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Abstract

Electrical signals may propagate along neuronal membranes in the brain, thus
enabling communication between nerve cells. In doing so, lipid bilayers, funda-
mental scaffolds of all cell membranes, deform and restructure in response to
such electrical activity. These changes impact the electromechanical properties
of the membrane, which then physically store biological memory. This mem-
ory, can exist either over a short or long period of time. Traditionally, biological
memory is defined by the strengthening or weakening of transmissions between
individual neurons. Here, we show that electrical stimulation may also alter the
properties of the lipid membrane, thus pointing toward a novel mechanism for
memory storage. Furthermore, based on the analysis of existing electrophysiolog-
ical data, we study molecular mechanisms underlying the long-term potentiation
(LTP) in phospholipid membranes. Finally, we examine the relationship between
the memory capacitive properties of lipid membranes, neuronal learning, and
memory.
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1 Introduction

Long-term potentiation (LTP) is a process observed in the brain and is associated
with the strengthening of synaptic connections between neurons [1]. LTP is widely
accepted as a fundamental mechanism responsible for neuronal learning and memory,
and primarily takes place at synapses —i.e., the junctions between neurons [2]. When
two neurons are connected, the presynaptic neuron releases neurotransmitters into the
synaptic cleft that bind to receptors on the postsynaptic neuron, thus transmitting
an electrical signal (see Figure 1). During LTP, repeated and persistent stimulation
of the synapse leads to specific changes, such as the activation of certain types of
glutamate receptors, primarily N-methyl-D-aspartate (NMDA), an excitatory neuro-
transmitter in the human brain [3]. The activation of these receptors allows for calcium
ions to enter the postsynaptic neuron, triggering a cascade of intracellular processes
that ultimately result in an increase in the number and sensitivity of the receptors
populating the postsynaptic membrane [4]. This strengthening of synaptic connections
leads to enhanced chemical signal transmission between the participating neurons and
the formation of neural circuits associated with neuronal learning and memory, and
information processing in the brain [5].

LTP and synaptic plasticity are two interconnected concepts that are crucial in
understanding how the brain functions and the mechanisms underlying neuronal learn-
ing and memory [8]. As mentioned, synaptic plasticity is the ability of the membranous
connections (synapses) between neurons in the brain to change in response to a mod-
ulated stimulus [9]. These molecular changes can either strengthen or weaken the
connection between neurons —temporarily or permanently —depending on the nature
and pattern of the mediated stimulation. Moreover, synaptic plasticity can either
be short-term or long-term, depending on the duration of the changes [10]. Short-
term synaptic plasticity, for example, typically involves temporary changes in synaptic
strength that can last from seconds to minutes. These changes are often mediated by
processes such as, presynaptic facilitation or depression, which modify the amount of
neurotransmitter released from the presynaptic neuron. In contrast, long-term synaptic
plasticity involves more sustained modifications in synaptic strength that can persist
for hours, days, or even years. Long-term synaptic plasticity is thought to play a crucial
role in learning, memory consolidation, and information storage in the brain [11].

Synaptic plasticity is now widely accepted as being the key mechanism that under-
pins learning and memory at the molecular and cellular levels in the human brain
[7, 12]. Indeed, synaptic plasticity allows the brain to adapt to changing physicochem-
ical conditions, namely changes to the release of neurotransmitters, neuromodulators,
gene expression, intracellular signaling pathways, and modifications in the structure
and function of the synapse, enabling the transmission and storage of information [13].
Therefore, both LTP and synaptic plasticity are dynamic processes that contribute to
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Fig. 1 Schematic representation of chemical signaling in a synapse. Synaptic plasticity can alter
synaptic strength by either regulating the amount of neurotransmitter released into the synaptic
gap from a presynaptic axon’s membrane or by altering the number of postsynaptic receptors on a
dendrite [6, 7].

the adaptability and flexibility of the brain. They allow the brain to modify its neu-
ral connections in response to new experiences and learning, ultimately shaping the
brain’s ability to remember and learn new information [14–16].

