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ABsTrRACT: Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for precision measure-
ment of the energies of charged particles, which is being developed by the Project 8 Collaboration to
measure the neutrino mass using tritium beta-decay spectroscopy. Project 8 seeks to use the CRES
technique to measure the neutrino mass with a sensitivity of 40 meV, requiring a large supply of tritium
atoms stored in a multi-cubic meter detector volume. Antenna arrays are one potential technology
compatible with an experiment of this scale, but the capability of an antenna-based CRES experiment
to measure the neutrino mass depends on the efficiency of the signal detection algorithms. In this
paper, we develop efficiency models for three signal detection algorithms and compare them using
simulations from a prototype antenna-based CRES experiment as a case-study. The algorithms include
a power threshold, a matched filter template bank, and a neural network based machine learning
approach, which are analyzed in terms of their average detection efficiency and relative computational
cost. It is found that significant improvements in detection efficiency and, therefore, neutrino mass
sensitivity are achievable, with only a moderate increase in computation cost, by utilizing either the
matched filter or machine learning approach in place of a power threshold, which is the baseline signal
detection algorithm used in previous CRES experiments by Project 8.

Keyworbps: Trigger algorithms; Trigger concepts and systems (hardware and software); Microwave
Antennas; Spectrometers
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1 Introduction

Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for measuring the kinetic energies
of charged particles by observing the frequency of the cyclotron radiation that is emitted as they travel
through a magnetic field [1, 2]. The Project 8 Collaboration is developing the CRES technique as a
next-generation approach to tritium beta-decay endpoint spectroscopy for neutrino mass measurement.
Recently, Project 8 has performed the first CRES-based measurement of the tritium beta-decay energy
spectrum and neutrino mass [3, 4].

Previous CRES measurements have utilized relatively small volumes of radiation source gas that
are directly integrated with a waveguide transmission line, which propagates the cyclotron radiation
emitted by magnetically trapped electrons to a cryogenic amplifier. While this technology has had
demonstrable success, it is not a feasible option for scaling up to larger measurement volumes. In
particular, the goal of the Project 8 Collaboration is to use CRES combined with atomic tritium to
measure the neutrino mass with a 40 meV sensitivity. Achieving this sensitivity goal will require a
multi-cubic-meter scale measurement volume to obtain the required event statistics in the tritium



beta-spectrum endpoint region; hence, there is a need for new techniques to enable large volume
CRES measurements for future experiments.

One approach is to use antennas to collect a portion of the cyclotron radiation emitted by trapped
electrons [5, 6]. A promising design is an inward-facing uniform circular array that surrounds a
cylindrical containment volume. Increasing the size of the antenna array by adding additional rings
of antennas along the longitudinal axis, allows one to grow the experiment volume until a sufficient
amount of tritium gas can be observed by the array. A challenging aspect of this approach is that
the total radiated power emitted by an electron near the tritium spectrum endpoint is on the order
of 1fW or less in a 1 T magnetic field. Because the CRES signal power and information is spread
across the antenna array, detecting the presence of a CRES signal and determining the electron’s
kinetic energy requires reconstructing the entire array output over the duration of the event, posing a
significant data acquisition and signal reconstruction challenge.

Previous measurements with the CRES technique have utilized a threshold on the frequency
spectrum formed from a segment of time-series data. This algorithm relies on the detection of a
frequency peak above the thermal noise background, which limits the kinematic parameter space of
electrons available for reconstruction (see section 2.2). Although a trigger based on the amplitude
of the frequency spectrum was adequate for previous Project 8 experiments, this approach does not
provide sufficient detection efficiency for future CRES-based measurements of the neutrino mass.
Better efficiency is possible by taking advantage of the deterministic CRES signal structure with
a matched filter or machine learning based classifier [7]. In order to evaluate the relative gains in
efficiency that come from utilizing these algorithms for antennas, analytical models that describe the
detection performance of a power threshold and matched filter classifier are developed. In addition,
a basic convolutional neural network (CNN) is implemented and tested as a first step towards the
development of neural-network based classifiers for antenna array based CRES measurements. These
results allow for a comparison between the estimated detection efficiencies of each of these methods,
which are weighed against the associated computational costs for real-time applications.

The outline of this paper is as follows. Section 2 is an overview of a prototype antenna array CRES
experiment, and describes the approach to real-time signal identification. Section 3 develops models for
the power threshold and matched filter algorithms and introduces the machine learning approach and
CNN architecture. Section 4 describes the process for generating simulated CRES signal data and the
details of training the CNN. Finally, section 5 compares the signal classification accuracy for the three
approaches and discusses the relevant trade-offs in terms of detection efficiency and computational cost.

2 Signal detection with antenna array CRES

2.1 Antenna array and data rate estimates

In order to explore the potential of antenna array CRES for neutrino mass measurement, the Project 8
Collaboration has developed a conceptual design for a prototype antenna array CRES experiment [5, 8],
called the Free-space CRES Demonstrator or FSCD (see figure 1). The FSCD design consists of
a single ring of antennas, which is the simplest form of a uniform circular array configuration, to
surround a radio-frequency (RF) transparent tritium gas vessel. A stand-alone version of this antenna
array has been built and tested by the Project 8 collaboration [9] to validate simulations of the array
radiation pattern and beamforming algorithms [10]. In the FSCD the antenna array is positioned at the
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Figure 1. An illustration of the conceptual design for the FSCD. The antenna array geometry consists of a
20 cm interior diameter with 60 independent antenna channels arranged evenly around the circumference. The
nominal antenna design is sensitive to radiation in the frequency range of 25-26 GHz, which corresponds to the
cyclotron frequency of electrons emitted near the tritium beta-spectrum endpoint in a 0.96 T magnetic field.
The array is located at the center of the magnetic trap produced by a set of current-carrying coils.

center of the magnetic trap formed by a set of electromagnetic coils, which create a local minimum
in the magnetic field with a flat central region and steep walls in the radial and axial directions.
The multi-coil trap design produces a trap with a larger volume than a two-coil bathtub trap or the
single-coil traps used in the Project 8 Phase II experiment [3].

