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by

Yassine Tissaoui

The increasing frequency and intensity of tropical cyclones (TCs) due to climate
change pose significant challenges for forecasting and mitigating their impacts.
Despite advancements, accurately predicting TC rapid intensification (RI) remains
a challenge. Large eddy simulation (LES) allows for explicitly resolving the large
eddies involved in TC turbulence, thus providing an avenue for studying the
mechanisms behind their intensification and RI. LES of a full tropical cyclone is
very computationally expensive and its accuracy will depend on both explicit and
implicit dissipation within an atmospheric model. This dissertation presents two
novel numerical methodologies with the potential to improve the efficiency of tropical
cyclone LES in the future. The first is a pioneering non-column based implementation
of the Kessler warm rain microphysics parametrization, a method which would
allow for the use of three-dimensional (3D) adaptive mesh refinement (AMR) in
the simulation of moist tropical cyclones. The second is an implementation of
Laguerre-Legendre semi-infinite elements for use in the damping layers of atmospheric
models, a method which was shown to be capable of improving the efficiency of
benchmark atmospheric simulations. Finally, the dissertation presents a study of
two-dimensional (2D) AMR applied to simulations of a rapidly intensifying dry
tropical cyclone and shows that AMR is able to accurately reproduce the results

of simulations using static grids while demonstrating considerable cost savings.
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To climbing, a sport where falling down and getting
back up is expected, encouraged and also necessary (how
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mental scrapes and bruises. [ still love climbing and
I love science, the challenge was always part of the appeal.
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CHAPTER 1

INTRODUCTION

It is a matter of fact that the climate is warming and it is expected that this will
lead to an increase in the number of highly intense weather events across the globe.
An example of such events are tropical cyclones for which the most intense season
on record was in 2020 only a few years ago. Even with modern forecasting systems
recent examples such as Hurricane Harvey in 2017, Hurricane Micheal in 2018 and
Hurricane Tan in 2022 show the devastation that tropical cyclones can leave in their
wake. The warming climate makes tropical cyclones more likely to occur, more likely
to cause more intense flooding rainfall, and more likely to progress deeper inland
which can cause further devastation through the appearance of tornadoes even after
the tropical cyclone itself clears [67, 58, 57].

With these potential disasters becoming more probable it is important to be
appropriately prepared and to respond to incoming tropical cyclones as effectively
as possible. Preparation and timely evacuation has the potential to save many lives
and prevent billions of dollars in damages. To this end, accurate forecasts of tropical
cyclone track, storm surge, intensity and rainfall is of the utmost importance. One of
the most significant issues with current and past operational weather forecast models
is the ability to predict tropical cyclone rapid intensification (RI). This area of research
had been stagnant for a significant length of time [69, 89], and according to DeMaria
et al., (2014) [18] the ability to forecast RI was completely absent from deterministic
operational models up to around 2015. Current models do present the ability to

forecast rapid intensification, but this phenomenon still remains under-predicted [17].



Tropical cyclone intensification and RI, depend not only on large scale environ-
mental factors such as high sea surface temperatures, but also on a multitude of
dynamical and physical processes occurring over a range of scales extending from
tens of kilometers to a few meters. Intensification is also highly dependent on the
latent heating generated from the phase changes occurring in the moist atmosphere.
Tropical cyclones are affected by vortex Rossby waves [32, 36, 108, 80], barotropic
instabilities along the eyewall and the turbulence caused by them [94, 62, 39, 31, 16],
boundary-layer roll vortices [35, 22|, air-sea interaction [114, 20|, eyewall replacement
cycles [113, 46] and deep convective bursts [90, 77, 38, 32]. Three dimensional deep
rotating convection in tropical cyclone intensification has drawn special interest from
the tropical cyclone modeling community [33, 78, 84, 86, 88, 79], with some recent
studies highlighting its effect on intensification[88, 33, 78]. Tropical cyclone intensity
is also affected by planetary boundary layer (PBL) turbulence. While energy can be
dissipated by surface friction and turbulent eddies in the PBL, recent work has shown
that energy can also be ”backscattered” through coherent turbulent structures in the
hurricane boundary layer [104]. Furthermore, turbulence in the eyewall region has
been shown to significantly impact intensification [88, 91, 21, 12]. Most simulation of
tropical cyclones are done with horizontal resolutions around 1 — 2 km which makes
these simulations highly sensitive to the turbulence parametrizations being used and
can lead to potential inaccuracies [42, 10].

The simplest approach to avoid relying on parametrizations is to increase the
span of scales being explicitly resolved by the numerical model. To this effect,
performing high-order large eddy simulation (LES) of TCs with grids of around
100 m resolution would allow for explicitly resolving the large eddies involved in
TC turbulence and thus explicitly take into account more of the dynamics involved

[11, 64]. These types of simulations are very computationally demanding particularly



when done at resolutions less than 100 m and when they have been performed in the
past it’s only over short periods of time, with some groups performing LES on the
entire inner-core of a TC (50 km radius or larger) [91, 47, 34].

Two main challenges come to mind when thinking of simulating an entire
tropical cyclone domain at LES resolutions: The expense of performing the
simulation, and having its results be as accurate as possible. This work focuses
on studying and developing numerical methods that can improve the efficiency of
atmospheric models in general, but with a special interest given to their applicability
in speeding up the simulations of hurricanes.

Simulations of tropical cyclones have been shown to be sensitive to the implicit
numerical dissipation (IND) of the models being used [29, 37]. This dissipation
primarily stems from the order of the discretization being used and causes simulations
of tropical cyclones to exhibit weaker responses to asymmetric heating perturbations
when compared to less dissipative models. As such, this work uses high order Galerkin
spectral elements methods to discretize the compressible Euler equations in space.
These methods’ ability to extend to arbitrarily high-order while possessing minimal
dissipation and dispersion errors, and their scalability and efficiency on massively
parallel architectures [2, 1, 3, 71] make them a suitable testing bed for developing
numerical techniques for tropical cyclone simulations.

Adaptive mesh refinement (AMR) is a powerful tool with the potential to
improve the time to solution for otherwise much more costly simulations. AMR
also allows for obtaining the desired resolution where it is required by making the
computational grid finer around specific flow features characterized by predefined
criteria. AMR in atmospheric modeling has existed since the seminal works of
Berger and Oliger [8], Skarmarock et al., (1989) [99] and Skamarock and Klemp

(1993) [98] proposed adaptive meshes for hyperbolic equations with applications



to atmospheric problems. Bacon et al., (2000) [4] developed the first operational
model that used horizontally adaptive meshes and used to successfully simulate
tropical cyclone storm tracks. AMR has been shown to be effective for simulations
of the shallow water equations [7, 65, 76] and AMR has been tested with Galerkin
methods for meteorological applications [81, 60, 15]. Recent advances with AMR
have allowed for improving and unstructured meshes have allowed for improvements in
modeling atmospheric flows around topography [115, 66]. In terms of tropical cyclone
simulations Hendricks et al., (2016) [40] demonstrated that idealized simulations of
tropical cyclones could be sped up by 4 — 15 times using adaptive mesh refinement
with a shallow water spectral elements model.

AMR would make it possible to simulate a large tropical cyclone domain at lower
costs while obtaining LES resolution in regions of interest. To this effect, it would
be advantageous to be able simulate tropical cyclones with three dimensional AMR
which allows for both the horizontal and vertical resolutions in different areas of the
domain to adapt over time. However, a challenge that prevents us from being able to
do this is that more realistic tropical cyclone simulations require a microphysical
parametrization for moisture and these parametrizations require the presence of
vertically structured grids with coherent column data structures whereas 3D AMR
would generate vertically non-conforming elements and make a column data-structure
impossible on the native dynamics grid. These parametrizations have relied on grids
with column-based structures for their implementation since the first microphysical
parametrizations were utilized for early simulations of clouds and precipitation in the
1960s and 1970s [53, 102, 52, 109]. As part of this dissertation the first non-column
based implementation of Kessler microphysics was developed. This novel approach

which was first introduced by the author and collaborators in [105]. This approach



allows for solving moist atmospheric problems on unstructured grids and was tested
on thunderstorm problems.

While not directly tied to AMR, another challenge to the efficiency of
atmospheric simulations in general and tropical cyclone simulations in particular
is the need for damping layers to prevent the reflection of outgoing waves (gravity
waves especially). This approach involves augmenting the computational domain
by adding absorbing layer designed to damp these outgoing waves towards a
reference state [19, 55, 54, 63]. This presents a significant drawback in terms of
computational efficiency since it enlarges the computational domain outside the
region of interest for a given simulation. This cost is further compounded in large
multidimensional high-resolution problems. As a cost-effective approach to Rayleigh
damping, Benacchio and Bonaventura [5] introduced a scaled Laguerre spectral
collocation approach to prevent the reflection one-dimensional(1D) shallow water
waves. This approach was extended to 1D discontinuous Galerkin spectral elements by
6], then to two dimensions for the advection-diffusion equation in [107] and to general
hyperbolic problems in [106]. As part of this dissertation, this approach is extended
to the compressible Euler equations using continuous Galerkin spectral elements on a
Laguerre-Legendre basis and demonstrates the ability of this methodology to be cost
effective for benchmark atmospheric problems.

Finally, a study of the application of 2D adaptive mesh refinement to a dry but
rapidly intensifying tropical cyclone is presented in this work. 2D AMR is shown
to be able to reproduce the results of much more costly static grid simulations at a
fraction of the computational cost. AMR is also demonstrated to be able to effectively
refine around areas of interest in tropical cyclone simulations and detect important

flow features like large intense updrafts which could play a role in intensification.



The remainder of this dissertation is organized as follows: Chapter 2 describes
the continuous and discontinuous Galerkin methods as well the Laguerre-Legendre
semi-infinite element approach. Chapter 3 describes the different atmospheric models
used in this work and highlights the differences between them. Chapter 4 shows
the potential improvements in efficiency from using Laguerre-Legendre semi-infinite
elements for the damping layers of atmospheric flows. Chapter 5 showcases a novel
method for the simulation of precipitating atmospheres without the need for column
based data structures and presents its results for simulations of squall lines and
supercells. Chapter 6 presents adaptive mesh refinement and highlights its ability to
reproduce accurate simulations of hurricanes at a fraction of the cost. This is followed
by a conclusion. Appendix A presents the pseudo code to compute the element
right-hand side on semi-infinite elements, Appendix B provides a description of how
to extend the Laguerre-Legendre semi-infinite element method to three dimensions,
and Appendix C presents two soundings, the first of which is used for the tropical
cyclone simulations and the second of which is used for the squall line and supercell

simulations.



CHAPTER 2

SPECTRAL ELEMENTS METHODS

The work being presented here relies heavily on the spectral elements method for the
spatial discretization of the governing equations. As such, this chapter presents the
reader with a brief overview of the method and outlines how to derive the spectral

element approximation for a given system of partial differential equations (PDEs).

To make the description of the numerical method easy to follow, let us consider a
generic equation of the form:
of

E—FG(f) =0, (2.1)

where f is the unknown variable and G is a linear functional that may contain first
and second derivatives of f. If the equations to be solved are written in conservation

form, then G is the divergence of a flux.

2.1 The Spectral Elements Method on Finite Domains
Let us subdivide the domain €2 into a set of conforming ! N, hexahedral elements Q.

of arbitrary orientation to create the discrete domain Q" as

O~ Q= 0. (2.2)

Figure 2.1 shows examples of a structured and unstructured grid in 2D. Using a
fully unstructured grid means that structures such as the rows or columns that are

seen on the left side of Figure 2.1 are no longer present. Let us define the reference

IThe condition of conformity is not strictly necessary, although it simplifies the discussion
of the method. For results with non-conforming grids, the reader is referred to, e.g., [59].



element Q,.r: (&,1) € [-1,1]? in 2D and (£,7,¢) € [-1,1]® in 3D. Regardless of
whether the mesh is structured or unstructured, let us introduce a mapping from a
generic element in the global system of coordinates, i.e., (z,y) in 2D and (z,y, z) in
3D, to the reference element. Let J be the Jacobian matrix of this mapping. The

construction of the Jacobian for a 3D mapping is given in Equation (2.3)

oz Oy 0z
0 0f 0f
= |9z Oy 0z
Oz dy 0z
o¢ 8¢ ¢

Figure 2.1 Examples of a structured (left) and an unstructured grid (right) made of
quadrilateral elements.

Let h;; i =1,..., N + 1, be the Lagrange polynomials of degree N:

L (1-&)Py(9)
N(N +1) (£ = &)Pn(8)’

hi(f) =

where Py is the Legendre polynomial of order N, and P}, its derivative evaluated at
the point ¢&. The polynomials in multiple dimensions are built via a tensor product
of the 1D bases, as shown below. The remainder of this section is written for a 3D

case.



For every element, we seek an approximation f" of a variable f of the form:

N+1)3

(
et =D w@h), (2.4)

where € = (&, 7,(), fl are the expansion coefficients, and 1; are nodal basis functions

defined as tensor products of the Lagrange polynomials

U= hil§(X)] © h[n(x)] @ hi[¢(x)], [ =i+ 1+j(N+1)+ k(N +1)(N+1), (2.5)

where x = (z,y,z). The Legendre-Gauss-Lobatto (LGL) points are used as the
interpolation points on each element. LGL points are not equidistant and represent

the solutions of the following equation:

/

(1=€)Py() =0,

where Py(x) is the Legendre polynomial of order N. These polynomials and their

first derivative are computed recursively via

P(§) =1 (2.6a)

Pi(§) =¢ (2.6b)

Pie) = 2o 2ePa(€) - A Pa(e), k22 (2:60)
PL(E) = (2k — D)P1(€) + PlLo(©). (2.64)

See, e.g., [26, 50]. Finally, the corresponding quadrature weights are given by:

w(&) = N(N2+ 1) {PN1<&)]2




The weights are used to approximate the integrals with a Gauss quadrature rule

of accuracy O(2N — 1). Over a generic element €., this is done as follows:

N+1

| reix= [ @@ 3 ol € GGl
Qref i,5,k=1
(2.7)
where |J| is the determinant of the Jacobian matrix.