2 LTP in phospholipid membranes

While LTP is not a form of signal transmission in the conventional sense, it plays
a crucial role in enhancing the strength of signal transmission between neurons at
synapses [17]. We recently discovered that LTP in phospholipid membranes represents
a new type of long-term synaptic plasticity [18, 19]. Specifically, LTP in phospholipid
membranes emerges as a result of electrical stimulation of lipid bilayers in the absence
of ion channels [18, 19]. Such electrical activity in lipid bilayers enables them to convert
electric to mechanical energy repeatedly due to their piezoelectric and flexoelectric
capabilities, with collective lipid motions playing a key role [20, 21]. In this manuscript,
we explore molecular mechanisms underlying LTP in lipid membranes using different
analytical models.

2.1 Memory elements and equivalent circuit models

A lipid bilayer is made up from two lipid monolayers, arranged tail-to-tail, with their
headgroups immersed in water. The lipid bilayer is a key supramolecular structure
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Fig. 2 Schematic of a droplet interface bilayer (DIB) [22–25]. To form it, two aqueous droplets
immersed in oil (e.g., hexadecane) and decorated with a lipid monolayer (e.g., 1,2-diphytanoyl-sn-
glycero-3-phosphocholine (DPhPC)), are brought together and a lipid bilayer of thickness d and
diameter ℓ (surface area A = πℓ2/4) is spontaneously formed. A sinusoidal voltage V (t) can be applied
across the bilayer via two electrodes embedded in the water droplet, which can result in increasing
charge asymmetry q(t) across the bilayer over time. Note that the solution’s chemistry in each droplet
is unaltered, even when there is charge asymmetry across the lipid bilayer.

of biological membranes, selective barriers separating a cell’s intracellular and extra-
cellular environments [26]. The chemical makeup of the lipid bilayer also make it an
excellent insulator [27]. Thus, when an electric potential, V , is applied across it when
immersed in an ionic solution, charge asymmetry, q(t), develops across the membrane
—not unlike what takes place in a parallel plate capacitor [28, 29]. Fig. 2 shows a
lipid bilayer of given diameter (ℓ) and thickness (d) formed by bringing together two
lipid-decorated aqueous droplets immersed in an alkane hydrocarbon, where the lipid
hydrocarbon acyl chains are interacting with the oil [30]. The presence of K+ and Cl−

ions in the aqueous phase allows for q(t) to develop when a voltage, V (t), is applied
across the electrodes —this is due to the difference in charge migration across the
membrane for these two opositely charged ions. If we assume that these ions move
through the solution with negligible impedance, then the amount of charge can be
described by the lipid bilayer capacitance, C: q(t) = C(t)V (t). Let us consider this in
greater detail.

Suppose we approximate the membrane as a parallel plate capacitor, with the
lipid headgroup regions serving as “plates” and the lipid tails (i.e., the dielectric)
sandwiched between them. Then, C is related to the membrane geometry via:

C =
ϵ0ϵA

d
, (1)

where A is the membrane area (i.e., A = πℓ2/4, shown in Fig. 2), q is the charge,
d is the membrane thickness, ϵ is the relative dielectric constant of the membrane,
and ϵ0 is the vacuum permittivity. The parameters A, d, and ϵ may vary depending
on the structure of the membrane and, in principle, can depend on the amounts of
q or V , including their time-dependent histories. In such cases, the membrane can
be conceptualized as a memory capacitor or memcapacitor with a time-dependent
capacitance C(t).
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A memcapacitor is a circuit memory element (memelement) with varying capaci-
tance and obeys a set of equations given by [31]:{︄

q(t) = C(y, {V, q}, t)V (t)
dy
dt = f(y, {V, q}, t)

, (2)

where memcapacitance, C, can depend on an auxiliary parameter, y, and either on
q or V for charge- and voltage-controlled memcapacitors, respectively. y represents,
for example, a change in membrane thickness when V is applied. To better illustrate
this, we will use specific examples. Specifically, we will focus on the voltage-controlled
case, where capacitance depends on y, which, in general, has dynamic properties that
depend on V (t). For example, let us suppose that d in Eq. (1) varies linearly with
y, so that d(t) = d0(1 + αy), where the parameter α determines the strength of the
thickness response to an applied voltage. In this case, we have:

C =
C0

1 + αy
, (3)

where C0 = ϵ0ϵA/d0. In this case, A and d (Eq. (1)) of a DIB (Fig. 2) can also vary due
to electrowetting and electrocompression induced by the voltage-dependent, in and out
migration of the oil from bilayer [32]. Our simplified model can describe these changes,
so long as the overall changes to C are captured by Eq. (3). It is important to note
that more sophisticated models (see, e.g., Ref. [32]) can introduce dynamical equations
to account for parameters such as, the membrane’s thickness, d(t), and bilayer patch
diameter, ℓ(t) (see Fig. 2). However, for simplicity, we will only consider d(t).