When an electron is trapped its motion consists of three primary components. The component
with the highest frequency is the cyclotron orbit whose frequency is determined by the size of
the background magnetic field. The FSCD design assumes a background magnetic field value of
approximately 0.96 T, which results in cyclotron frequencies of approximately 26 GHz for electrons
with kinetic energies near the tritium beta-spectrum endpoint. The component with the next highest
frequency is the axial oscillation experienced by electrons with pitch angles! of less than 90° as
they move back and forth between the trap walls [11]. Typical oscillation frequencies are on the
order of ~ 10 MHz, which results in an oscillation period that is a factor of ~ 10> smaller than
the observation time needed for precise measurement of the cyclotron frequency. Therefore, the
axial extent of the electron’s motion is unknown, and the electron is treated as if it is located in the
average axial position at the bottom of the magnetic trap. The component of motion with the smallest
frequency is the grad-B drift caused by radial field gradients in the trap, producing an orbit of the
electron around the central axis of the trap with a frequency on the order of a few kHz, dependent
on the pitch angle and the radial position of the electron.

Each component of motion influences the shape of the cyclotron radiation signals received by the
antenna array, therefore, the data acquisition (DAQ) system must be properly designed in order to

1Pitch angle is defined as the angle of the particle’s total momentum with respect to the local magnetic field.



resolve the effects of the cyclotron, pitch angle, and grad-B motions on the signal shape. Frequency
down-conversion allows for sampling of the CRES signals with a bandwidth of 200 MHz, which must
be large enough to contain all sidebands produced by pitch angle modulation. The noise temperature
for the FSCD can be estimated using RF link-budget analysis, which depends upon the physical
temperature of the experiment as well as the noise temperature of the cyrogenic amplifiers. The
analysis presented in this paper assumes an effective system noise temperature of ~ 10 K, which is
achievable with cyrogenic temperatures and low-noise commercially-available HEMT amplifiers.

Array r Summed
Time-series ! Spectrogram

Digital Beamforming Short Time
Fourier Transform

Classifier

Figure 2. A block diagram illustration of the real-time signal detection algorithm proposed for antenna array
CRES reconstruction.

A design goal for the FSCD DAQ system is to enable a significant portion of the CRES event
reconstruction to occur in real-time. The estimated data volume generated by the FSCD is 1 exabyte of
raw data per year of operation, with the nominal array size of 60 antennas sampled at 200 MHz, which
would be prohibitive to store for offline processing. Therefore, it is ideal to perform some CRES event
reconstruction in real-time so that it is possible to save a reduced form of the data for offline analysis.

The first step of the real-time reconstruction would be a real-time signal detection algorithm,
which is the focus of this paper. The basic approach consists of three operations performed on the
time-series data blocks including digital beamforming, a short-time Fourier transform (STFT), and a
binary classification algorithm to distinguish between data that consists of signal plus noise (Signal)
and data that is purely noise (see figure 2).

2.2 Real-time signal detection

The first step in the real-time detection algorithm is digital beamforming, which is a phased summation
of the signals received by the array (see figure 3). The phase shifts correspond to the path length
differences between a spatial beamforming position and each antenna such that, when there is an
electron located at the beamforming position, all the signals received by the array constructively
interfere. Since one does not know a priori where an electron will be produced in the detector, a
grid of beamforming positions is designed to cover the entire azimuthal plane where electrons can be
trapped. The phased summation is performed for all points in the grid at each time step. As discussed
in section 2.1, the axial oscillation of the electrons prevents one from resolving its position along
the z-axis, therefore, the beamforming grid need only cover the possible positions of the electron
in the two-dimensional plane defined by the antenna array.

Mathematically, digital beamforming can be expressed as

Nanl
yilnl = )" @y [nlx;[nl, @.1)
J=1



Figure 3. An illustration of the digital beamforming procedure. The blue arrow indicates the distance from the
beamforming position to the antenna. In the configuration depicted the actual position of the electron matches
the beamforming position, therefore, one expects constructive interference when the phase shifted signals are
summed. To prevent the electron’s grad-B motion from moving the electron off of the beamforming position,
the beamforming phases include time-dependence to follow the trajectory of the electron in the magnetic trap.

where x;[n] is the voltage sampled at antenna j at time n, ®;;[n] is a matrix element from the
time-dependent beamforming phase shift matrix, and y;[n] is the summed time-series for beamforming
position i. The elements of the beamforming phase shift matrix can be expressed as a weighted
complex exponential

®@;;[n] = Aij[n] exp (i¢;;[n]), (2.2)

where the weight A;; accounts for the relative power increase for antennas that are closer to the
position of the electron, and ¢;; is the total beamforming phase shift for the j-th antenna and the
i-th beamforming position.

