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Ancestral sequence reconstruction is a key task in computational biol-
ogy. It consists in inferring a molecular sequence at an ancestral species of
a known phylogeny, given descendant sequences at the tip of the tree. In ad-
dition to its many biological applications, it has played a key role in eluci-
dating the statistical performance of phylogeny estimation methods. Here we
establish a formal connection to another important bioinformatics problem,
multiple sequence alignment, where one attempts to best align a collection of
molecular sequences under some mismatch penalty score by inserting gaps.
Our result is counter-intuitive: we show that perfect pairwise sequence align-
ment with high probability is possible in principle at arbitrary large evolu-
tionary distances—provided the phylogeny is known and dense enough. We
use techniques from ancestral sequence reconstruction in the taxon-rich set-
ting together with the probabilistic analysis of sequence evolution models
involving insertions and deletions.

1. Introduction. Ancestral sequence reconstruction (ASR) is a key task in computa-
tional evolutionary biology [24]. It consists in inferring a molecular sequence at an ancestral
species of a known phylogeny, given descendant sequences at the tip of the tree. Numerous
approaches are available for this task. Some are based on statistical models of sequence evo-
lution on a tree, while others rely on combinatorial optimization formulations [37, 41]. In
addition to its many biological applications, ASR has played a key role in elucidating the
statistical performance of phylogeny estimation methods [29, 30, 33, 34]. Here we establish
a formal connection to sequence alignment.

Rigorous analyses of the accuracy of ASR methods have been performed mainly in two
asymptotic settings. In phylogenies of arbitrarily large depth, an achievable goal is to infer a
sequence that is correlated site-by-site with the true ancestral sequence [11, 22, 27, 38]. In
the taxon-rich setting, on the other hand, where the depth of the phylogeny is bounded as the
number of taxa increases, consistent estimators are known to exist [17, 35]. That is, under
conditions on the branching of the phylogeny around its root, the correct inference of a single
site in the ancestral sequence can be guaranteed as the number of leaves goes to infinity.

Most theoretical results in this area are derived under models of sequence evolution by
single site substitutions. More complex models allowing for site insertions and deletions (in-
dels) have also been considered [2, 12, 16]. The star case, also known as trace reconstruction,
has been the subject of much recent interest [3, 5–7, 9, 10, 20, 21, 31]. See also [1, 8, 13,
26, 39] for rigorous analyses of indel models in other contexts, for example, distance-based
phylogeny reconstruction.

Indel models are closely related to another important bioinformatics problem, multiple
sequence alignment (MSA), in which one attempts to best align a collection of molecular
sequences under some mismatch penalty score by inserting gaps. In practice, MSA is a hard
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problem, especially at large evolutionary distances [4, 36]. While statistical approaches based
on indel models have also been developed [25], commonly used approaches involve progres-
sively aligning the given sequences up a guide tree, in what is reminiscent of ASR proce-
dures [32]. In fact, many trace reconstruction and ASR methods under indels involve partial
local alignments of sequences.

In this paper, we combine insights from ASR in the taxon-rich setting together with the
probabilistic analysis of indel models to prove the first (as far as we know) rigorous guarantee
for sequence alignment under an indel model on a phylogenetic tree. Our result is somewhat
counter-intuitive: we show that perfect pairwise sequence alignment with high probability is
in principle possible at arbitrary large evolutionary distances—provided the phylogeny is
known and dense enough. While such a condition may not be satisfied in real datasets, our
analysis is a step towards a better theoretical understanding of MSA and its connections to
ASR.

In a nutshell, we take advantage of the density of the phylogeny to estimate ancestral se-
quences with high probability along the path between two leaf sequences of interest, then
reconstruct the history of mutations along the way. For the ASR step, we use a standard
phylogenetic method known as parsimony, which seeks to use the smallest number of muta-
tions possible to explain sequences at the leaves of a phylogeny. Rigorous analyses of par-
simony are often challenging and have revealed the intricate, often unintuitive, behavior of
the method [14, 18, 19, 23, 42]. In our taxon-rich setting, branching process results lead to
rigorous guarantees on the ancestral reconstruction.

The rest of the paper is organized as follows. In Section 2, we state our main result after
introducing some background. The alignment algorithm is presented in Section 3. The proof
is comprised of two parts: the ancestral estimation step is analyzed in Section 4 and the
alignment step is analyzed in Section 5.

2. Background and main result. In this section, we state our main result. First, we
introduce the model of sequence evolution we use here as well as the multiple sequence
alignment problem.

2.1. Definitions. We consider the TKF91 insertion-deletion (indel) sequence evolution
model. Technically, we use a slight variant of the TKF91 model defined in [40], where we
only allow an alphabet with two letters 0 and 1 to simplify the analysis and its presentation.
Our results extend naturally to more general settings, such as to any finite alphabet (see
Section 2.3).

DEFINITION 1 (TKF91 model: two-state version). Consider the following Markov pro-
cess I = {It }t≥0 on the space S of binary digit sequences together with an immortal link
“•”, that is,

S := “ • ” ⊗
⋃

M≥1

{0,1}M,

where the notation above indicates that all sequences begin with the immortal link. Posi-
tions of a sequence, except for that of the immortal link, are called sites or mortal links.
Let (η,λ,µ) ∈ (0,∞)3 and (π0,π1) ∈ [0,1]2 with π0 + π1 = 1 be given parameters. The
continuous-time dynamics are as follows: If the current state is the sequence x⃗ ∈ S , then the
following events occur independently:

• Substitution: Each site is substituted independently at rate η > 0. When a substitution oc-
curs, the corresponding digit is replaced by 0 and 1 with probabilities π0 and π1, respec-
tively.
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FIG. 1. The evolution of a two-state TKF91 process on a tree T with three leaves.

• Deletion: Each site is removed independently at rate µ.
• Insertion: Each site, as well as the immortal link, gives birth to a new digit independently

at rate λ. When a birth occurs, the new site is added immediately to the right of its parent
site. The newborn site has digit 0 and 1 with probabilities π0 and π1, respectively.