An interesting phenomenon is the response of a memcapacitor to an applied sinu-
soidal field, V (t) = V0 sin(ωt). The total work done by the voltage supply is given by
W =

∫︁
V dq. For a classical capacitor (assuming ω ≪ (RC)−1 and neglecting dissipa-

tion from resistances R), after one cycle of the applied voltage, W equals zero, since
the capacitor is charged and then discharged. In general, if the voltage supply trans-
fers a specified amount of charge, q(t), into the system when transitioning from an
initial voltage, V = 0, to a final voltage, V (t), at time t, then the total amount of
work needed to move the charge can be written as:

W (t) =

∫︂ q(t)

0

V dq =
[q(t)]2

2C(t)
+

1

2

∫︂ t

0

V 2 dC

dt
dt ≡ Ecap. + Ediss., (4)

describing the conservation of energy in the system. On the right hand side of the
equation, the first term, Ecap., is the electrical energy stored in the capacitor due
to the accumulated charge q(t). The second term, Ediss., only contributes when the
capacitance, C(t) = q(t)/V (t), changes as a function of time. Ediss. represents the
additional energy deposited or extracted from the system, which we will refer to as
the dissipation energy —for reasons that will become obvious later on. For a classical
capacitor with constant capacitance in the absence of any resistance, this term is
always zero: i.e., Ediss. = 0.
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Fig. 3 (a) Schematic of an RC circuit driven by a sinusoidal applied voltage, V (t) = V0 sin(ωt).
The first part of the equation shows the accumulated charge, q(t), at the capacitor according to
Kirchhoff’s laws, while the second line describes the energy conserved [33]. The work, W , supplied
by the voltage source is used to both charge the capacitor (Ecap) and dissipate (Ediss.) the energy
from the resistor. (b) A q-V response curve for the RC circuit shown in (a) for different values of the
dimensionless quantity, τω, with τ = RC0 being the characteristic time of the circuit. Note that the
hysteresis loop collapses into a line as τω → 0.

A nontrivial value for Ediss. emerges in the response of a circuit with a con-
stant capacitance capacitor, C0, in series with a resistor of resistance, R (Fig. 3). In
this circuit, Ediss. represents the energy dissipated in the resistor since the quantity
q(t)/V (t) varies with time due to the presence of the resistor. For a sinusoidal voltage,
V (t) = V0 sin(ωt), the time dependence of the charge in the capacitor is given by:

qRC(t) =
C0V0 sin(ωt)

1 + ω2C2
0R

2
[1− ωC0R cot(ωt)] . (5)

In this case, the q-V response curve forms a single loop, as shown in Fig. 3(b). Over a
single cycle, the work W supplied by the voltage source goes into the energy dissipated
by the resistor, which can be written as:

W =

∫︂ 2π/ω

0

V
dQ

dt
dt

= Ediss. =
1

2

∫︂ 2π/ω

0

V 2 dC

dt
dt =

πτω

1 + τ2ω2
C0V

2
0 , (6)

where τ ≡ RC0 is the characteristic time of the circuit. Here, we interpret the “time-
dependent” capacitance as C(t) ≡ q(t)/V (t). It is important to note, however, that
the capacitor element itself retains a constant capacitance, C0. It is also important
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to note that Ediss. vanishes when the applied sine wave frequency ω is fast compared
to τ (so that Ediss. → 0 as τω → 0). This occurs when the currents in the system
become too small for resistive dissipation when the applied sinusoidal voltage form is
significantly slower than the characteristic frequency, i.e., τ−1 = (RC0)

−1. In this low
frequency regime, the q-V hysteresis loop collapses into a line (Fig. 3(b)).

