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ABSTRACT

We report the All-Sky Automated Survey for SuperNovae discovery of the tidal disruption event (TDE) ASASSN-23bd (AT
2023clx) in NGC 3799, a LINER galaxy with no evidence of strong active galactic nucleus (AGN) activity over the past decade.
With a redshift of z = 0.01107 and a peak ultraviolet (UV)/optical luminosity of (5.4 # 0.4) x 10** ergs~!, ASASSN-23bd is
the lowest-redshift and least-luminous TDE discovered to date. Spectroscopically, ASASSN-23bd shows H« and He I emission
throughout its spectral time series, there are no coronal lines in its near-infrared spectrum, and the UV spectrum shows nitrogen
lines without the strong carbon and magnesium lines typically seen for AGN. Fits to the rising ASAS-SN light curve show that
ASASSN-23bd started to brighten on MJD 599881, ~9 d before discovery, with a nearly linear rise in flux, peaking in the g band
on MJID 60 OOOJ_F; Scaling relations and TDE light curve modelling find a black hole mass of ~10° M, which is on the lower
end of supermassive black hole masses. ASASSN-23bd is a dim X-ray source, with an upper limit of Ly3_jokev < 1.0 X 10%0
erg s~ ! from stacking all Swift observations prior to MJD 60061, but with soft (~0.1 keV) thermal emission with a luminosity of
Los-awey ~ 4 x 10%° erg s~ in XMM-Newton observations on MJD 60095. The rapid (¢ < 15 d) light curve rise, low UV/optical
luminosity, and a luminosity decline over 40 d of ALsy &~ —0.7 dex make ASASSN-23bd one of the dimmest TDEs to date and

a member of the growing ‘Low Luminosity and Fast’ class of TDEs.

Key words: accretion, accretion discs —black hole physics — transients: tidal disruption events.

1 INTRODUCTION

Tidal disruption events (TDEs) are the result of the partial or total
disruption of a star passing near or within the tidal radius of a
supermassive black hole (SMBH), leading to a luminous flare from
accretion onto the SMBH (e.g. Rees 1988; Evans & Kochanek 1989;
Phinney 1989; Ulmer 1999; Komossa 2015; Stone et al. 2019).
Emission from TDEs occurs over a broad range of wavelengths,
including the hard X-ray (e.g. Bloom et al. 2011; Burrows et al.
2011; Cenko et al. 2012b; Pasham et al. 2015), soft X-ray (e.g.
Bade, Komossa & Dahlem 1996; Grupe, Thomas & Leighly 1999;
Komossa & Greiner 1999; Auchettl, Guillochon & Ramirez-Ruiz
2017), ultraviolet (UV, e.g. Stern et al. 2004; Gezari et al. 2006, 2008,
2009), and optical bands (e.g. van Velzen et al. 2011; Cenko et al.
2012a; Gezari et al. 2012; Arcavi et al. 2014; Chornock et al. 2014;
Holoien et al. 2014a, 2016a, b, 2019a, b; Vink¢ et al. 2015; Brown
et al. 2018). While active galactic nuclei (AGNs) probe actively
accreting SMBHs, TDEs offer a rare opportunity to examine the
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activation of otherwise dormant SMBHs (e.g. Lodato & Rossi 2011;
Guillochon & Ramirez-Ruiz 2015; Shiokawa et al. 2015; Metzger &
Stone 2016). TDEs also provide a laboratory for studying shock
physics (e.g. Lodato, King & Pringle 2009), jet formation (e.g.
Farrar & Piran 2014; Wang & Liu 2016; Biehl et al. 2018), and the
local environment and growth of SMBHs (e.g. Auchett]l, Ramirez-
Ruiz & Guillochon 2018; Jiang et al. 2021; Mockler et al. 2022).
However, the physics that underlies TDEs is complex. Possible
parameters include the age, mass, composition, and rotation of
the disrupted star (Kochanek 2016; Gallegos-Garcia, Law-Smith &
Ramirez-Ruiz 2018; Golightly, Coughlin & Nixon 2019; Law-Smith,
Guillochon & Ramirez-Ruiz 2019; Mockler, Guillochon & Ramirez-
Ruiz 2019), the spin and mass of the SMBH (Ulmer 1999; Graham
et al. 2001; Gafton & Rosswog 2019; Mockler et al. 2019), the
stellar impact parameter (Guillochon & Ramirez-Ruiz 2013, 2015;
Gafton & Rosswog 2019), the accretion fraction and viewing angle
(Kochanek 1994; Lodato & Rossi 2011; Dai, McKinney & Miller
2015; Guillochon & Ramirez-Ruiz 2015; Shiokawa et al. 2015;
Metzger & Stone 2016; Dai et al. 2018; Coughlin & Nixon 2019).
Despite all these parameters, optical and UV spectral energy
distributions (SEDs) of TDEs are well modeled by blackbodies (e.g.
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Gezari et al. 2012; Holoien et al. 2014b, 2016a, b, 2018, 2019b,
2020; Brown et al. 2016; Hung et al. 2017; Leloudas et al. 2019; van
Velzen et al. 2021; Hinkle et al. 2021c).

Several methods have been proposed to measure black hole mass
from the TDE light curve (e.g. Ulmer 1999; Graham et al. 2001;
Gafton & Rosswog 2019; Mockler et al. 2019; Ryu et al. 2020; Wen
et al. 2020; Ramsden et al. 2022; Mummery et al. 2023; Sarin &
Metzger 2024), these have been able to reproduce the known SMBH
scaling relations with galaxy properties with varying success (e.g.
Hammerstein et al. 2023). Finally, TDEs also show a Phillips (1993)-
esque relationship between peak bolometric luminosity and decline
rate (Hinkle et al. 2020, 2021c; Hammerstein et al. 2023).

From an optical spectroscopic perspective, the presence, strength
and width of the observed lines vary (e.g. Arcavi et al. 2014; Hung
et al. 2017; Leloudas et al. 2019; Wevers et al. 2019; Holoien et al.
2020; van Velzen et al. 2020; Charalampopoulos et al. 2023; Nicholl
et al. 2022). Generally, optical emission lines are observed from
hydrogen and/or helium, occasionally complemented by oxygen
lines from Bowen fluorescence (e.g. Leloudas et al. 2019; van
Velzen et al. 2020). Several potential theoretical explanations have
been proposed to explain the variations in the spectra of TDEs,
including photoionization physics (e.g. Gaskell & Rojas Lobos
2014; Guillochon, Manukian & Ramirez-Ruiz 2014; Roth et al.
2016; Kara et al. 2018; Leloudas et al. 2019), stellar composition
differences (e.g. Kochanek 2016; Law-Smith et al. 2020; Mockler
et al. 2022), and He star progenitors (e.g. Gezari et al. 2012;
Strubbe & Murray 2015). While TDEs mostly have broad, Gaussian
line profiles, some TDEs show line profiles with either strong, narrow
line profiles (e.g. Holoien et al. 2020; van Velzen et al. 2020) or
double peaks (e.g. Holoien et al. 2019a; Hung et al. 2020), which
may be explained by the viewing geometry (e.g. Holoien et al. 2019a;
Short et al. 2020; Hung et al. 2021). Finally, TDEs separate into
diversely behaving spectral classes (Leloudas et al. 2019; van Velzen
et al. 2021; Hammerstein et al. 2023), which has potential physical
explanations that include partial versus complete disruption (Nicholl
et al. 2022) and ionization from a shrinking photospheric radius
(Charalampopoulos et al. 2023). However, a complete satisfactory
explanation for the spectral classes is still needed. A larger sample
of well-observed TDEs should advance our understanding of the
underlying nature of TDEs and the SMBHs that cause them.

Fortunately, with many transient surveys currently operating
such as the All-Sky Automated Survey for Supernovae (ASAS-
SN; Shappee et al. 2014; Kochanek et al. 2017), the Asteroid
Terrestrial Impact Last Alert System (ATLAS; Tonry et al. 2018a),
the Panoramic Survey Telescope and Rapid Response System (Pan-
STARRS; Chambers et al. 2016; Jones et al. 2021), and the Zwicky
Transient Facility (ZTF; Bellm et al. 2019), more nuclear transients,
including TDEs, are discovered each year, and a growing number are
now found prior to peak brightness (e.g. Leloudas et al. 2019; Wevers
et al. 2019; Holoien et al. 2019a, b, 2020; van Velzen et al. 2019b,
2020). The rising light curve and pre-maximum spectra provide
important information about TDEs, such as the progression from a
disrupted star to an accretion flow or an initial X-ray pulse (Carter &
Luminet 1983; Brassart & Luminet 2008). The early detection of
TDEs is especially important for a growing subclass of Faint and
Fast (FaF) TDEs.! As their name suggests, the peak luminosity
of a FaF TDE tends to be an order of magnitude less luminous
combined with a rise and decline about twice as fast as a ‘normal’
TDE. Examples of FaF TDEs include iPTF16fnl (Blagorodnova et al.