We run this process on a rooted metric tree as follows. Consider a rooted binary tree
T = (V ,E,ρ, t) with vertices V , edges E, root ρ, and edge lengths t = {te}e∈E (in time
units). It is standard in phylogenetics to use a binary tree, so that each interior node reflects
the creation of a single new species. We restrict ourselves to ultrametric trees, that is, the
sum of edge lengths from root to leaf is the same for every leaf. We refer to this common
quantity as the depth of the tree and denote it by h. The rooted metric tree T is then indexed
by all points along the edges of T . The root vertex has an initial sequence σρ ∈ S . With an
initial sequence σu ∈ S , the TKF91 process is recursively performed on each descending edge
e = (u, v) over the time interval [0, te] to obtain another sequence σv ∈ S . Processes running
along descending edges of u are independent, conditioned on state σu at u. We refer to the
full process as the (two-state) TKF91 process on tree T . An example of how the sequence
evolves on the tree is given in Figure 1.

For any sequence σ ∈ S , let |σ | be the length of the sequence, and let |σ |0 and |σ |1 be
the number of 0’s and 1’s in the sequence, respectively. The stationary distribution of the
sequence length |σ | = M is known [40] to be

(1) γM =
(

1 − λ

µ

)(
λ

µ

)M

, M ∈ Z+,

provided µ > λ. We assume that the root sequence σρ follows its stationary distribution. That
is, |σρ | is distributed according to γM and its sites are i.i.d. in {0,1} with respective probabil-
ities π0 and π1. Stationarity of σρ implies stationarity of the TKF91 process throughout the
tree. We assume from now on that µ > λ and that stationarity holds.

Some notation. Later on, we will need the following notation. For a sequence σ ∈ S , let
Ss(σ ), Sd(σ ), and Si (σ ) be the sequences that differ from σ respectively by a single sub-
stitution, a single deletion, and a single insertion. Observe that these sets are disjoint as the
sequence lengths in each necessarily differ. Further, let S1(σ ) = Ss(σ ) ∪ Sd(σ ) ∪ Si (σ ) be
the sequences obtained by performing a single mutation on σ , and define

(2) λ∗(σ ) =
∑

τ∈S1(σ )

Q(σ, τ ) = λ
(|σ | + 1

) + µ|σ | + ηπ1|σ |0 + ηπ0|σ |1

as the total rate under the TKF91 process of moving away from σ , where Q(σ, τ ) is the rate
at which the TKF91 process on an edge jumps from σ to τ . Formula (2) is derived formally
in the Appendix.
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FIG. 2. Left: A collection of sequences to align. Right: A possible multiple sequence alignment..

2.2. Multiple sequence alignment. To compare sequences descending from a common
ancestor through substitutions, insertions, and deletions, it is natural to attempt to align them
as best as possible, that is, to construct a multiple sequence alignment.

DEFINITION 2 (Multiple sequence alignment). For any integer n ≥ 1 and sequences
σ = (σv1, . . . ,σvm) ∈ Sm at points v1, . . . , vm ∈ T , a multiple sequence alignment (or pair-
wise alignment when m = 2) is a collection of sequences a(σ ) = (a1(σ ), . . . , am(σ )) whose
entries come from {0,1,−} (− is called a gap) such that:

• the lengths satisfy
∣∣a1(σ )

∣∣ = ∣∣a2(σ )
∣∣ = · · · = ∣∣am(σ )

∣∣ ≥ max
{|σv1 |, |σv2 |, . . . , |σvm |},

• no corresponding entries of a1(σ ), . . . , am(σ ) all equal −, and
• removing − from ai(σ ) yields σvi for all i ∈ {1,2, . . . ,m}.
A multiple sequence alignment can be expressed as an m× |a1(σ )| matrix where the rows are
the sequence alignments and where no column consists of all gaps. If m = 2, the alignment
is referred to as pairwise.

An example of a multiple sequence alignment is given in Figure 2. More generally, a mul-
tiple sequence alignment procedure may take as input further auxiliary information (beyond
the sequences to be aligned), such as a tree or sequences at other points of the tree. Our
alignment algorithm (see Section 3) will indeed use additional information.

Two sites, one from one sequence and the other from another sequence, are said to be
homologous provided they descend from a common site in their most recent common ances-
tral sequence only through substitutions under the evolutionary process on the tree. A true
multiple sequence alignment is one that places homologous sites in the same column and
nonhomologous sites in different columns. We note however that certain homology relation-
ships are unknowable a priori: for example, if in the course of evolution a 0 is inserted in a
sequence next to another 0, which of them descends from the ancestral 0 is arbitrary. Here
we take the convention that a repeated site is always inserted at the beginning of a run; and
that similarly a repeated site is always deleted at the beginning of a run.

2.3. Statement of main result. The following theorem states that it is possible to construct
with high probability a true pairwise alignment of the sequences at two arbitrary leaves v and
w of a phylogeny as long as the maximal branch length is sufficiently small.

THEOREM 1 (Main result). Fix η,µ,λ ∈ (0,∞), the substitution, deletion, and insertion
rates under the TKF91 model. There is a polynomial-time alignment procedure A such that
for any tree depth h > 0 and any failure probability ε > 0, there exists a maximum branch
length tmax := tmax(h, ε) > 0 such that the following property holds. For any rooted binary
tree T = (V ,E,ρ, t) with vertices V , edges E, root ρ, and edge lengths t = {te}e∈E , assume
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that the leaves ∂T = {ℓi}ni=1 are ordered from left to right in a planar realization of T , and let
v = ℓ1 and w = ℓn. Then the alignment procedure applied to the sequences σℓ1,σℓ2, . . . ,σℓn

outputs a true pairwise alignment of σv and σw with probability at least 1 − ε, provided that
te ≤ tmax for all edges e ∈ E.

Note that the tree depth h is arbitrary. The alignment procedure, which is described in
Section 3, takes as input leaf sequences at the leaves of T as well as T itself. We show in
Section 3 that the overall computational complexity of the algorithm is O(n2(ℓ + logn))
where ℓ is the maximum sequence length at the leaves. Note however that we have not at-
tempted to optimize the computational efficiency of the algorithm.

The maximum branch length, tmax, depends only on h and ε. Whether the specific depen-
dence in our proofs can be improved is a nontrivial problem. It is ultimately driven by our
use of exact sequence reconstruction deep inside the tree. One could potentially get better
quantitative bounds by allowing for errors in the reconstruction. However, little is known
about approximate ancestral reconstruction under indel models [2, 16], even in the trace re-
construction setting [3, 5–7, 10] where the tree is a star and the evolution model is often
simpler.

