with faster

storm development, weaker storm circulation and less overall precipitation over the

length of the simulation. The DG simulations also show similar tilt in the convective

tower, similar anvil extents and similar profiles of perturbation potential temperature

at t = 9000 s for all the meshes; see Figure 5.5. Concerning the rain accumulation,

the DG simulation with the ∆x = 250 m mesh gives a large primary and secondary

peak near the center of the domain. The amount of rain falling at the domain center

decreases with increasing resolution. Indeed, the ∆x = 200, 150 m simulations give

a smaller amount of accumulated rain in the domain center and slightly larger peaks

downwind and away from the center, reflecting the availability of more moisture for

the secondary convective tower. Once again, we observe a decrease in precipitation

with increasing resolution as expected [23, 112, 73, 70].

We conclude by reporting the maximum vertical velocity obtained over the

course of the CG and DG simulation as a function of the resolution in Figure 5.6.

We see that for ∆x ≥ 290 m the maximum vertical velocity for both DG and CG

simulations lies between 20 ms−1 and 30 ms−1, as in [13, 111, 23]. Increasing the

resolution yields an increase in the maximum velocity, as shown in [23]. We note that

the CG and DG simulations give similar values of the maximum vertical velocity for

a given mesh, with the values getting closer as the resolution increases.
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Figure 5.4 Storm at t = 9000 s computed with the CG method and meshes ∆x =
250 m (top-left), ∆x = 200 m (top-right), ∆x = 150 m (bottom-left), and ∆x = 100 m
(bottom-right). The thick orange contour line (qc = 10−5 kgkg−1) represents the
outline of the cloud. The white and gray contours represent the perturbation potential
temperature and the blue and green contours represent qr. The bottom portions of
each panel show the rain accumulated at the surface as a function of horizontal
distance from the point x = 0 m.
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Figure 5.5 Storm at t = 9000 s computed with the DG method and meshes ∆x =
250 m (top-left), ∆x = 200 m (top-right), ∆x = 150 m (bottom-left), and ∆x = 100 m
(bottom-right). The thick orange contour line (qc = 10−5 kgkg−1) represents the
outline of the cloud. The white and gray contours represent the perturbation potential
temperature and the blue and green contours represent qr. The bottom portions of
each panel show the rain accumulated at the surface as a function of horizontal
distance from the point x = 0 m.
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Figure 5.6 Maximum vertical velocity obtained over the course of the CG and DG
simulations as a function of the resolution.

The results in this section demonstrate that, in two dimensions, our algorithm

successfully transports the rain downwards along the convective towers without the

need for a vertically structured grid.

5.2.2 3D supercell

In this section, we test our algorithm for a fully three-dimensional supercell. The

convective cell develops within a domain Ω = [150 × 100 × 24] km3. The storm

is initiated by a thermal perturbation of the background state defined by Equation

(5.11), with center (xc, yc, zc) = (75000, 50000, 2000) m and

r =

√
(x− xc)2

r2x
+

(y − yc)

r2y
+

(z − zc)2

r2z
, θc = 3 K, rc = 1,

where:

rx = ry = 10000 m, rz = 2000 m.
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The domain is discretized using a grid of unstructured hexahedra of order four

in all directions for an approximate effective resolution ∆x ≈ 250 m. The grid is

partially shown in Figure 5.7.

We use periodic boundary conditions for the lateral boundaries, a free-slip

boundary at the domain bottom and a Rayleigh sponge at the domain top. Like

for the squall line test described above, we use the ARK3 3D semi-implicit time

integrator to advance the simulation in time and keep the acoustic Courant number

C ≤ 1 (We use ∆t = 0.3 s for the test shown here). An artificial viscosity β = 200

(see Remark 3.1.1 for the units) is used to provide stabilization. The wind shear in

the x direction is the same as the one used for the squall-line. The cloud begins to

form at t ≈ 500 s while rain forms and starts to precipitate at t ≈ 900 s.

A 3D view of the fully developed storm at t = 7200 s is shown in Figure 5.7, along

with a partial view of the three-dimensional grid. The semi-transparent blue shading

is the iso-surface qr = 10−4 kg/kg. The blue shading is the perturbation potential

temperature (blue is negative) showing the cold pools due to rain evaporation. All of

the convective towers exhibit tilting due to wind-shear, with the parts closer to the

ground experiencing a greater wind-shear and thus trailing the rest of the convective

tower. An anvil cloud is also observed near the top of the troposphere.