The beamforming phase shift is a sum of two terms

27Tdij [n]
¢ijln] = — toy [n], (2.3)
where the first term is the phase shift originating from the path length difference (d;;[n]) between the
beamforming and antenna positions, which are represented by the vectors (r;,6;) and (r;, 6;[n]) (see
figure 3), and the second term is the angular separation (6;;[n]) of the two positions. The angular
separation enters into the beamforming phase due to an effect caused by the circular cyclotron orbit
of the electron that produces radiation whose phase is linearly dependent on the relative azimuthal
position of the antenna [12, 13]. The time-dependence of the beamforming phases corrects for the



effects of the grad-B drift, which cause the guiding centers of electrons to orbit the center of the
magnetic trap. The correction adds a linear time-dependence to the azimuthal beamforming position,

0ij[n] = 0; - 0;[n] = 0; — wypt[n] +6;[0], (2.4)

where 6; is the fixed azimuthal position of antenna j, 6;[0] is the starting azimuthal coordinate of the
beamforming position, ¢[n] is the time vector, and wyp is the grad-B drift frequency, which allows
the beamforming phases to track the XY-position of the guiding center. Predicting accurate values
of wyp for a specific trap and set of kinematic parameters can be done with simulations, which are
performed using the Locust software package [14] developed by Project 8.

1e—7 Frequency Spectra of CRES Signals Post-beamforming
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Figure 4. Frequency spectra of simulated CRES events in the FSCD magnetic trap after beamforming. The
depicted frequency range has been down-converted using a local oscillator frequency of 25.86 GHz. The signal
of a 90° electron consists of a single frequency component that is clearly detectable using a power threshold on
the frequency spectrum. This power threshold remains effective for signals with relatively large pitch angles such
as 89.0°, which are composed of a main carrier and a few small sidebands. Signals with smaller pitch angles,
below about 88.5°, are dominated by sidebands such that no single frequency component can be distinguished
from the noise with sufficient statistical confidence using a power threshold.

After digital beamforming, a STFT is applied to the summed time-series to obtain the signal
frequency spectrum (see figure 4). The sparseness of CRES signals in the frequency domain makes
this representation better than the time domain for the purposes of signal detection. The frequency
spectra of CRES signals are well-approximated by a frequency and amplitude modulated sinusoidal
whose carrier frequency increases as a linear chirp [11]. The modulation is caused by the axial
oscillation of the electron in the magnetic trap, and the linear chirp is caused by the energy loss due
to cyclotron radiation, which results in a relatively slow increase in the frequency components of
the CRES signal over time. A typical CRES signal increases in frequency by approximately 15 kHz
during the standard Fourier analysis window of 40.96 psec, which is smaller than the frequency bin
width for a 200 MHz sample rate. Therefore, when considering a single frequency spectrum it is
justifiable to neglect the effects of the linear frequency chirp.

The majority of the CRES signal power for electrons in the FSCD trap is contained in a single
frequency component when the electron has a pitch angle 2 88.5°. The remaining signal power
is distributed between a small number of sidebands with amplitudes proportional to the electron’s



axial modulation (see figure 4). Signal detection for these pitch angles is straightforward using a
simple power threshold on the STFT, since the amplitude of the main signal peak is well above the
thermal noise spectrum. However, as the pitch angle of the electron is decreased below 88.5°, the
maximum amplitude of the frequency spectrum becomes comparable to typical noise fluctuations.
At this point, the power threshold trigger is no longer able to distinguish between signal and noise
leading to a reduction in detection efficiency, which is directly linked to the neutrino mass sensitivity
of the FSCD. Because the distribution of electron pitch angles is effectively uniform, utilizing a
signal detection algorithm that can improve efficiency for pitch angles less than 88.5° can lead to
improvements in the neutrino mass sensitivity of the FSCD.

3 Signal detection algorithms

Modeling detection performance requires one to pose the signal detection problem in a consistent
manner. The approach taken here uses the frequency spectra obtained from a STFT applied to
beamformed time-series from the FSCD to perform a binary hypothesis test. Mathematically, this
is expressed as,

Ho : y[n] = v[n] (3.1
H, : y[n] = x[n] +v[n]. (3.2)

Under hypothesis Hy the vector representing the frequency spectrum (y[n]) is composed only of
complex white Gaussian noise (c(WGN, v[n]) with total variance 7, and under hypothesis H, the
frequency spectrum is composed of a CRES signal (x[n]) with added cWGN. The dominant noise
source for the FSCD is expected to be thermal Nyquist-Johnson noise, which is well approximated
by a cWGN distribution. The hypothesis test is performed by calculating the ratio between the
log-likelihood probability distributions for the classifier under H; and Hy, which is the standard
Neyman-Pearson approach to hypothesis testing [15]. The output of the log-likelihood ratio test is
called the test statistic, which is used to assign the data as belonging to the noise or signal classes
using a decision threshold on the test statistic value.

In practice, the decision threshold is selected by finding the value of the test statistic that guarantees
a tolerable rate of false positives. Given this false positive rate (FPR), one attempts to find a classifier
that maximizes the true positive rate (TPR), which is the probability of correctly identifying if a piece
of data contains a signal. Because FSCD signal classifiers will be used to evaluate the spectra of
0(10%) beamforming positions every 40.96 psec, there is a requirement that the signal classifiers with
FPR significantly smaller than 1% to minimize the number of false positives that must be filtered
out in later stages of the CRES signal reconstruction chain.

3.1 Power threshold

The power threshold detection algorithm uses the maximum amplitude of the frequency spectrum
as the detection test statistic. Consider the Hy hypothesis where the signal is pure cWGN. The
performance of the power threshold can be modeled by first analyzing a single bin in the frequency
spectrum. The probability that the amplitude of a frequency bin falls below the decision threshold
is given by the Rayleigh cumulative distribution function (CDF),

Ray(|2l; ) = 1 - exp (~I21/7), (3.3)



where |z| represents the value of the decision threshold on the spectrum amplitude, and 7 is the c(WGN
variance (defined below, equation (3.5)). Because the noise samples are independent and identically
distributed (IID), the probability that all bins in the frequency spectrum fall below the threshold is
the joint CDF formed by the product of each individual frequency bin CDF,

Fo(lz]; 7, Noin) = Ray(|z]; 7)Nein, (3.4)

Finally, the PDF for the power threshold classifier can be obtained by differentiating equation (3.4).