Extensions. While we have stated our main result for binary sequences to simplify the
presentation, it holds unchanged for an arbitrary alphabet size. Firstly our algorithm, as de-
scribed in Section 3, can be applied as is to sequences over an arbitrary alphabet. In particular,
we state our ancestral reconstruction estimator in a form that does not rely on the size of the
alphabet (see Definition 3). Second, the model we use, the TKF91 model, was in fact intro-
duced over alphabets of any size in [40] (and applied specifically to nucleotide sequences,
which have four states). There, insertions and substitutions are simply drawn from the sta-
tionary distribution over nucleotides. Under this more general model, all steps of the analysis
remain unchanged. Indeed, the proofs rely on identifying substructures where none or one
mutation has occurred (see Propositions 2 and 3).

While we assume above that the rate of substitution is the same throughout the tree, our
proof still goes through if the parameter η is merely an upper bound on that rate across edges.

3. Alignment algorithm. In this section, we describe the alignment procedure of The-
orem 1. We emphasize that this algorithm is not meant to be practical, but rather serve as a
proof of our main result.

3.1. Overview of full alignment algorithm. We introduce the following alignment algo-
rithm A which takes as input a rooted metric tree T , two distinguished leaves v and w, all
leaf sequences, and a preprocessing parameter δ1. Here, we assume that the most recent com-
mon ancestor of v and w is the root. If it is not the root, then we consider only the subtree
descending from the most recent common ancestor. We take δ1 to satisfy tmax ≤ δ1 ≤ h. The
algorithm outputs a pairwise alignment for the sequences at v and w.

There is a unique path between v and w that we henceforth call the backbone. We let B
be the number of nonroot vertices on the backbone. Then v = x1 and w = xB and the other
nonroot backbone vertices are in order x2, . . . , xB−1. For some parts of the algorithm and
analysis, it will be convenient to use an alternative numbering of the backbone vertices—
away from the root, numbering the left side, then numbering the right side. Specifically, let
x1, . . . , xB− be the backbone vertices on the same side of the root as x1. Let xB−+1, . . . , xB

be the backbone vertices on the same side of the root as xB and let B+ be the number of such
vertices. Then we set

x̃−
i := xB−−(i−1), i = 1, . . . ,B−
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FIG. 3. (a) Tree T with leaf sequences σ1 = σx1 , σ2 = σℓ2,1 , . . . ,σℓi2
, σB = σxB . (b) Tree T with leaf sequences

σ1 = σx1 , σ2 = σx2,1 , . . . ,σℓi2
, σ3 = σx3,1 , . . . ,σℓi3

,σB .

and

x̃+
i := xB−+i , i = 1, . . . ,B+.

Notice in particular that x̃−
1 and x̃+

1 are the children of the root and x̃−
B− = x1 and x̃+

B+ = xB .
We now describe the main steps of the algorithm. Some details will be given in the follow-

ing subsections. Figure 3 illustrates part of this algorithm at a high level.
We start with a preprocessing step. This step is used in the analysis of the algorithm.

Indeed, it will be convenient for all edges on the backbone to be roughly of the same length δ1
(up to a constant factor) and, furthermore, to have explicit control over this length separately
from the overall bound tmax on the edge lengths. This is because δ1 and tmax play different
roles in the proof: tmax serves to guarantee correctness of ancestral reconstruction on the
subtrees hanging from the backbone; δ1 on the other hand must be small enough to ensure
that at most one mutation occurs along the edges of the backbone, but large enough to allow
a union bound to be taken over the vertices of the backbone (see the proof of Proposition 3 in
Section 5.2 where this argument is detailed and an explicit relationship between δ1 and tmax
is derived).

• Preprocessing: backbone sparsification. We first construct a subtree T ′ by pruning some
backbone vertices and their descendants. Initialize T ′ := T . Then, for o = −,+ and for
k = 1, . . . ,Bo − 1,

1. Check whether the vertex x̃o
k is a vertex in the tree T ′. If not, do nothing.

2. If x̃o
k is in the tree T ′, find the minimal ℓ ≥ 1 such that the distance (accounting for

edge lengths) between x̃o
k and x̃o

k+ℓ is at least δ1. Observe that, by assumption, the distance
between x̃o

k and x̃o
k+ℓ is necessarily at most δ1 + tmax ≤ 2δ1.

3. Remove the vertices x̃o
k+1, . . . , x̃

o
k+ℓ−1, except x̃o

Bo , and all of their off-backbone de-
scendants from the tree T ′ (if they exist).

The result is a tree where the distance between consecutive vertices on the backbone is in
[δ1,2δ1] (by the observation in Item 2), with the possible exception of the children of the root
and the last pair on each side of the root all of whose distances are in (0,2δ1]. To simplify
the notation, we reassign T to be this new rooted metric tree and we reassign x1, x2, . . . , xB

to be the backbone vertices on this tree (with an updated value for B and updated alternative
numbering x̃o

k for o = −,+ and k = 1, . . . ,Bo). Because the initial tree is binary, it has at
most O(n) internal vertices. In particular the number of vertices on the path between v and
w is O(n). Hence the preprocessing step has O(n) computational complexity.

We then proceed with the alignment algorithm, which consists of two main steps both
proceeding along the backbone:

1. Ancestral estimation: We infer the ancestral sequences at the backbone vertices as follows.
For k = 2, . . . ,B − 1:
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(a) For the child vertex zk of xk that is off the backbone, infer the sequence σ̂zk at zk

using the Fitch method [15] (described below in Section 3.2) applied to the subtree rooted
at zk .

(b) Set σ̂xk equal to σ̂zk .

2. Recursive alignment: Now that the sequences at the nonroot backbone vertices {xk}Bk=1
have been estimated, we construct a multiple sequence alignment sequentially, starting
from x1, going to x2, and ending at xB−1 and xB . This stepwise alignment procedure is
described in Section 3.3 below. If the inferred sequences of successive backbone vertices
are not at most one mutation apart, then we terminate the algorithm with no output. Else,
a pairwise sequence alignment is produced for vertices v = x1 and w = xB .