!n this context, faint refers to intrinsically faint, not observationally faint.
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2017; Brown et al. 2018), ATLAS18mlw (Hinkle et al. 2023), AT
2019qiz (Nicholl et al. w), AT 2020neh (Angus et al. 2022), and
AT 2020wey (Charalampopoulos et al. 2023). While the observed
sample is presently small, FaF TDEs may have a higher intrinsic
rate than ‘normal’ TDEs (Charalampopoulos et al. 2023) but a lower
discovery rate due to their lower luminosity. This is consistent with
the findings of van Velzen (2018) and Yao et al. (2023) that TDEs
have a steep luminosity function.

In addition to TDEs, transient sky surveys have uncovered addi-
tional classes of nuclear transients, including a number of ambiguous
transients. For example, the differences between a TDE and single
bright AGN flare are poorly understood (see Zabludoff et al. 2021 for
a review), or, alternatively, changing-look AGN may originate from
accretion rate changes caused by a TDE (e.g. Chan et al. 2019; van
Velzen et al. 2020; Zhang 2021; Li et al. 2022; Ricci & Trakhtenbrot
2023). The potential for mistaken identification is particularly a
problem for galaxies that already host AGN activity. In particular,
another growing class of nuclear transients is ambiguous nuclear
transients (ANTSs), which exhibit observational characteristics seen
in both AGNs and TDEs (e.g. Trakhtenbrot et al. 2019 Neustadt et al.
2020, Hinkle et al. 2022, Li et al. 2022, Holoien et al. 2022). While
one may posit ANTs are merely TDEs in AGN hosts, some ANTs
occur in host galaxies that lack active accretion (e.g. Malyali et al.
2021; Hinkle et al. 2022; Holoien et al. 2022).

Here, we present the discovery and follow-up observations of the
nuclear transient ASASSN-23bd. We present the data in Section 2
and analysis in Section 3. Section 4 compares ASASSN-23bd with
other FaF TDEs, and Section 5 summarizes the results.

2 DATA

2.1 Initial discovery and classification

ASAS-SN discovered ASASSN-23bd (a.k.a. AT 2023clx)? on MJD
59997.2 at («, ) = (11:40:09.397 + 15:19:38.54) in NGC 3799
using the Cassius unit in Chile (Stanek 2023). The ASAS-SN
discovery g-band magnitude was 16.3, with a last non-detection
on MJD 59988.3 at a limiting magnitude of g > 17.9. Taguchi et al.
(2023) spectroscopically classified ASASSN-23bd as a TDE on MJID
60001.7.

The redshift of NGC 3799 is z = 0.01107 (Albareti et al. 2017),
making ASASSN-23bd the lowest redshift TDE to date. Theureau
et al. (2007) derive distance moduli of 33.6 £ 0.4 mag (~51 Mpc;
21-cm line) and 35.6 £ 0.5 mag [~134 Mpc; H-band Tully & Fisher
(1977) relationship]. Assuming Hy = 73 kms~' Mpc~! (Burns et al.
2018; Riess etal. 2022; Galbany et al. 2023), 2, =0.3,and 2, =0.7,
the distance modulus to NGC 3799 is 33.50 £ 0.15 mag (50.1 £ 3.5
Mpc) in the cosmic microwave background frame. We adopt this
distance.

2.2 Survey data

2.2.1 ASAS-SN light curve

ASAS-SN is a fully robotic survey with 20 14-cm telescopes
distributed on five mounts at four sites, providing comprehensive
all-sky monitoring with a cadence of ~20 h (in good conditions)
designed to detect nearby supernovae. The five ASAS-SN units
are located at the Haleakala Observatory, the South African As-
trophysical Observatory, the McDonald Observatory, and two at the

Zhttps://www.wis-tns.org/object/2023clx
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Table 1. Host-subtracted stacked ATLAS and ASAS-SN photometry of ASASSN-23bd.
D Filter Magnitude Uncertainty Flux [mJy] Uncertainty
2459967.033:01 0 20.297 99.999 -0.076 0.006
2459970.149:02 0 19.862 99.999 —0.068 0.008
2459979.860-03 0 19.325 99.999 —0.046 0.014

Uncertainties of 99.999 denote 30 upper limits. Upper and lower uncertainties on the date of observation are derived during the stacking procedure to span
the distance between the earliest and latest photometric epochs combined to result in that datum point. The full table will be available in the online journal.

Cerro Tololo Inter-American Observatory. The typical ASAS-SN
observing strategy is to obtain three dithered images at each pointing.
The ASAS-SN survey began observations in late 2011 with the V
band. In 2017, ASAS-SN added 12 telescopes using the g band, and
the original eight telescopes were switched from the V band to the g
band in 2018.

ASAS-SN observed the location of ASASSN-23bd 3441 times
before discovery, and all images were reduced using the standard
ASAS-SN pipeline based on the ISIS image subtraction package
(Alard & Lupton 1998; Alard 2000). We used images taken be-
fore MJD 59800 to construct the reference image, removing any
images with a large FWHM (>1.7 pixels), a 30 depth that was
too shallow (¢ < 17.0 mag), or that showed signs of cirrus or
clouds.

Similar to the standard ASAS-SN Sky Patrol photometry
(Kochanek et al. 2017; Hart et al. 2023), we use the IRAF APPHOT
package with a 2-pixel (16 arcsec) radius to perform aperture
photometry on each subtracted image, generating a differential light
curve. The photometry is calibrated using the AAVSO Photometric
All-Sky Survey (Henden et al. 2015). We then stack the individual
ASAS-SN images on different time scales for different parts of
the light curve. First, when looking for pre-discovery variability
we stack the dithered images together. Next, from 40 d before to
25 d after discovery, we stack in 25-h bins to cover the rapid rise and
decline. Lastly, for the declining light curve, we stack in 100-h bins to
better follow the relatively slow fading. The ASAS-SN photometric
observations are compiled in Table 1.

2.2.2 ATLAS light curve

The ATLAS survey primarily focuses on detecting small asteroids
that have a chance of terrestrial collision using two filters: a cyan (c;
420-650 nm) filter and an orange (0; 560-820nm) filter (Tonry et al.
2018a). ATLAS uses 0.5 m Wright-Schmidt telescopes in Hawaii,
Chile, and South Africa to obtain four 30-s exposures in an hour-
long window for 200-250 fields per night, covering approximately a
quarter of the sky (Smith et al. 2020). Data were retrieved from the
ATLAS Transient Science Server (Smith et al. 2020). The ATLAS
light curve contains 2527 images, with the earliest on MJD 57400.6.
We combined the four nightly ATLAS images to derive a light curve
with 630 epochs. The initial rise was observed in the ATLAS o band,
whereas the peak was observed in the ATLAS ¢ band. Data taken
on the same night were stacked using a weighted average, excluding
data affected by clouds. The ATLAS photometric observations are
also compiled in Table 1.

2.2.3 TESS data

NGC 3799 was observed by the Transiting Exoplanet Survey
Satellite (TESS; Ricker et al. 2015) in sectors 22, 45, 46, and 49.
Unfortunately, these sectors all occurred before the discovery of
ASASSN-23bd. We reduced the TESS data in a similar manner to

the ASAS-SN data following the processes detailed in Vallely et al.
(2019, 2021), and Fausnaugh et al. (2021). We used the ISIS package
(Alard & Lupton 1998; Alard 2000) to image subtract the full-frame
TESS images. Median filters were used to remove artifacts like CCD
straps. We produced light curves from these subtracted images with
reference images constructed on a per-sector basis using the first
100 good-quality full-frame images without compromised pointing,
significant scattered light, or data quality flags. For the extended
mission with its shorter integration times, we use the first 300 images
that meet these criteria.