To approximate the solution of Equation (2.1), let (-,) be the Legendre inner

product on a given element (2,:

(f,9)e = g f(x)g(x)dx

If in Equation (2.1) we replace f with f* as defined in Equation (2.4), we will obtain

the following residual:
ofh

R=—"—
ot

+G(f"), (2.8)

which is orthogonal to the expansion functions in Galerkin methods, i.e.;:

(R,r)e =0, k=1,..., (N +1)3 (2.9)

Taking Equation (2.9) into account, let us now write an approximation of Equation (2.1)

on each element ). as follows :

[ o002 i~ [ 6 enian, =1 @10

Let us first consider the case where G(f) = V - f, where V = <aﬁ aﬁ g) and
f=(f1 1)

We can use the polynomial expansion to write Equation (2.10) as follows:

(N+1) afe ) (N+1)? R
/ vi(x Z ;(x =- o i(x) 2 Vi (x)£(t)dx, i=1,...,(N+1)?,
j=

(2.11)

10



where the superscript e is used to denote that the expansion is defined on an element
basis and £7(t) = (f£(¢), f5(t), f5(t)). We can now define the mass matrix M® and

the differentiation matrix D¢ on each element through their components:
— [ weouieaix = [ wi(©ue)Ie)de (212)
Qe Q'r‘ef

Dj; = /Q Pi(x) Vi (x)dx = / i(&) (Ve (€)I1(E)) 13(&)|dE, (2.13)

Qref

with 4,7 = 1,...,(N + 1)® and V, = (6%, a%v 8%). By approximating the integrals

with a quadrature rule, we obtain:

N+1 N+1N+1

~ Z Z Z w(fk, Nm, Cn)wl(&w s Cn)% (&C? N, Cn)"]<€k7 Tim, Cn)lv (214>

k=1 m=1 n=1
N+1 N+1 N+1

D5~ Y DS W s Go) i (ks o) V5 (€ s G| T (s D G| (2.15)

k=1 m=1 n=1

Remark 2.1.1 The difference in notation between M and Df; is due to the
components of the mass matriz being scalars while those of the differentiation matrix

are vectors.

Note that Vd}] (é-kJ Thms C’n) = Vﬁw] (gkn T Cn)’]_l(éka s Cn) Then7 the matrix
form of Equation (2.11) is:

IO
M ot

—Dy; - £5(t), i j=1,...,(N+ 1) (2.16)

Let us now consider G(f) = V-f — V2f in Equation (2.1), where V? =V -V.
In this case, Equation (2.10) becomes:
(N+1)? (N+1)3
8fe
X3 il / o) X I Bty

N+1)3

+/Qe¢iv. ; Vo (x)fe) | dx,  (2.17)
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where 4,7 = 1,...,(N + 1)3. After integrating by parts the second term on the

right-hand side, we can rewrite Equation (2.17) as

e afe(t) e fe =
Mz] 515 = - Dij ) fj( 1/)11’1 Z V%
Te
N+1 R
- | Vi) > V) i) i, j=1,...,(N+1)°,  (2.18)
e j:1

where I'. represents the element boundary and n® is the boundary normal vector.
For the sake of brevity, let us assume that the boundary term, i.e., the second term
on the right-hand side in Equation (2.18), vanishes at all element boundaries. We
refer the reader to, e.g., [26] and [51] for a detailed explanation of how this term is
handled when it is not zero, as is the case for DG. Under the assumption of vanishing

boundary terms, Equation (2.18) becomes:

Mfaaf;ft) =D £5(t) — | Vi(x) - Vib(x)dxfy, i,5=1,...,(N+1)° (2.19)
Qe

We define the Laplacian element matrix L€ through its components as follows:

L = / Vii(x) - Vi (x)dx = / (Vetu(€)T1(€)) - (Vews (6)37H(€))|3(€) |
(2.20)

= / TT(€) (Vetn(€))” (Veth; (€) I1(E)|I())de,

where the superscript 7' denotes the transpose operator and 4,7 = 1,..., (N + 1)3.
By approximating the integral in Equation (2.20) with a quadrature rule, we obtain:

N+1N+1 N+1
LG Y 0> (G Mms Go) Vil ks s Gn) = V5 (€ s G| T (€ 1y G- (2:21)

k=1 m=1 n=1

Then, we write Equation (2.19) as

12



L Ofs(t)
M ot

o e pe e fe . 3
= —Dy; - £5(t) — L§; f5(t) i, 5 =1,..., (N +1)°. (2.22)

Next, we present briefly how the global solution is calculated depending on the
choice of continuous Galerkin (CG) or discontinuous Galerkin (DG) spectral elements.
The reader interested in more details on Galerkin spectral element methods is referred

to, e.g., [26, 41, 61, 97].

2.1.1 Continuous Galerkin
Let M, D, and L be the global mass matrix, global differentiation matrix, and global
Laplacian matrix. These matrices are, assembled using Direct Stiffness Summation

(DSS):

Ne Ne Ne
M=AM, D=AD L=AL
e=1 e=1 e=1

€ is the element

where M€ is the element mass matrix from Equation (2.14), D
differentiation matrix from Equation (2.15), and L¢ is the element weak Laplacian
matrix from Equation (2.21). Since the same set of Legendre-Gauss-Lobatto (LGL)
points are used for both interpolation and integration, the global mass matrix M
is diagonal and thus easy to invert. This is only the case if we integrate using
N + 1 LGL points as shown in Equation (2.7). This type of integration is known as
inexact numerical integration, since the number of LGL quadrature points necessary
to integrate a polynomial of order 2N (such as is the case for the mass matrix) up
to machine precision is N + 2. We choose to sacrifice accuracy in favor of obtaining
an easily invertible mass matrix, which allows us to save considerable computational

time. Additionally, it has been shown that when using polynomials of order N > 4

this type of integration has a minimal impact on accuracy, with the impact decreasing

13



as the polynomial order is increased [26]. It should be noted, however, that no
global matrix is actually constructed (except for the diagonal mass matrix); the
differentiation and Laplacian global matrices are never stored, only the action of
these matrices on the solution vector is computed (see, e.g., [26]). The global form

associated with Equation (2.1) for G(f) = V - f + V?f can be written as:

of" “1/eh h
o + M (Df" + L") =0, (2.23)

where f” is a global vector containing the nodal values of f".

2.1.2 Discontinuous Galerkin
For this kind of approximation, the global matrices are not constructed since an
element communicates only with the neighboring elements through inter-element
numerical fluxes. Thus, we write a local approximation of Equation (2.1), instead of
a global one as in Equation (2.23).

Let us apply integration by parts to the entries of the differentiation matrix:

Dj; = / Gi(x) Vi (x)dx = [ i(x);(x)nFVdQ, — / V- (x)h; (x)dx, (2.24)
Qe e Qe

where i,j = 1,..., (N +1)3, n¥¢ is the outwards facing normal of inter-element face
F of the element e. The first term of the right-hand side in Equation (2.24) represents
an inter-element flux or a boundary flux, if the element is a boundary element and
it enforces the continuity of the global solution. Notice that in a CG discretization
this term vanishes at the interior faces (but not along boundary faces) as continuity

is enforced via DSS. We define the corresponding element flux matrix F¢ as follows:

Ffj = /F i (x)1; (x)n(F’e)dX
N; N+1N+1 (2-25)

~ Z Z Z W& phom ) Vi (€ ppom )V (€F,km)‘J(€F,km)|n(F’e),

F=1 k=1 m=1
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whered,j =1,...,(N+1)?, Np is the number of faces for element e and £, denotes
an integration point on the face F' of the element. The second term on the right-hand
side in Equation (2.24) is called the weak differentiation matrix and is approximated

as follows:

D¢, = /Q Vi (x)1);(x)dx
N+61 N+1N+1 (2.26)

~ Z Z Z w(Sk? Mm, Cn)"](&ﬁ Thms Cn)val<€k7 Thms Cn)w] (€k7 Nm, Cn)a

k=1 m=1 n=1

where 4,7 = 1,..., (N + 1)3.
We can now rewrite Equation (2.22) for a DG discretization taking G(f) =

V - f + V2f, which holds on each element as follows:

afe(t)
ot

e - Ne  pe e * e fe _ . 3
Mij __Dzjf](t)+Fzgfj(t)_ngf](t)_Ou Zaj_]-77(N+1) )

where f* represents the inter-element interface values of fje. We define f* as follows:

f7 = C(fy) —P(f})

where P is a penalty term and the central term C is defined as follows:

= (g(f7™) + 9(f7))/2,

Q
<3
|

where L and R refer to the left and right sides of a given inter-element interface.
The function g is dependent on the first derivative component of G in Equation (2.1)
where, in this case, G(f) = V - f + V*f and g(f) = f. The definition of P depends
on the choice of numerical flux. The simplest and most commonly used flux for DG

is the Rusanov flux [26] and [72], which gives:
P(f5) = 0" u,(f77 = f75)/2,
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QF

Figure 2.2 Example of a finite spectral element domain QF with N = 16 connected
to a semi-infinite element domain Q° with Ng = 4.
where wy is the wave speed across the interface, which depends on the specific equation

to be solved. This gives the following equation for f*:

1 7~ ~ N ~
= (B T ) =1L (N 22

J J

f

J

where f']e = ( Aje, A;?, fje). We note that in the DG formulation for G(f) = V - f + V*f
the boundary term in Equation (2.18) does not vanish and needs to be evaluated.
Such term is treated in a similar fashion as the boundary term in Equation (2.24).

For the details, we refer the interested reader to [26, 41].

2.2 A Galerkin Method for Modeling Semi-infinite Spaces
It is also possible to use the Galerkin methodology to discretize semi-infinite domains.
In our case, this is done using semi-infinite elements. An example of this type of
element is presented in Figure 2.2 The semi infinite domain uses both a different set of
basis functions and integration points than its finite domain counterpart. First, define

the Laguerre polynomials using their three term recurrence relation [96, Equation
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(3.3)]:

Lo(€) = 1 (2.28a)
L) =1-2 (2.28D)
() = 2 o - e ez (2.95¢)

Additionally the first derivative of the k-th Laguerre polynomial is [96, Equation
(3.5)]:

Li(§) = = ) _ Lu(&). (2.29)

The Laguerre polynomials are orthogonal on the semi-infinite interval [0, 00)
with respect to an exponentially decaying weight. This orthogonality property can

be written as follows:

| r@ni@etas = ,%5> 0 (2.30)
0

The Laguerre-Gauss-Radau (LGR) points are the roots of {L’y (&) for a fixed
integer N. The LGR points {; } =0 v will be used to construct a nodal spectral element
on the semi-infinite elements. We compute the LGR points using the Eigenvalue
Method [28, 96|, which forms a tridiagonal matrix using the coefficients in the three-
term recurrence relationship Equation (2.28) and solves an eigenvalue problem. This
method is stable and robust at very high-order and we have tested it for orders up to
60. Following [95], the scaling factor A adjusts the LGR nodes, such that the physical
nodes on the semi-infinite element are {z}X+! = \N{¢}¥+!. This scaling factor allows

us to adjust the effective length of the semi-infinite element for a given problem.
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Next, we construct the Lagrange-Laguerre interpolating polynomials associated

.....

Lag _ gLIN-‘rl(g)
h ) = N D () — &) (2:81)

We can then write their derivatives as follows:

/

Ly+1(&) e .
Lyy1(§)(&—¢;) ifi# ]

() = ifi=j+#0 (2.32)

N =

ifi=j=0.

N
[ 2
We now introduce the scaled Laguerre function (SLF) [95, 96, 5]

Li(&) = e L (%) , (2.33)

where A is a scaling factor and represents a characteristic length. Note that this
notation is equivalent to the notation in [5] for A = 87!. Applying Equation (2.30)
yields

~

| B@Lnte = rgy iy 2o (2.31)

indicating that the SLFs form an orthogonal basis on L?*(R*). Each SLF decays
exponentially as £ — oo for any A > 0. This property is illustrated in figure 2.3, which
shows the first six Laguerre functions j}l(f) for A = 1. Thanks to this property, the
SLFs Equation (2.33) are ideal for approximating functions in an absorbing layer; the
layer damps any outgoing perturbations by enforcing the exponential decay property.

Remark: We limit the use of damping terms to ©° and essentially overlap
the sponge layer with the semi-infinite elements. In the results, we will describe the
damping coefficients used for each test and we will show that minimal reflection can

be obtained while relying on this approach. =~ We can now construct the Lagrange-
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Figure 2.3 First six scaled Laguerre functions (SLFs) specified by Equation (2.33).

Laguerre interpolant associated with LGR points {ﬂ;ag o such that ibfag (&) = dij,

and

hes(e) = SR o). (2.35)

Their derivatives are:

.

A Lnsi(&) e .
Lny1(&)(&—¢&) iti#

B (&) =40 ifi=j+#0 (2.36)

_ N+1

. if i =j=0.

\

The quadrature weights {@&(&;)}Y, associated with the LGR points are defined as

exp(&:)

(N +1D)[Ln(&))* (2:87)

w(&) =

Let us now consider the reference 2D semi-infinite element Q2. such that it is

only semi-infinite in the direction of the outgoing waves. In its finite direction, the
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LGL nodes and their associated bases are used, and in its semi-infinite direction the
LGR nodes and their associated SLF bases are used. As such, for an integration
point & € Qfef, we can write & = (£161,Mzgr). The nodal basis functions 97 on
the semi-infinite element are the tensor product of the 1D Lagrange polynomials
associated with the LGL nodes and the 1D Lagrange-Laguerre interpolating functions

associated with the LGR nodes giving us the following:

~

U (X)as, = hil€(X)] @ hy[n(x)], 1=i+1+j(Neew), (2.38)

ref

where : € {1,...,Nrar}, 7 € {1,..., Negr}, Nigr is the number of LGL nodes and
Nigr is the number of LGR nodes. This makes it so that Equation (2.7) remains
valid on semi-infinite elements provided the appropriate substitutions of nodes and

weights is performed.