We will show in Proposition 2 below that, with high probability, σ̂zk = σzk for all k =
2, . . . ,B − 1. We will then show in Proposition 3 below that the above stepwise alignment
outputs a true pairwise alignment with high probability.

3.2. Ancestral sequence reconstruction. We briefly describe below the ancestral se-
quence reconstruction subroutine. Note that we use the Fitch method for the convenience
of its analysis, but other methods could also be used. Though we focus on the {0,1} alphabet,
this method can be performed on sequences over any alphabet.

DEFINITION 3 (Fitch estimator). Let T = (V ,E) be a finite binary rooted tree with root z
and leaf set ∂T ⊂ V with given leaf sequences (σℓ)ℓ∈∂T . For any leaf vertex ℓ, define Ŝℓ ⊂ S
to be the subset Ŝℓ = {σℓ}. For each nonleaf vertex v with children v1 and v2, define Ŝv ⊂ S
recursively to be

Ŝv =
{
Ŝv1 ∩ Ŝv2 if Ŝv1 ∩ Ŝv2 ≠ ∅,

Ŝv1 ∪ Ŝv2 otherwise.

Then define the Fitch estimator σ̂z of σz to be a uniformly chosen member of Ŝz.

An analysis of this method in our setting is provided in Proposition 2 below.
Let ℓ be the maximum sequence length at the leaves. Identifying all unique sequences at

the leaves, of which there are at most n, has O(n2ℓ) computational complexity. For each
backbone vertex, the ancestral reconstruction step then has O(n2) computational complex-
ity. The number of leaves n is at least exponential in 1/tmax ≥ 1/δ1. Hence the number of
backbone vertices is O(logn). Hence the ancestral reconstruction step can be accomplished
in time O(n2ℓ + n2 logn).

3.3. Stepwise alignment. In this section, we describe the stepwise alignment subroutine.
It is based on the assumption that along the backbone (of the pruned tree):

(i) the sequences have been correctly inferred; and
(ii) consecutive sequences differ by at most one mutation.

We establish these facts in Propositions 2 and 3 below. In these circumstances, we show that
homologous sites can be traced (up to the convention we described earlier). We will construct
a sequence of alignments a2, a3, etc. We first describe the alignment of two sequences, then
the alignment of alignments, and so on.

Given two sequences σ̂ , τ̂ satisfying the assumptions (i) and (ii) above, we construct an
alignment a2(σ̂ , τ̂ ). For ℓ ∈ {1,2}, we let a2

ℓ (σ̂ , τ̂ ) denote the ℓth sequence (or ℓth row) of
the alignment constructed from the sequences σ̂ , τ̂ . There are three possible cases:
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(A) If σ̂ = τ̂ , then a true alignment is obtained by setting a2
1(σ̂ , τ̂ ) = σ̂ and a2

2(σ̂ , τ̂ ) = τ̂ ,
corresponding to no mutation.

(B) If |σ̂ | = |τ̂ | but σ̂ and τ̂ agree on all sites except one, then a true alignment is obtained
by setting a2

1(σ̂ , τ̂ ) = σ̂ and a2
2(σ̂ , τ̂ ) = τ̂ , corresponding to exactly one substitution between

the sequences.
(C) If |τ̂ | = |σ̂ | + 1 and there exists j ∈ {1,2, . . . , |σ̂ |} and τ̂ins ∈ {0,1} such that

τ̂i =

⎧
⎪⎪⎨

⎪⎪⎩

σ̂i i < j,

τ̂ins i = j,

σ̂i−1 i > j.

As we discussed before, the location of the indel cannot be determined from the sequences
alone. For example, if σ̂ and τ̂ are separated by an indel so that they are given by

σ̂ = (0,1,0,1,0,1,0,0,0,0,0,1,0),

τ̂ = (0,1,0,1,0,1,0,0,0,0,0,0,1,0),

we cannot tell which site gave birth to the new 0 to obtain τ̂ (assuming that the evolutionary
process transformed σ̂ into τ̂ ). So we assume by convention that j is the minimal choice
possible. Then a true alignment is obtained by setting a2

2(σ̂ , τ̂ ) = τ̂ and for i = 1, . . . , |σ̂ |+ 1

a2
1(σ̂ , τ̂ )i =

⎧
⎪⎪⎨

⎪⎪⎩

σ̂i i < j,

− i = j,

σ̂i−1 i > j,

corresponding to a single site τ̂ins being inserted into the sequence τ̂ to the left of the j th site
to obtain σ̂ . Similarly, if instead |σ̂ | = |τ̂ | + 1 (in which case a deletion has occurred), we
interchange the roles of σ̂ and τ̂ and use the same convention.

In fact, we will need to align alignments along the backbone, rather than sequences. Sup-
pose we have sequences σ̂x1, σ̂x2, . . . , σ̂xB and successive pairs

{σ̂x1, σ̂x2}, {σ̂x2, σ̂x3}, . . . , {σ̂xB−1, σ̂xB }
each satisfy exactly one of the cases (A), (B), or (C). (We terminate without output if the
assumptions do not hold.) Then we recursively construct a multiple sequence alignment as
follows. To simplify the notation, we let σ̂1:k = (σ̂x1, . . . , σ̂xk ). For any ℓ ≤ k, we let ak

ℓ (σ̂1:k)
denote the ℓth sequence (or ℓth row) of the alignment constructed from the given sequences
σ̂1:k .

1. Given σ̂x1 and σ̂x2 , let a2
1(σ̂1:2) and a2

2(σ̂1:2) be the pairwise alignment constructed above.
2. For k = 3, . . . ,B:

(a) We are given a multiple alignment ak−1
1 (σ̂1:k−1), . . . , a

k−1
k−1(σ̂1:k−1) of the sequences

σ̂x1, . . . , σ̂xk−1 , and a new sequence σ̂xk that is at most one mutation away from σ̂xk−1 .
(b) The sequences σ̂xk−1 and σ̂xk satisfy one of the three cases (A), (B), or (C) by as-

sumption, so their alignment ak
k−1(σ̂1:k) and ak

k (σ̂1:k) (within the larger multiple sequence
alignment) will differ by at most one entry similar to the sequence case above. To describe
the alignment, it will be convenient to imagine that the tree is rooted at x1, and that the
evolutionary process transforms σ̂x1 into σ̂x2 , and so on up to σ̂xB . Indeed, observe that the
direction of time simply turns insertions into deletions and vice versa, and that it plays no
role in the alignment procedure. The full alignment is defined as follows:

• If σ̂xk−1 = σ̂xk , then set ak
k (σ̂1:k) to be equal to ak−1

k−1(σ̂1:k−1) and ak
i (σ̂1:k) to be equal to

ak−1
i (σ̂1:k−1) for all i < k.
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• If σ̂xk−1 and σ̂xk have equal length and disagree at a single segregating site, set ak
i (σ̂1:k)

to ak−1
i (σ̂1:k) for all i ≤ k − 1. Each entry of ak

k (σ̂1:k) is set to the corresponding entry
of ak

k−1(σ̂1:k), except for the segregating site. If the latter occurs at position i within
ak
k−1(σ̂1:k), then we set ak

k (σ̂1:k)i to ak
k−1(σ̂1:k)i + 1(mod 2).