Fig. 4 Shown, are two types of memcapacitive behavior in response to an applied sinusoidal voltage,
V (t) = V0 sin(ωt). The charge response is normalized by q0, with the response curves derived from
specific examples described in the main text. Type I, also known as a passive response, does not
require a net energy input from the voltage source. The energy input in the first half-period of the
sine wave (paths 3 and 4) is completely returned during the second half (paths 1 and 2). On the
other hand, the dissipative type II response requires a constant source of energy, as both half-cycles
exhibit positive q-V loop areas.

For a memcapacitor, Ediss. can be non-zero due to an intrinsically time-dependent
capacitance C(t). Unlike the RC model, dissipation can occur even in the absence of a
resistor. Furthermore, the energy dissipation can be “negative”, since memcapacitors
can be active and contribute their own energy to the system. Even at sufficiently
low frequencies, ω, where we can neglect resistive dissipation in the system through
conduction, dq/dt, we can expect Ediss. ̸= 0 in Eq. (4). Moreover, in the absence of
a phase lag due to a resistance, we expect the capacitance C = q/V (Eq. (2)) to be
finite, as it will be determined by the physical parameters of the memcapacitor (as in
Eq. (1)). Therefore, as V → 0, we must have q → 0, as well. This means that any q-V
hysteresis loop must pass through the origin at q = V = 0 (i.e., it must have a pinch).
This is because both q and V must approach zero at the pinch to maintain a finite C.
At the pinch point, the hysteresis loop can self-cross, or not, resulting in two classes
of memcapacitive q-V hysteresis loops, known as type I and II, respectively (Fig.4).

In the case of a type I response hysteresis loop, there is no net energy input from
the voltage source. Any energy input during the first half of the sine wave is returned
in the second half. This type of self-crossing hysteresis loop is characteristic of most
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solid-state memcapacitors, and is often referred to as passive memcapacitance [34–36].
By contrast, for the dissipative type II response, the hysteresis loop does not self-cross,
and each lobe requires the input of energy, which is then dissipated within the system
[37]. This type of hysteresis loop is particularly relevant for biological membranes,
which can, via their piezoelectric and flexoelectric properties [38], mechanically deform
to dissipate the electrical energy into the surrounding aqueous solution [39–41].

We will now consider specific examples of type I and II hysteresis loop behavior,
starting with the prototypical type I passive memcapacitor. Consider the following
voltage-controlled memcapacitor, where the auxiliary parameter, y, obeys the equation
of motion:

ẏ − V0 sin(ωt) = 0, (7)

where the dot indicates a time derivative. In this case, capacitance simply tracks the
integrated applied voltage and the accumulated charge accumulated for this type I
memcapacitor is:

qI(t) =
C0V0 sin(ωt)

1 + α[1− cos(ωt)]
, (8)

where α ≡ αV0

ω is a dimensionless parameter that describes the strength of the mem-
capacitance. The result for α = 1 in appropriately re-scaled units (with Q0 ≡ C0V0)
is shown by the red curve in Fig. 4. The released (paths 1 and 2) or introduced (paths
3 and 4) energies from the voltage source are given, for small α ≪ 1, by

EI =
2α

3
C0V

2
0 . (9)

In the limit α → 0, we recover the classical capacitor (with EI → 0), where the curve
in Fig. 4 evolves into a line with unit slope (dashed line). For any given value of ᾱ,
there is no net energy inputted into the system over the full cycle of period T = 2π/ω,
so that Ediss. = 0.

In contrast to a passive memcapacitor [42], a lipid membrane in an active mem-
capacitor can dissipate energy, similar to an RC circuit, leading to a non-zero Ediss..
This dissipation comes, in part, from piezoelectric coupling, i.e., the conversion of
electric to mechanical energy [43]. The energy conversion may generate, for instance,
changes in membrane thickness and membrane area under an applied voltage, V . For
the sake of simplicity, let us assume that these changes in membrane geometry can be
described by a damped harmonic oscillator [44] i.e.:

ÿ + γẏ + ω2
0y + βV 2

0 sin2(ωt) = 0, (10)

where ω0 is the characteristic oscillation frequency of the one degree of freedom, y,
and γ is a damping coefficient. The term proportional to β is the electromechanical
coupling [45], or the magnitude of the piezoelectric effect. Since this coupling should
not depend on the sign of V , we can generally expect a quadratic dependence on the
applied V (t) term. (In the case of a more detailed treatment, it is possible, for example,
to introduce separate dynamical equations for membrane area, A, and thickness, d.
Such an analysis was performed in Ref. [32], where parameters such as γ, ω0, and β
were related to the electrowetting and electrocompression properties of the membrane.
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In that case, the authors concluded that the dynamics of A and d were dominated by
the damping term, so that the ÿ term in Eq. (10) could be ignored. We will observe a
similar behavior when we analyze the DIB data from Ref. [18].)

Combining Eq. (10) with Eq. (3) results in the capacitance dynamics of the system,
given by:

C(t) =
qII(t)

V (t)
≈ C0

1 + β
2
Re [e2iωt(1 + iτγω)−1 − 1]

, (11)

where we now have the following key dimensionless parameters: the piezoelectric cou-

pling strength β
2 ≡ αβV 2

0

2ω2
0

and a characteristic damping timescale τγ ≡ 2γ/ω2
0 . We also

approximated that ω ≪ ω0 because we are interested in the low frequency (0.01 Hz)
sinusoidal stimulation that was used in Ref. [18]. Taking all of this into account, we
end up with the q-V response curve (blue) shown in Fig. 4, where τγ = 2 sec and
β = 1. It is worth noting that both lobes of the hysteresis loop have positive areas,
implying that the voltage source supplies energy for both half-periods of the voltage
oscillation. Under this sufficiently slow drive (such that ω ≪ ω0), the approximate
energy inputed into one sinusoidal cycle is given by:

EII ≈
β
2
(1 + 2β

2
)

2

(︃
πτγω

1 + τ2γω
2

)︃
C0V

2
0 . (12)

We show similarities between an “elastic” memcapacitor and the RC circuit model
by comparing the above equation (Eq. (12)) to Eq. (6). Note that while we can iden-
tify an effective “resistance” R = τγ/C0, the response of the memcapacitor is quite
different in this case: we observe a pinched hysteresis, as shown in Fig. 4, instead of the
RC circuit’s elliptical hysteresis loop (Fig. 3(b)). Furthermore, the dissipated energy
EII does not necessarily manifest itself as heat, as one would expect in the RC cir-
cuit. Instead, there is the possibility that this energy is incorporated as changes to the
memcapacitor itself. A detailed consideration of this specific case may provide a possi-
ble mechanism for LTP in lipid bilayers. We will now apply this elastic memcapacitor
model to previously obtained experimental data from DIBs reported in Ref. [18].

2.2 Mechanisms for LTP formation in phospholipid bilayers

Recent work on DIBs [18] has shown that in the presence of a slow sinusoidal voltage
waveform, a lipid membrane develops increased dissipative energy, EII. Although the
mechanism of how this dissipative energy is formed is still not well-understood, we will
use the elastic memcapacitor model to give us some insights into this recently observed
phenomenon [18]. Using DPhPC DIBs in 500 mM KCl buffer solution and hexadecane,
a voltage V (t) = V0 sin(ωt) was applied across the membrane, with V0 = 110 mV
and f = ω/2π = 0.01 Hz. As discussed in Ref. [18], C(t) changed in the presence of
the applied sinusoidal voltage waveform. The changes to the membrane were observed
through the capacitive current response to a superimposed, high frequency triangle
wave (frequency 10 Hz and amplitude 10 mV) —capacitance measurements are shown
in Fig. 5(a). By fitting the parameters C0, τγ , and β to C(t) from Eq. (11), we are
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able to recover the hysteretic behavior of the capacitance and gain some insights into
the behavior of the membrane.