2.2.1 Constructing element matrices

In this section, we present the reader with a template for how an element matrix
is constructed for elements of the finite and semi-infinite domains. In what follows
we will discuss the construction of the mass matrix. We refer the reader to [26] for
constructions of the differentiation or laplacian matrices on the finite domain. The
extension of these constructions to the semi-infinite domain is done similarly to the
construction of the mass matrix. Let us first define every component of the mass

matrix on a given spectral or semi-infinite element €, € Q" = QF U Q°:

ng:/ %(X)%’(X)dx:/ Vi(§) 1 (E)|I(E)[dE Vi, j =1,..., NeN,y,  (2.39)
Qe Qref

where 1); is defined using a generalized form of Equation (2.5) as follows:
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hi(x) = hil§(x)] ® hy[n(x)], T=i+(—1)Ny, (2.40)
and where,

_ Qf.; Niar, Near, hy if Q. € QF
Qe Ney Ny oy = . (2.41)

N
08 ;, Niar, Neor, hE% if Q. € Q5

By approximating Equation (2.40) using an inexact quadrature rule (i.e., the

quadrature and interpolation points coincide) we obtain the following:

Ne Ny
ij = Z Z w(§k7 nm)qu)l(fk) nm)wj (é.ka T]m) |J(§k7 77m)|7 (242)
k=1 m=1
(ks 1hm) = we (&) (Nm), (2.43)

w,w  if Q. e QF
We, Wy = : (2.44)

W& ifQ, €08

Nrcr, Negr  if Q. € QF
Ne, N, = (2.45)

Nicr, Nier  if Q. € Q°

\

Next, we present the pseudo-code for constructing the mass matrix of an element
in the semi-infinite domain using inexact integration. Let us define M*% as the mass

matrix of an element of the semi-infinite domain, n*“¥ as the LGR nodes, and ¢ as

the LGL nodes:

2.2.2 Direct stiffness summation
In order to couple the element local Galerkin expansion given by Equation (2.4)

between adjacent elements, we need to construct a direct stiffness summation (DSS)
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Algorithm 1 Construction of the mass matrix of a semi-infinite element

L
M* = zeros(NrcrNrer, NearNLGr)

for [ = 17NLGR do
for k=1, N do

@ = w(&k)w(n )

x = (&, nir)

for j =1,Npgr do
for i =1, Nygr do
J=i+4+(—1)(Nrar)
My = My + 0 ()9 ()13 (&, 0 ")
end for
end for
end for

end for

operator. The DSS operator enforces the continuity of the global solution by averaging
the state variable on nodes shared by multiple elements. As shown in the next two
paragraphs, this DSS operator couples the finite domain Q2 and the semi-infinite
domain Q illustrated in Figure 2.2 in a straight-forward manner.

First, we must define mappings from local elements to global nodes. Let I =
H¥(e,4) be the map from the local element-wise node i on the e-th finite element QF
and let I = H¥(e,i) be the corresponding map from the e-th semi-infinite element
Q5. For HY | i runs from 1 to N2, while for H®, i runs from 1 to Nygr Nrgr. These
mappings contain the connectivity information in the finite and semi-infinite grids,

respectively.
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We can now illustrate how the global problem is assembled by considering the
mass matrix. Let MY{ be a local diagonal mass matrix corresponding to element
e (either finite or semi-infinite). We construct the global mass matrix via a DSS
operator

Ne
M, = \ Mg, (2.46)
e=1

where the DSS operator /\é\il consists of a local-global mapping and appropriate
summation. For additional details, see Section 5.8 in [26] or [51] for the parallel MPI
implementation. This DSS operator may be decomposed into two independent DSS
operators, the first over the collection of N/ finite elements, and the second over the
collection of N* semi-infinite elements via
Ny N
My =| A\ M A [/\ Mf;] . (2.47)
er=1 es=1
Hence, the DSS operation consists of three stages: 1) perform a DSS over the finite
domain QF using the local to global mapping HY', 2) perform a DSS over the semi-
infinite domain Q° using the mapping H°, and finally 3) DSS the nodes shared by
both the finite and semi-infinite domains Qf N Q° using both H¥ and H®. Since
the only coupling between the finite and semi-infinite grids is via this final DSS ope

rator, the proposed semi-infinite approach may be retrofitted to an existing spectral

element solver with only minor modifications.

Low pass spectral filter To control unresolved grid-scale noise and aliasing, low-
pass spectral filters are typically used with the spectral element method (SEM) [Sec.
18.3][26]. Spectral filters employ a three-step process to damp/remove unphysical
high-frequency components: 1) the element-local nodal solution is transformed into

modal space, 2) a low-pass filter is applied in modal space, 3) the filtered modal
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representation is inverse transformed to nodal space. The nodal to modal transform
requires defining a set of modal basis functions. As discussed in Section 3d of [27],
the low-pass filter should not violate the continuity requirement of SEM. One way to
enforce this is by choosing modal functions such that most of the modes are zero at
the element boundary. For a 1D element using LGL points, an appropriate choice is
Pr(§) = Py(§) for k=0 or 1 and ¢4 (§) = Fi(§) — Pr—2(§) for k > 2. Since ¢y (£1) =0
for £ > 2, these higher-order modes do not effect the boundary of the element, and
hence may be damped by an appropriate filter function. The resulting transform (or
Legendre) matrix is given by Equation (31) in [27].

For a 1D semi-infinite element using LGR points, a similar choice of modal
functions is ¢o(&) = e7¢/2 and ¢y (£)e /2 [L(€) — Ly_1(€)]. Since Ly (0) = 1 for all
k > 0, we have ¢;(0) = 0 for k£ > 1. The Legendre matrix is then constructed by
evaluating ¢ (¢;), where §; are the LGR points. Since we employ a tensor product of
LGL and LGR points within semi-infinite element, we construct a corresponding 2D
tensor product of modal functions in order to transform the nodal representation. A
Boyd-Vandeven filter [9] is applied to the modal representation, and then the solution

is inverse transformed to nodal space.
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CHAPTER 3

GOVERNING EQUATIONS

3.1 Problem Definition
Moist air is a mixture of dry air with density p, water vapor with density p,, and
suspended cloud condensate with density p.. The mass fractions of water vapor and
cloud water are defined as ¢, = p,/p and q. = p./p, respectively. In addition, let p,
be the rain density and ¢, = p,/p the rain mass fraction. Warm rain is assumed (no
ice formation or precipitation take place). We denote by ¢, and ¢, the specific heat
capacities at constant pressure and volume for dry air. The specific gas constants of

dry air and vapor are denoted by R, and R, and set e = &4 Let:

RU
T 7]
0=(1+eq)=, withr= (£> " (3.1)
™ Ps

be the virtual potential temperature, where 7' is the absolute temperature and p, =
105 Pa is the ground surface pressure. Finally, let u be the wind velocity.

We consider a fixed spatial domain €2 and a time interval of interest (0,t¢].
Balance of mass, momentum, and potential temperature for moist air in terms of

prognostic variables p, u, and 6 in conservative form are given by:

dp

a_|_v_<pu)20 inQX(O,tf], (32)
0(5:) LV (pu@u) = —Vp + pb in Q x (0, ], (33)
6((;;9) +V - (pfu) = pS, in Q x (0,tf]. (3.4)

where ® denotes the tensor-product operator (i.e., the Kronecker product) and b is

the total buoyancy. We have b = —(1 + €q, — q. — qr)gE, where g = 9.81 m/s? is the
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magnitude of the acceleration of gravity, and k is the unit vector aligned with the
vertical axis z. Finally, the source/sink term Sy in Equation (3.4) describes latent
heat release—uptake during phase changes of moisture variables and is detailed in
Section 3.2. Equation (3.3) and Equation (3.4) can be rewritten in non-conservative

form as follows:

1
a—u—f—u-Vu:——Vp—l—b in Q x (0,tf], (3.5)
ot p
06 :
E%—u-VH:Sg in Q x (0,tf]. (3.6)

A thermodynamics equation of state for the pressure of moist air p is needed
for closure. We assume that p is the sum of the partial pressures of dry air and vapor
(pq and p,, respectively), both taken to be ideal gases. Thus, neglecting the volume

of the condensed phase, the equation of state relating p to p and T is given by:

P =Dpq+ Py = pRJT + pq,R,T = pRJT(1 + €qy). (3.7)

To facilitate the numerical solution of the system of Equations (3.2)-(3.4) or
(3.2), (3.5)-(3.6), we write density, pressure, and potential temperature as the sum of

their mean hydrostatic values and fluctuations:

p(x,y,Z,t) :p0<z)+pl($7yazat)a (38)
6($7y727t) :60(2)+9/($,y,27t), (39)
p(x,y, 2,t) = po(2) + (2, y, 2, 1). (3.10)

Note that the hydrostatic reference states are functions of the vertical coordinate z

only. Hydrostatic balance relates py to pg as follows:

dpo
20— _pa 3.11
o Pog (3.11)
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Plugging Equations (3.8)- (3.10) into Equations (3.2)-(3.4) and accounting for
Equation (3.11) leads to:

op' ,
8—? + V- ((po+p)u) =0, (3.12)

W +V - ((po+ p)u@n) + plgk = —Vp' + (po + p)b, (3.13)
9((po + ¢') (00 + 0"))

ot + V- ((po+p)0'a) + V- ((po + p')0ou) = (po + p')Sy, (3.14)

where b = — <p0’ip, +€qy — Qe — qr> gE is a modified total buoyancy. Following a

similar procedure for Equations (3.5)-(3.6), we obtain

/

dp

5 TV ((po + p")u) =0, (3.15)
ou ~

e . — 1 b 3.16
8t+u Vu p0+p’Vp+ , (3.16)
o' ,

§+u-V90+u-V0 = 8. (3.17)

Remark 3.1.1 To preserve numerical stability of the solution, we add an artificial
diffusion term with a diffusivity coefficient B to Equations (3.12)-(3.14) and (3.15)-
(3.17); the units of § are given consistently with the equations at hand. The term
BV2u is added to the right-hand side of the momentum equation, while the term

BV20" is added to the right-hand side of the equation of the potential temperature.

Next, we write the balance equations for g, and ¢. in conservative form:

a(gf”) LV - (pgou) = pS, in Q x (0, 4], (3.18)
% + V- (pgeu) = pS. in Q x (0, ], (3.19)

and non-conservative form:

8;: +u-Vg, =8, in Q x (0,t], (3.20)
9. .
5 +u-Vg. =S, in ©Q x (0,tf]. (3.21)
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The source/sink terms on the right-hand side in the equations above are related

to conversion rates. In particular, we have:

S, =C(q = q) +C(gr = @), Se=Cl(qp = q) +Clar = q.), S =8+ S,
(3.22)

where the terms C(gy — qy) = —C(qy — ¢p) represent the conversion of species ¢
to species 1. All of these terms, which account for processes such as evaporation
of cloud condensate, are provided by the microphysics equations reported in Section
3.2.

Precipitating water (rain) is treated in the same manner. Letting w, be the fall
speed of rain (provided by the microphysics equations), we can write the conservation

law for rain in conservative form:

a(pq, o .
(gf ) + V- (pgr(u — w,k)) = pS, in Qx (0,2y], (3.23)

and non-conservative form:

q, 10 .
5 T Vg, =S, + 0% (pgrwy) in Q x (0,tf], (3.24)

with

Sr = C(qv — QT) + C(Qc — QT)' (325)

In summary, the conservative form of the atmospheric model considered in this
work is given by Equations (3.12)-(3.14), (3.18)-(3.19), (3.23) and (3.7), while its
non-conservative form is given by Equations (3.15)-(3.17), (3.20)-(3.21), (3.24) and
(3.7). In both cases, the problem has to be supplemented with proper initial and

boundary conditions that are problem dependent.
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3.2 Microphysical Parameterization
The terms on the right-hand sides of Equations (3.14), (3.18), (3.19), and (3.23),
and their respective non-conservative counterparts are defined according to [53]. Let
¢vs be the saturation water vapor fraction. To determine ¢,, we use Teten’s formula

following [53]. The evaporation of cloud water is given by:

Oqus
ot -

C(Qc — QU) = _C(QU — QC) = (326)

This is computed with the saturation adjustment approach of [102]. The evaporation
of rain, i.e., conversion rate C(¢. — ¢,) = —C(q, — ¢,), is taken directly from [53],

which use an approach similar to [87]. We have

Clge = @) = —Clgr — q.) = A + (3.27)

where A, and C, represent rain auto-conversion and rain accretion [52], respectively.

The source/sink term in Equation (3.17) is given by:

L

0qus
59 v ( ot + O(Qr QU)> ) v Cp7T’ (3 8)

where L is the latent heat of vaporization and 7 is the Exner pressure defined in
Equation (3.1).

Finally, we define the terminal velocity of rain following [102, 52, 53]:

N

w, = 3634(pg3*%) (ﬂ) , (3.29)
Pyg

where p, is the reference density at the surface.
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CHAPTER 4
LAGUERRE SEMI-INFINITE ELEMENTS AS A POTENTIAL

SOURCE OF COMPUTATIONAL EFFICIENCY FOR
ATMOSPHERIC FLOWS

This chapter presents the results of applying the Laguerre-Legendre semi-infinite
elements approach to benchmark atmospheric test cases with and without topography.
All the tests in this chapter are done in a dry atmosphere where ¢, = 0.0, g. = 0.0,
and ¢. = 0.0 everywhere and at all times. These tests were run on Jexpresso [75], a
new open-source spectral element code written in performant Julia.