• If σ̂xk has one more site than σ̂xk−1 , then an insertion has occurred and the inserted site
in σ̂xk cannot be ancestral to any site in σ̂x1, . . . , σ̂xk−1 . This is because the insertion
corresponds to the creation of a new column in the alignment. For the same reason, the
inserted site in σ̂xk must correspond to a gap in all previous sequences. More specifi-
cally, if the site σ̂ins is inserted to the left of position j∗ ∈ {1, . . . , |ak−1

k−1(σ̂1:k−1)|} in the
(k − 1)st sequence in the previously constructed alignment ak−1

k−1(σ̂1:k−1) (where j∗ is
the minimal such choice) then set

ak
k (σ̂1:k)i =

⎧
⎪⎪⎨

⎪⎪⎩

ak−1
k−1(σ̂1:k−1)i 1 ≤ i < j∗,

σ̂ins i = j∗,
ak−1
k−1(σ̂1:k−1)i−1 j∗ < i ≤ ∣∣ak−1

k−1(σ̂1:k−1)
∣∣ + 1

and for all ℓ ≤ k − 1

ak
ℓ (σ̂1:k)i =

⎧
⎪⎪⎨

⎪⎪⎩

ak−1
ℓ (σ̂1:k−1)i 1 ≤ i < j∗,

− i = j∗,
ak−1
ℓ (σ̂1:k−1)i−1 j∗ < i ≤ ∣∣ak−1

k−1(σ̂1:k−1)
∣∣ + 1.

• The case where σ̂xk has one fewer site than σ̂xk−1 is handled similarly. This time we in-
clude a gap in the kth sequence of the alignment, while all other rows remain unchanged
from the previous multiple alignment.

3. Output the pairwise alignment (aB
1 (σ̂1:B), aB

B (σ̂1:B)) after removing all columns with only
gaps.

We provide an example of repeated use of steps 1 and 2 in the stepwise alignment in
Figure 4.

Because each loop through the alignment algorithm, of which there are at most O(logn),
introduces at most one gap in the current alignment of alignments, the overall computational
complexity of this phase is O((logn ∨ ℓ) log2 n).

3.4. Theoretical guarantee. We establish the two claims below in the next sections.

PROPOSITION 1 (Correctness of alignment). Let T be the output of the preprocessing
step and let x1, . . . , xB be the resulting backbone vertices. Then the alignment algorithm
produces a true pairwise alignment of σx1 and σxB provided that:

1. (Correctness of ancestral estimation) For k = 2, . . . ,B − 1, σ̂xk = σxk .
2. (One-mutation condition) Successive pairs of true backbone sequences

{σx1,σx2}, {σx2,σx3}, . . . , {σxB−1,σxB },
are at most one mutation away.

4. Correctness of ancestral estimation. In this section, we analyze the ancestral se-
quence estimation step. The analysis proceeds by coupling the TKF91 process with a perco-
lation process. Roughly, we say that an edge is open if the sequence does not change along
it under the TKF91 process. We will show that, provided the edge lengths are short enough,
the open cluster of the root forms a fairly “dense” subtree with high probability. The latter
property will lead to a correct reconstruction by the Fitch method.



SEQUENCE ALIGNMENT AT LARGE DISTANCE 2723

FIG. 4. Top: A rooted binary tree whose backbone graph-distance neighbors are all exactly one mutation apart.
Bottom Left: The alignment of sequences 1,2,3 along the backbone. In the first step, a deletion is observed going
from sequence 1 into sequence 2. So in the alignment algorithm, a gap in sequence 2 is written to correspond to
the 0 in site 8 of sequence 1. In the second step, an insertion is observed going from sequence 2 into sequence
3, so an additional gap must be written in sequences 1 and 2. Bottom right: The alignment of all six backbone
sequences.

4.1. The percolation process. Consider again the backbone vertices {xk}Bk=1 and the off-
backbone child vertices {zk}B−1

k=2 . For each k = 2, . . . ,B − 1 separately, we couple the se-
quence evolution process on the subtree descending from zk with a simpler percolation pro-
cess.

We will need some notation. We denote by Tk the subtree of T (after preprocessing) rooted
at zk . For two sequences σ , τ , we let Pt(σ, τ ) be the probability under the TKF91 model on
an edge that, started at σ , the state is τ after time t . Similarly, we let P̃t (σ, τ ) be the same
probability conditioned on not being at state σ at time t .

It will be convenient to work on an infinite tree. Specifically, let T k be the completion of
Tk into an infinite binary tree where new edges have length 0. We now describe the coupling:
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• The percolation process on T k . We condition on the sequence σzk at zk , the root of Tk . For
an edge e on T k , let te be its length and set

ζ (k)
e = Pte(σzk ,σzk ),

that is, the probability that the sequence does not change along edge e if started at σzk .
We then perform percolation on T k with probabilities ζ

(k)
e : for each edge e, it is open

independently with probability ζ
(k)
e . Let Ck be the resulting open cluster including zk (i.e.,

all vertices of T k that can be reached from zk using only open edges).
• The joint process on T k . For each vertex v in Ck , set σv = σzk . For each descendant w of

a vertex v ∈ Ck that is not itself in Ck , assign a sequence to w taken from the conditional
distribution P̃te (σzk , ·) where e = (v,w). For each remaining vertex, we run the TKF91
process recursively from the states already assigned. Note that the edges of length 0 added
in the completion of Tk simply entail copying the sequences at the leaves of Tk to all their
descendants.