Fig. 5 The effect of training on capacitance or charge as a function of voltage. (a) The solid lines
represent the time-dependent capacitance, C(t) = q(t)/V (t), as determined from experimental data
in Ref. [18] for V (t) = V0 sin(ωt), with V0 = 110 mV and f = ω/2π = 0.01 Hz. The membrane after
stimulation by a single sinusoidal voltage waveform is represented by the red curve. The blue curve
is the capacitance hysteresis after a training period that included 36 sine waves and a subsequent
waiting time of 200 minutes. The dashed lines are fits to the theoretical prediction in Eq. (11), as
discussed in the main text. The sinusoidal voltage waveform training has two effects: (i) results in a
decrease in the overall capacitance, C0, as evidenced by the lower position of the blue curve; and (ii)
results in an increase in the dissipated energy as seen by the increased loop areas of the blue curve.
(b) The capacitance curves in (a) may be used to calculate the q-V response curves via q = CV .
We observe a decrease in slope of the curve after training and an increased hysteresis loop area. It is
worth noting that the model (dashed lines) also captures the subtle non-linearities in the data (solid
lines) at larges voltages.

In Ref. [18], the slow sinusoidal stimulation was applied for 36 cycles (60 minutes)
before being switched off. Thereafter, the capacitive response to subsequent sine wave
cycles was measured at increasing time intervals. The first sinusoidal voltage waveform
(prior to training) and the last (taken about 200 minutes after training) are depicted
by the red and blue curves, respectively, (Fig. 5(a)). The bare capacitance of the
system varies around C0 ≈ 1 nF. Given a specific capacitance for DPhPC bilayers of
0.7 µF/cm2 [46], this corresponds to a lipid bilayer area of approximately 0.14 mm2.
After training, the capacitance drops by about 0.2 nF. There can be a few reasons
for this drop. First, recent studies indicate that the relative permittivity ϵ near the
membrane-water interface decreases due to the electric field stimulation [19]. This
would decrease the capacitance, as can be seen from Eq. (1). Second, the membrane
area might be decreasing under the stimulation, although this is likely a less important
effect, as discussed in Ref. [19].

The capacitance C versus voltage V data (Fig. 5(a)) can be used to construct
a Q vs V plot by setting Q = CV —this way we can compare it to the responses
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discussed in the previous section. We see in Fig. 5(b) that the response shows a small
hysteresis that is qualitatively the same as the type II hysteretic behavior shown in
Fig. 4 (blue curve). Based on this, we expect that the elastic memcapacitor can serve
as a reasonable model for the response of the membrane to an applied field. Note that,
by construction, the measurement does not capture any resistive behavior because Q
is calculated directly from a measurement of C.

We can now fit the capacitance measurements using Eq. (11). For the initial sine
wave (red curve in Fig. 5(a)), we determined the following fitting parameters: C0 =
1.3106 ± 0.002 nF; τγ = 4.36 ± 0.02 sec; and β = 0.2415 ± 0.0002 (with standard
errors taken from the fit) —the fit is the red dashed line in Fig. 5(a). However, after
training (blue curve), we obtained the following fitting parameters: C0 = 1.0640 ±
0.0002 nF; τγ = 11.3 ± 0.04 sec; and β = 0.2452 ± 0.0003. Note that the biggest
differences between the before and after training data are a decrease in C0, by about
0.2 nF, and a significant (over 2-fold) increase in the damping parameter τγ . We have
also estimated the characteristic frequency —ω, by fitting to a model which does
not assume ω ≪ ω0 —and found that f0 = ω0/2π ≈ 2 Hz, which is much larger
than our stimulation frequency of 0.01 Hz (validating the ω ≪ ω0 approximation).
Importantly, the large increase in τγ after training means that the membrane has a
much larger dissipated energy Ediss.. We should note that our model does not capture
all of the dynamic features, such as the crossing of the red curve in Fig. 5(a) at a non-
zero applied voltage, which can be the result of spontaneously-developed membrane
charge asymmetry [47]. In addition, the experimental hysteresis curve (solid blue) is
disconnected, as C0 increases slightly over the course of stimulation by the sinusoidal
voltage waveform.