4.1 A Semi-infinite Rising Thermal Bubble Test
We validate the Laguerre-Legendre semi-infinite element approach on the compressible
Euler equations by using it to simulate a classic rising thermal bubble case. In this
test a perturbation A# is introduced to a neutral atmosphere with uniform potential
temperature 6y = 300 K. The finite domain is QF = [—5,5] km x [0,5] km, which
is subdivided into N, = N, = 20 elements of order N = 4. This yields a horizontal
resolution Axr = 125 m and a vertical resolution Az = 62.5 m. The potential

temperature perturbation and initial pressure are defined as follows:

AG =0, (1 - 1) (4.1a)

To

r=(z—x)%+ (z — 2.)? (4.1b)
gz cp/R
P = Do (1 - ﬁ) ; (4.1c)
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where 6. = 2 K, ryp = 2000 m, z. = 0 m, z, = 2500 m, and py = 1000 hPa. The initial
potential temperature is 6 = 6y + Af, and the initial density can be deduced through
the ideal gas law (3.7).

A set of 20 Laguerre-Legendre semi-infinite elements of order 24 is added on
top of QF to build the semi-infinite domain Q% = [—5,5] km x [5,00) km. To verify
that this approach is able to solve the Euler equations without adversely affecting
the solution, we do not use a damping layer for this test and simply verify that the
rising thermal crosses the Qf — Q% boundary without being affected by the change in
element type and drastic change in resolution. To stabilize the solution past ¢ = 500 s

a viscosity coefficient v = 30 m?s~!

is used in conjunction with a constant thermal
diffusivity x = 2v. This is standard and would be required even for simulations
without a semi-infinite element. Free-slip type boundary conditions are used at all
domain edges.

The initial potential temperature perturbation generates positive buoyancy,
which causes the bubble to rise. Figure 4.1 shows the solution at ¢ = 1000 s after a
significant portion of it has transported through the interface between Qf and Q° at
z = 5 km. The figure shows that the solution is correctly transported and diffused
through the interface. The symmetry of the bubble in the z direction is maintained,
and the interface does not introduce spurious noise or discontinuities. The figure
also highlights the improvement in solution quality as the order of the semi-infinite
element is increased. The sharpest solution is obtained using a semi-infinite element
of order 48 which is displayed in the right panel of Figure 4.1. With this approach

validated for the Euler equations, we move on to demonstrating that we can use it

for effective absorbing layers in atmospheric flows.
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Figure 4.1 Potential temperature perturbations for the rising thermal bubble at ¢ =
1000 s using semi-infinite elements of order 24 (left), 36 (middle), and 48 (right). In all
three cases the bubble rises correctly and is able to pass through the interface between
QF and Q° at z = 5 km without any issues. Note that a higher order semi-infinite
element yields a sharper, higher resolution solution. The grid used for this test is
fully visible to visually show the transition between the two domains. Note that no
absorbing layer is used in this test since the goal is not that of testing non-reflecting
conditions, but to assess the sanity of the Legendre-Lagerre discretization.
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Linear hydrostatic mountain waves In this test, a constant horizontal flow with

! impinges on a mountain in a stratified atmosphere. These flow

velocity U = 20 ms™
conditions and the mountain’s size determines the structure of the resulting waves.
As soon as the flow encounters the mountain, gravity waves quickly propagate both
horizontally and vertically. In a proper implementation, these waves should leave the
domain with no reflection.

The background state for this test is a hydrostatically balanced atmosphere

whose pressure and potential temperature are:

2 2 cp/R
g —zN°
= 14+ —— —1 4.2
P [ " cpfoN? (GXP< 9 ) )] (4:20)

2
0 = Oy exp (Z/;[ ) , (4.2b)

where pg = 1000 hPa and 6y = 250 K are the sea level values of pressure and potential

temperature, and

N=—2 _ —00196s"
Cp 0
is the Brunt-Viisila frequency. An Agnesi mountain with height h = 1 m and

half-width a = 10,000 m is located at the center of the domain x, = 0 m with shape

ha?
S o (4:3)

For this test as well as for all other cases involving topography, a terrain
following sigma coordinate [24] is used. ~We consider a finite domain Qf =
[—120,120] km x [0,15] km, and subdivided it into N, x N, = 120 x 21 elements
of order 4, which lead to the resolution (Az,Az) = (500 m,178 m). A set of
120 Laguerre-Legendre semi-infinite elements are added on top of QF yielding the

semi-infinite domain Q% = [~120, 120] km x [15,00) km. In the horizontal direction,
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each semi-infinite element uses an order four spectral element discretization using
LGL nodes, and in the vertical direction it uses an order 14 Laguerre function basis
on LGR nodes and a scaling factor A\ = 300 m which yields an end point Z.,,; = 28853.
Due to prevalence of both acoustic waves and gravity waves, as well as the sensitivity
of high order numerical methods, we make use of the spectral low pass Boyd-Vandeven
filter [9] to help insure the stability of the simulation (this approach is standard for
spectral element simulations of the atmosphere). The filter on the elements in Q° is
different from that in QF and the continuity of the solution at shared interface nodes
is insured by the DSS operation.

To trigger the hydrostatic waves, a uniform eastward wind with speed U =
20.0 ms~! impinges the mountain. We use a sine squared function to define the

damping coefficient in the vertical absorbing layer:

1(2) = Avysin® (fz_—zz> , (4.4)

2 Rmaz

where z, = 15000 m, Ay = 0.1s7! and 2,4, is the top of the absorbing layer. The
lateral boundaries are periodic and lateral damping layers are used on each side (these
damping layers are in Qf and are not on semi-infinite elements). These boundary
conditions are also used for the remaining other mountain tests presented in this
paper.

Figure 4.2 shows the contours of the vertical velocity at ¢ = 30,000 s. The
solution is stable, the outgoing waves are effectively damped within ©°, and the
solution is physically meaningful when compared to other numerical solutions of
atmospheric models using spectral elements see e.g., [103].

Table 4.1 shows the time per time step for different configurations of the linear

hydrostatic mountain test case. A fixed domain end point Z.,; = 30,000 m is
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Figure 4.2 Time-converged numerical vertical velocity w for the linear hydrostatic
mountain. The numerical solutions are displayed at t=30,000 s for Az = 500 m,
Az =178 m. The contours of the vertical velocity range between -0.005 and +0.005
with interval 0.0005. The dashed line shows where QF meets Q. In Q° there is only
one element of order 14 along the vertical direction (see Figure. 2.2 for reference).

maintained for the cases where no semi-infinite element is used and instead only
the number of vertical elements is changed. Even while only using ten additional
order 4 spectral elements in the vertical direction to replace the Laguerre semi-infinite
element the time per time step remains about 10% higher than running a single order
20 Laguerre element. If we would seek to run the entire vertical domain at the same
resolution as the finite domain of these simulations utilizing a Laguerre semi-infinite
element, the cost increase would be nearly 50% higher. Considerably few additional
vertical spectral elements (we estimate no more than three) would have to be used
to obtain a similar time per time step as using a single semi-infinite element in this
case and this would also yield a much lower order discretization within the absorbing

layer.
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Table 4.1 Timings of Linear Hydrostatic Mountain Simulations With and Without
Laguerre Semi-infinite Elements in the Absorbing Layer.

| Absorbing layer type T | Zend | Trinise 70 | Thaguerre 70 | N |
Semi-infinite elements of order 14 1 28853 | 90.41 9.59 21
Semi-infinite elements of order 18 1.02 | 33279 | 87.97 12.03 21
Semi-infinite elements of order 20 1.04 | 35513 | 86.49 13.51 21
Extended finite domain of order four | 1.14 | 30000 | 100 N/A 31
7 1'29 7 2 7 35
7 1'47 7 2 7 40

Note: A fixed vertical domain end point is used for simulation using only a finite
domain while the simulations using semi-infinite elements are allowed to have
varying Z.,q depending on the order of the semi-infinite elements. In this case the
number of elements in the z-direction IV, remains the same but the number of
elements in the z-direction N, is adjusted. The additional elements are all of order
N = 4 but the vertical resolution Az is allowed to change.

Linear non-hydrostatic mountain waves For this test, we modify the background
parameters and the mountain profile of the previous test such that we obtain % =1
corresponding to nonhydrostatic flow conditions. As such, the mountain profile
described in Equation (4.3) from the previous test is modified by making a = 1000 m.
The background state is changed by taking N' = 0.01 s71, §, = 280 K, and
U =10 ms~!. All other parameters remain the same as the previous test.

We consider a finite domain Qf = [-72,72] km x [0, 15] km and subdivide
it with N, x N, = 40 x 5 elements of order 10, leading to the effective resolution
(Az,Az) = (360 m,300 m). A set of 40 Laguerre-Legendre semi-infinite elements are
added on top of QF yielding the semi-infinite domain Q° = [—72, 72] km x [15, 00) km.
In the horizontal direction each semi-infinite element has order 10 on LGL nodes with
an order 14 Laguerre function basis on LGR nodes and a scaling factor of A = 300 m
which yields an end point Z.,q = 28853. Similarly to the previous mountain wave
test a Boyd-Vandeven filter [9] is used to help insure the stability of the simulation
and the damping layer uses the same sine squared function as the previous test case.

Figure 4.3 shows the contours of vertical velocity for the time converged

numerical solution at ¢ = 18,000 s. The solution is stable, the outgoing waves are
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effectively damped within 2°, and the structure and frequency of the wave is properly
captured by the simulation. The solution is physically meaningful and comparable to
other numerical solutions for the same test, see e.g [103].

Table 4.2 Timings of Linear Non-hydrostatic Mountain Wave Simulations With and
Without Laguerre Semi-infinite Elements in the Absorbing Layer.

| Absorbing layer type | T [ Zend | Trinise 70 | Thaguerre 70 | N= |
Semi-infinite elements of order 14 | 1 28853 | 85.57 14.43 5
Semi-infinite elements of order 18 1.03 | 33279 | 82.49 17.51 5
Extended finite domain of order 10 | 1.01 | 30000 | 40 N/A 7
” 1.24 |7 7 7 8
7 1.58 7 2 2 10

Note: A fixed vertical domain end point is used for simulation using only a finite
domain while the simulations using semi-infinite elements are allowed to have
varying Z.,q depending on the order of the semi-infinite elements. In this case the
number of elements in the z-direction NV, remains the same but the number of
elements in the z-direction N, is adjusted. The additional elements are all of order
N =10 but the vertical resolution Az is allowed to change.

Table 4.2 shows the time per time step for different configurations of the linear
non-hydrostatic mountain wave problem. A fixed domain end point Z,,,q = 30,000 m
is maintained for the cases where no semi-infinite element is used and instead only
the number of vertical elements is changed. For this case, even while using only
three additional elements to replace the Laguerre semi-infinite element and resulting
in nearly equivalent resolutions within the finite domain, the cost per time step is
nearly 25% higher than using semi-infinite elements of order 18 while also having a
smaller domain height. This becomes more than 50% more costly, if five additional
elements are used instead of 3. Only two additional elements of order 10 can be used
to replace the semi-infinite elements, if a similar time to solution is desired, but this
will come at the cost of the order of accuracy within the damping layer.

In order to complete the validation of the hydrostatic and non-hydrostatic

mountain wave simulations, we constructed a linear Fourier solution using the

approach outlined in [101]. The vertical velocity is expressed as a Fourier integral

37



20 30

x (km)

Figure 4.3 Linear non-hydrostatic mountain. Time-converged numerical solution at
t=18,000 s for Ax = 360 m, Az = 300 m. The contours are in the range between
-0.005 m/s and +0.005 m/s with interval 0.001 m/s. The dashed line shows where

QF meets Q°. In Q° there is only one element of order 14 along the vertical direction
(see Figure 2.2 for reference).

under the Boussinesq approximation that is then evaluated using adaptive Gauss
quadrature in wavenumber space. Since this solution neglects vertical variations
in density, it is only valid for heights less than a scale height (~9 km). Figure
4.4 compares vertical velocity profiles of the numerically obtained solution (in blue)
with the linear Fourier solution (in red). The figure shows a good overlap of the
two solutions and the existing deviations are expected. This is given that the two
models deviate due to the analytical solution relying on the linearization of the
Euler equations and the Boussinesq approximation. Furthermore, this deviation is

comparable to other atmospheric models.

Schar mountain waves The Schér test [93] consists of a uniform flow with a

reference horizontal velocity U = 10 ms™! in a stratified atmosphere with Brunt-
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Figure 4.4 Comparison of vertical velocity contours of the numerical solution (blue)
of the linear hydrostatic (top) and nonhydrostatic (bottom) mountain wave problems
with an approximate linear Fourier solution (red). The contours are the same
contours used in the vertical velocity plot of Figure 4.2. The numerical solutions

compare favorably to the analytical approximation and display the expected vertical
wavelength A, = 27U/N ~ 6.4 km.
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Viisala frequency N = 0.01 1/s, sea-level pressure py = 1000 hPa and and potential

temperature at sea-level 6y = 280 K. The flow impinges the five-peak mountain

) cost (T2
COS )\c

with parameters h = 250 m, a = 5000 m, and A\. = 4000 m.

defined as

Q8

z = hef(

We consider a finite domain Qf = [-25,25] km x [0, 15] km, and discretize it
using N, = 20 elements in the x direction and N, = 7 elements in the z direction.
These elements are of polynomial order 10 in both directions, leading to an effective
resolution (Az, Az) = (214 m, 250 m). A set of 20 Laguerre-Legendre semi-infinite
elements are added on top of QF which translates to the semi-infinite domain Q% =
[—25,25] km x [15,00) km. In the horizontal direction, each semi-infinite element
uses an order 10 spectral element discretization using LGL nodes, and in the vertical
direction it uses an order 14 Laguerre basis function on LGR nodes and a scaling
factor A = 300 m which yields an end point Z.,; = 28853 m. Similarly to the
previous mountain wave tests a Boyd-Vandeven filter [9] is used to help insure the
stability of the simulations and the a sine squared function is used in the damping
coefficient of the Rayleigh damping layer.