We will be interested in the properties of the cluster Ck . Let T
O
k be the subtree of T k

made of all the vertices in Ck and the edges connecting them. For any ℓ, b ∈ Z+, a rooted
tree T ′ is said [28] to be a (ℓ, b)-diluted tree if: for all i ∈ Z+, each of the vertices of T ′ at
graph distance iℓ from the root has at least b descendants at graph distance iℓ + ℓ from the
root. From the following lemma adapted from [28], T

O
k is (2,3)-diluted with arbitrarily high

probability provided edge lengths are short enough. Figure 5 depicts an infinite 2-diluted 3-
regular tree. Later in the proof, we will need to condition on the length of σzk being less than
a threshold L̄. Let PL̄ be the probability measure of the joint process where σzk is drawn from
the stationary distribution of the TKF91 process conditioned on |σzk | ≤ L̄. We first record a
simple observation.

LEMMA 1 (Staying probability). Fix L̄ < +∞. For any sequence σ such that |σ | ≤ L̄
and any t > 0, we have

Pt(σ,σ ) ≥ 1 − t (L̄ + 1)(µ + λ + η).

PROOF. Indeed Pt(σ,σ ) is lower bounded by the probability that no mutation occurs up
to time t which, by (2), is at least

Pt(σ,σ ) ≥ exp
(−(L̄ + 1)[µ + λ + η]t) ≥ 1 − (L̄ + 1)[µ + λ + η]t,

as claimed. !

FIG. 5. An open 2-diluted 3-regular subtree of the infinite binary rooted tree. Solid lines not descending from
any dashed line indicate no mutation. Dashed lines indicate a mutation may have occurred. For every vertex in
the even generations, at least three of its grandchildren share the same trait.
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LEMMA 2 (Existence of an open diluted tree). For any L̄ ∈ Z+ and δa > 0, there is
tmax > 0 small enough that, if te ≤ tmax for all e,

PL̄[
T

O
k is (2,3)-diluted

] ≥ 1 − δa.

PROOF. By Lemma 1, for any sequence σzk such that |σzk | ≤ L̄, we have that

ζ (k)
e = Pte(σzk ,σzk ) ≥ 1 − (L̄ + 1)[µ + λ + η]tmax,

where we recall that te ≤ tmax by assumption (and that of course includes the added edges of
length 0). Hence ζ

(k)
e can be made arbitrarily close to 1 (uniformly in e) by taking tmax small

enough (as a function of L̄). The result then follows directly from [28], Lemma 8, (which
can be extended in a straightforward manner to the case where percolation probabilities vary
across edges but are uniformly bounded). !

4.2. Analyzing the Fitch estimator. Next, we analyze the Fitch estimator in the event that
T k contains an open (2,3)-diluted subtree.

For any D ∈ Z+, let T k,D be the truncation of T k at level D, that is, the finite tree obtained
by removing all vertices of T k at graph distance greater than D from its root. Let βk be the
smallest positive integer such that T k := T k,2βk contains all of Tk . Importantly, we make the
following observation about the Fitch estimator.

LEMMA 3 (Fitch estimator on the completion). The Fitch estimator applied to the leaves
of T k produces the same ancestral sequence estimate as the Fitch estimator applied to the
leaves of Tk .

PROOF. All leaves ¯̄ℓ of T k descending from a leaf ℓ of Tk satisfy σ ¯̄ℓ = σℓ, so by definition

of the Fitch estimator Ŝℓ = σℓ. The claim follows. !

Let T
O
k be the truncation of T

O
k at level 2βk .

LEMMA 4 (Fitch estimator in the presence of an open diluted tree). If T
O
k is (2,3)-

diluted, then the Fitch estimator σ̂zk over the tree T k equals the true sequence σzk at zk .

PROOF. We prove this claim by induction on βk . We start with the βk = 1 case.
Then T k consists of zk , two children z1

k and z2
k , and the grandchildren z1,1

k , z1,2
k , z2,1

k ,

z2,2
k . If all four grandchildren belong to T

O
k , then we are done. The other case, with-

out loss of generality, is z2,1
k /∈ T

O
k . Then σ

z
2,1
k

≠ σ
z

2,2
k

= σzk , so the Fitch method gives

Ŝz2
k
= Ŝ

z
2,1
k

∪ Ŝ
z

2,2
k

= {σ
z

2,1
k

,σzk }. Since σ
z

1,1
k

= σ
z

1,2
k

= σzk , we have Ŝz1
k
= {σzk }. Continuing

on, we have Ŝzk = Ŝz1
k
∩ Ŝz2

k
= {σzk }. Since Ŝzk contains only the state σzk , the Fitch method

is guaranteed to return σzk .
Now, we assume the r th case holds for r ≥ 1 and we show that the (r + 1)st case holds

as well. As before, consider the four grandchildren of zk and the same cases. If all four

grandchildren belong to T
O
k , then they are each the root of a subtree of 2r levels with root

state equal to σzk . The induction assumption implies that the Fitch method returns σzk as
estimates for σ

z
i,j
k

, i, j ∈ {1,2}. The Fitch method then returns Ŝzk = {σzk }, as required. For
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the other case when z2,1
k /∈ T

O
k , we know only that Ŝ

z
2,1
k

is an arbitrary set of sequences. If

σzk ∈ Ŝ
z

2,1
k

, then Ŝz2
k
= Ŝ

z
2,1
k

∩ Ŝ
z

2,2
k

= {σzk }, and we are done. Else, we have Ŝz2
k
= Ŝ

z
2,1
k

∪ Ŝ
z

2,2
k

,

where σzk ∈ Ŝ
z

2,2
k

so that Ŝzk = Ŝz1
k
∩ Ŝz2

k
= {σzk }, as required. This completes the proof for

the (r + 1)st case, and hence of the lemma. !

Combining Lemmas 2, 3, and 4, we get the following.

PROPOSITION 2 (Correctness of ancestral estimation off the backbone). For any L̄ ∈ Z+
and δa > 0, there is tmax > 0 small enough that, under PL̄, the Fitch estimator on Tk returns
the correct ancestral state σ̂zk = σzk with probability at least 1 − δa .

5. One-mutation condition. In this section, we establish the one-mutation condition
required by Proposition 1 and use it to finish the proof of the main result.