2.2.4 ZTF light curve

ZTF uses the Samuel Oschin 48-in Schmidt telescope at the
Palomar Observatory and a camera with a 47 deg? field of view
to obtain images as deep as 20.5 r-band mag in 30-s exposures.
ZTF observed the field containing ASASSN-23bd starting on MJD
58202.3. We use the ZTF g- and r-band light curves between
MJD 58202.3 and MJD 60090 obtained through the ZTF forced
photometry service.> These light curves have 673 g- and r-band
epochs constructed from 1726 images. Following the ASAS-SN
discovery announcement, ZTF reported a detection at g = 19.28
mag on MJD ~59980 to TNS; however, our analysis of the ZTF
forced photometry does not show a detection at this epoch. All the
ZTF detections are after the peak of ASASSN-23bd. Since higher-
cadence data are available from the Swope Telescope, as discussed
below, we only include the ZTF data in our analysis of previous AGN
variability.

2.3 Follow-up observations

2.3.1 Swope observations

As part of the Precision Observations of Infant Supernova Explosions
(POISE; Burns et al. 2021) collaboration, we obtained follow-up
images from the 1.0-m Henrietta Swope Telescope. These data were
taken in the Carnegie Supernova Project (CSP) natural system for
which the BV photometry is calibrated using standards from Landolt
(2007) and the gri photometry is calibrated using standards from
Smith et al. (2002). These standards are converted to the CSP system
using colour terms from Krisciunas et al. (2017) and Phillips et al.
(2019). For more information on the CSP filter system, see Stritzinger
et al. (2011) and references therein.

The Swope photometry is template-subtracted using Pan-STARRS
(Chambers et al. 2016) imaging data. Calibration is done using
RefCat2 (Tonry et al. 2018b) magnitudes transformed to the CSP
natural system using the colour terms found in Krisciunas et al.
(2017) and Phillips et al. (2019). Finally, we use the corrections
listed on the CSP website* to convert to the AB system.

3https://irsa.ipac.caltech.edu/Missions/ztf html.
“https://csp.obs.carnegiescience.edu/data/filters
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Table 2. Host-subtracted photometry of ASASSN-23bd from Swift and
Swope.

D Filter Magnitude Uncertainty
2460003.25 U 16.42 0.06
2460003.25 wl 16.79 0.07
2460003.26 m2 16.88 0.05

The full table will be available in the online journal. The B and V filter keys
correspond to Swope filters.

2.3.2 Swift observations

The Neil Gehrels Swift Observatory (Swift; Gehrels et al. 2004)
acquired 19 epochs of data between MJD 60 000 and MJD 60 061
(PIs: Leloudas, Gomez, Huang, and Wevers). Swift simultaneously
observed ASASSN-23bd with the UltraViolet and Optical Telescope
(UVOT; Roming et al. 2005) and X-Ray Telescope (XRT; Burrows
et al. 2005). The Swift data through MJD 60 061 are included here;
later Swift observations exist, but these data are too noisy to be useful.

All exposures for each UVOT epoch were combined using the
HEASOFT version 6.31.1 UVOTIMSUM package, and aperture pho-
tometry was obtained using the UVOTSOURCE package. An aperture
of 5 arcmin is used for both the source and the background. Stacked
archival Swift host-galaxy images were subtracted in all bands except
the B band, which lacks archival Swift imaging of the host. We
compute Vega-system magnitudes using the Breeveld et al. (2011)
zero points, which update the Poole et al. (2008) zero points.
A comparison to photometry from the Swift Optical/Ultraviolet
Supernova Archive (SOUSA; Brown et al. 2014) pipeline yields
similar photometry to ours. Finally, the magnitudes are converted to
AB magnitudes.’

Due to the lack of archival B-band observations, the large V-band
uncertainties at late times, and the existence of high quality B and
V data from POISE, we elect not to show the Swift B- or V-band
photometry nor use the Swift B-band photometry in our analysis.
The Swift V-band photometry is included in the blackbody/SED fits.
The Swope and Swift photometry is compiled in Table 2.

The Swift XRT data was collected in photon-counting mode.
Using the most up-to-date calibrations and the standard filters
and screenings, the observations were processed using the XRT-
PIPELINE version 0.13.7. Using a source region with a radius of
47 arcmin centred on the location of ASASSN-23bd and a source-
free background region with a radius of 150 arcmin centred at
(o, §) = (11:39:56.13,4-15:22:23.90), no significant X-ray emission
associated with the source was found in the individual epochs.

To constrain the X-ray emission, we merged all 19 observations
(up to ObsID sw00015897021 on MID = 60061) using the HEASOFT
tool XSELECT version 2.5b to derive a 3¢ upper limit of 1 x 1073
counts s~! for the 0.3-10.0 keV energy range. Assuming an absorbed
power law with a Galactic column density of 2.5 x 10?° cm~2 (HI4PI
Collaboration 2016) and a photon index of 2 at the redshift of the
host galaxy, we obtain an absorbed flux limit of <3.5 x 10~
ergem™2s~!, which corresponds to an X-ray luminosity limit of
<1 x 10% erg s~!. If we assume an absorbed blackbody model with
a temperature of 0.1 keV and a host column density of 1 x 10%
cm~2, as derived in Section 2.3.3, we obtain an unabsorbed flux
limit of <2.7 x 107" ergem™2s~!, which corresponds to an X-ray
luminosity of <7.9 x 10* ergs~!

5The conversions are found at
https://swift.gsfc.nasa.gov/analysis/uvot_digest/zeropts.html
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2.3.3 XMM-newton

XMM-Newton targeted ASASSN-23bd through joint time awarded
as part of the Hubble GO program 16775 (PI: Maksym). XMM-
Newton observed NGC 3799 on 2023 May 31 (MJD 60095; obsid
0892201601) for 15 ks, of which 11.8 ks were useful. ASASSN-
23bd was detected at ~100 with ~170 counts (maximum likelihood
185 from the EPIC detection pipeline). As a first test, we extracted
the PN counts from a » = 30 arcsec region centred on the source
and from a r = 30 arcsec sourceless background region near the
NW corner of the same PN CCD, avoiding the chip edges. The PN
2.0-10.0 keV excess had <20 significance, with ~ 90 per cent of
the photons observed in the 0.1-2 keV band. Of these, only 1 net
count was found between 1.0-2.0 keV. For a first estimate of spectral
properties, we used PIMMS® to estimate a blackbody temperature
assuming a host column density of 1 x 10%° cm~2, scaling from our
derived host extinction limit (Ay < 0.05; see Section 3.1) and Galactic
extinction (Ay = 0.085; Schlafly & Finkbeiner 2011) from colden’
The model blackbody temperature was iteratively increased in steps
of 0.01 keV to match the observed hardness ratio such that HR = (H-
S)/(H + S) = —0.38 where S = 0.2-0.5 keV and H = 0.5-1.0 keV.
This leads to a blackbody temperature estimate of k7 ~ 0.09 keV.
This leads to an observed flux of ~8.8 x 107" ergs™' cm™2 in the
Swift 0.3—-10 keV band, or an intrinsic ~4.2 x 10* ergs~! for an
unabsorbed blackbody in the 0.1-2 keV band. It is undetected in
the hard band (<1.3 x 107!* ergs™'cm™2 at 3¢ in the 2-10 keV
band assuming a I' = 1.7 power law). To check our assumptions,
we also extracted a spectrum with XMM SAS?® and fit it with XSPec’
using 10-count bins and 1stat as the minimization statistic. The
blackbody fit produces kT = 0.10 & 0.02, ny < 1.1 x 10*'cm™2,
and Fy3_jokev = [1.53 £0.27] x 10~ #ergs~'cm™2 (absorbed) and
[3.17 £ 1.85] x 10 "“ergs~'cm™2 (unabsorbed; 90 per cent confi-
dence), with x?/degrees of freedom = 40.32/25. A complete analysis
of the XMM-Newton data will be presented in Maksym et al. (in
preparation).

2.3.4 Spectroscopic observations

We acquired 24 spectra of ASASSN-23bd between MJD 60 007 and
MIJD 60075 and also include two public spectra of ASASSN-23bd
accessed through the Transient Name Server (TNS) and a public HST
spectrum. The first TNS spectrum'® was taken on the Seimi telescope
using the Kyoto Okayama Optical Low-dispersion Spectrograph
Integral Field Unit (KOOLS-IFU; Matsubayashi et al. 2019). The
second TNS spectrum'! was taken on the Keck-I telescope using
the Low-Resolution Imaging Spectrometer (LRIS; Oke et al. 1995;
Rockosi et al. 2010) and reported by Johansson et al. (2023).