Figure 5.8 shows the state of the storm at t = 7200 s. The right side of the

figure shows the existence of three distinct convective towers in the supercell. One

in the center of the Y axis at y = 50000 m and two columns symmetric about the

y = 50000 m plane. The three towers merge into the anvil cloud near the tropopause.

Figure 5.8 (left) shows the rain distribution at the ground at t = 7200 s. The

position of the rain concentration follows the location of the convective towers, falling

below them. The largest amount of rain is present below the larger central tower as

indicated by the maximum over y = 50000 m. Additionally we can see the presence
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This demonstrates that, in three dimensions, our algorithm successfully transports

the rain downward along the convective towers without the need for a vertically

structured grid.
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CHAPTER 6

ACCELERATING SIMULATIONS OF TROPICAL CYCLONES
USING ADAPTIVE MESH REFINEMENT

This chapter focuses on simulations of tropical cyclones with adaptive mesh

refinement. The AMR algorithm is presented and tested on two sets of dry tropical

cyclone simulations. We will show that AMR can replicate the results of simulations

using static grids and provide significant speedup at the same time. All the tests

performed in this chapter are performed with the Non-hydrostatic Unified Model of

the Atmosphere (NUMA) [51].

6.1 Adaptive Mesh Refinement (AMR)

We rely on the P4est [14] library to handle domain decomposition and load balancing

of our parallel applications. This library also allows for refining and coarsening grids

and we make use of this capability to perform adaptive mesh refinement.

6.1.1 The AMR procedure

Thanks to P4est the AMR procedure is straightforward to perform. The process

only requires that P4est know if an element should be refined, coarsened or left

untouched. Let us define an array adapt of size Ne, the total number of elements.

This array is sent to P4est. The values of this array for each element e are as follows:

adapt(e) =





−1 if the element is to be marked for coarsening

0 if the element is to be left as is

1 if the element is to be marked for refinement

(6.1)

Refining an element: In this work, we are only considering adaptive mesh

refinement in the horizontal directions. As such, if a hexahedral element is marked
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for refinement, it is split into four elements of equal size along the horizontal plane.

Since we depend on column data-structures for the planetary boundary layer package

being used in our simulations, if an element belonging to a column is refined, the

entire column must be refined with it to maintain this structure.

Coarsening an element: If the refinement process involves splitting an element

into smaller elements, then the coarsening process is the opposite. Four neighboring

elements that are marked for coarsening are merged together to form a single larger

element. As such, coarsening cannot take place unless there are four adjacent elements

that all share a corner.

Conditions for refinement and coarsening: P4est also stores the current level

of refinement of each element in an array we will call lvl. Initially, all elements

have the level lvl(e) = 0 indicating no refinement has taken place. This is also the

maximum size of a given element, meaning that it cannot be coarsened if lvl(e) is not

strictly positive. In other words, an element cannot be coarsened, if it is currently at

the maximum size. An element also cannot be further refined, if it is at the maximum

allowed level of refinement lvlmax.

A criterion is set for each level of refinement. If one of the nodes belonging to

an element verifies the refinement criterion and lvl(e) < lvlmax, then it is marked for

refinement. If an element no longer verifies the refinement criterion for its current

level of refinement, then it is marked for coarsening.

The refinement/coarsening criterion Consider that the refinement level l

depends on the value of a flow variable C l, and consider C l
k,e the value of this

variable at the kth node of element e. We consider a threshold type criterion

for refinement. This means that if any node k belonging to element e verifies
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C l
k,e > threshold(l), then the element is marked for refinement. It also means that if

∀k C lvl(e)
k,e ≤ threshold(lvl(e)), then the element is marked for coarsening.

Frequency of the adaptive mesh refinement procedure: Because AMR is not

without cost, it should not be performed at every simulation time step. We define a

time interval tamr that is a multiple of the time step ∆t and allow the AMR procedure

to take place at every instance that the current simulation time is a multiple of tamr.

This interval should be large enough to avoid needlessly executing the AMR procedure

(a needless AMR procedure would be one where no elements are coarsened or refined),

and small enough to be able to adapt to substantial changes in the flow.

Remark: An element can only be refined once per AMR iteration, even if it

verifies the criterion for a higher level of refinement. The same applies for coarsening.