5.1. A bound on the transition probabilities. We will need a bound on the probability that
at most one mutation occurs on an edge along the backbone. Because the state space of the
sequence process is infinite, the rates are unbounded and we state the next bound explicitly
in terms of the length of the sequence at the start of the edge. Later on, we will use the fact
that the length is stationary to control it.

LEMMA 5 (At most one mutation). Fix L̄ < +∞. For any sequence σ such that |σ | ≤ L̄
and any t > 0, we have

Pt(σ, Yσ ) ≥ 1 − {
t (L̄ + 2)[µ + λ + η]}2

,

where Yσ = {σ } ∪ S1(σ ) are the sequences at most one mutation away from σ .

PROOF. For a TKF91 process on an edge started at σ , let Xs ∈ S be the sequence ob-
served at time s ∈ [0, t] and Ti be the time of the ith jump from one state to another state. Then

Pt(σ, Yσ ) ≥ Pσ [T2 > t],
as the event on the right-hand side guarantees a single jump, which in turn guarantees that
Xt ∈ Yσ . Here Pσ indicates that the edge process is started at σ . Letting

fT1|σ (s) = λ∗(σ ) exp
(−sλ∗(σ )

)
, FT1|σ (s) = 1 − exp

(−sλ∗(σ )
)
,

be the probability density function and cumulative distribution function of the time of the
first jump started at σ , we get by the strong Markov property

Pσ [T2 ≤ t] =
∫ t

0
fT1|σ (s)

∑

τ∈S1(σ )

Q(σ, τ )

λ∗(σ )
FT1|τ (t − s)ds

≤
∫ t

0
λ∗(σ ) exp

(−sλ∗(σ )
)

max
τ∈S1(σ )

{
1 − exp

(−(t − s)λ∗(τ )
)}

ds.

Under the assumption that |σ | ≤ L̄, it holds that |τ | ≤ L̄ + 1 for any τ ∈ S1(σ ), and hence
max{λ∗(σ ),λ∗(τ )} ≤ (L̄+ 2)[µ+λ+ η]. Continuing on, the last line in the previous display
is

≤ {
1 − exp

(−t (L̄ + 2)[µ + λ + η])}
∫ t

0
λ∗(σ ) exp

(−sλ∗(σ )
)

ds

= {
1 − exp

(−t (L̄ + 2)[µ + λ + η])}{1 − exp
(−tλ∗(σ )

)}

≤ {
t (L̄ + 2)[µ + λ + η]}2

,

establishing the claim. !
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5.2. Union bound over the backbone. We define a number of events whose joint occur-
rence guarantees the success of our alignment procedure:

• (One-mutation condition) For o = −,+ and k = 1, . . . ,Bo − 1, let Fo
k be the event that

the sequences at x̃o
k and the backbone child vertex of x̃o

k (i.e., x̃o
k+1) satisfy constraints (A),

(B), or (C) from Section 3.3.
• (Ancestral reconstruction) For o = −,+ and k = 1, . . . ,Bo − 1, let Go

k be the event that
there is no mutation between the sequences at x̃o

k and its off-backbone child vertex z̃o
k and

that σz̃o
k

is correctly reconstructed by applying the Fitch method on the subtree rooted at
z̃o
k .

• (Root segment) For o = −,+, let Ho be the event that the sequences at the root and at x̃o
1

are identical.

The following proposition provides a requirement on the maximum branch length tmax for
all the above events to occur simultaneously. Define the bad event

B = (
H−)c ∪ (

H+)c ∪
{

⋃

o=−,+

Bo−1⋃

k=1

(
Fo

k

)c ∪ (
Go

k

)c
}

.

Recall that the preprocessing procedure has a parameter δ1.

PROPOSITION 3 (Union bound over the backbone). Fix a tree height h > 0. For any
0 < δ1 < h, there is a tmax small enough that

P[B] ≤ Chδ1 log2(
δ−1

1
)
,

where C is a constant depending only on λ, µ, η.

PROOF. We take a union bound over the events making up B.
Controlling the lengths. For each event, we first apply the law of total probability to control

for the length of the starting sequence as follows. Suppose that sequence τ is stationary, which
we denote by τ ∼ .. Using the stationary distribution for the length (i.e., (1)), we have

Pτ∼.
[|τ | > L̄

] =
∞∑

M=L̄+1

(
1 − λ

µ

)(
λ

µ

)M

=
(

λ

µ

)L̄+1
.

The expression on the right is made less than δ2
1 by choosing

(3) L̄ =
⌈ log(δ2

1)

log(λ/µ)

⌉
≤ C′ log

(
δ−1

1
)
,

for a constant C′ > 0 depending only on µ, λ, where recall that µ > λ. Then for any event E
which depends on τ , we can write

P[E] = P
[
E ||τ | ≤ L̄

]
P

[|τ | ≤ L̄
] + P

[
E ||τ | > L̄

]
P

[|τ | > L̄
]

≤ P
[
E ||τ | ≤ L̄

] + P
[|τ | > L̄

]

≤ P
[
E ||τ | ≤ L̄

] + δ2
1,

(4)

for the choice of L̄ above.
Events Ho. For o = −,+, we use Lemma 1 to bound the probability of (Ho)c. By con-

struction, x̃o
1 is a child of the root, so the edge length between the root and x̃o

1 is at most tmax.
Hence, using Lemma 1 and (4) with τ := σρ and E := (Ho)c, we get

(5) P
[(

Ho)c] ≤ tmax(L̄ + 1)(µ + λ + η) + δ2
1 .
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Events Go
k . For o = −,+ and k = 1, . . . ,Bo − 1, we use Lemma 1 together with Proposi-

tion 2 to bound the probability of (Go
k)

c. Here we take τ := σx̃o
k

and E := (Go)c. By assump-
tion, the edge length between x̃o

k and its off-backbone child z̃o
k is at most tmax. Further, for

any fixed failure probability δa > 0 and length threshold L̄, the maximum branch length tmax
can be taken small enough for Proposition 2 to hold. By (4), we get

P
[(

Go
k

)c] ≤ P
[(

Go
k

)c||σx̃o
k
| ≤ L̄

] + δ2
1

≤ P
[{σx̃o

k
≠ σz̃o

k
} ∪ {{σx̃o

k
= σz̃o

k
} ∩ {σ̂z̃o

k
≠ σz̃o

k
}}||σx̃o

k
| ≤ L̄

] + δ2
1

≤ P
[{σx̃o

k
≠ σz̃o

k
}||σx̃o

k
| ≤ L̄

]

+ P
[{{σx̃o

k
= σz̃o

k
} ∩ {σ̂z̃o

k
≠ σz̃o

k
}}||σx̃o

k
| ≤ L̄

] + δ2
1 .