Our optical spectroscopic observations of ASASSN-23bd are from
the POISE (Burns et al. 2021) and SCAT (Tucker et al. 2022)
collaborations. POISE observations were taken using the Inamori-
Magellan Areal Camera and Spectrograph (IMACS; Dressler et al.
2006) on the 6.5-m Magellan Baade telescope. SCAT observations
were taken using the University of Hawaii 2.2-m telescope (UH2.2)
on Mauna Kea using the Supernova Integral Field Spectrograph
(SNIFS; Lantz et al. 2004) and on the Australian National University

Ohttps://cxc.harvard.edu/toolkit/pimms.jsp
"htps://cxc.harvard.edu/toolkit/colden.jsp
8https://www.cosmos.esa.int/web/xmm-newton/sas
“https://heasarc.gsfc.nasa.gov/xanadu/xspec/

10 Accessed via https://www.wis-tns.org/object/2023clx
1T Accessed via https://www.wis-tns.org/object/2018meh
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Table 3. Log of spectroscopic observations.

UT Date MID Epoch Telescope Spectrograph
[d] [d]

2023-02-26 60001.6 44 Seimi KOOLS-IFU
2023-03-04 60007.5 10.3 S$S2.3 WiFeS
2023-03-05 60008.3 11.1 Baade IMACS
2023-03-14 60017.5 20.3 SS2.3 WiFeS
2023-03-15 60018.3 21.1 Baade IMACS
2023-03-17 60020.5 23.3 S$S2.3 WiFeS
2023-03-19 60022.5 25.3 SS2.3 WiFeS
2023-03-20 60023.3 26.1 Baade IMACS
2023-03-20 60023.5 26.3 Keckl LRIS
2023-03-21 60024.6 27.4 S$S2.3 WiFeS
2023-03-27 60030.4 33.2 UH2.2 SNIFS
2023-03-28 60031.4 342 UH2.2 SNIFS
2023-03-29 60032.4 35.2 UH2.2 SNIFS
2023-03-29 60032.5 353 S$S2.3 WiFeS
2023-04-05 60039.5 42.3 SS2.3 WiFeS
2023-04-10 60044.4 47.2 UH2.2 SNIFS
2023-04-11 60045.4 48.2 UH2.2 SNIFS
2023-04-13 60047.2 50.0 Baade IMACS
2023-04-14 60048.4 51.2 SS2.3 WiFeS
2023-04-16 60050.4 53.2 UH2.2 SNIFS
2023-04-21 60055.4 58.2 UH2.2 SNIFS
2023-04-21 60055.5 58.3 SS2.3 WiFeS
2023-04-24 60058.4 61.2 UH2.2 SNIFS
2023-04-28 60062.3 65.1 UH2.2 SNIFS
2023-05-10 60074.4 77.2 UH2.2 SNIFS
2023-03-26 60029.4 32.2 IRTF SpeX
2023-04-04 60038.9 41.7 HST STIS

The epoch phase is relative to the time of discovery on MJD 59997.2

2.3-m telescope (SS2.3) using the Wide-Field Spectrograph (WiFeS;
Dopita et al. 2007, 2010).

Data reduction for IMACS was performed using standard IRAF'2
packages and uses the methods described in Hamuy et al. (2006)
and Folatelli et al. (2013). SNIFS spectra were reduced using the
SCAT pipeline described in Tucker et al. (2022), and WiFeS spectra
were reduced using standard procedures implemented in PyWiFeS
(Childress et al. 2014).

Further spectral data were taken using NASA’s InfraRed Telescope
Facility (IRTF) with SpeX (Rayner et al. 2003) as part of IRTF
program 2023A060 (PI: Hinkle) and HST data were taken with
the Space Telescope Imaging Spectrograph (STIS; Woodgate et al.
1998) as part of GO program 16 775 (PI: Maksym). The SpeX data
were reduced with telluric corrections from an AOV star using the
standard SpeXtool procedures described in Cushing, Vacca & Rayner
(2004), and the reduced STIS spectrum was obtained through the
Mikulski Archive for Space Telescopes. Table 3 presents a log of the
spectroscopic observations of ASASSN-23bd.

3 ANALYSIS

In this section, we analyse the archival host properties of NGC
3799. We search for previous AGN-like variability and compute
the general host-galaxy properties. Additionally, we fit the rising

12The Image Reduction and Analysis Facility (IRAF) is distributed by the
National Optical Astronomy Observatory, which is operated by the Asso-
ciation of Universities for Research in Astronomy, Inc., under cooperative
agreement with the National Science Foundation.
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light curve of ASASSN-23bd with single- and double-component
models and perform blackbody fits to the photometry. Finally, we
analyse the optical spectral time series, especially the evolution of
the full width at half-maximum (FWHM) and luminosity of the H «
feature.

3.1 Archival observations of host galaxy NGC 3799

NGC 3799 is a well-observed galaxy morphologically classified as
a SB(s)b:pec (de Vaucouleurs et al. 1991) galaxy. It is designated as
a peculiar galaxy because it is interacting with NGC 3800. There is
evidence that galaxies that have undergone recent mergers may be
more likely to host a TDE (Prieto et al. 2016; Hammerstein et al.
2021). NGC 3799 is a Low lonization Nuclear Emission Line Region
(LINER) AGN (Toba et al. 2014). The archival SDSS spectrum (York
et al. 2000) shows H 8, Mg b A5175, Na1 D AA5890, 5896, and Ca11
KHG Ar3934, 3968, 4308, Call Ar8542, 8662, and Mgl A8807
absorption and [OT11] AA4959,5007, [N1] A6584, [S1] Ar6717,
6731, and H o emission.

Fig. 1 compares NGC 3799 with the host galaxies of Broad H/He
TDEs and the spectroscopic properties of SDSS DRS8 (Eisenstein
et al. 2011) galaxies from Brinchmann et al. (2004). The top left
panel shows the equivalent width (EW) of Ho and the Lick Hd,4
absorption index. Ha is a current star-formation indicator, while
the Lick H §,4 absorption index provides information about the past
Gyr of star formation to identify post-starburst galaxies. The boxes
are from French, Arcavi & Zabludoff (2016) and indicate the host
galaxy’s evolutionary stage. TDEs generally prefer E + A or peculiar
host galaxies (Arcavi et al. 2014; French et al. 2016; Hammerstein
et al. 2021), but because TDEs can occur in much fainter galaxies
than SDSS can obtain spectra for, a complete picture of TDE host
properties requires a correction for the difference in the flux limit
(see e.g. Hammerstein et al. 2021) that is not used in this work.

The top right panel shows the H o EW and log ([N 11]/H ), which
helps to discriminate between ionization mechanisms, especially
those of LINER galaxies (Cid Fernandes et al. 2011). The bottom left
panel of Fig. 1 shows a galaxy diagnostic based on log;([O 11]/H 8)
and log;o([N 11]/H &), and the bottom right shows another one using
logo([O m)/H B) and logo([S 11]/H o) (Baldwin, Phillips & Terlevich
1981; Veilleux & Osterbrock 1987). The numerical values for
each parameter are EWy, = 3.03 £ 0.13 A, EWys, =0.58 &
0.41 A, logio((Nul/Ha) = —0.071 + 0.021, logo([Sul/Ha) =
—0.233 £ 0.032, and log;o([O m]/H ) = 0.215 +£ 0.042. Finally, we
note that NGC 3799 has a W1 — W2 colour of —0.03 mag, which
indicates no strong AGN activity (Stern et al. 2012). In summary,
Fig. 1 shows NGC 3799 is still undergoing star formation and hosts
weak AGN activity.