The level of a given element can only increase or decrease by a value of one at the

most every time the AMR procedure is executed.

6.1.2 The AMR algorithm and workflow

We present the reader with an algorithmic representation of the adaptive mesh

refinement process through Algorithm 3, where tfinal is the final time of a given

simulation, threshold is an array storing the threshold criteria for each level of

refinement, and mod is the remainder operator. We also present the reader with

a workflow diagram of the AMR procedure in order to illustrate the sequence of

operations taking place. This diagram is shown in Figure 6.1
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tamr

e = 1adapt(e) = − 1k = 1

l = 1 Cl
k,e

Ck,e > threshold(l )
lvl(e) < l




adapt(e) = 0

adapt(e) = 1




l = l + 1

e = e + 1

k = k + 1 l > lvlmax

k > N3
LGL

e > Ne

Figure 6.1 Workflow of the adaptive mesh refinement procedure.
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Algorithm 3 Algorithm of the Adaptive Mesh Refinement Procedure

for t = 0, tfinal,∆t do
Check if the current time is a multiple of tamr.
if( mod (t, tamr) == 0) then
for e = 1, Ne do

adapt(e) = −1
elements are marked for coarsening unless they pass at least one AMR

threshold.
for k = 1, N3

LGL do
Compute local AMR criterion Ck,e.
for l = 1, lvlmax do

if C l
k,e > threshold(kv) then
if lvl(e) < l then

adapt(e) = 1
else

adapt(e) = 0
end if

end if
end for

end for
end for
end if
Refine and coarsen marked elements through P4est
Re-partition new mesh

end for

6.2 Simulations and Results

The initial conditions for this test are similar to [29]. A dry tropical storm-like vortex

is initialized using the following profile for azimuthal-mean tangential velocity:

v(r, z) = V (r)exp

[
−

zσ

σDσ
1

]
exp

[
−

(
r

D2

)6
]
, (6.2)

where V is the surface tangential velocity, σ = 2, D1 = 5, 823 m, and D2 =

200 km. The surface tangential velocity can be found by following the procedure

described in [85, 86] and integrating a specified Gaussian distribution with a vorticity

peak of 1.5 × 10−3 s−1 and maximum winds of 21.5 ms−1 at a radius of 50 km from

the center. The vertical velocity is initially taken to be w = 0 s everywhere.
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The density and potential temperature are initialized by an iterative procedure

that oscillates between satisfying the gradient wind balance and the hydrostatic

balance until a specified criterion is met. This procedure is described in detail in

[83]. The background state is defined by vertically interpolating the Jordan [49]

mean hurricane-season sounding onto the spectral element grid.

Observational heating: The time evolution of the vortex is driven by 4-dimensional

source term in the energy equation. This source term represents latent heating/cooling

rates derived from Doppler radar measurements in hurricane Guillermo (1997). The

latent heating/cooling is described in detail in [30]. Hurricane Guillermo (1997) was

a rapidly intensifying tropical cyclone and the heating derived from its observational

data should provide a good testing ground for how AMR responds to a rapidly

intensifying storm simulation. As described in [37], the heating is computed on a

grid covering the inner core of the system out to a radius of r = 60 km from the

domain center. This grid has a resolution of 2 km in the horizontal direction and

0.5 km in the vertical direction. The heating observations are split into 10 snapshots

covering a 5.7 hour period in intervals of 34 minutes. The largest heating rates are

present at a radius of 25 − 30 km from the domain center, well within the radius of

maximum winds for the initial conditions. Outside of r = 60 km radius the heating

term is zero. The heating rates are interpolated in space onto the spectral elements

grid. After initialization, the first heating snapshot gradually introduced over the

first 30 minutes of the simulation, by way of a hyperbolic tangent function. The

snapshots are then linearly interpolated to the next observation time over the course

of the remainder of the simulation. Past t = 5.7 hours the heating is maintained

constant until the simulations finish at t = 6 hours.
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Boundary conditions At the lower boundary the surface layer model described in

[48] is active, while the sea-surface temperature is maintained constant at its reference

value. The lateral boundaries are doubly periodic, and a Rayleigh absorbing layer is

used to damp gravity waves at the domain top and is described by:

R(z) = γsin2

[
π

2

(
1−

ztop−z
zd

)]
, (6.3)

where γ = 1.0, ztop = 20 km and zd = 4 km.