The noise of a beamformed frequency spectrum is a summation of all the noise samples from the
array channels. The received Nyquist-Johnson noise power for a single antenna is given by kgTAf,
where k g is Boltzmann’s constant, 7 is the system noise temperature, and A f is the sample rate. The
beamformed noise variance is increased by a factor of N, where N, is the number of antennas,
caused by the summation of incoherent noise samples, however, the noise variance per frequency
bin is decreased by a factor equal to the number of samples in the STFT (Vgpr). The amplitude
weights applied during beamforming also affect the noise variance in a position dependent way, since
the analysis presented in this work focuses on only a single spatial position (see section 4), it was
decided to weigh the signal in each channel equally, which results in the same noise variance for
all beamforming positions. The final expression for the noise variance that describes a beamformed
frequency spectrum is given by

7 = kpTAfNenR/Nrrr, (3.5)

where the system impedance (R) has been used to convert from power to voltage-squared.

Similar to Hp, the power threshold classifier distribution under H; is calculated by combining the
distributions of individual frequency bins; however, the frequency bins that contain signal must be
treated separately. The probability that the amplitude of a frequency bin which contains both signal
and noise is below the decision threshold is described by a Rician CDF [15]

[ee)

215 5|2 2 215
Rice(|2]: . [ ]) = 1 _/ dl H exp (_Izl +T|xk| )fo( |Z!Xk|)’ (3.6)

|zl T

where |xy| defines the amplitude of the k-th component of the signal frequency spectrum. The
CDF that describes the probability that the entire spectrum falls below the decision threshold is
the product of both signal and noise CDFs,

Ny
F1(|z]; 7, Xs, Npin, Ns) = Ray(|z]; ) Voin=Ns 1_[ Rice(|z]; 7, |xs [K]]). (3.7
k=1

The first half of equation (3.7) is the contribution from the bins in the frequency spectrum that
contain only noise, and the second half is the product of the Rician CDFs for the frequency bins
that contain signal peaks with noise-free amplitudes of x; = [xl, ceX NS], where Ny is the number
of non-zero frequency peaks in the CRES signal spectrum. Figure 5 shows plots of example PDFs
under H; and Hj.
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Figure 5. PDFs of the power threshold test statistic for CRES signals with various pitch angles as well as the
PDF for the noise-only (Hp) case. As the pitch angle is decreased the H; PDFs converge towards the noise PDF,
which indicates that the power threshold is unable to distinguish between signal and noise.

3.2 Matched filtering

The shape of a CRES signal between random scattering events with the background gas is completely
determined by the initial conditions of the electron, which implies that it is possible to apply matched
filtering as a signal detection algorithm. A matched filter uses the shape of the known signal, which
is called a template, to filter the incoming data by computing the convolution between the signal and
the data [15]. The matched filter is the optimal detector, which means it achieves the maximum TPR
for a particular FPR, under the assumption that the signal is perfectly known and the noise is Gaussian
distributed. Since CRES signals have an unknown shape but are deterministic, the matched filter can be
applied by using simulations to generate a large number of signal templates, called a “template bank”,
which spans the parameter space of possible signals. Then at detection time, the template bank is used to
identify signals by performing the matched filter convolution for each template in an exhaustive search.

CRES signals are highly periodic in nature. In such cases, it is advantageous to utilize the
convolution theorem to replace the matched filter convolution with an inner product in the frequency-
domain. Using the convolution theorem, the matched filter test statistic is given by

Nbin

2 Mhlnlylnl]. (3.8)
n=0

9 = max
m

where A}, [n] is the complex conjugate of the m-th signal template and y[n] is the frequency spectrum
of the beamformed time-series.

Single template

The approach to deriving PDFs that describe the matched filter template bank will be to first derive
PDFs for Hj and H, in the case of a single template and use these solutions to create PDFs that
describe the multi-template case. In the case when the template bank consists of only a single template
it is possible to derive an exact analytical form for the PDF. Consider the H case, where the equation



describing the matched filter test statistic, also known as the matched filter score, becomes

Nbin

D A nlyin]
n=0

Each noisy frequency bin is a sum of signal and cWGN, which means y[n] is also a Gaussian

T = : (3.9)

distributed variable. Therefore, the value of the inner product between the template and the data
is also a complex Gaussian variable; and, since the matched filter score is the magnitude of this
inner product, it must follow a Rician distribution.

In appendix A the exact form of the matched filter score PDF is derived. The solution is

Pi(w:T5) = 2w exp (— (w2 + 752))10(2w75), (3.10)

where [ is the zeroth-order modified Bessel function of the first kind and w is the value of the matched
filter score decision threshold. The shape of the matched filter score distribution is controlled by
the parameter 7y, which is effectively the value of the matched filter score if the data contained no
noise. Without noise, the data vector reduces to the signal, X, in which case equation (3.9) becomes
the magnitude of an inner product between two vectors. The magnitude of an inner product can
be expressed in terms of the magnitudes of the vectors and a constant that describes the degree of
orthogonality between them. Applying this to equation (3.9), one obtains

7o =|h" - x| = |h| x| T, (3.11)

where I' is a number that ranges from O to 1 and describes the orthogonality between h and x. T’
effectively quantifies how well the template matches the unknown signal in the data.