We use the photometry in Table 4 to estimate several host-galaxy
parameters using the Fitting and Assessment of Synthetic Templates
package (FAST; Kriek et al. 2009). We assume a Salpeter (1955)
initial mass function, an exponentially declining star-formation rate,
and the stellar population models of Bruzual & Charlot (2003). This
population model uses light from the entire host galaxy. However,
there is evidence for an older, quiescent nucleus from the SDSS
and Pan-STARRS host-galaxy images. The star formation is likely
associated with the spiral arms and driven by NGC 3799’s tidal
interactions with its larger nearby neighbour, NGC 3800. The model
results give an age of 2.0707 Gyr, a stellar mass of 6.370% x 10° Mg,
a star formation rate of 1.270¢ x 10~ Mg yr~!, and a specific star
formation rate of 2.5%)3 x 10~'" yr~!. For the Reines & Volonteri
(2015) scaling relation, the host stellar mass implies a black hole
mass of Mgy = (1.6 & 1.0) x 10% M, which is similar to other FaF
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Figure 1. Host galaxy properties for selected broad H/He TDE:s (circles) and ASASSN-23bd (star). Black background points are galaxies from SDSS DR8
(Eisenstein et al. 2011) in the MPA-JHU catalogue (Brinchmann et al. 2004). Upper Left Panel: EW of the host galaxy H« and the Lick H §4 absorption index.
H o traces current star formation whereas the Lick H 84 traces the star formation in the past Gyr. The uncertainty for NGC 3799 is the size of the marker. Upper
Right Panel: Ha EW and log ([N II]/H ). Sometimes called the WHAN diagram (Cid Fernandes et al. 2011). Plotted lines separate regions corresponding to
star-forming galaxies (SF), strong AGN (SAGN), weak AGN (WAGN), and ‘retired galaxies’ (RG). Lower Left Panel: 1og10([O 111]/H B) and log;o([N 11]/H &)
lines (Baldwin et al. 1981; Veilleux & Osterbrock 1987). The solid line separates AGNs (above the line) and H 11 regions (below the line; Kewley et al. 2001).
Objects between the solid and dotted line are considered composite objects. Lower Right Panel: 10g1o([O 1IJ/H B) and logo([S 1]/H @) (Veilleux & Osterbrock
1987). The AGN region lies above the solid line and H1I regions lie below the line. The dashed line is a theoretical separation between Seyferts, located above

and to the left, and LINERS, located below and to the right (Kewley et al. 2006).

TDEs (e.g. Charalampopoulos et al. 2023 and Blagorodnova et al.
2017).

Since NGC 3799 is classified as a LINER, we searched for prior X-
ray emission that could indicate possible AGN activity using archival
Swift XRT observations obtained before ASASSN-23bd. We find no
evidence of prior X-ray emission from the host. Merging all available
archival observations, we obtain a 3¢ upper limit to the 0.3-10.0 keV
count rate of 0.002 counts s~!. Assuming an absorbed power law with

MNRAS 530, 4501-4518 (2024)

aphoton index I" = 1.7 (e.g. Ricci et al. 2017) and a Galactic column
density of 2.51 x 10%° cm~2 (HI4PI Collaboration 2016), we derive
an absorbed luminosity of <2 x 10* ergs~!. This limit rules out
strong, but not weak, AGN activity, consistent with Fig. 1.

It appears that ASASSN-23bd is not significantly affected by
extinction. The Milky-Way extinction towards NGC 3799 is Ay =
0.085 mag (Schlafly & Finkbeiner 2011). We use four different
methods to estimate the host-galaxy extinction. First, the pseudo-EW

202 AINF Gz uo Josn Alsiaaun 81els oo Aq 024859/ 0SH/¥/0€SG/AI01HE/SEIUW/WIO0D dNO DILUSPEDE//:SANY WOI) POPEOJUMOQ



Table 4. Archival photometry of NGC 3799 from Swift (UVW2, UVM2,
UVWI; Gehrels et al. 2004; Poole et al. 2008; Breeveld et al. 2011), SDSS
(u, g, r, i, z; Aguado et al. 2019), 2MASS (J, H, K;; Skrutskie et al. 2006),
and WISE (W1 and W2; Wright et al. 2010).

Filter Magnitude Magnitude uncertainty
Uvw2 16.57 0.02
Uvm2 16.89 0.03
UVW1 16.31 0.02
u 15.60 0.01
g 14.23 0.01
r 13.71 0.01
i 13.41 0.01
z 13.25 0.01
J 12.90 0.03
H 12.80 0.04
K; 12.95 0.04
w1 14.27 0.02
w2 14.94 0.02

All photometry is in the AB system.

of the Na1 D line in the SDSS spectrum can be used to estimate an
extinction using the relationship of Poznanski, Prochaska & Bloom
(2012). We perform a 1500 iteration bootstrap on the Nal D line
and take the median of the 1500 resulting extinction values to derive
Ay =0.55 £ 0.09 mag. Secondly, the FAST fit provides an extinction
estimate of Ay = 0.0970 ¢ mag. Thirdly, using the SDSS line fluxes,
the Balmer decrement is 3.7 £ 0.3. Using the Balmer decrement—
extinction relationship from Dominguez et al. (2013), we derive E(B
— V) =0.22 mag and Ay = 0.88 mag, although with Ry = 3.1, this
drops to Ay = 0.66 mag. However, these estimates may be inaccurate
for several reasons. First, they are derived using emission from the
larger narrow-line region and thus may overestimate the line-of-sight
extinction toward the nucleus. Secondly, the FAST population model
integrates emission from the whole galaxy, but there is evidence for
an older, quiescent nucleus with star formation associated with the
spiral arms and possible tidal interactions with its larger nearby
neighbour, NGC 3800. Thirdly, the Balmer decrement assumes Case
B recombination as the only source of H-line production. But NGC
3799 is a LINER, implying that shocks may modify the line ratios,
flattening the Balmer decrement and reducing the extinction estimate.
This is difficult to disentangle from the effects of dust. There is no
significant Na1 D line in our follow-up spectra where the nuclear
transient dominates the emission, although Charalampopoulos et al.
(2024) report Na 1D in their spectroscopic data. However, we find the
upper limit on Na 1D absorption from the LRIS spectrum corresponds
to Ay < 0.05 mag. This is a line-of-site estimate directly from the
TDE observations, so we assume that the host-galaxy extinction of
ASASSN-23bd is negligible.

Since NGC 3799 hosts weak AGN activity, we searched the
archival ASAS-SN, ATLAS, ZTF, and TESS observations for
AGN variability or outbursts prior to ASASSN-23bd. The forced-
photometry light curves are shown in Fig. 2 and show no evidence
of variability. We find that the RMS is <100 pJy in each TESS
sector, with sectors 22 and 49 having the largest RMS at 90 uJy. The
ATLAS o band has the largest RMS variance out of all the survey
data with a value of 263 ulJy, corresponding to a luminosity of vL, =
3.6 x 10* ergs~!. If this were real and corresponded toa 1 per cent
variability amplitude, then the AGN has vL, < 3.6 x 10® ergs~!.
With such low variance, we rule out strong AGN activity with vL,
> 10" ergs™! over the past decade.

ASASSN-23bd: A Low Luminosity TDE 4507

3.2 Photometric analysis

Fig. 3 presents our photometric data for ASASSN-23bd. To constrain
the time of peak, we perform Markov-Chain Monte Carlo (MCMC)
fits with a simple parabolic model to the ASAS-SN data near peak
to find #pea (MID) = 6000073,

Yao et al. (2023) fit the rising light curves of 33 TDEs and find
that a power-law fit is preferential to a Gaussian fit. Thus, we fit the
rising ASAS-SN g-band photometry with two different power-law
models of the form

f() <l
f(l)_{fwk(’ljﬁ:)“ —— (D
where
h
T (1427 @

and « is either a constant, single-power model as in Vallely et al.
(2021) and Hinkle et al. (2021b) or

ar(t — to))
142

as also used in Vallely et al. (2021). While the value of « in the
one-component model is sensitive to how much of the rising light
curve is fit (e.g. Vallely et al. 2019, 2021), the «; parameter from
the two-component model is not. We use the emcee fitting package
(Foreman-Mackey et al. 2013) with the results given in Table 5 and
shown in Fig. 4. The two models produce consistent results for fy, &,
to, and o/a; . In both models, the power-law slope of the rise is closer
to linear in time than quadratic. The two-component model can also
be used to determine the peak g-band magnitude. The median peak
value is 1.09 £ 0.09 mly, corresponding to an AB magnitude of
16.30 = 0.03.

To estimate the theoretical properties of ASASSN-23bd, we fit our
host-subtracted light curves using the Modular Open Source Fitter
for Transients package (MOSF1iT; Guillochon et al. 2017; Mockler
etal. 2019). MOSF1iT provides estimates of the physical properties of
the star, the SMBH, and the encounter between the star and SMBH
by generating bolometric light curves from predefined TDE models,
subsequently deriving light curves for each photometric band, and
finally fitting the derived light curves to the observed ones. The
MOSFiT results are tabulated in Table 6. The SMBH mass from
these fits agrees well with the mass estimate from the host-galaxy
scaling relationships presented in Section 3.1.