Figure 4.5 shows the vertical velocity of the time converged numerical solution
at t = 36,000 s. The solution is stable and outgoing waves are effectively damped
withing °. The solution is also physically meaningful and comparable to other
numerical solutions of atmospheric models, see e.g [93]. Figure 4.6 shows an
overlap of the numerical vertical velocity with a linear Fourier solution under the
anelastic approximation [56, Equation (A10)]. The figure shows a good overlap

of the two solution and the existing deviations are within expectations given the
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Figure 4.5 Schar mountain waves. Time-converged vertical velocity at t=36,000 s
for Az = 250 m, Az = 220 m. The contours of the vertical velocity range between
-2.0 m/s and +2.0 m/s with interval 0.1 m/s. The dashed line shows where Q" meets
Q°. In QF there is only one element of order 14 along the vertical direction (see
Figure 2.2 for reference).
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Figure 4.6 Comparison of vertical velocity contours of the numerical solution (blue)
and semi-analytical Fourier solution (red) for the Schér mountain test. As for those
shown in Figure 4.4, the discrepancy is due to the linearization of the Euler equations
and the anelastic approximation used to calculate the semi-analytic Fourier solution.
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Table 4.3 Timings of Schar Mountain Wave Simulations With and Without Laguerre
Semi-Infinite Elements in the Absorbing Layer.

[ Absorbing Tayer type [ T" | Zena | Trinite % | Thaguerre %0 | Nz |
Semi-infinite elements of order 14 1 28853 | 88.62 11.38 7
Semi-infinite elements of order 18 1.03 | 33279 | 86.02 13.98 7
Extended finite domain of order 10 | 0.92 | 21000 | 100 N/A 8
» 1.03 | 7 ” ” 9
7 1. 14 7 2 7 10
» 1.27 |7 7 i 11

Note A fixed vertical domain end point is used for simulation using only a finite
domain while the simulations using semi-infinite elements are allowed to have
varying Z.,q depending on the order of the semi-infinite elements. In this case the
number of elements in the z-direction IV, remains the same but the number of
elements in the z-direction N, is adjusted. The additional elements are all of order
N = 10 but the vertical resolution Az is allowed to change.

differences between the models. Furthermore, these deviations are comparable to
other atmospheric models.

Table 4.3 shows the time per time step for different configurations of the schar
mountain problem. A fixed domain end point Z,,4 = 21,000 m is maintained for the
cases where no semi-infinite element is used and instead only the number of vertical
elements is changed. For this case, even while using only four additional elements
to replace the Laguerre semi-infinite element and resulting in nearly equivalent
resolutions within the finite domain, the cost per time step is nearly 25% higher than
using semi-infinite elements of order 18 while also having a smaller domain height.
Only two additional elements of order 10 can be used to replace the semi-infinite
elements, if a similar time to solution is desired, but this will come at the cost of the

order of accuracy within the damping layer.
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CHAPTER 5

NON-COLUMN BASED SIMULATIONS OF THUNDERSTORMS

In this chapter, we first present the approach utilized to obtain a non-column based
implementation of the Kessler warm rain microphysics. We then show how this
approach performs when used for simulating squall lines and a fully three-dimensional
super-cell thunderstorm. Simulations in this chapters are performed on a moist
atmosphere using the Non-hydrostatic Unified model for the atmosphere (NUMA)
[51].

5.1 Non-column Based Rain Sedimentation

The main novelty of the study presented in this chapter lies in the computation of the
sedimentation term for the rain equation (i.e., the last term on the right-hand side in
Equation (3.24)) which differs from the methods in, e.g., [52, 53, 102, 87, 45]. The
typical column-based approach to handle the sedimentation term is by computing the
spatial derivative along each individual column starting from the top of the domain
and descending. See, e.g., [23, 74] for a spectral element implementation of this
approach.

Although widely used, the traditional column-based implementation has a main
drawback: it requires the availability of column-aware data structures that may not
serve other purposes in the numerical method, thereby forcing the use of structured
grids. Unstructured grids are highly advantageous around topography. By forgoing
the use of columns, our approach to compute sedimentation could help yield more
accurate predictions for storm behavior in mountainous regions.

Computing the sedimentation term is done separately from the other micro-

physics calculations, and is done after solving the compressible Euler and moisture
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advection equations. This term is included by solving the following equation:

dg, 10

o= o) 5.1)
in non-conservative form and

a<ggr> =V - (pgw,.k) (5.2)
in conservation form. Given that k = (0,0,—1)7 for the domains we consider,

Equation (5.2) can be written as follows:

This makes it so that for either the conservative or non-conservative form, solving the
sedimentation equation essentially amounts to calculating the term - (pqrwr)
We can rewrite the sedimentation equation in the form of Equation (2.1) by
taking G(f) = —c%, where Fiq = (pgyw,), ¢ = 1 and f = pg, in conservation
1

form, while ¢ = 5 and f = ¢, in non-conservative form. By multiplying by the

expansion functions and integrating, we get:

(N+1)3

[ oL = [ e S a%i)F]esed< DGO, =1 (V1)

where F} ;4 are the expansion coefficients of Fj ;4. Moving to the reference element

and identifying the mass matrix yields

v 20 - [ v [vene- (550 5) @] ramaene G

where i,5 =1,..., (N + 1)3. Let us call D¢, the element-wise differentiation matrix

for Equation (5.1) and write Equation (5.3) in matrix form:

RIHONE.
sz ét = Dz] sed

FSa(t), ij=1,...,(N+1)> (5.4)
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We can write DS, discretely as follows:

N+1 N+1 N+1

fj,sed - Z Z Z W(flm Nm, Cn)%(&w s Cn)vg% (&m N, Cn)
k=1 m=1 n=1 (5.5)

%3 3 8

where 7,7 = 1,..., (N +1)3. From this point, if CG is used, then the global equation

can be solved using DSS as follows:

ofh
E -M" Dsed(c © Fsed) 07 (56)

where Dgeq = .5, DSy, € is the vector containing the nodal values of ¢, Fgq is

the vector containing the nodal values of Fy4, and ® denotes a component-wise

multiplication (i.e., the Hadamard product). The local DG problem is given by:

ofh )
E - M ( sed(c © Fsed) F ( © Fsed)) (57)

where Dsed is the weak form of D¢, F¢ is the flux matrix at each element, F? ; is
the interface value of Fyq, and c* is the interface value of c.

In what follows, we present the procedure we use to solve the fully compressible
Euler equations with moisture, including rain. Algorithm 1 summarizes the entire
procedure. The algorithm makes use of the following quantities: Npgr, = N +1 is the
number LGL points in each element, At is the time step, f™" is the approximation
of f* at the time t" = nAt, N points the total number of points the domain has been
discretized into including repeating nodes at element edges and faces, t,, the current
discrete time, and t,,.1 = t,, + At . We also define the sedimentation Courant number,

which we use to determine the time sub-step for the sedimentation problem:

At
Az’

Cr =w,— (5.8)
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This number is used to determine the appropriate sedimentation time step as follows:

At
maX(l, 0.5 + Crmax/crlimit) ’

At = (5.9)

where:

Crmax = max([Cry| o), (5.10)

is the maximum sedimentation Courant number among all points in the domain and
Criimit 18 the maximum allowable Courant number for the sedimentation problem.
The rest of the notation is defined in Section 2.1.

Next, we report on the results obtained with this algorithm and fully unstructured

grids.

5.2 Results
We assess the method presented in Section 5.1 with an idealized squall line test
from [23] and a fully 3D supercell problem. All the simulations are run with the
Nonhydrostatic Unified Model of the Atmosphere (NUMA) [51], which is designed to
solve the dry Euler equations, with the addition of artificial viscosity as described in
Section 2.1, on unstructured grids of hexahedra with arbitrary orientation. NUMA
enables the use of both CG and DG spectral elements and has been shown to scale

exceptionally well on CPUs and GPUs in [1, 2, 82].

5.2.1 2.5D squall line

The first benchmark we consider is an idealized test presented in [23]. While the
computational domain in [23] is two-dimensional, we run the same test in a 2.5 D
domain Q = [150 x 12 x 24] km®. The domain is discretized with a single element
in the y direction and a resolution dependent number of elements in the z and z

directions. Periodic boundary conditions are applied to the lateral boundaries, a
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Algorithm 2 Simulation of moist-air and rain sedimentation with unstructured grids.

1:
2:
3:
4.

13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24.
25:
26:
27:
28:
29:
30:

31:
32:
33:
34:
35:
36:

37:
38:
39:

for time = 0, At,...,t; do
fore=1,2,...,N. do
for node =1,2,..., N, do
Calculate contributions to element-wise derivatives from each LGL
point along
the reference element.
end for
Compute these local derivatives in physical space.
end for
Perform DSS for CG or calculate numerical fluxes for DG.
Solve the discrete version of the Euler equations: (3.2), (3.3) and (3.4), if using
conservation
form, and (3.2), (3.5) and (3.6), if using non-conservative form.
Solve the advection equations for g, q. and g, by the flow velocity u: Equations
(3.18), (3.19) and
Equations (3.23), if using conservation form, and (3.20), (3.21) and (3.24), if
using non-conservative form.
fori=1,2,..., Nyins do
Determine w, using Equation (3.29)
Determine Crp,x using Equation (5.1
Determine Atgeq using Equation (5.9)
end for
for ts = t,,t, + Atseq,- - - ,tnr1 do
fore=1,2,...,N. do
if space method == CG
Compute D¢ 4
else if space method == DG
Compute D¢ 4
end if
end for
if space method == CG
Perform DSS.
else if space method == DG
Apply inter-element fluxes for the sedimentation equation using w, as
the wave
speed.
end if
Solve Equation (5.1)
end for
fore=1,2,...,N. do
Update moisture variables and potential temperature to account for phase
changes
following Equations (3.28)-(3.27)
end for
end for

0)
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free-slip type boundary condition is applied at the domain bottom and the domain
top utilizes a Rayleigh sponge for gravity wave damping. In this domain, a squall
line forms in a weakly stable atmosphere with Brunt-Viisila frequency N = 0.01 s+
below the tropopause and a more stable atmosphere with N = 0.02 s~ above 12
km. The cloud begins to form around ¢ ~ 500 s, while rain starts to form and fall
at approximately ¢t = 900 s. The initial condition consists of a saturated boundary
layer typical of mid-latitude storms that has been used in several numerical studies
(see, e.g, [92] and [110]). A low altitude wind shear in the x direction is imposed to
break the cloud symmetry and allow for a continuous storm evolution. The initial
background sounding is tabulated in the Appendix.

The storm is triggered by a thermal perturbation of the background state [92]
centered at (x., z.) = (75000, 2000) m and defined by:

0. cos (—T) if r <rg,
Al = (5.11)

_ 2 _ 2
r :\/(‘r o) Bz, g K, ro—=1, r,=10000m, 7. = 1500 m.

We generated seven grids using GMSH [25]. Table 5.1 lists the total number
of hexahedral elements and the effective resolution Az for each mesh. We choose
to report the effective resolution because the LGL points for an element are not
equidistant [26, 41, 61]. NUMA relies on P4est [14] to read unstructured meshes and
perform the graph partitioning for the parallel application.

Figure 5.1 shows an example of clouds and precipitation calculated on a fully
unstructured grid of hexahedra for an effective resolution of 150 m in both spatial

directions.
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Table 5.1 Total Number of Hexahedral Elements, Effective Resolutions, and Time

Steps for All the Meshes Used for the Squall Line Simulations.

# elements | 473 1078 | 3181 | 4134 | 6485 | 11447 | 25863

Az 750m [ H500m | 290 m | 250 m | 200 m | 150 m | 100 m

At 09s |06s |035s |03s [024s |0.18s |0.12s

[
o

R S
O N b

Z (m) (x10"3)

0

X (m) (x10°3)

Z (m) (x10"3)

isimi
laas,
55 60 65 70 75 80
X (m) (x10"3)

Figure 5.1 Top: ¢. and ¢, over unstructured grid Az = 150 m. Cloud water is
shaded in grey for values of q. > 1 x 107° kg/kg whereas rain is shaded in blue for
values of ¢, > 1 x 107 kg/kg. Bottom: close-up view corresponding to the dashed
rectangle in the top figure.

For all the simulations, we use an Additive Runge Kutta third order (ARK3)
semi-implicit time integrator and elements of polynomial order 4. We maintain the
acoustic Courant number C' < 1 for all the simulations. While the ARK3 time

integrator allows for larger acoustic Courant numbers, we limit the time step for the

purposes of obtaining a greater deal of accuracy for the higher-resolution simulations.
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We run this test using both the CG approach with the governing equations in non-
conservation form and the DG approach with the governing equations in conservation
form. Consistently with [23], a constant artificial viscosity of 8 = 200 (for the units
see Remark 3.1.1) is used to stabilize the simulations.

Let us examine the results obtained with the finest mesh, i.e., the one with Az =
100 m. Figures 5.2 and 5.3 show the stages of the storm evolution given by the CG
and DG simulations, respectively. Both simulations yield similar plots at ¢ = 1500 s.
Additionally, in both cases we observe a downwind tilt of the convective tower, which
is caused by the horizontal wind-shear, and the eventual development of the anvil
cloud near the tropopause where the atmosphere offers higher stability. For the sake
of brevity, we do not show the plots associated with other meshes, but a similar early
storm evolution is observed in all the simulations at all resolutions with both the CG
and DG approaches. The differences between the CG and DG simulations remain
minimal even up to about ¢ = 6000 s. This is a rather long period of time since by
then the storm has fully developed. Starting from ¢ = 6000 s till the end of the time
interval of interest, some differences in the CG and DG simulations arise, as can been
seen by comparing Figures 5.2 and 5.3. At ¢t = 9000 s, when additional convective
towers are observed, the DG simulation generates multiple convective towers, some of
which are significantly downwind. This is not as pronounced in the CG simulation.
Compare the bottom right panels in Figures 5.2 and 5.3.