The matched filter score PDF under Hj is readily obtained from equation (3.10) by setting the
value of 7y to zero, since the data contains no signal in the noise case. Doing this, one obtains
a Rayleigh distribution,

Po(w) =2wexp (—w2). (3.12)

Multi-template

Equations (3.10) and (3.12) describe the behavior of the matched filter test statistic under Hy and
9H, for a single template. However, defining a PDF that describes the matched filter test statistic in
the case of multiple templates is in general a mathematically intractable problem, since there is no
guarantee of orthogonality between matched filter templates. This leads to correlations between the
matched filter scores of different templates, because only one sample of noise is used to compute
the matched filter scores of the template bank.

In order to proceed, it is assumed that the matched filter scores for all templates are IID variables,
which allows one to ignore correlations between templates. The overall effect of this will be an
underestimate of the performance of the matched filter by over-estimating the required number of
templates and the magnitude of the statistical trials penalty. The magnitude of this underestimation,
while it cannot be predicted in advance, can be quantified using Monte-Carlo tests of the matched
filter templates and randomly generated test signals.

The probability that the matched filter score falls below the decision threshold under Hj is again
given by the CDF. Because of the assumption that matched filter scores from different templates are
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Figure 6. Example PDFs that describe the matched filter template bank test statistic for CRES signals with
various pitch angles, as well as the estimated PDF for the noise-only case. 10° matched filter templates and
perfect match between signal and template, i.e. I' = 1, is assumed. One can observe that there is greater
separation between the signal PDFs and the noise PDF for the matched filter template bank compared to the
power threshold. Therefore, one expects that the matched filter will have generally better detection efficiency
than the power threshold.

independent, the probability that the matched filter score for all templates falls below the threshold
value is simply the joint CDF, which is

Fo(w) = (1 —e—Wz)N', (3.13)

where w is the matched filter score threshold and N, is the number of templates. One should expect
that the distribution describing the maximum score of the matched filter template bank depends
on N,, because with more templates there is a greater chance of a random match between the
template and noise data.

The CDF that describes H| is derived by starting with the CDF of the best matching template.
The best matching template is simply the template that yields the largest matched filter score. The
score of the best template is defined by

Toest = m,gx (lhm||X|Fm) = |hbest||X|Fbest’ (3.14)

where variables hyeg and I',e are the template and corresponding match of the best-fitting template.
A key performance parameter for a matched filter template bank is the mean value of ['yeg Over the
parameter space covered by the template bank. A higher density of matched filter templates will result
in a higher Tpeg and lead to better detection efficiency at the cost of a larger template bank.

The final form of the CDF under H; is the joint distribution between the best matching template
CDF and the CDFs of all other templates. By the orthogonality assumption described above, the
matched filter scores for all other templates are treated as negligible (7p = 0). Therefore, the CDF
for the matched filter template bank under H; is simply

w2\ MV
F1(W; Toest) = Foest(W; Toest) (1 —e" ) . (3.15)

Figure 6 shows plots of the matched filter template bank PDFs under Hj and #.
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3.3 Machine learning

In this paper we specifically focus on the potential of Convolutional Neural Networks (CNN) as
machine learning based signal classifiers at the trigger level. CNNs are constructed using a series of
convolutional layers, each composed of a set of filters that are convolved with the input data. The
individual convolutional filters can be viewed heuristically as matched filter templates [16] that are
learned from a set of simulated data rather than being directly generated. This opens the possibility of
finding a more efficient representation of the matched filter templates during the training process that can
potentially reduce computational cost at inference time while retaining good classification performance.

The machine learning approach is distinct from the power threshold and matched filtering in
that there is no attempt to manually engineer a test statistic that can be computed from the input
data. Instead, a test statistic is calculated by constructing a differentiable function that maps the
complex frequency series to a binary classification as signal or noise. The differentiable function
is trained using supervised learning to correctly perform this mapping. The test statistic for the
machine learning classifier is expressed mathematically as

T =G(y; Q), (3.16)

where y is the noisy data vector and G(y;€) is the machine learning model parameterized by
the weights Q.

Table 1. A summary of the CNN model layers and parameters. The output of each 1D-Convolution and
Fully Connected layer is passed through a LeakyReLU activation function and re-normalized using batch
normalization before being passed to the next layer in the model. The output of the final Fully Connected
layer in the model is left without activation so that the model outputs can be directly passed to the Binary
Cross-entropy loss function used during training. The first layer in the network has two input channels for the
real and imaginary components of the spectrum.

Layer Type Input Channels Output Channels Parameters

1 1D-Convolution 2 15 (Nxernel = 4, Nsride = 1)
2 Maximum Pooling 15 15 (Niernel = 4, Nswride = 4)
3 1D-Convolution 15 20 (Nxernel = 4, Nitride = 1)
4 Maximum Pooling 20 20 (Niernel = 4, Nswride = 4)
5 1D-Convolution 20 25 (Nxernel = 4, Nitrige = 1)
6 Maximum Pooling 25 25 (Nyernel = 4, Ngtride = 4)
7 Fully Connected 3200 512 NA

8 Fully Connected 512 64 NA

9 Fully Connected 64 2 NA

The CNN architecture used for this work is summarized by table 1. No strategic hyper-parameter
optimization approach was implemented beyond the manual testing of different CNN architecture
variations, so this particular model is best viewed as a proof-of-concept rather than a rigorously
optimized design. Numerous model variations were tested, some with significantly more layers
and convolutions filters per layer, as well as others that were even smaller than the architecture in
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table 1. Ultimately, the model architecture choice was driven by the motivation to find the minimal
model whose classification performance was still comparable to the larger CNN’s tested, because
of the importance of minimizing computational cost in real-time applications. It is possible that
more sophisticated machine learning models could improve upon the classification results achieved
here, but this investigation is left for future work.