We fit a blackbody model to the optical and UV data. Fig. 5 shows
the resulting temperature, luminosity, and radius, and Fig. 6 shows
the best-fit blackbody at the epoch of the NIR spectrum. We only
correct for the effects of the Milky Way extinction and do not include
the host-galaxy extinction since it appears to be negligible [although
Charalampopoulos et al. (2024) argue for a significant host-galaxy
extinction component]. The results show a nearly constant blackbody
temperature and radius and a decreasing blackbody luminosity with
time. Our blackbody fits are consistent with the fits performed by
Zhu et al. (2023) using SUPERBOL (Nicholl 2018).

Fig.7 shows a smoothed, 3-colour image of the XMM-Newton de-
tection created using the standard pipeline bands for ETRUECOLOUR 3
The XMM-Newton data implies a blackbody with L ~ 4 x 10%
ergs~! and kT = 0.1 keV, and thus, a (spherical) photospheric radius
of ~1.8 x 10° cm (see Section 2.3.3), which is much smaller than
the Schwarzschild radius for a 10° My SMBH of ~3.0 x 102 cm.

N (1+ 3)

Bhttps:/heasarc.gsfc.nasa.gov/docs/xmm/sas/USG/etruecolour.html
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Figure 2. Stacked archival flux light curves for NGC 3799 with 3¢ uncertainties. There are no prior AGN flares detected in NGC 3799. The ASAS-SN V- and
g-band data are the khaki and green pentagons, respectively; the ZTF g- and r-band data are the green and red plusses, respectively; the TESS data are pink
triangles; and the ATLAS c- and o-band data are cyan orange squares, respectively. The ATLAS data near MJD 57 800 pass reasonable ATLAS quality cuts but

may nonetheless be adversely affected from clouds.

An unphysically small blackbody radius for the X-ray emission is a
common occurrence in TDEs (e.g. Brown et al. 2017; Hinkle et al.
2022). Mummery (2021) showed that assuming a single-temperature,
spherical blackbody can underestimate the TDE accretion disc size
by up to an order of magnitude.

3.3 Spectroscopic analysis
The optical spectra of ASASSN-23bd are presented in Fig. 8.

We photometrically calibrated (also known as colour matching

MNRAS 530, 4501-4518 (2024)

or ‘mangling’; Hsiao et al. 2007) the spectra using the optical
photometry from POISE. Synthetic fluxes were calculated from each
spectrum and compared to the POISE fluxes. The flux ratios are fit
by a spline, which is then used to correct the spectrum. This process
is repeated until the synthetic fluxes agree with the POISE fluxes.
Our NIR spectrum is presented in Fig. 9 where no mangling was
applied. ASASSN-23bd lacks the NIR spectral features commonly
observed in AGNs such as H, He, or coronal emission lines. The lack
of coronal lines seems to require having little nuclear gas. We fit a
power law of the form Fj, = a x A” + ¢ to our NIR spectrum. The
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Figure 3. Ultraviolet and optical light curves of ASASSN-23bd from Swift (diamonds), Swope (circles), ZTF (pluses), ATLAS (squares), and ASAS-SN
(pentagons). The ASAS-SN discovery point is denoted with an enlarged pentagonal marker and vertical black line, and the epoch of first light with a dashed
black line with the grey area denoting the 30 uncertainty in the fit that determined the epoch of first light (the one- and two-component power laws have a

consistent value of 7). Short, black lines along the horizontal axis correspond to

optical spectral observations, along with a dotted maroon line for our NIR

spectral observation. Downward-pointing triangles denote upper limits. All magnitudes are in the AB system and are host subtracted. No correction for the
(small) Milky-Way extinction is applied. All points without visible uncertainties have uncertainties smaller than the data markers.

Table 5. MCMC fit results for the light curve rise.

Parameter One-component value Two-component value
Jo [yl —113 15

1o [MID] 599887 599881

h [11dy) 132793 163744

aloy L1703 12754

% ~0.175

best-fitting values are a = 4.2 x 10~ ergs™' cm™2 A", b = —0.54,
and ¢ = —4.5 x 107" ergs~! em~2 A~'. However, because the NIR
is not host subtracted, there is most likely host contamination, which
may influence the fitted power-law slope.

We see prominent H« and weak H § and He I emission in all our
optical spectra, along with He 1 A4686 in the earliest spectra. While
there is also He 11 23100 emission in the Keck-I LRIS spectrum. The
rest of our spectral data do not extend this far into the blue. From

these features, ASASSN-23bd is a member of the H 4+ He TDE class
(Leloudas et al. 2019; van Velzen et al. 2021). We fit the H « line with
a Gaussian using a linear continuum model normalized to the line
bracketing regions 6100 A < < 6230 A and 7600 A <) < 7900 A.
Fig. 10 shows the evolution of the H @ feature over time, as well as
our Gaussian fits. Fig. 11 displays the integrated luminosity of each
Gaussian and its FWHM. As the phase increases, the H o luminosity
monotonically declines. We find evidence for a correlation between
Ho integrated luminosity and FWHM with a Kendall t value of
0.473 corresponding to a p value of 0.001, suggesting a weak linear
trend. This is the typical evolution of a TDE, where spectral lines
narrow as they become less luminous.

4 DISCUSSION

4.1 TDE or AGN flare?

While ASASSN-23bd was initially classified as a TDE and Zhu et al.
(2023) rule out a Type II supernova due to the lack of low-ionization
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Figure 4. Single (left) and double (right) power-law fits to the rise of
ASASSN-23bd. The best fit is shown in black, with individual samples shown
in green (left) and blue (right). The bottom panels show the fit residuals.
Section 3.2 describes the fit models, and Table 5 presents the fit parameters
for both models.

Table 6. MOSFiT results for ASASSN-23bd.

Quantity Value Units
log Ryho 12795 -
log Tyise 0.7752 d
+0.1
b 1070 -
log My, 6.4 Mo
loge _37241(0):; -
+0.3
I 12793 -
log nH, host 21.31’8:1 cm—2
M, 0.5+ Mo
lexp —-0.3%02 d
log o 0.6751 -

The middle columns present the lower uncertainty, median value, and upper
uncertainty for a lo confidence interval. We include only the statistical error
in our reported values. For a discussion of systematic errors, see Mockler
et al. (2019). log Rpno: photosphere power-law constant; log Tyisc: viscous
delay time scale; b: scaled impact parameter f; log M;,: SMBH mass; log €:
efficiency; /: photosphere power-law exponent; log ng, nost: local hydrogen
column density; M,: stellar mass; f.,: time of disruption; logo: model
variance.

metals in the spectra near peak, the indicators of weak AGN activity
in NGC 3799 might imply that ASASSN-23bd could instead be an
AGN flare. For example, ‘starved’, low-luminosity AGNs such as
NGC 3799 may have occasional flares that resemble TDEs (Saxton,
Perets & Baskin 2018). In this section, we evaluate the observations
of ASASSN-23bd to determine if it is indeed a TDE or, instead, an
AGN flare from an otherwise quiescent AGN.

We observe a rapid rise to peak and a smooth decline thereafter,
a hot constant blackbody temperature, no MgIl or Fell emission
features, and a central SMBH mass less than 103 Mg. These
characteristics are generally attributed to TDEs rather than AGN
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Figure 5. Evolution of the blackbody temperature (top), luminosity (centre),
and radius (bottom) of ASASSN-23bd (red with points) and other TDEs (other
colours). FaF TDEs are shown as solid lines, whereas other nuclear transients
use dashed lines. In the middle panel, the bolometrically corrected ASAS-
SN photometry is shown in faint, red diamonds, assuming only a Milky
Way extinction and the blackbody fits described in the text. The bolometric
Iuminosity from Swift is shown in bold, red circles.

flares (Frederick et al. 2021; Zabludoff et al. 2021). Our NIR
spectrum does not show spectral features, unlike the spectra of AGN
and CL-AGN (Landt et al. 2008; Neustadt et al. 2023). Furthermore,
a LINER designation does not necessarily signify the presence of an
AGN. The line ratios seen for LINERs may also originate from post-
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Figure 6. The best-fitting UV/optical blackbody (black line) of ASASSN-
23bd at MID ~60030. The photometric data have the same markers and
colours as Fig. 3.