The range of time scales, τγ ∼ 4− 11 sec., arising from fits using the elastic mem-
capacitor model to the damping timescale τγ , is reminiscent of the relaxation of lipid
membrane elastic fluctuations. For example, slow undulation modes in fluid mem-
branes can be described by the hydrodynamic dispersion relation ω ≈ κq3/2η [48].
With η ≈ 10−3 Pa · sec (i.e., the viscosity of water) and κ ≈ 1.2 × 10−19 J for the
DPhPC bending modulus [49], we find f = ω/2π = 0.01 − 10 Hz for undulations
with length scales between 0.01 mm < λ < 0.1 mm. Earlier work on a similar sys-
tem [32] found similar timescales for electrostriction and electrowetting due to the oil
in the DIB systems. Thus, these effects most likely, also contribute to the values of
the memcapacitor model parameters. Regardless, it is clear that electrical stimula-
tion excites slow mechanical modes, which, in turn, alter membrane structure. These
changes to the membrane may then help explain the observed long-lived enhancement
(after training) of the dissipated energy observed in Ref. [18].

A more complete picture of what takes place during the training and subsequent
“LTP” phase emerges by using the elastic memcapacitor model to fit experimental
data for all time periods of sine wave stimulation. The changes in the membrane under
voltage stimulation are captured by just two parameters: i.e., the damping timescale,
τγ = γ/ω2

0 , and the “bare” capacitance, C0 (the capacitance at zero auxiliary param-
eter y = 0). We find that the training procedure essentially “trades off” capacitance
(smaller C0) for increased damping (larger τγ). The results are shown in Fig. 6 (a).
After the initial training period (dotted black line), τγ saturates to a large value,
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Fig. 6 (a) Fits to data from Ref. [18] using the elastic memcapacitor model. For the first 60
minutes (up to the vertical dotted line), the system was stimulated with a continuous sine wave.
Thereafter, the applied voltage was turned off and single periods of the sine wave were applied at the
indicated points. Note that the damping parameter, τγ , increases due to the stimulation, while the
bare capacitance, C0, decreases. (b) We can calculate the energy dissipated in the system, EII, using
both the data (black points) and the values from the fits to the data using the elastic memcapacitor
model (see Eq. (12)). The dissipated energy increases during the training period and then plateaus.
As discussed in Ref. [18], this plateau is long-lived (lasting for hours) and is a hallmark of the LTP
phase. Note that the model captures the behavior of the dissipated energy.

while C0 plateaus at a lower value. These values persist over many hours, with the
membrane returning to its original, unperturbed state, after about 24 hours [18].

It is worth noting that the damping time constant τ found here (Fig. 6(a)) is
about an order of magnitude larger than the damping timescale found due to elec-
trowetting [32]. Thus, there are likely other processes, such as the organization of the
cations [19] at the membrane interface, that contribute to these dynamics. Of course,
electrowetting should still contribute to the τ parameter and it would be interesting
to disentangle the various effects that contribute to both the long and short relax-
ation timescales found for these stimulated membranes. Finally, note that the strength
of the piezoelectric effect (β) does not vary much under the stimulation: We find a
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mean value of ⟨β⟩ = 0.341 with a very small standard deviation σβ = 0.002 over all
stimulation conditions shown in Fig. 6.

3 Discussion and Conclusions

Based on the analysis of existing experimental data, we have shown how membranes
can deform and change their capacitive properties under electrical stimulation. We
have analyzed these changes and their electrophysiological response using the elastic
memcapacitor model that captures the hysteretic behavior of the charge versus voltage
membrane response. By fitting experimental data to the model, we identify a key time
scale τγ ∼ 5− 10 sec corresponding to the dissipative modes in the system. We show
that the increase in energy dissipation and long-lived changes in the hysteresis loops,
under prolonged sinusoidal stimulation of the membrane, can be captured by just two
parameters namely, a decrease in the zero-bias capacitance, C0, and an increase in the
damping parameter, τγ .

The framework presented here may be useful for understanding the response of
biological membranes in a neuronal context. Electrical signalling between neutrons
occurs on timescales of up to hundreds of milliseconds and voltage changes similar to
the ones analyzed in this report. Such signalling is typically analyzed in the context of
neutrotransmitter dynamics and other synaptic transmission. Traditionally, biological
memory is defined by the strengthening or weakening of these transmissions between
individual neurons. However, our work shows that electrical stimulation may also alter
the properties of the lipid membrane of the neuron, thus pointing toward a novel
mechanism for memory storage.