4 Methods

4.1 Data generation

Simulated CRES signals were generated using the Locust simulations package [12, 14]. Locust
uses the separately developed Kassiopeia package [17] to calculate the magnetic fields produced
by a user-specified set of current carrying coils along with any specified background magnetic
fields, resulting in a magnetic trap. Next, Kassiopeia calculates the trajectory of an electron in this
magnetic field starting from a set of user specified initial conditions. The Locust software then uses
the electron trajectories from Kassiopeia to calculate the resulting electromagnetic fields using the
Liénard-Wiechert equations, and determines the voltages generated in the antenna array with the
antenna transfer function. Locust then simulates the down-conversion, filtering, and digitization steps
resulting in the simulated CRES signals for an electron.

The shape of the received CRES signal is determined by the initial kinematic parameters,
including the starting position of the electron, the starting kinetic energy of the electron, and the
pitch angle. The studies performed here are constrained to a single initial electron position located
at (x,y,z) = (5,0,0) mm. Two datasets are generated using this starting position by varying the
initial kinetic energy and pitch angle.

The first dataset consists of a two-dimensional square grid spanning an energy range from 18575—
18580 eV with a spacing of 0.1 eV, and pitch angles from 85.5-88.5° with a spacing of 0.001°, resulting
in 153051 signals with a unique energy-pitch angle combination. This dataset is intended to represent a
matched filter template bank. The upper range of pitch angles is limited because of the greater relative
detection efficiency of the matched filter and neural network classifiers in this pitch angle range.

The second dataset was generated by randomly sampling uniform probability distributions
covering the same parameter space to produce approximately 50000 signals randomly parameterized
in energy and pitch angle. This dataset provides the training and test data for the machine learning
approach, and acts as a representative sample of signals to evaluate the performance of the matched
filter template bank.

Each signal was simulated for a duration of 40.96 ps or 8192 samples starting at time ¢t = 0's.
This duration represents a single frequency spectrum generated by the STFT. The FSCD antenna
array has sixty channels, and the output of the Locust simulations are a matrix of array snapshots
with a size given by the number of channels times the event length (Ncp X Ngample). The raw data
from Locust is first summed using digital beamforming and converted to frequency spectra using a
Fourier transform. The beamforming procedure uses the exact position and grad-B drift correction
to simplify the comparison between trigger algorithms. Many beamforming positions would be
used in practice and potentially several estimates of a typical wvyp depending on the variation of
the grad-B drift frequency with pitch angle.
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4.2 Ensemble averaging of distributions

As described above (see section 4.1), the parameter region of interest spans a 2-dimensional grid in
energy and pitch angle, and the quantity of interest is the classifier’s overall detection efficiency across
this range. Equations (3.15) and (3.7) were derived under the assumption that a particular signal was
present in the data. Therefore, in order to describe the overall efficiency of the classifiers, we perform
an ensemble average of the distributions, given by equations (3.15) and (3.7), that describe detection
probabilities for individual electrons in the dataset. From this set of distributions, we can obtain a
single distribution the describes the overall detection efficiency of the classifier by performing an
ensemble average. This averaging is performed (see section 5) using the second dataset described in
section 4.1, which is randomly parameterized in energy and pitch angle.

4.3 Template bank mean match estimation

In section 3.2, we introduced Ipe as a figure-of-merit for a matched filter template bank. Generally,
as the number and density of the matched filter templates is increased towards infinity Tpes — 1,
since it becomes increasingly likely that the signal will match at least one template. In the opposite
extreme, where the template bank contains only one template, then eyt ~ 0, since it is unlikely
that any particular template will match a random signal from the experiment. The size of a matched
filter template bank will always be limited based on practical constraints such as the availability
of computational resources; therefore, it’s undesirable to use more templates than what is required
to achieve a @ that is close to one.

Tpest Vs. Template Number
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Figure 7. The mean match of the matched filter template bank to a test set of randomly parameterized signals as
a function of the number of templates. The parameter space includes pitch angles from 85.5-88.5° and energies
from 18575-18580 eV.

In this work we elected to evaluate the detection efficiency of a template bank where Iy = 0.95.
The number of templates required to achieve this value of mean match was determined by Monte-Carlo
studies using template banks of different sizes, which were obtained by decimating the regularly
spaced dataset (see section 4.1) with series of integer factors. The randomly parameterized signals
were used as test signals to calculate the mean match of the template bank by evaluating

Ny

1 Toest
Thest = — —_—, 4.1
best Ns ; 7.[ ( )
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where N is the number of test signals and 77 is the ideal matched filter score for test signal /, which
is obtained if there is perfect match between signal and template.

The results of these calculations are summarized by figure 7, which shows Tyeq as a function of
the number of templates (V;). The linear trend of Thest as a function of the logarithm of N, indicates
that match scales exponentially with the size of the template bank, although this trend breaks down at
large N, when match begins to saturate close to unity. Using linear interpolation between the data
points, we identify ~ 10° as the number of templates consistent with Tyeq; = 0.95.

4.4 CNN training and data augmentation

The random dataset is split in half to create distinct training and test datasets for training the model. A
randomly selected 20% of the training data is isolated for use as a validation set during the training
loop. The size of the training, validation, and test datasets are tripled by appending two additional
copies of the data to increase the sample size of the dataset after data augmentation. A different
sample of noise is added to the simulation data during the training loop, which prevents the model
from overtraining on noise features. The training and test datasets contain an equal split between
signal and noise data, which are randomly shuffled after each training epoch.