Figures 5.2 and 5.3 also show the rain accumulated on the ground. At ¢t =
1500 s, no rain has accumulated yet in either the DG or CG simulations. This is
confirmed by the rain contour plots, where we see that the contour lines have yet
to reach the ground (see top left panel in Figures 5.2 and 5.3). At t = 3000 s, the
accumulated rain is primarily near the center of the domain for both methods. Indeed,

from the top right panel in Figures 5.2 and 5.3 we see that rain accumulates at the
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Figure 5.2 Storm evolution obtained with a CG approximation and mesh with
resolution Az = 100 m at ¢t =1500 s (top-left), 3000 s (top-right), 6000 s (bottom-left)
and 9000 s (bottom-right). In the top portion of each panel, the thick orange contour
line (q. = 107 kgkg™!) represents the outline of the cloud. The white and gray
contours represent the perturbation potential temperature, and the blue and green
contours represent ¢,.. The bottom portion of each panel shows the rain accumulated
at the surface for each time as a function of horizontal distance from the point x = 0 m.
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Figure 5.3 Storm evolution obtained with a DG approximation and mesh with
resolution Az = 100 m at ¢t =1500 s (top-left), 3000 s (top-right), 6000 s (bottom-left)
and 9000 s (bottom-right). In the top portion of each panel, the thick orange contour
line (¢. = 107 kgkg™!) represents the outline of the cloud. The white and gray
contours represent the perturbation potential temperature and the blue and green
contours represent ¢,.. The bottom portion of each panel shows the rain accumulated
at the surface for each time as a function of horizontal distance from the point x = 0 m.
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location of the convective tower, with a slight asymmetry that follows the asymmetry
of the convective tower seen at t = 1500 s. As time progresses, the convective tower
tilts. An early stage of this is visible at ¢ = 3000 s, but the tilting becomes more
pronounced at t = 6000 s when the effect of the wind shear is more noticeable. The
rain accumulation reflects the tilting and location of the convective tower in both the
CG and DG simulations, as shown in the bottom left panel of Figures 5.2 and 5.3.
By t = 9000 s, we observe once again some differences in the results given by the two
methods. For the CG simulation, in the bottom right panel of Figure 5.2 we see a
much wider distribution of accumulated rain with a secondary peak below the new
location of the convective tower and a third peak appearing below the location of
the secondary convective tower. As for the DG simulation, in the bottom right panel
of Figure 5.3, we notice that the rain accumulation matches the downwind shifting
of the main column and small peaks appear where secondary convective towers are
present.

Regardless of the space discretization method, we see that once rain appears
within the convective tower it is correctly transported downward without the need for
a vertically structured grid. This holds true also when multiple, possibly disconnected,
sources of rain are present in the domain. In both sets of simulations, the rain
falls to the ground following the location of the convective towers and the effects
of the wind-shear. This gives us confidence that our algorithm is able to correctly
transport rain despite the lack of a vertically structured grid and regardless of the
space discretization method.

The results obtained with the Az = 250,200, 150,100 m meshes at t = 9000
s are compared in Figure 5.4 for the CG approximation and in Figure 5.5 for the
DG approximation. In Figure 5.4, we observe the same cloud structure (anvil extent,

downwind tilt of the convective tower) and similar profiles of perturbation potential
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temperature for all the meshes under consideration. However, the spatial distributions
of the rainfall accumulated at the ground show some differences: the simulations with
resolutions Az = 250 m and Az = 200 m have smaller peaks of rain accumulation
near the domain center than the simulations with Az = 150 m and Az = 100 m. The
simulations with the Az = 290, 500, 750 m meshes (not shown for brevity) give even
more intense rainfall than the Az = 250 m and Az = 200 m simulations. A similar
observation on rain accumulation and mesh resolution for this benchmark can be
found in [112, 23], where it is shown that higher resolutions are correlated with faster
storm development, weaker storm circulation and less overall precipitation over the
length of the simulation. The DG simulations also show similar tilt in the convective
tower, similar anvil extents and similar profiles of perturbation potential temperature
at t = 9000 s for all the meshes; see Figure 5.5. Concerning the rain accumulation,
the DG simulation with the Az = 250 m mesh gives a large primary and secondary
peak near the center of the domain. The amount of rain falling at the domain center
decreases with increasing resolution. Indeed, the Ax = 200, 150 m simulations give
a smaller amount of accumulated rain in the domain center and slightly larger peaks
downwind and away from the center, reflecting the availability of more moisture for
the secondary convective tower. Once again, we observe a decrease in precipitation
with increasing resolution as expected [23, 112, 73, 70].

We conclude by reporting the maximum vertical velocity obtained over the
course of the CG and DG simulation as a function of the resolution in Figure 5.6.
We see that for Az > 290 m the maximum vertical velocity for both DG and CG
simulations lies between 20 ms™! and 30 ms™!, as in [13, 111, 23]. Increasing the
resolution yields an increase in the maximum velocity, as shown in [23]. We note that
the CG and DG simulations give similar values of the maximum vertical velocity for

a given mesh, with the values getting closer as the resolution increases.
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Figure 5.4 Storm at ¢t = 9000 s computed with the CG method and meshes Az =
250 m (top-left), Az = 200 m (top-right), Az = 150 m (bottom-left), and Az = 100 m
(bottom-right). The thick orange contour line (g. = 107> kgkg™') represents the
outline of the cloud. The white and gray contours represent the perturbation potential
temperature and the blue and green contours represent ¢,.. The bottom portions of
each panel show the rain accumulated at the surface as a function of horizontal

distance from the point z = 0 m.
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Figure 5.5 Storm at ¢t = 9000 s computed with the DG method and meshes Az =
250 m (top-left), Az = 200 m (top-right), Az = 150 m (bottom-left), and Az = 100 m
(bottom-tright). The thick orange contour line (g. = 107> kgkg™') represents the
outline of the cloud. The white and gray contours represent the perturbation potential
temperature and the blue and green contours represent ¢,.. The bottom portions of
each panel show the rain accumulated at the surface as a function of horizontal
distance from the point z = 0 m.
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Figure 5.6 Maximum vertical velocity obtained over the course of the CG and DG
simulations as a function of the resolution.

The results in this section demonstrate that, in two dimensions, our algorithm
successfully transports the rain downwards along the convective towers without the

need for a vertically structured grid.

5.2.2 3D supercell

In this section, we test our algorithm for a fully three-dimensional supercell. The
convective cell develops within a domain Q = [150 x 100 x 24] km3. The storm
is initiated by a thermal perturbation of the background state defined by Equation
(5.11), with center (., ye, z.) = (75000, 50000, 2000) m and

— 2 _ _ 2
_\/(z D N A BRI IS

2 2 2 )
T2 Ty rs

where:

ry =1y = 10000 m, 7, = 2000 m.
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The domain is discretized using a grid of unstructured hexahedra of order four
in all directions for an approximate effective resolution Ax ~ 250 m. The grid is
partially shown in Figure 5.7.

We use periodic boundary conditions for the lateral boundaries, a free-slip
boundary at the domain bottom and a Rayleigh sponge at the domain top. Like
for the squall line test described above, we use the ARK3 3D semi-implicit time
integrator to advance the simulation in time and keep the acoustic Courant number
C' <1 (We use At = 0.3 s for the test shown here). An artificial viscosity 8 = 200
(see Remark 3.1.1 for the units) is used to provide stabilization. The wind shear in
the x direction is the same as the one used for the squall-line. The cloud begins to
form at ¢ ~ 500 s while rain forms and starts to precipitate at t &~ 900 s.

A 3D view of the fully developed storm at ¢ = 7200 s is shown in Figure 5.7, along
with a partial view of the three-dimensional grid. The semi-transparent blue shading
is the iso-surface ¢, = 107 kg/kg. The blue shading is the perturbation potential
temperature (blue is negative) showing the cold pools due to rain evaporation. All of
the convective towers exhibit tilting due to wind-shear, with the parts closer to the
ground experiencing a greater wind-shear and thus trailing the rest of the convective
tower. An anvil cloud is also observed near the top of the troposphere.

Figure 5.8 shows the state of the storm at ¢t = 7200 s. The right side of the
figure shows the existence of three distinct convective towers in the supercell. One
in the center of the Y axis at y = 50000 m and two columns symmetric about the

= 50000 m plane. The three towers merge into the anvil cloud near the tropopause.
Figure 5.8 (left) shows the rain distribution at the ground at ¢ = 7200 s. The
position of the rain concentration follows the location of the convective towers, falling
below them. The largest amount of rain is present below the larger central tower as

indicated by the maximum over y = 50000 m. Additionally we can see the presence
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of some rain slightly separated from the main rain distribution which corresponds to
the small low clouds that are shown symmetric to the y = 50000 m plane in the right

side of the figure.
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Figure 5.7 3D mature supercell at ¢ = 7200 s. The grey shading is the iso-surface
g. = 107° kg/kg. The semi-transparent blue shading is the iso-surface ¢, =
107* kg/kg. The blue shading is the perturbation potential temperature (blue is
negative) showing the cold pools due to rain evaporation. A small sample of the
three-dimensional unstructured grid is shown in the background.
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Figure 5.8 3D mature supercell at t = 7200 s. Left: Horizontal cross-section of the
instantaneous distribution of rain along the surface (z = 0 m) at ¢ = 7200 s. Right:
Vertical cross section taken at x = 75000 m of the cloud fraction ¢ = 7200 s.

The results presented in this section show that the storm develops in a

symmetrical manner and the rain falls correctly following the location of the

convective towers, as is expected. This is accomplished without a column based grid.
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This demonstrates that, in three dimensions, our algorithm successfully transports
the rain downward along the convective towers without the need for a vertically

structured grid.
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CHAPTER 6

ACCELERATING SIMULATIONS OF TROPICAL CYCLONES
USING ADAPTIVE MESH REFINEMENT

This chapter focuses on simulations of tropical cyclones with adaptive mesh
refinement. The AMR algorithm is presented and tested on two sets of dry tropical
cyclone simulations. We will show that AMR can replicate the results of simulations
using static grids and provide significant speedup at the same time. All the tests
performed in this chapter are performed with the Non-hydrostatic Unified Model of
the Atmosphere (NUMA) [51].

6.1 Adaptive Mesh Refinement (AMR)
We rely on the P4est [14] library to handle domain decomposition and load balancing
of our parallel applications. This library also allows for refining and coarsening grids

and we make use of this capability to perform adaptive mesh refinement.

6.1.1 The AMR procedure

Thanks to P4est the AMR procedure is straightforward to perform. The process
only requires that P4est know if an element should be refined, coarsened or left
untouched. Let us define an array adapt of size Ne, the total number of elements.

This array is sent to P4est. The values of this array for each element e are as follows:

(

—1 if the element is to be marked for coarsening
adapt(e) = 0 if the element is to be left as is (6.1)

1 if the element is to be marked for refinement

Refining an element: In this work, we are only considering adaptive mesh

refinement in the horizontal directions. As such, if a hexahedral element is marked
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for refinement, it is split into four elements of equal size along the horizontal plane.
Since we depend on column data-structures for the planetary boundary layer package
being used in our simulations, if an element belonging to a column is refined, the

entire column must be refined with it to maintain this structure.

Coarsening an element: If the refinement process involves splitting an element
into smaller elements, then the coarsening process is the opposite. Four neighboring
elements that are marked for coarsening are merged together to form a single larger
element. As such, coarsening cannot take place unless there are four adjacent elements

that all share a corner.

Conditions for refinement and coarsening: P4est also stores the current level
of refinement of each element in an array we will call [vl. Initially, all elements
have the level lvl(e) = 0 indicating no refinement has taken place. This is also the
maximum size of a given element, meaning that it cannot be coarsened if [vi(e) is not
strictly positive. In other words, an element cannot be coarsened, if it is currently at
the maximum size. An element also cannot be further refined, if it is at the maximum
allowed level of refinement (vl,,q..

A criterion is set for each level of refinement. If one of the nodes belonging to
an element verifies the refinement criterion and [vl(e) < (vl,4., then it is marked for
refinement. If an element no longer verifies the refinement criterion for its current

level of refinement, then it is marked for coarsening.

The refinement/coarsening criterion Consider that the refinement level I
depends on the value of a flow variable C', and consider Cj , the value of this
variable at the kth node of element e. We consider a threshold type criterion

for refinement. This means that if any node k belonging to element e verifies
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Cl.. > threshold(l), then the element is marked for refinement. It also means that if

Vk C,l:i(e) < threshold(lvi(e)), then the element is marked for coarsening.

Frequency of the adaptive mesh refinement procedure: Because AMR is not
without cost, it should not be performed at every simulation time step. We define a
time interval t,,,, that is a multiple of the time step At and allow the AMR procedure
to take place at every instance that the current simulation time is a multiple of ¢4,,,.
This interval should be large enough to avoid needlessly executing the AMR procedure
(a needless AMR procedure would be one where no elements are coarsened or refined),
and small enough to be able to adapt to substantial changes in the flow.

Remark: An element can only be refined once per AMR iteration, even if it
verifies the criterion for a higher level of refinement. The same applies for coarsening.
The level of a given element can only increase or decrease by a value of one at the

most every time the AMR procedure is executed.