Sub-grid models The Smagorinsky-Lilly model [100, 68] is used to model sub-grid

scale turbulence in the horizontal direction. This model is a turbulent viscosity model

and contributes to the right hand side through the divergence of the turbulent stress

tensor ∇ · τ . The turbulent stress tensor is defined as:

τ = (−2νtS), (6.4)

where S = 1
2
(∇u+(∇u)T ) is the strain rate tensor, and νt is turbulent viscosity

and is defined as follows:

νt = (∆Cs)
2
√

2|S|2, (6.5)

where Cs is the constant Smagorinsky coefficient and is taken to Cs = 0.21 for

our simulations. ∆ is the filter width of the Smagorinsky model and is taken to be

the mean horizontal resolution of a given element.

The vertical turbulent sub-grid diffusion is modeled by the planetary boundary

layer(PBL) scheme of [43, 44] and is described by:

∂C

∂t
=

∂

∂z

[
Kc

(
∂C

∂z
− γc

)
− (w′c′)h

( z

h3

)]
, (6.6)

68



where C is a prognostic variable, Kc is the eddy diffusivity coefficient, w′c′h is

the flux at the inversion layer, and γc is a correction to the local gradient. For a more

detailed description of the PBL scheme we refer the reader to [43, 44].

Computational domain All of our simulations are done on a [−400, 400] km ×

[−400, 400] km × [0, 20] km domain using continuous Galerkin spectral elements of

order 4.

6.2.1 Time to solution comparison

A set of one hour long simulations are performed to compare the time to solution of

simulations with and without AMR at varying resolutions. The vertical resolution is

maintained constant at ∆z = 312 m. A simulation using a static horizontal resolution

of ∆x = ∆y = 4 km is used as the baseline and its time to solution T4km is used to

obtain a normalized time to solution T ∗ = T/T4km, where T is the time to solution

for a given simulation.

Six simulations in total are performed for this comparison. Three constant

horizontal resolution simulations are performed with ∆x = ∆y (4, 2, 1) km respec-

tively. Three simulations using AMR are performed with respective maximum

horizontal resolutions of ∆x = ∆y = 2, 1, 0.5 km, corresponding to one, two, and

three levels of refinement. The criterion for refinement in the AMR simulations is that

the velocity magnitude must pass a set of predefined thresholds thresholdk, where

k = 1, lvlmax and lvlmax is the maximum refinement level. For these tests we perform

one test with threshold1 = [7.5] ms−1, one test with threshold2 = [7.5, 15] ms−1,

and one test with threshold3 = [7.5, 15, 22.5] ms−1. All simulations are performed

on the same machine with the same number cores, and we will refer to these tests as

the first set of test from here on out. The normalized time to solution for these tests

is presented in Figure 6.2. For the static grids, the increase in horizontal resolution
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Figure 6.4 Number of element columns over time for the static grid simulation
(blue), the 4 level amr simulation (red) with threshold4 = [7.5, 15, 22.5, 30] ms−1, the
2 level amr simulation with thresholdln = [2, 5] ms−1 (yellow), and the 2 level amr
simulation with thresholdst = [7.5, 15] ms−1 (purple).

AMR remain cheaper than the static alternative, the more lenient criterion incurs a

substantial increase in the cost of the simulation.

Figure 6.4 shows the number of vertical columns over time for this set of

simulations. We can see that with the stricter AMR criteria and two levels of

refinement (purple line), the number of columns does not vary substantially over the

course of the simulation. With the more lenient criteria and two levels of refinement

(yellow line), the number of columns at the end of the simulation is double what it

was at the beginning which explains the significant increase in cost. The simulation

using four levels of AMR shows a substantial increase in the number of columns

over the course of the simulation, the number of columns at the end is five times

what it was at the beginning. As the hurricane intensifies more areas of high velocity

magnitude appear and the mesh adapts by refining around these areas and generating
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more columns. While the total number of columns for the 4 level AMR simulation

is less than the total number of columns for the static simulation, it still requires a

longer time to complete. The main reason for this is the increased vertical resolution

which increases the total number of degrees of freedom and further restricts the time

required for stability. For the remainder of this section we will continue referring to

this set of simulations.