In the present study, we explored electrical stimulation at a relatively low fre-
quency (0.01 Hz) and identified sustained alterations in membrane properties over an
extended period (several hours). It remains to be determined whether similar endur-
ing changes can be observed under faster electrical stimulations, which may induce
additional and faster relaxation modes. In future experiments, our goal is to investi-
gate the memory effects induced in phospholipid membranes by continuous brain wave
patterns, including α-, β-, and γ-waves, as well as electrical activities characterized
by millisecond-scale spikes and bursts, among other factors.
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Appendix: Data analysis

Fig. 7 (a) The blue line shows a portion of the applied voltage signal from voltage patch clamp
experiments on DIBs from Ref. [18]. The signal consists of a superposition of a 0.01 Hz sine wave (with
amplitude 110 mV, indicated by the upper black dashed line) and a 10 mV triangle wave at 10 Hz.
We applied a filter to this data (thicker dotted line) that removes the triangle wave, as described in
the main text. (b) Zooming in shows the full signal with the solid blue line and the filtered signal with
the blue dotted line. We also see the raw measured current (provided by the authors of Ref. [18]), due
to the applied voltage (red curve). The current switches sign according to the direction of the voltage
ramp of the triangle wave. This capacitive current was used to calculate the membrane capacitance.

We used the raw electro-physiological DIB data provided by the authors of
Ref. [18]. For the purposes of this manuscript, the relevant information is that a
single lipid bilayer was stimulated under voltage clamp conditions, wherein a speci-
fied voltage, V (t), was applied across the membrane over time. The applied voltage
consisted of a superposition of a slowly-varying sine wave and a triangle wave:
V (t) = V0 sin(2πt/T0) + Vt [|4 ((t− Tt/4) mod Tt) /Tt − 2| − 1], where the amplitude
of the sine wave was V0 = 110 mV and Vt = 10 mV for the triangle wave. The periods
were T0 = 100 sec and Tt = 0.1 sec for the sine and triangle waves, respectively.

We used the triangle wave to calculate the “instantaneous” capacitance C(t) of
the membrane. The triangle wave probe was then stripped from the voltage signal
to determine the capacitance response to sinusoidal stimulation. This was done by
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first filtering the voltage signal through a Butterworth bandpass filter (from the scipy
package in Python [50]) between 0.5 and 500 Hz. This isolated the triangle wave,
which was then subtracted from the total signal. The resultant voltage signal was
then passed through a low-pass filter with a cutoff frequency of 5 Hz. This eliminated
any residual high frequency noise resulting from the subtraction process and from the
voltage supply. An example of the fully-processed voltage signal is shown in Fig. 7(a)
(thick dotted line), along with the raw voltage signal V (t) (thin solid line).

The capacitance C(t) can be read off from the triangle wave because the voltage
ramps generate capacitive currents (Fig. 7(b)). The current response (red curve) is
approximately constant during the linear voltage ramps of the triangle wave, so that
Q(t) ≈ ⟨I(t)⟩t over the linear ramp segments, where ⟨I(t)⟩ represents the average
current over the voltage ramps, for which V (t) ≈ αV t for a constant αV . Assuming that
the capacitance, C, is approximately constant over 0.1 seconds and that the triangle
wave amplitude is small enough as to not induce leakage currents or other changes to
C, then we have I(t) = dQ

dt ≈ C dV
dt . Therefore, capacitance can be calculated directly

from the measured current over each voltage ramp in the triangle wave: We averaged
over each ramp, yielding an estimate C(t) ≈ ⟨I(t)⟩/αV , where αV = 400 mV/sec
is the slope of the triangle wave and we averaged the current I(t) over each voltage
ramp “plateau” (see red curve in Fig. 7(b)). In order to eliminate the signal from
the regions where the voltage ramps change signs, we only averaged over currents
satisfying |I(t)| > 100 pA. Finally, after calculating the average ⟨I(t)⟩ for all of the
triangle wave ramps, we eliminated any outlier values of ⟨I(t)⟩ by applying a median
filter from the SciPy Python library with a window size of 1 second. This was done
to eliminate large, transient current fluctuations due to, e.g., electroporation or any
sharp discontinuities in the applied voltage occurring on the subsecond time scale. The
processed values of C(t) can then be plotted against the processed voltage signal, as
shown in Fig. 5(a) in the main text.
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