We use the Markov property to bound the second term as follows:

P
[{{σx̃o

k
= σz̃o

k
} ∩ {σ̂z̃o

k
≠ σz̃o

k
}}||σx̃o

k
| ≤ L̄

]

= P
[
σx̃o

k
= σz̃o

k
||σx̃o

k
| ≤ L̄

]
P

[
σ̂z̃o

k
≠ σz̃o

k
|σx̃o

k
= σz̃o

k
, |σx̃o

k
| ≤ L̄

]

= P
[
σx̃o

k
= σz̃o

k
||σx̃o

k
| ≤ L̄

]
P

[
σ̂z̃o

k
≠ σz̃o

k
||σz̃o

k
| ≤ L̄

]

≤ P
[
σ̂z̃o

k
≠ σz̃o

k
||σz̃o

k
| ≤ L̄

]
.

Plugging this back above and using Lemma 1 and Proposition 2 gives

(6) P
[(

Go
k

)c] ≤ tmax(L̄ + 1)(µ + λ + η) + δa + δ2
1 .

Events Fo
k . For o = −,+ and k = 1, . . . ,Bo −1, we use Lemma 5 to bound the probability

of (F o
k )c. Here we take τ := σx̃o

k
and E := (F o

k )c. By construction (i.e., by the backbone
sparsification preprocessing step), the edge length between x̃o

k and its backbone child x̃o
k+1 is

at most 2δ1. By (4) and Lemma 5, we get

P
[(

Fo
k

)c] ≤ P
[(

Fo
k

)c||σx̃o
k
| ≤ L̄

] + δ2
1

≤ {
2δ1(L̄ + 2)[µ + λ + η]}2 + δ2

1 .
(7)

Union bound. Taking a union bound over all events above gives

P[B] ≤ 2
[
tmax(L̄ + 1)(µ + λ + η) + δ2

1
]

+
∑

o=−,+

Bo−1∑

k=1

[
tmax(L̄ + 1)(µ + λ + η) + δa + δ2

1
]

+
∑

o=−,+

Bo−1∑

k=1

[{
2δ1(L̄ + 2)[µ + λ + η]}2 + δ2

1
]

by (5), (6), and (7). We make all terms in square brackets of order δ2
1 log δ−1

1 by choosing
δa := δ2

1 and then choosing 0 < tmax ≤ δ2
1 small enough for Proposition 2 to hold. Then we

get, using (3),

P[B] ≤ 2
[
δ2

1
(
C′ log

(
δ−1

1
) + 1

)
(µ + λ + η) + δ2

1
]

+ 2
(
Bo − 1

)[
δ2

1
(
C′ log

(
δ−1

1
) + 1

)
(µ + λ + η) + 2δ2

1
]

+ 2
(
Bo − 1

)[{
2δ1

(
C′ log

(
δ−1

1
) + 2

)[µ + λ + η]}2 + δ2
1
]
.

Because the tree has height h and each backbone edge has length at least δ1 (after prepro-
cessing), with the exception of the first and last one on each side of the root, we must have
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(Bo − 2)δ1 ≤ h, or after rearranging Bo ≤ h/δ1 + 2. Employing this bound and simplifying
gives finally

P[B] ≤ Chδ1 log2(
δ−1

1
)
,

for a constant C depending only on µ, λ, η, as claimed. !

5.3. Proof of the theorem. We are now ready to finish the proof of the main result.

PROOF OF THEOREM 1. For a fixed failure probability ε, we first choose δ1 small enough
(as a function of h, µ, λ, η) such that Chδ1 log2(δ−1

1 ) ≤ ε. We then choose tmax small enough
(again as a function of h, µ, λ, η) that Proposition 3 implies P[B] ≤ ε. Proposition 1 then
completes the proof of the theorem. !

APPENDIX: FURTHER LEMMAS

We formally justify equation (2).

LEMMA 6 (Total rate). The rate matrix Q satisfies
∑

τ∈S1(σ )

Q(σ, τ ) = λ
(|σ | + 1

) + µ|σ | + ηπ1|σ |0 + ηπ0|σ |1.

PROOF. The transition rate matrix Q entries are as follows. For the transition from σ to
τ , where τ differs from σ only by a single substitution, we have

Q(σ, τ ) = ηπi ,

when label i ∈ {0,1} is the product of the single substitution. The sum over all τ in Ss(σ ),
the sequences that differ by σ by a single substitution, is

∑

τ∈Ss (σ )

Q(σ, τ ) = ηπ1|σ |0 + ηπ0|σ |1.(8)

Next, for the transitions from σ to τ in Sd(σ ), the sequences obtained by deleting a single
digit of σ , we have

Q(σ, τ ) = s(D)
σ,τ µ,

where s
(D)
σ,τ ≥ 1 is the length of the repeated segment of letters where the deletion occurs.

Here, we observe that the position of the deletion within the segment is not needed. This
is because the letters are identical within the segment, so the remaining letters are identical
when one is deleted. For example, if a zero is deleted from a string of 10 zeros, then s

(D)
σ,τ = 10.

Since only one deletion out of |σ | can occur, the sum is
∑

τ∈Sd (σ )

Q(σ, τ ) = |σ |µ.(9)

Finally, for the transitions from σ to τ in Si (σ ), the sequences obtained by inserting a digit
into σ , we have

Q(σ, τ ) = (
s(I )
σ,τ + 1

)
λπi , i ∈ {0,1},

where i is the digit inserted and s
(I )
σ,τ ≥ 0 is the size of the repeated segment of digit i where

the site is being inserted. Noting that only one insertion can occur and the immortal link
might insert a site, the sum is

∑

τ∈Si (σ )

Q(σ, τ ) = (|σ | + 1
)
λ.(10)

The claim follows from combining (8), (9), and (10). !
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