1 arcmin

Figure 7. XMM-Newton 3-colour image. The image is smoothed with a
2-pixel Gaussian. The extended emission to the northeast is NGC 3800, the
larger, interacting neighbour of NGC 3799. The red, green, and blue colours
correspond to 300-700 eV, 700-1200 eV, and 1200-7000 eV, respectively.
The white plus sign is the location of ASASSN-23bd.

AGB stars (Yan & Blanton 2012) or merger-induced shocks (Rich,
Kewley & Dopita 2015).

The supersoft X-ray spectrum detected by XMM-Newton ~95 d
post-peak also favors the TDE hypothesis. A supersoft spectrum
would be unusual for a low-luminosity AGN experiencing stochastic
variability (Auchett]l et al. 2018). Soft X-ray variability due to a
change in obscuration is typically accompanied by strong hard
X-ray emission (e.g. Sazonov et al. 2007), which we do not see
here. Conversely, an observed soft X-ray spectrum is expected and
commonly observed in TDEs (e.g. Auchettl et al. 2017; Auchettl
et al. 2018; van Velzen et al. 2021; Guolo et al. 2023). For a TDE,
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the earliest Swift non-detection implies that any earlier X-ray peak
must be very weak or that there is only a late-time rise, as has been
observed in other TDEs (e.g. ASASSN-150i Gezari, Cenko & Arcavi
2017; Holoien et al. 2018, OGLE16aaa Kajava et al. 2020, ASASSN-
19dj Hinkle et al. 2021b, and eRASSt J074426.3 4 291606 Malyali
et al. 2023). While the X-ray data do not conclusively point to a
TDE interpretation, a growing number of AGN also show soft X-ray
emission (e.g. Boller et al. 2021; Jiang et al. 2022; Sacchi, Risaliti &
Miniutti 2023), the combined X-ray, UV, optical, and NIR evidence
argues for a TDE interpretation.

4.2 The early-time rises of TDEs and other nuclear transients

There are early-time light curve fits for the TDEs ASASSN-
19bt (Holoien et al. 2019b), ASASSN-19dj (Hinkle et al. 2021b),
ZTF19abzrhgq/AT 2019qiz (Nicholl et al. 2020), ZTF20acitpfz/AT
2020wey (Charalampopoulos et al. 2023), and ASASSN-22ci/AT
2022dbl (Hinkle et al. 2024, in preparation), all of which are
consistent with a rise of f o 2. ASASSN-23bd, however, has a
nearly linear rise. ASASSN-23bd is not alone in this regard: other
nuclear transients such as the repeating partial TDE ASASSN-14ko
(Payne et al. 2021; Tucker et al. 2021; Cufari, Coughlin & Nixon
2022; Payne et al. 2022; Liu et al. 2023) and the ANT ASASSN-20hx
(Hinkle et al. 2022) also display linear rises.

Interestingly, the majority of TDEs with ¢? rises have hosts that
do not display AGN activity, whereas the hosts of the linearly-rising
ASASSN-14ko, ASASSN-20hx, and ASASSN-23bd show signs of
AGN activity. Thus, AGN activity and early-time light curve rise
shape may be connected since TDEs in host galaxies with AGN
activity predominantly have f o ¢ rises while those in non-AGN
hosts exclusively have f o £? rises. There are currently no theoretical
explanations for the trends seen in the early-time rises of TDEs,
including the now-apparent bimodality between linear and quadratic
rises. There are no models for the origin of a f o 7 rise as opposed to
a f oc 2 rise, which can be caused by a constant expansion velocity
at a fixed photospheric temperature. Further early-time observations
of TDEs are needed to determine if there is a correlation.

4.3 Comparison to other low-redshift nuclear transients

While ASASSN-23bd is the lowest-luminosity optically selected
TDE to date, several other nuclear transients at low redshift have been
claimed as TDEs. Many of these sources have lower UV/optical lu-
minosities than ASASSN-23bd, either because they are intrinsically
fainter at these wavelengths or are more heavily obscured than a
typical TDE.

First, Malyali et al. (2023) present the ‘low luminosity and
slow” TDE eRASSt J074426.3 + 291606 (J0744), an X-ray-selected
TDE that has a low intrinsic ultraviolet/optical luminosity. Given
the significant X-ray emission, it is unsurprising that JO744 has
a greater bolometric luminosity than ASASSN-23bd. Unlike FaF
TDEs, JO744 declines slowly. This may be explained by either
photon trapping within an outflow (Metzger & Stone 2016) or low
circularization efficiency (Steinberg & Stone 2022)). One prediction
of circularization efficiency variations is delayed soft X-ray emission
in FaF TDEs, so future X-ray follow-up of ASASSN-23bd will help
validate the mechanism differentiating between ‘low luminosity and
slow’ and FaF TDEs.

Secondly, Panagiotou et al. (2023) claim WTP14adbjsh, a heavily-
obscured nuclear flare discovered in the IR at z = 0.0106, is a TDE,
but there is no definitive evidence for a TDE interpretation. Similar
to ASASSN-23bd, the pre-flare WISE W1 — W2 colour of the host
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Figure 8. Optical spectra of ASASSN-23bd corrected to match the observed Swope g, r, and i photometry. Common H, He, and N lines are marked by solid,
dashed, and dotted grey lines, respectively. The fainter lines are the original spectra, and the bold lines are smoothed spectra. Our spectra range from +4.4 d
(top) after discovery to +77.2 d (bottom) after discovery. Spectra are from the KOOLS-IFU (orange), WiFeS (red), IMACS (blue), SNIFS (green), and LRIS
(purple). The archival SDSS spectrum is in black. We do not have access to the original KOOLS-IFU data, so we cannot improve the data reduction. Besides
the telluric feature, which is redder than the rest of our spectra, the wavelengths align with the rest of our data.

cannot rule out weak AGN activity, nor does its location on galaxy
diagnostic diagrams (e.g. the WHAN diagram) exclude LINER-like
or weak AGN behaviour. While optical surveys do not find previous
AGN variability, the large extinction (Ay & 9 mag based on their Na1
D EW measurements and the relationship in Poznanski et al. 2012)
prevents robust constraints on AGN activity from archival survey
data, leaving the TDE interpretation uncertain.

Thirdly, Nikotajuk & Walter (2013) and Irwin et al. (2015) present
observations of IGR J12580+4-0134, a claimed X-ray-selected TDE.
While the host of IGR J12580 + 0134 has shown AGN activity
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and is a known Seyfert 2 galaxy, Nikotajuk & Walter (2013) argue
for a TDE interpretation based on the extreme hard and soft band
X-ray brightness. Hosted in NGC 4845 with a redshift of 0.003663
(Springob et al. 2005), this would be the lowest-redshift TDE to date.

Finally, from the arguments presented in this work, we believe
that ASASSN-23bd is the strongest of these nearby TDE candidates
based on the comprehensive X-ray, UV, optical, and NIR follow-up
observations in this work and a radio detection (Sfaradi et al. 2023).
Interestingly, each low-redshift TDE candidate has some evidence
for potential AGN activity, including ASASSN-23bd (although we
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Figure 10. H« emission features and their fitted Gaussian profiles. The colo

ur scheme is the same as in Fig. 8. The spectra were continuum subtracted using a

linear fit to each spectrum between 6100 A <A < 6230 A and 7600 A <A < 7900 A. A smoothing function is applied to the plotted spectra.

rule out an AGN interpretation in Section 4.1). Regardless of
the classification for each object, further monitoring for delayed
features such as soft X-ray emission or coronal lines like those
recently detected in the FaF TDE AT 2019qiz (Short et al. 2023),
may improve our understanding of the long-term ramifications of
accretion-powered flares on SMBHs.

4.4 Comparison to other TDEs

In this subsection, we compare ASASSN-23bd to other TDEs and
nuclear transients. Our comparison sample consists of iPTF16fnl
(Blagorodnovaetal. 2017), PS18kh (van Velzen et al. 2019a; Holoien
et al. 2019b), ASASSN-18pg (Holoien et al. 2018), ASASSN-19bt
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Figure 11. The Ho luminosities and FWHM of ASASSN-23bd. There is
a weak linear trend between the width and luminosity of the feature, with
wider features generally being more luminous. Each point is shaded based
on epoch, with earlier epochs being darker and later epochs being lighter.
Different symbols are used based on the instrument used to acquire the data.