The Locust simulation data was augmented to make the datasets more representative of actual
experiment data. As the signals are loaded for training a unique random phase shift is applied. Since
the simulations are generated using the same initial axial position and cyclotron orbit phase, the
randomization is an attempt to prevent overtraining on these features. During each training epoch the
data is randomly shuffled and split into batches of 2500 signals. Each batch of signals is then circularly
shifted by a random number of frequency bins to simulate a kinetic energy shift from —75 to 20 eV,
which imitates a dataset with a larger energy range. Next, a sample of cWGN, consistent with 10 K
Nyquist-Johnson noise, is generated and added to the signal, which prevents overtraining on noise
features. As a final step, the data is renormalized by the standard deviation of the noise so that the
range of values in the data is close to [—1, 1], which ensures well-behaved back-propagation.

The Binary Cross-entropy loss function is used to compute the loss for each batch of data, and
the model weights are updated using the ADAM optimizer with a learning rate of 5 x 1073, After
each training epoch, the loss and classification accuracy of the validation dataset are computed to
monitor for overtraining. It was noticed that because of the relatively high noise power and the
fact that a new sample of noise was used for each batch, it was nearly impossible to over-train the
model. Typically, the loss and classification accuracy of the model converged after a few hundred
training epochs, but the training loop was extended to 3000 epochs to attempt to achieve the best
possible performance. The training procedure generally took about 24 hrs using a single NVIDIA
V100 Graphics Processing Unit (GPU) [18].

After training the model, it was used classify the test dataset and generate histograms of the
model outputs for both classes of data. The data augmentation procedure for the evaluation of the
test data mirrors the training procedure without the validation split. Since a random circular shift
and a new sample of WGN is added to each batch, the testing evaluation loop is run for 100 epochs
to get a representative sample of noise and circular shifts. The model outputs are passed through a
softmax activation and then combined into histograms (see figure 8).
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Figure 8. Histograms of the trained CNN model output from the test dataset. The blue histogram shows the
model outputs for signal data. The oddly shaped peak near the end is the result of the softmax function mapping
the long tail of the raw output distribution to the range [0, 1].

5 Results and discussion

5.1 Trigger classification performance

The detection performance of the signal classifiers can be compared by computing the receiver
operating characteristic (ROC) curves (see figure 9). A single ROC curve is obtained for the matched
filter and power threshold classifiers by averaging over the distributions for individual CRES signals
as described in section 4.2. ROC curves are calculated for the matched filter using template banks of
two different sizes corresponding to mean matches of 95% and 83%. The ROC curve describing the
CNN is obtained numerically from the histograms of the model outputs for each signal class.

The true positive rates of the signal classifiers are equivalent to detection efficiency, and one sees
that for the population of signals with pitch angles < 88.5° the power threshold has a consistently
lower detection efficiency than the CNN and the matched filter. This result might have been predicted
from the visualization of signal spectra in figure 4, where it can be seen that a noise peak and a signal
peak cannot be distinguished with high-confidence at small pitch angles. The CNN offers a significant
and consistent increase in detection efficiency over the power threshold approach.

If one compares the CNN to the matched filter, it can be seen that the performance of the tested
network is roughly equivalent to a matched filter detector with a mean match of about 83%, which
uses approximately 2 X 10* matched filter templates. The overall best detection efficiency is achieved
by the matched filter classifier if a large enough template bank is used. The plot displays the ROC
curve for a matched filter template bank with 95% mean match, which is achieved with approximately
10° templates. Since the matched filter is known to be statistically optimal for detecting a known
signal in WGN, it is unsurprising that this algorithm has the highest detection efficiency.

An important difference between the matched filter and CNN algorithms is that the CNN relies
upon convolutions as its fundamental calculation mechanism, whereas our implementation of a
matched filter utilizes an inner product. Since convolution is a translation invariant operation, the
detection performance of CNN can be extended to a wider range of CRES event kinetic energies
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Figure 9. ROC curves describing the true positive rate (detection efficiency) for the three signal classification
algorithms examined in this paper. The matched filter and power threshold curves are computed analytically
using the distribution functions introduced in section 3, and the CNN curve is computed numerically using the
classification results on the test dataset. The percent match indicated in the legend refers to the value of ey for
the template bank.

with less cost than the matched filter, a feature that is exploited during the CNN training by including
circular translations of the CRES frequency spectra in the training loop. Increasing the range of
detectable kinetic energies with a matched filter requires a proportional increase in the number of
templates, which directly translates into increased computational and hardware costs. From a practical
perspective, the detection algorithm is always limited by the available computational hardware, so
estimating the relative costs is a key factor in determining their feasibility. A more detailed analysis
of the relative costs of each of the detection algorithms is performed below.

5.2 Computational cost and hardware requirements

The trade-off between better detection efficiency and computational cost is common to many signal
detection problems and the FSCD is no exception. Computational costs can be related to actual
hardware costs by calculating the theoretical amount of computer hardware required to implement
the signal classifiers for real-time detection. The approach taken here utilizes order of magnitude
estimates of the theoretical peak performance values for currently available GPUs as a metric. This
approach underestimates the amount of required hardware, since it is unlikely that any CRES detection
algorithm could reach the theoretical peak performance of the hardware.

Since the signal detection algorithms are designed to work using beamformed frequency spectra,
the computational cost of beamforming combined with a fast Fourier transform (FFT) is constant
for all classifiers. The beamforming grid is assumed to contain Ny beamforming positions, each of
which will produce a frequency spectrum containing Ny, after the FFT.