6.1.2 The AMR algorithm and workflow

We present the reader with an algorithmic representation of the adaptive mesh
refinement process through Algorithm 3, where ¢, is the final time of a given
simulation, threshold is an array storing the threshold criteria for each level of
refinement, and mod is the remainder operator. We also present the reader with
a workflow diagram of the AMR procedure in order to illustrate the sequence of

operations taking place. This diagram is shown in Figure 6.1
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Figure 6.1 Workflow of the adaptive mesh refinement procedure.
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Algorithm 3 Algorithm of the Adaptive Mesh Refinement Procedure

for t =0, fina, At do
Check if the current time is a multiple of £,
if( mod (¢,t4m,) == 0) then
fore=1, N, do
adapt(e) = —1
elements are marked for coarsening unless they pass at least one AMR
threshold.
for k =1,N},;, do
Compute local AMR criterion Cj.
for [ =1,lvl,,,, do
if C} . > threshold(kv) then
if lvl(e) < [ then

adapt(e) = 1
else
adapt(e) =0
end if
end if
end for
end for
end for
end if

Refine and coarsen marked elements through P4est
Re-partition new mesh
end for

6.2 Simulations and Results
The initial conditions for this test are similar to [29]. A dry tropical storm-like vortex

is initialized using the following profile for azimuthal-mean tangential velocity:

B(r, 2) = V(r)eap {— ;;f} exp [— <DL2>6] | (6.2)

where V' is the surface tangential velocity, 0 = 2, D; = 5,823 m, and Dy =

200 km. The surface tangential velocity can be found by following the procedure
described in [85, 86] and integrating a specified Gaussian distribution with a vorticity
peak of 1.5 x 1073 s~ and maximum winds of 21.5 ms™! at a radius of 50 km from

the center. The vertical velocity is initially taken to be w = 0 s everywhere.
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The density and potential temperature are initialized by an iterative procedure
that oscillates between satisfying the gradient wind balance and the hydrostatic
balance until a specified criterion is met. This procedure is described in detail in
[83]. The background state is defined by vertically interpolating the Jordan [49]

mean hurricane-season sounding onto the spectral element grid.

Observational heating: The time evolution of the vortex is driven by 4-dimensional
source term in the energy equation. This source term represents latent heating/cooling
rates derived from Doppler radar measurements in hurricane Guillermo (1997). The
latent heating/cooling is described in detail in [30]. Hurricane Guillermo (1997) was
a rapidly intensifying tropical cyclone and the heating derived from its observational
data should provide a good testing ground for how AMR responds to a rapidly
intensifying storm simulation. As described in [37], the heating is computed on a
grid covering the inner core of the system out to a radius of r = 60 km from the
domain center. This grid has a resolution of 2 km in the horizontal direction and
0.5 km in the vertical direction. The heating observations are split into 10 snapshots
covering a 5.7 hour period in intervals of 34 minutes. The largest heating rates are
present at a radius of 25 — 30 km from the domain center, well within the radius of
maximum winds for the initial conditions. Outside of » = 60 km radius the heating
term is zero. The heating rates are interpolated in space onto the spectral elements
grid. After initialization, the first heating snapshot gradually introduced over the
first 30 minutes of the simulation, by way of a hyperbolic tangent function. The
snapshots are then linearly interpolated to the next observation time over the course
of the remainder of the simulation. Past ¢ = 5.7 hours the heating is maintained

constant until the simulations finish at ¢ = 6 hours.
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Boundary conditions At the lower boundary the surface layer model described in
48] is active, while the sea-surface temperature is maintained constant at its reference
value. The lateral boundaries are doubly periodic, and a Rayleigh absorbing layer is

used to damp gravity waves at the domain top and is described by:

R(z) = vysin® E (1 - ﬂ)] , (6.3)

Zd

where v = 1.0, 2p = 20 km and z4 = 4 km.

Sub-grid models The Smagorinsky-Lilly model [100, 68] is used to model sub-grid
scale turbulence in the horizontal direction. This model is a turbulent viscosity model
and contributes to the right hand side through the divergence of the turbulent stress

tensor V - 7. The turbulent stress tensor is defined as:

T = (—2u8), (6.4)

where S = 2(Vu+(Vu)”) is the strain rate tensor, and v; is turbulent viscosity

and is defined as follows:

vy = (AC,)?\/2|S|?, (6.5)

where Cj is the constant Smagorinsky coefficient and is taken to Cy = 0.21 for
our simulations. A is the filter width of the Smagorinsky model and is taken to be
the mean horizontal resolution of a given element.

The vertical turbulent sub-grid diffusion is modeled by the planetary boundary
layer(PBL) scheme of [43, 44] and is described by:

- m () -wan (2)]. ©9
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where C' is a prognostic variable, K, is the eddy diffusivity coefficient, w’c’, is
the flux at the inversion layer, and 7, is a correction to the local gradient. For a more

detailed description of the PBL scheme we refer the reader to [43, 44].

Computational domain All of our simulations are done on a [—400,400] km x
[—400,400] km x [0,20] km domain using continuous Galerkin spectral elements of

order 4.

6.2.1 Time to solution comparison

A set of one hour long simulations are performed to compare the time to solution of
simulations with and without AMR at varying resolutions. The vertical resolution is
maintained constant at Az = 312 m. A simulation using a static horizontal resolution
of Ax = Ay = 4 km is used as the baseline and its time to solution Ty, is used to
obtain a normalized time to solution 7% = T'/Tyxy, where T is the time to solution
for a given simulation.

Six simulations in total are performed for this comparison. Three constant
horizontal resolution simulations are performed with Az = Ay (4,2,1) km respec-
tively. Three simulations using AMR are performed with respective maximum
horizontal resolutions of Az = Ay = 2,1,0.5 km, corresponding to one, two, and
three levels of refinement. The criterion for refinement in the AMR simulations is that
the velocity magnitude must pass a set of predefined thresholds thresholdy, where
k = 1,lvl,,q, and lvl,,q, is the maximum refinement level. For these tests we perform
one test with threshold; = [7.5] ms™', one test with thresholdy = [7.5,15] ms™!,
and one test with thresholds = [7.5,15,22.5] ms™'. All simulations are performed
on the same machine with the same number cores, and we will refer to these tests as
the first set of test from here on out. The normalized time to solution for these tests

is presented in Figure 6.2. For the static grids, the increase in horizontal resolution
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Figure 6.2 Time to solution comparison of static and AMR simulations in normalized
time for the first set of tests.
results in /& 4 times increase in time to solution from 4 km to 2 km and then similarly
from 2 km to 1 km. This is expected as the number of grid cells quadruples when
doubling the horizontal resolution in a 3D simulation. With the set of criteria being
used, the time to solution for the AMR simulations with up to 1 km horizontal
resolution remain lower than a uniform 2 km horizontal resolution simulation. The
addition of additional refinement levels results in a &~ 2 times increase in cost for
the AMR simulations with the sets of criteria being used in these tests. The AMR
simulation with a horizontal resolution of up to 500 m is still much cheaper than
a static 1 km resolution simulation and barely more expensive than a static 2 km
resolution simulation.

A second set of tests is performed to observe the effect of changing the refinement
criterion on the time to solution and to see how AMR performs over the full six hour

simulation period. This set of tests includes four simulations:
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12

Figure 6.3 Time to solution comparison of static and AMR simulations in normalized
time for the second set of tests. The strict 2-level AMR uses threshold,;, while the
lenient 2-level AMR uses threshold,,

e A simulation using a static grid with a horizontal resolution Az = Ay = 1 km.

e A simulation with two levels of refinement (up to 1 km horizontal resolution)
with the same refinement criterion thresholdy = thresholds as the previous
2-level simulation, this will be referred to as the strict 2-level simulation.

e A simulation with two levels of refinement but with a more lenient refinement
criterion thresholdy, = [2,5] ms™!, this will be referred to as the lenient 2-level
simulation.

e A simulation with four levels of refinement(up to 250 m horizontal resolution)

and a vertical resolution Az = 250 m. The thresholds for the simulation are
threshold, = [7.5,15,22.5,30] ms™!.

Remark 6.2.1 All simulations except the simulation with four levels of AMR

maintain a vertical resolution Az = 312 m.

Figure 6.3 presents the time to solution for the second set of tests in normalized
time. For these tests, the baseline is the strict 2-level AMR simulation as it is the

cheapest to perform. We can see that while the two simulations using two levels of
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Figure 6.4 Number of element columns over time for the static grid simulation
(blue), the 4 level amr simulation (red) with threshold, = [7.5,15,22.5,30] ms™!, the
2 level amr simulation with threshold;, = [2,5] ms™! (yellow), and the 2 level amr
simulation with thresholdy = [7.5,15] ms™! (purple).

AMR remain cheaper than the static alternative, the more lenient criterion incurs a
substantial increase in the cost of the simulation.

Figure 6.4 shows the number of vertical columns over time for this set of
simulations. We can see that with the stricter AMR criteria and two levels of
refinement (purple line), the number of columns does not vary substantially over the
course of the simulation. With the more lenient criteria and two levels of refinement
(yellow line), the number of columns at the end of the simulation is double what it
was at the beginning which explains the significant increase in cost. The simulation
using four levels of AMR shows a substantial increase in the number of columns
over the course of the simulation, the number of columns at the end is five times

what it was at the beginning. As the hurricane intensifies more areas of high velocity

magnitude appear and the mesh adapts by refining around these areas and generating
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more columns. While the total number of columns for the 4 level AMR simulation
is less than the total number of columns for the static simulation, it still requires a
longer time to complete. The main reason for this is the increased vertical resolution
which increases the total number of degrees of freedom and further restricts the time
required for stability. For the remainder of this section we will continue referring to

this set of simulations.

6.2.2 Accuracy of AMR simulations

Figure 6.5 shows the maximum values of the horizontally averaged horizontal velocity
over time for (x,y) € [-50,50] km x [—=50, 50] km. These values are found by finding
the average value of horizontal velocity at each vertical level and then finding the
maximum among these. This horizontal sub-domain is chosen as it should allow for
focusing on where the observational heating takes place. Figure 6.6 shows the values
of maximum horizontal velocity over time. Both figures compare these values for
the static simulation and the two 2-level AMR simulations. Both figures show an
essentially perfect overlap for these quantities and demonstrate the AMR’s ability to
capture the intensification of the storm even with relatively strict criteria.

Figure 6.7 shows the horizontal velocity of the storm at different times for a
horizontal slice taken at z = 1,000 m. We can see that the left column (2-level AMR
with strict criterion) and middle column (static grid) are identical at all the displayed
times. The right column (4-level AMR) allows us to see the additional details and
structures that can be captured with additional refinement. Figure 6.8 shows the
velocity magnitude of the storm at different for a vertical slice taken at x = 0 m.
Once again the left and middle columns are identical and demonstrate the ability of
AMR to obtain high fidelity results at a fraction of the cost of a simulation using a

static grid. Figure 6.9 is similar to Figure 6.7 but presents the vorticity magnitude.
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Even for this derived quantity the left and center columns are still identical. The
right column showcases what additional resolution has to offer in terms of resolving
turbulent structures. The simulations with resolutions of up to 250 m of horizontal
resolution show an increase in both vorticity and velocity compared to their lower
resolution counterparts. This reflects the role of the additional resolution in capturing
the intensification of the storm. Vorticity is especially important when considering
features like strong updrafts and convective towers. Pushing this resolution even
further could allow for studies of how these features affect TC intensification and RI
through numerical experiments.

We now focus on the simulation using four levels of refinement. Figure 6.10
shows the first instance we detect of the grid refining to a horizontal resolution Az =
Ay = 500 m. This refinement takes place at ¢ ~ 0.3 hours, near the beginning of
the simulation. The top two plots show areas of higher velocity magnitude (dark
red shades) this corresponds to the criterion for refining to 500 m being met and
the bottom two plots of the figure show how the grid responds to the intensification.
Figure 6.11 shows the first instance we detect of the grid refining to a horizontal
resolution Az = Ay = 250 m. This refinement takes at ¢ ~ 0.4 hours, still near the
beginning of the simulation. As shown in the top two plots, high values of velocity
magnitude trigger the refinement process and grid adapts (middle two plots). At
this time the high value of velocity magnitude is associated with the occurrence of a
strong updraft, as evidenced by the high vertical velocity values shown in the bottom
two plots of the figure.

Figure 6.12 Shows the 4 level AMR simulation at ¢ = 6 hours and at the
z = 1000 m horizontal plane within the boundaries of (z,y) € [—200,200] km x
[—200,200] km. All the levels of the AMR grid are visible and as we would expect,

the grid is finer near the storm center than it is farther away.
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6.3 Discussion
6.3.1 Criteria for adaptive mesh refinement
The efficiency of AMR depends very closely on the choice of criterion chosen for
refinement. A criterion that is too strict and hard to fulfill can result in insufficient
refinement and lead to less accurate simulations. A criterion that is too lenient
and easy to fulfill can results in less time savings and perhaps unnecessary costs.
This work does not offer an in depth study of different criteria for AMR, but we do
demonstrate how it can affect the efficiency of a simulation. Deciding on a criterion
requires knowledge of specific features that the AMR is meant to capture, velocity
magnitude was chosen for the simulations here as it allows for AMR to detect regions
where intensification takes place. However, it could be argued that this criterion can
only be activated after intensification has already begun taking place and it might not
be able to capture the onset of intensification. Potential vorticity has been studied by
[40] as a potential criterion for tropical cyclone AMR and showed promise. Perhaps a
criterion that combines multiple flow variables should be considered for future AMR

simulations of tropical cyclones.

6.3.2 LES simulations of tropical cyclones with AMR

Two approaches come to mind when thinking of extending tropical cyclone simulations
with AMR to LES resolutions. The first is to use LES resolutions within the entire
domain thereby completely eliminating the need for a PBL scheme. This approach
means the minimum resolution must be high enough to resolve most of the large eddies
at all time. AMR would be used to decrease the dependence on the sub-grid-scale
model and resolve more of the small scale turbulence. Though this method makes use
of AMR, simulating a tropical cyclone over its life cycle would still be very expensive.