(Holoien et al. 2019c¢), AT 2019qiz (Nicholl et al. 2020), AT 2020neh
(Angus et al. 2022), ASASSN-20hx (Hinkle et al. 2022), and AT
2020wey (Charalampopoulos et al. 2023). We compiled this sample
by selecting FaF TDEs and several ‘normal’ TDEs observed at peak.
We also include the ANT ASASSN-20hx since it also has a linearly
rising early-time light curve. The data are taken from the literature
except for AT 2020neh and AT 2020wey, which we re-fit using the
Swift photometry from Angus et al. (2022) and Charalampopoulos
et al. (2023), respectively.

In Fig. 5, ASASSN-23bd has the lowest temperature and lumi-
nosity in our sample. While the temperature of ASASSN-23bd is
similar to AT 2020neh and PS18Kkh, it is cooler than the other FaF
TDE:s. In addition to being the least luminous object in our sample,
ASASSN-23bd also rapidly declines in luminosity with a decline
rate similar to iPTF16fnl, AT 2019qiz, and AT 2020wey but not
quite as steep as AT 2020neh. The Eddington luminosity derived
for the Mgy estimate from Section 3.1 is 2.0 x 10* erg s™'. The
peak bolometric luminosity of ASASSN-23bd is (5.4 £ 0.4) x
10* ergs™!, corresponding to an Eddington ratio of Lyea/Lgdd
= 2.7 x 1072, This is smaller than every TDE analysed by Mockler
et al. (2019), where the smallest Eddington ratio was 0.11, and two
orders of magnitude smaller than the typical value of ~1 found by
Wevers et al. (2019). ASASSN-23bd is the least optical/UV luminous
TDE in the sample. Finally, the blackbody radius of ASASSN-23bd
is similar to ASASSN-18pg, AT 2019qiz, and AT 2020neh and larger
than AT 2020wey and iPTF16fnl. This may be an empirical indicator
for TDEs occurring in AGN hosts since ASASSN-23bd and AT
2019qiz are also in weak AGN galaxies, but the sample size is still
small.

Fig.12 shows the peak-decline relationship for TDEs (Hinkle et al.
2020) along with the ANTs for comparison. ASASSN-23bd is less
luminous than the rest of our sample, with a peak luminosity of
~10*7 ergs~!, whereas the ‘normal’ TDE sample clusters between
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Figure 12. The peak-decline relationship for TDEs (Hinkle et al. 2020).
ASASSN-23bd is the red circle, other FaF TDEs are the purple squares,
and other slower TDEs are the blue squares. ASASSN-23bd has the lowest
luminosity of our entire comparison sample. The decline of ASASSN-23bd
is faster than almost all of the normal TDE in our comparison sample, but it
is relatively slow compared to the other FaF TDEs.

~10"9 to ~10*3 ergs~!. The decline parameter ALy, is defined as

ALy = log,, (ﬂ> . 4)
Lpeak

ASASSN-23bd has a decline parameter of ALy ~ —0.7 dex, which

is faster than the normal TDEs with ALsy ~—0.2 dex to ~—0.6 dex,

and the ANTSs which have AL,y ~0.0 dex to ~—0.4 dex. However,

this is a slower decline than most of the other FaF TDE:s.

ASASSN-23bd shows several spectral similarities to the FaF TDEs
iPTF16fnl (Blagorodnova et al. 2017), ATLAS18mlw (Hinkle et al.
2023), AT 2019qiz (Nicholl et al. w), AT 2020neh (Angus et al.
2022), and AT 2020wey (Charalampopoulos et al. 2023). We show
the spectra closest to maximum light for each of these TDEs in Fig.
13. Both iPTF16fnl and AT 2020wey show H « and Hel emission,
whereas AT 2020neh shows only Ho. ASASSN-23bd also shows
prominent Ho emission while its Hel emission is weaker than
iPTF16fnl and AT 2020wey. Prior to peak, all three of these other
TDEs show strong Hell emission, which quickly fades post-peak.
The He1I line is present in our WiFes and IMACS spectra at +4 d
and +5 d, respectively, and in the LRIS spectrum at +26.3 d.

Since there are limited UV spectra of TDEs, we assemble a
separate comparison sample of objects with HST spectroscopy. The
comparison objects are ASASSN-14li (Cenko et al. 2016), iPTF15af
(Blagorodnova et al. 2019), iPTF16fnl (Brown et al. 2018), PS18kh
(Hung et al. 2019), ZTF19abzrhg/AT 2019qiz (Hung et al. 2021),
and the composite SDSS QSO spectrum from Vanden Berk et al.
(2001). These TDEs and ASASSN-23bd are shown in Fig. 14.
Compared to the other TDEs with UV spectra, ASASSN-23bd is
most similar to iPTF15af (Blagorodnova et al. 2019) and iPTF16fnl
(Brown et al. 2018). While those two objects have various emission
features blueward of ~1800 A and noticeable blackbody continua,
the spectrum of ASASSN-23bd is much cooler and does not exhibit
carbon or Lyman « emission lines. Conversely, all three TDEs exhibit
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nitrogen emission features such as N I1T] and N 1v]. This is consistent
with the claim that TDEs can be enriched in nitrogen, whereas
AGNSs should have carbon and Mg1i emission instead (Kochanek
2016; Mockler et al. 2022). Mg 11 appears to be a good diagnostic to
differentiate between TDEs and AGNs. No TDE to date has exhibited
Mg 11 emission.

5 SUMMARY

We present the discovery and multiband photometric and spectro-
scopic data of the FaF nuclear transient ASASSN-23bd in NGC
3799. NGC 3799 is a star-forming galaxy with signs of potential
weak AGN activity. ASASSN-23bd peaked on MJD 60 OOOf%, had
a peak UV/optical luminosity of (5.4 £ 0.4) x 10*?> ergs™!, and has
a near peak X-ray upper limit of 1.75 x 10*° ergs~! and late-time
X-ray detection of L3 gy = 4.2 x 10% ergs™!. Spectroscopically,
ASASSN-23bd shows H o emission throughout its decline, as well
as He IT emission near peak and He I emission shortly after the peak.
The early rise of ASASSN-23bd is well fit by a near linear power
law (f ox t* with an exponent a = 1.1 & 0.3). We speculate that TDEs
in galaxies with no AGN activity seem to rise with f oc £ power laws,
whereas TDEs in galaxies with existing AGN activity seem to prefer
fox trises.

The UV/optical SED of ASASSN-23bd is well fit by a blackbody,
and the blackbody temperature is among the coolest of all FaF
TDEs with values and evolution most similar to AT 2020neh. The
luminosity is less than any other FaF TDE such as iPTF16fnl, AT
2020wey, and AT 2020neh.

ASASSN-23bd is the lowest redshift TDE to date and due to its
low luminosity, ASASSN-23bd may not have been detected if it were
not so close to us. In this sense, ASASSN-23bd is a fine but fortunate
addition to the collection of FaF TDEs. More FaF TDEs should be

ASASSN-23bd: A Low Luminosity TDE 4515
-1 2 ' I~ ' EI —I Cor;p. QSlO I— 'ZTFlfsahzrhgl T
- ; Z Z —— ASASSN-14li  —— PSI8kh B
§ 30 _ E — ::;Ez?; —— ASASSN-23bd_]
= | =| | g ]
O 9} ] 2
+ L — 4
> - .
B 201 ]
s I e SO ]
g i MMM T
N - e E
o=
T:s 10 B w“m _— T
I N i
é | - | ]
é ! PSRRI
0 B kel i ] ]

2000 3000
Rest Wavelength (fi)

1000

Figure 14. Rest-frame UV spectrum of ASASSN-23bd and other TDEs
and an SDSS composite QSO spectrum from (Vanden Berk et al. 2001).
The comparison TDEs are ASASSN-14li (Cenko et al. 2016), iPTF15af
(Blagorodnova et al. 2019), iPTF16fnl (Brown et al. 2018), PS18kh (van
Velzen et al. 2019a; Holoien et al. 2019b), and ZTF19abzrhg/AT 2019qiz
(Hung et al. 2019). The TDE spectra have been binned to ~1 .5A, normalized
by their median UV flux, and offset by a constant for visibility. The phase in
the caption is relative to peak, or discovery for sources not observed before
the peak. Several lines commonly seen in the UV spectra of TDEs or AGNs
are marked.

discovered by deeper sky surveys such as LSST, providing further
advances in the understanding of the variety of nuclear transients.
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