6.2.2 Accuracy of AMR simulations

Figure 6.5 shows the maximum values of the horizontally averaged horizontal velocity

over time for (x, y) ∈ [−50, 50] km× [−50, 50] km. These values are found by finding

the average value of horizontal velocity at each vertical level and then finding the

maximum among these. This horizontal sub-domain is chosen as it should allow for

focusing on where the observational heating takes place. Figure 6.6 shows the values

of maximum horizontal velocity over time. Both figures compare these values for

the static simulation and the two 2-level AMR simulations. Both figures show an

essentially perfect overlap for these quantities and demonstrate the AMR’s ability to

capture the intensification of the storm even with relatively strict criteria.

Figure 6.7 shows the horizontal velocity of the storm at different times for a

horizontal slice taken at z = 1, 000 m. We can see that the left column (2-level AMR

with strict criterion) and middle column (static grid) are identical at all the displayed

times. The right column (4-level AMR) allows us to see the additional details and

structures that can be captured with additional refinement. Figure 6.8 shows the

velocity magnitude of the storm at different for a vertical slice taken at x = 0 m.

Once again the left and middle columns are identical and demonstrate the ability of

AMR to obtain high fidelity results at a fraction of the cost of a simulation using a

static grid. Figure 6.9 is similar to Figure 6.7 but presents the vorticity magnitude.
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Figure 6.5 Maximum of horizontally averaged horizontal velocity within the
[−50, 50] km2 sub domain over the course of the 6 hour simulation period. The blue
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lenient criterion AMR simulation).
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Figure 6.6 Maximum value of horizontal velocity within the [−50, 50] km ×
[−50, 50]km× [0, 20] km sub domain over the course of the 6 hour simulation period.
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Even for this derived quantity the left and center columns are still identical. The

right column showcases what additional resolution has to offer in terms of resolving

turbulent structures. The simulations with resolutions of up to 250 m of horizontal

resolution show an increase in both vorticity and velocity compared to their lower

resolution counterparts. This reflects the role of the additional resolution in capturing

the intensification of the storm. Vorticity is especially important when considering

features like strong updrafts and convective towers. Pushing this resolution even

further could allow for studies of how these features affect TC intensification and RI

through numerical experiments.

We now focus on the simulation using four levels of refinement. Figure 6.10

shows the first instance we detect of the grid refining to a horizontal resolution ∆x =

∆y = 500 m. This refinement takes place at t ≈ 0.3 hours, near the beginning of

the simulation. The top two plots show areas of higher velocity magnitude (dark

red shades) this corresponds to the criterion for refining to 500 m being met and

the bottom two plots of the figure show how the grid responds to the intensification.

Figure 6.11 shows the first instance we detect of the grid refining to a horizontal

resolution ∆x = ∆y = 250 m. This refinement takes at t ≈ 0.4 hours, still near the

beginning of the simulation. As shown in the top two plots, high values of velocity

magnitude trigger the refinement process and grid adapts (middle two plots). At

this time the high value of velocity magnitude is associated with the occurrence of a

strong updraft, as evidenced by the high vertical velocity values shown in the bottom

two plots of the figure.

Figure 6.12 Shows the 4 level AMR simulation at t = 6 hours and at the

z = 1000 m horizontal plane within the boundaries of (x, y) ∈ [−200, 200] km ×

[−200, 200] km. All the levels of the AMR grid are visible and as we would expect,

the grid is finer near the storm center than it is farther away.
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6.3 Discussion

6.3.1 Criteria for adaptive mesh refinement

The efficiency of AMR depends very closely on the choice of criterion chosen for

refinement. A criterion that is too strict and hard to fulfill can result in insufficient

refinement and lead to less accurate simulations. A criterion that is too lenient

and easy to fulfill can results in less time savings and perhaps unnecessary costs.

This work does not offer an in depth study of different criteria for AMR, but we do

demonstrate how it can affect the efficiency of a simulation. Deciding on a criterion

requires knowledge of specific features that the AMR is meant to capture, velocity

magnitude was chosen for the simulations here as it allows for AMR to detect regions

where intensification takes place. However, it could be argued that this criterion can

only be activated after intensification has already begun taking place and it might not

be able to capture the onset of intensification. Potential vorticity has been studied by

[40] as a potential criterion for tropical cyclone AMR and showed promise. Perhaps a

criterion that combines multiple flow variables should be considered for future AMR

simulations of tropical cyclones.