Nevertheless, as this approach would not need a typically column-dependent PBL
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scheme, it would make 3D AMR simulations of moist tropical cyclones straightforward
thanks to the non-column microphysics approach [105]. The second approach is much
less expensive and involves using the same coarse base grid tested in this work. To
reach resolutions below 100 m, six levels of refinement would be required. But, this
approach poses a complication as it pertains to modeling vertical turbulent fluxes.
At high resolutions a fully 3D LES turbulence model should be used, while at coarse
resolutions a PBL scheme should be used. It remains unclear at what resolutions
a transition should be made between the two turbulence models. It is also unclear
how exactly a transition between the two models would look. The need for a PBL
scheme also makes the use of 3D AMR difficult given the need for column-based data
structures. Perhaps if a suitable criterion was designed such that all areas of interest
of a tropical cyclone could be resolved at LES resolutions, it might be possible to
circumvent the need for a PBL scheme. In this case the assumption would be made
that the PBL scheme’s contribution to intensification would have to be minimal at
a sufficient distance from the storm center. We have begun experimenting with this
approach for moist tropical cyclone simulations and have obtained some early results.
Figure 6.13 presents a moist tropical cyclone simulation with six levels of adaptive
mesh refinement for a horizontal resolution of up to Ax = Ay = 62.5 m. This figure
presents a render of the cloud cover at ¢ = 17.3 hours of a simulation with a cold
start (No observational heating is involved). This work is still only its early stages

and hopefully that an in depth study can be done in the future.
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Figure 6.7 Horizontal winds taken at height z = 1000 m above sea level at different
stages of the simulation. The left column presents results for a simulation with two
levels of AMR and a maximum horizontal resolution of 1 km. The center column
presents the results for a static grid with 1 km constant horizontal resolution. The

right column presents the results for a simulation with four levels of AMR and a
maximum horizontal resolution of 250 m.
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Figure 6.8 Velocity Magnitude taken at x = 0 m at different stages of the simulation.
The left column presents results for a simulation with two levels of AMR and a
maximum horizontal resolution of 1 km. The center column presents the results for a
static grid with 1 km constant horizontal resolution. The right column presents the
results for a simulation with four levels of AMR and a maximum horizontal resolution

of 250 m.
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Figure 6.9 Vorticity magnitude taken at height z = 1000 m above sea level at
different stages of the simulation. The left column presents results for a simulation
with two levels of AMR and a maximum horizontal resolution of 1 km. The center
column presents the results for a static grid with 1 km constant horizontal resolution.
The right column presents the results for a simulation with four levels of AMR and
a maximum horizontal resolution of 250 m.
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Figure 6.10 Velocity magnitude and grid at the first instance of reaching the
third level of refinement for the 4 level AMR simulation. a) Velocity magnitude
at z = 1000 m and t = 0.3 hours. b) Velocity magnitude at = 0 m and
t = 0.3 hours. «¢) Horizontal grid at z = 1000 m, t = 0.3 hours, and for
(x,y) € [-100,100] km x [—100, 100] km. d) Vertical grid at x = 0 m, ¢t = 0.3 hours,
and for (y, z) € [-100,100] km x [—0,20] km. Note that the lowest resolution visible
in ¢) is 2 km (seen in the corners) and the highest is 500 m. The baseline 4 km
resolution is not visible as it present farther away from the domain center. In d)
the lowest visible horizontal resolution is 1 km and the highest is 500 m. The lower
resolutions are present in other areas of the simulated domain not pictured here. Areas
with a velocity magnitude larger than 22.5 ms™! trigger the criterion for the third
level of refinement and cause grid to reach 500 m of horizontal resolution wherever
the criterion is met. As this refinement is done on a column basis, the entire vertical
column is refined as shown in d).
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Figure 6.11 Velocity magnitude and grid at ¢ = 0.4 hours, the first instance of
reaching the fourth level of refinement for the 4 level AMR simulation. a) Velocity
magnitude at z = 12 km. b) Velocity magnitude at © = 24 km. c¢) Horizontal grid
at z = 12 km and for (x,y) € [—100,100] km x [-100, 100] km. d) Vertical grid at
x = 12 km and for (y,z) € [—100,100] km x [—0,20] km. e) Vertical velocity at
z = 12 km. f) Vertical velocity at x = 24 km. In ¢) and d) the lowest horizontal
resolution is 2 km and 1 km respectively and the highest is 250 m. The baseline 4
km resolution is not visible but is present farther away from the center. A substantial
updraft indicated by the elevated vertical velocity shown in e) and f) allows the

velocity magnitude to pass the 30 ms™! threshold required for the 4th level of AMR.
83



(a) AMR grid at t = 6 hours

10 2 30 40 5 60
E -
Velocity magnitude at 6 hours

200

100

y (km)

-100

-200
200 100 0 100 200

X (km)
(b) Tropical cyclone at ¢ = 6 hours and z = 1000 m.

Figure 6.12 Example of 4-level refinement at ¢ = 6 hours. The criterion used
is thresholdy = [7.5,15,22.5,30] ms™! on velocity magnitude. a) Horizontal cross
section of the AMR grid. b) Velocity magnitude at ¢ = 6 hours and z = 1000 m.
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Figure 6.13 Cloud cover of a moist tropical cyclone simulation with up to 6 levels
of AMR, a vertical resolution of Az = 100 m and a maximum horizontal resolution
of Ax = Ay = 62.5 m.
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CHAPTER 7

CONCLUSION

This dissertation demonstrated the efficacy of adaptive mesh refinement (AMR) in
accelerating simulations of tropical cyclones during rapid intensification. It showed
that AMR can replicate the results of static grid simulations while significantly
reducing simulation costs. Additionally, the dissertation introduced a novel column-
free method for modeling microphysics in atmospheric simulations, which enables the
use of 3D AMR for simulating tropical cyclones. This approach holds promise for
greater efficiency compared to 2D AMR. Furthermore, the dissertation proposed a
new and efficient method for the Rayleigh damping layer, commonly utilized to damp
outgoing gravity waves in atmospheric flows. Thils advancement has the potential
to further enhance the efficiency of tropical cyclone simulations and pave the way for
large eddy simulations of their entire life cycle. This in turn, could lead to a better
understanding of tropical cyclones and their rapid intensification through the use of

numerical experiments.
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APPENDIX A

RIGHT HAND SIDE CONSTRUCTION FOR SEMI-INFINITE
ELEMENTS USING THE LAGUERRE FUNCTION BASIS

The construction of the right hand side for a semi-infinite element with a scaled
Laguerre function basis is presented here. Consider a general system of PDEs, written

in conservation form, on the semi-infinite domain Q V¢t =0, ...T,.q:

oq N OF (q) N 9G(q)

T o 5 S(aq) + V(a), (A1)

where the state vector q, flux vectors F and G, source vector S, and diffusion vector
V are problem-dependent. We provide the reader with a pseudo-code for the use
of inexact integration in computing the element right hand sides of a PDE on semi-
infinite elements, where rhs”® is the right hand side of a semi-infinite element.
With the element right hand sides determined, the same DSS operation
described in § 2.2.2 can be used to construct the global right hand. Similarly to
applying DSS to the mass matrix, this enforces the continuity of the global solution

and is the only coupling between the finite and semi-infinite domains.
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Algorithm 4 Construction of the right hand side for an element of the semi-infinite

domain

rhs™® = zeros(Nrgr, Noar)
for j =1, Nrgr do
for i =1, Nygr, do
W = w(&)w(n;)
dFd¢ = dFdn = dGd¢ = dGdn =0
for k=1, Ny do
dFd§ = dFd¢ + hp(&)F (x(&,nj, €))
dGdS = dGd§ + hy. (&) G (x(&k, 75, €))
end for
for k=1, N qr do
dFdn = dFdn+ b ;) F (<( . €))
dGdn = dGdn + iL;fL“g(nj)G(X(fi, Nk, €))
end for
dFdx = dFd§ - dédx + dFdn - dndx
dGdz = dGd§ - dédz + dGdn - dndz
rhs;" = rhs[" — ©|J (&, n;)|(dFdx + dGdz)
end for

end for

88



APPENDIX B

EXTENDING THE LAGUERRE-LEGENDRE SEMI-INFINITE
ELEMENT METHOD TO 3D

This appendix presents the procedure for constructing 3D semi-infinite elements to
help the reader interested in extending 2D semi-infinite elements to three-dimensions.
The extension can be done as easily as extending a standard CG approach on a
tensor product basis. We give an explanation here although this paper is limited to
two-dimensions. Let & = (£, 7, () be the coordinate of a point on the three-dimensional

reference element. Extending Equation (2.38) to three dimensions is done as follows:

Pi(x) = hi[§(x)] @ hy[n(x)] ® Ek[U(X)L I =i+ (j —1)Nrgr + (k — 1)N%G’L7 (B.1)

where i € {1,...,Nrar}t, j € {1,...,Nrgr}, and k € {1,...,Nigr}. It is then
simple to extend Equation (2.7) to three dimensions by adding an additional sum

over the LGL nodes and including their corresponding weights in the product:

Nrgr Nrgr

/ J(x)dx = /Q FOI@IdE ~ Y > w()wm)o (G f (€, 6ol & s Go)l.
e ref ij=1 k=1
(B.2)

The remainder of the extension, such as the construction of the mass matrix

can be done by following the same approach.
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APPENDIX C

SOUNDINGS FOR TROPICAL CYCLONE SIMULATIONS AND FOR
THE SQUALL LINE AND SUPER-CELL TEST CASES

This appendix presents the soundings used to initialize the background state for the
simulations presented in Chapter 5 and in Chapter 6.

Table C.1 Jordan 1958 [49] Mean Hurricane Season Sounding Used to Initialize the
Background State for the Tropical Cyclone Simulations presented in Chapter 6.

z(m) g (g/keg) 0 (K)
10.0 18.62 299.94

125.0 18.47 299.64
810.0 15.259 295.04
1541.0  11.96 290.07
3178.0  6.729 282.04
4438.0  4.120 274.64

o887.0  2.409 266.54
7596.0  1.119 256.04
9690.0  0.329 240.84
10949.0 0.04 230.74
12417.0 0.01 218.74
14202.0 0.01 205.94
16589.0 0.0 198.74
20727.0 0.0 210.14
22139.0 0.0 215.84
23971.0 0.0 219.14
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Table C.2 Sounding Used for the Squall Line and Super-Cell Simulations of Chapter

)

z(m) 0(K) ¢ (g/kg) w (m/s) v (m/s) p(Pa)

0.0 303.025079  14.000 12.0 0.0 100000.0
480.0 303.337272  14.000 9.696000 0.0 94697.28
960.0 304.402985 14.000 7.392000 0.0 89609.81
1440.0  305.397187 12.796 5.083000 0.0 84736.79
1920.0  306.306214 10.556 2.784000 0.0 80070.30
2400.0  307.365269 8.678 0.540000 0.0 75604.36
2880.0  308.550318 7.104 0.0 0.0 71334.51
3360.0  309.845257 5.788 0.0 0.0 67255.79
3840.0  311.235047 4.691 0.0 0.0 63362.95
4320.0  312.708238 3.777 0.0 0.0 59650.49
4800.0  314.255743 3.020 0.0 0.0 56112.80
5280.0  315.869985 2.396 0.0 0.0 52744.15
5760.0  317.544512 1.885 0.0 0.0 49538.82
6240.0  319.273784 1.469 0.0 0.0 46491.09
6720.0  321.052868 1.134 0.0 0.0 43595.27
7200.0  322.877588 0.866 0.0 0.0 40845.73
7680.0  324.744235 0.653 0.0 0.0 38236.93
8160.0  326.649534 0.487 0.0 0.0 35763.41
8640.0  328.590559 0.357 0.0 0.0 33419.84
9120.0  330.565013 0.259 0.0 0.0 31200.99
9600.0  332.571020 0.184 0.0 0.0 29101.75
10080.0 334.606102 0.129 0.0 0.0 27117.17
10560.0 336.668475 0.088 0.0 0.0 25242.39
11520.0 340.869535 0.038 0.0 0.0 21803.59
12000.0  343.712008 0.026 0.0 0.0 20232.15
12480.0  350.647306 0.026 0.0 0.0 18763.71
12960.0 358.453724 0.029 0.0 0.0 17401.15
13440.0 366.433620 0.031 0.0 0.0 16138.11
13920.0 374.591035 0.034 0.0 0.0 14967.29
14400.0 382.929618 0.037 0.0 0.0 13881.93
15360.0 400.170355 0.044 0.0 0.0 11942.99
15840.0 409.081924 0.049 0.0 0.0 11078.24
16320.0 418.191751 0.053 0.0 0.0 10276.53
16800.0 427.504224 0.058 0.0 0.0 9533.23
17280.0 437.023716 0.063 0.0 0.0 8844.07
17760.0 446.755038 0.069 0.0 0.0 8205.09
18720.0 466.871821 0.083 0.0 0.0 7063.24
19200.0 477.267160 0.091 0.0 0.0 6553.82
19680.0 487.891998 0.094 0.0 0.0 6081.42
20160.0 498.742611 0.094 0.0 0.0 5643.35
20640.0 509.643457 0.094 0.0 0.0 5237.00
21120.0 520.544304 0.094 0.0 0.0 4859.92
21600.0 531.445151 0.094 0.0 0.0 4509.85
22560.0 553.246845 0.094 0.0 0.0 3882.66
23040.0 564.147692 0.094 0.0 0.0 3601.93
23520.0 575.048539 0.094 0.0 0.0 3340.96
24000.0 585.949386 0.094 91 0.0 0.0 3098.30
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