6.3.2 LES simulations of tropical cyclones with AMR

Two approaches come to mind when thinking of extending tropical cyclone simulations

with AMR to LES resolutions. The first is to use LES resolutions within the entire

domain thereby completely eliminating the need for a PBL scheme. This approach

means the minimum resolution must be high enough to resolve most of the large eddies

at all time. AMR would be used to decrease the dependence on the sub-grid-scale

model and resolve more of the small scale turbulence. Though this method makes use

of AMR, simulating a tropical cyclone over its life cycle would still be very expensive.

Nevertheless, as this approach would not need a typically column-dependent PBL
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scheme, it would make 3D AMR simulations of moist tropical cyclones straightforward

thanks to the non-column microphysics approach [105]. The second approach is much

less expensive and involves using the same coarse base grid tested in this work. To

reach resolutions below 100 m, six levels of refinement would be required. But, this

approach poses a complication as it pertains to modeling vertical turbulent fluxes.

At high resolutions a fully 3D LES turbulence model should be used, while at coarse

resolutions a PBL scheme should be used. It remains unclear at what resolutions

a transition should be made between the two turbulence models. It is also unclear

how exactly a transition between the two models would look. The need for a PBL

scheme also makes the use of 3D AMR difficult given the need for column-based data

structures. Perhaps if a suitable criterion was designed such that all areas of interest

of a tropical cyclone could be resolved at LES resolutions, it might be possible to

circumvent the need for a PBL scheme. In this case the assumption would be made

that the PBL scheme’s contribution to intensification would have to be minimal at

a sufficient distance from the storm center. We have begun experimenting with this

approach for moist tropical cyclone simulations and have obtained some early results.

Figure 6.13 presents a moist tropical cyclone simulation with six levels of adaptive

mesh refinement for a horizontal resolution of up to ∆x = ∆y = 62.5 m. This figure

presents a render of the cloud cover at t = 17.3 hours of a simulation with a cold

start (No observational heating is involved). This work is still only its early stages

and hopefully that an in depth study can be done in the future.
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(a) AMR with two levels (b) Static 1km (c) AMR with four levels

(d) AMR with two levels (e) Static 1km (f) AMR with four levels

(g) AMR with two levels (h) Static 1km (i) AMR with four levels

(j) AMR with two levels (k) Static 1km (l) AMR with four levels

Figure 6.7 Horizontal winds taken at height z = 1000 m above sea level at different
stages of the simulation. The left column presents results for a simulation with two
levels of AMR and a maximum horizontal resolution of 1 km. The center column
presents the results for a static grid with 1 km constant horizontal resolution. The
right column presents the results for a simulation with four levels of AMR and a
maximum horizontal resolution of 250 m.

79



(a) AMR with two levels (b) Static 1km (c) AMR with four levels

(d) AMR with two levels (e) Static 1km (f) AMR with four levels

(g) AMR with two levels (h) Static 1km (i) AMR with four levels

(j) AMR with two levels (k) Static 1km (l) AMR with four levels

Figure 6.8 Velocity Magnitude taken at x = 0 m at different stages of the simulation.
The left column presents results for a simulation with two levels of AMR and a
maximum horizontal resolution of 1 km. The center column presents the results for a
static grid with 1 km constant horizontal resolution. The right column presents the
results for a simulation with four levels of AMR and a maximum horizontal resolution
of 250 m.
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(a) AMR with two levels (b) Static 1km (c) AMR with four levels

(d) AMR with two levels (e) Static 1km (f) AMR with four levels

(g) AMR with two levels (h) Static 1km (i) AMR with four levels

(j) AMR with two levels (k) Static 1km (l) AMR with four levels

Figure 6.9 Vorticity magnitude taken at height z = 1000 m above sea level at
different stages of the simulation. The left column presents results for a simulation
with two levels of AMR and a maximum horizontal resolution of 1 km. The center
column presents the results for a static grid with 1 km constant horizontal resolution.
The right column presents the results for a simulation with four levels of AMR and
a maximum horizontal resolution of 250 m.
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CHAPTER 7

CONCLUSION

This dissertation demonstrated the efficacy of adaptive mesh refinement (AMR) in

accelerating simulations of tropical cyclones during rapid intensification. It showed

that AMR can replicate the results of static grid simulations while significantly

reducing simulation costs. Additionally, the dissertation introduced a novel column-

free method for modeling microphysics in atmospheric simulations, which enables the

use of 3D AMR for simulating tropical cyclones. This approach holds promise for

greater efficiency compared to 2D AMR. Furthermore, the dissertation proposed a

new and efficient method for the Rayleigh damping layer, commonly utilized to damp

outgoing gravity waves in atmospheric flows. Thi1s advancement has the potential

to further enhance the efficiency of tropical cyclone simulations and pave the way for

large eddy simulations of their entire life cycle. This in turn, could lead to a better

understanding of tropical cyclones and their rapid intensification through the use of

numerical experiments.
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APPENDIX A

RIGHT HAND SIDE CONSTRUCTION FOR SEMI-INFINITE

ELEMENTS USING THE LAGUERRE FUNCTION BASIS

The construction of the right hand side for a semi-infinite element with a scaled

Laguerre function basis is presented here. Consider a general system of PDEs, written

in conservation form, on the semi-infinite domain Ω ∀ t = 0, ...Tend:

∂q

∂t
+
∂F(q)

∂x
+
∂G(q)

∂z
= S(q) +V(q), (A.1)

where the state vector q, flux vectors F and G, source vector S, and diffusion vector

V are problem-dependent. We provide the reader with a pseudo-code for the use

of inexact integration in computing the element right hand sides of a PDE on semi-

infinite elements, where rhsLag is the right hand side of a semi-infinite element.

With the element right hand sides determined, the same DSS operation

described in § 2.2.2 can be used to construct the global right hand. Similarly to

applying DSS to the mass matrix, this enforces the continuity of the global solution

and is the only coupling between the finite and semi-infinite domains.
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Algorithm 4 Construction of the right hand side for an element of the semi-infinite

domain

rhsLag = zeros(NLGL, NLGR)

for j = 1, NLGR do

for i = 1, NLGL do

ω = ω(ξi)ω̂(ηj)

dFdξ = dFdη = dGdξ = dGdη = 0

for k = 1, NLGL do

dFdξ = dFdξ + h′k(ξi)F (x(ξk, ηj, e))

dGdξ = dGdξ + h′k(ξi)G(x(ξk, ηj, e))

end for

for k = 1, NLGR do

dFdη = dFdη + ĥ
′Lag
k (ηj)F (x(ξi, ηk, e))

dGdη = dGdη + ĥ
′Lag
k (ηj)G(x(ξi, ηk, e))

end for

dFdx = dFdξ · dξdx+ dFdη · dηdx

dGdz = dGdξ · dξdz + dGdη · dηdz

rhsLagij = rhsLagij − ω|J(ξi, ηj)|(dFdx+ dGdz)

end for

end for
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APPENDIX B

EXTENDING THE LAGUERRE-LEGENDRE SEMI-INFINITE

ELEMENT METHOD TO 3D

This appendix presents the procedure for constructing 3D semi-infinite elements to

help the reader interested in extending 2D semi-infinite elements to three-dimensions.

The extension can be done as easily as extending a standard CG approach on a

tensor product basis. We give an explanation here although this paper is limited to

two-dimensions. Let ξ = (ξ, η, ζ) be the coordinate of a point on the three-dimensional

reference element. Extending Equation (2.38) to three dimensions is done as follows:

ψl(x) = hi[ξ(x)]⊗ hj[η(x)]⊗ hk[η(x)], l = i+ (j − 1)NLGL + (k − 1)N2
LGL, (B.1)

where i ∈ {1, . . . , NLGL}, j ∈ {1, . . . , NLGL}, and k ∈ {1, . . . , NLGR}. It is then

simple to extend Equation (2.7) to three dimensions by adding an additional sum

over the LGL nodes and including their corresponding weights in the product:

∫

Ωe

f(x)dx =

∫

Ωref

f(ξ)|J(ξ)|dξ ≈
NLGL∑

i,j=1

NLGR∑

k=1

ω(ξi)ω(ηj)ω̂(ζk)f(ξi, ηj, ζk)|J(ξi, ηj, ζk)|.

(B.2)

The remainder of the extension, such as the construction of the mass matrix

can be done by following the same approach.
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APPENDIX C

SOUNDINGS FOR TROPICAL CYCLONE SIMULATIONS AND FOR

THE SQUALL LINE AND SUPER-CELL TEST CASES

This appendix presents the soundings used to initialize the background state for the

simulations presented in Chapter 5 and in Chapter 6.

Table C.1 Jordan 1958 [49] Mean Hurricane Season Sounding Used to Initialize the
Background State for the Tropical Cyclone Simulations presented in Chapter 6.

z (m) qv (g/kg) θ (K)

10.0 18.62 299.94

125.0 18.47 299.64

810.0 15.259 295.04

1541.0 11.96 290.07

3178.0 6.729 282.04

4438.0 4.120 274.64

5887.0 2.409 266.54

7596.0 1.119 256.04

9690.0 0.329 240.84

10949.0 0.04 230.74

12417.0 0.01 218.74

14202.0 0.01 205.94

16589.0 0.0 198.74

20727.0 0.0 210.14

22139.0 0.0 215.84

23971.0 0.0 219.14
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Table C.2 Sounding Used for the Squall Line and Super-Cell Simulations of Chapter
5

z (m) θ (K) qv (g/kg) u (m/s) v (m/s) p (Pa)
0.0 303.025079 14.000 12.0 0.0 100000.0
480.0 303.337272 14.000 9.696000 0.0 94697.28
960.0 304.402985 14.000 7.392000 0.0 89609.81
1440.0 305.397187 12.796 5.088000 0.0 84736.79
1920.0 306.306214 10.556 2.784000 0.0 80070.30
2400.0 307.365269 8.678 0.540000 0.0 75604.36
2880.0 308.550318 7.104 0.0 0.0 71334.51
3360.0 309.845257 5.788 0.0 0.0 67255.79
3840.0 311.235047 4.691 0.0 0.0 63362.95
4320.0 312.708238 3.777 0.0 0.0 59650.49
4800.0 314.255743 3.020 0.0 0.0 56112.80
5280.0 315.869985 2.396 0.0 0.0 52744.15
5760.0 317.544512 1.885 0.0 0.0 49538.82
6240.0 319.273784 1.469 0.0 0.0 46491.09
6720.0 321.052868 1.134 0.0 0.0 43595.27
7200.0 322.877588 0.866 0.0 0.0 40845.73
7680.0 324.744235 0.653 0.0 0.0 38236.93
8160.0 326.649534 0.487 0.0 0.0 35763.41
8640.0 328.590559 0.357 0.0 0.0 33419.84
9120.0 330.565013 0.259 0.0 0.0 31200.99
9600.0 332.571020 0.184 0.0 0.0 29101.75
10080.0 334.606102 0.129 0.0 0.0 27117.17
10560.0 336.668475 0.088 0.0 0.0 25242.39
11520.0 340.869535 0.038 0.0 0.0 21803.59
12000.0 343.712008 0.026 0.0 0.0 20232.15
12480.0 350.647306 0.026 0.0 0.0 18763.71
12960.0 358.453724 0.029 0.0 0.0 17401.15
13440.0 366.433620 0.031 0.0 0.0 16138.11
13920.0 374.591035 0.034 0.0 0.0 14967.29
14400.0 382.929618 0.037 0.0 0.0 13881.93
15360.0 400.170355 0.044 0.0 0.0 11942.99
15840.0 409.081924 0.049 0.0 0.0 11078.24
16320.0 418.191751 0.053 0.0 0.0 10276.53
16800.0 427.504224 0.058 0.0 0.0 9533.23
17280.0 437.023716 0.063 0.0 0.0 8844.07
17760.0 446.755038 0.069 0.0 0.0 8205.09
18720.0 466.871821 0.083 0.0 0.0 7063.24
19200.0 477.267160 0.091 0.0 0.0 6553.82
19680.0 487.891998 0.094 0.0 0.0 6081.42
20160.0 498.742611 0.094 0.0 0.0 5643.35
20640.0 509.643457 0.094 0.0 0.0 5237.00
21120.0 520.544304 0.094 0.0 0.0 4859.92
21600.0 531.445151 0.094 0.0 0.0 4509.85
22560.0 553.246845 0.094 0.0 0.0 3882.66
23040.0 564.147692 0.094 0.0 0.0 3601.93
23520.0 575.048539 0.094 0.0 0.0 3340.96
24000.0 585.949386 0.094 0.0 0.0 3098.30
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