Considering the power threshold classifier, this results in Ny, Ny frequency bins that must
be checked every Npin/f; seconds. The 20 cm diameter FSCD array requires Ny ~ O(10%) for
sufficient coverage and has a sampling frequency f; = 200 MHz with a Fourier analysis window
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of Npin = 8192 samples. Therefore the power threshold requires approximately O (10'°) FLOPS
to check in real-time with these parameters.

Current generations of GPUs have peak theoretical performances in the range of O(10'%) —
0(10'*) FLOPS [19], dependent on the required floating-point precision of the computation. Therefore,
the entire computational needs of a real-time triggering system using a power threshold classifier,
including digital beamforming and generation of the STFT, could be met by a single high-end GPU or
a small number of less powerful GPUs. Since triggering is only one step of the full real-time signal
reconstruction approach, limiting the computational cost of this stage is ideal. However, the power
threshold classifier does not provided sufficient detection efficiency across the entire range of possible
signals, which is the primary motivation for exploring more complicated triggering solutions.

As discussed, the computational cost of the matched filter approach requires counting the number
of templates that must be checked for each frequency spectra produced by the STFT. Computing the
matched filter scores requires O ( Ny N¢Npin) operations, since for each of the beamforming positions
one must multiply N; templates with a data vector that has length Ny;,. The computation must be
performed in a time less-than or equal to Ny, / fs to keep up with the data generation rate. A 5eV
range of kinetic energies required 10* to 10° templates in order for the matched filter to exceed the
performance of the CNN. The number of templates is expected to scale linearly with the total kinetic
energy range of interest, therefore, 10° to 10 matched filter templates would be expected for the
nominal 50 eV analysis window of the FSCD. Considering this, the estimated computational cost
to implement a matched filter in a FSCD-scale experiment is between O (10'%) to 0(10'%) FLOPS,
which is O(10%) to O(10°) high-end GPUs.

The computational cost of the CNN can be estimated by simply summing the computational
costs of the convolutions and matrix multiplications specified by the network architecture shown in
table 1. Each convolutional layer consists of NiyNoutNkernel Linput floating-point operations, where
Njip is the number of input channels, Ny is the number of output channels, Nygpe i the size of
the convolutional kernel, and Linpy is the length of the input vector, and the fully connected layers
each contribute Nj, Ny, operations. Summing all the neural network layers it is estimated that the
CNN requires O (10°) floating point operations to evaluate each frequency spectra; therefore, the total
computational cost of the CNN trigger is value multiplied by the number of beamforming positions
per the data acquisition time, which is O(10'®) FLOPS or O(10°) GPUs.

Compared with the matched filter template bank approach the CNN requires O (100) to O (1000)
fewer GPUs to implement, dependent on the exact number of templates used in the template bank.
The 50 eV kinetic energy range is motivated by the application of these detection algorithms to an
FSCD-like neutrino mass measurement experiment. However, if a significantly larger range of kinetic
energies is required, a CNN may be the preferred detection approach despite the lower mean detection
efficiency due to computational cost considerations.

Additional experiments with larger CNNs, generated by increasing the depth and width of the
neural network, were performed. It was observed that these changes provided minimal (< 1%)
improvement in the classification accuracy of the model. A potential reason for this could be the
sparse nature of the signals in the frequency domain and the low SNR, which makes for a challenging
dataset to learn from. Future work might investigate modifications to the neural network architecture
such as sparse convolutions, which may improve the classification accuracy of the model or further
reduce the computational costs of this approach. Alternatively, more complicated CNN architectures
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such as a ResNet [20, 21] or VGG model may provide improved classification performance over a
basic CNN. An additional promising area of investigation are recurrent neural networks, which may
be able to exploit the time-ordered features of the STFT for more accurate signal detection if the
electron signals last for multiple Fourier transform windows.

The estimate of the computational costs of the matched filter is somewhat naive if one notices
that the majority of the values that make up a noise-free CRES frequency spectrum are zero (see
figure 4). Therefore, the majority of operations in the matched filter inner product are unnecessary,
and one could instead evaluate the matched filter inner product using only the < 10 frequency peaks
that make up the CRES signal. This optimization reduces the number of operations required to check
each template by a factor of O(100) to O(1000), which brings the estimated computational cost of
the matched filter in line with the CNN. Although this level of sparsity results in a multiplication
with very low arithmetic complexity, the resulting sparse matched filter algorithm is still likely to be
constrained by memory access speed rather than compute speed. Ultimately, the comparison of the
relative computational and hardware costs between the matched filter and CNN will depend on the
efficiency of the software implementation and hardware support for neural network and sparse matrix
calculations, which will need to be determined using real-world benchmarks.

6 Conclusion

Increasing the detection efficiency and overall event rate represents a key developmental path towards
new scientific results and broader applications of the CRES technique. It is what motivates both the
antenna array detection approach and the development of real-time signal reconstruction algorithms.
The work presented here demonstrates that gains in detection efficiency are achievable by utilizing
triggering algorithms that account for the specific shape of CRES signals in the detector. These
algorithms emphasize the need for accurate and fast methods for CRES simulation, since they directly
contribute to the success of matched filter methods by providing a way to generate expected signal
templates and also serve as a source of training data for machine learning approaches.

The down-side of more advanced approaches to signal detection and reconstruction is oftentimes
the increase in computational resources required to implement them. However, it was shown that a
CNN of minimal size was able to significantly improve detection performance above the baseline
power threshold trigger algorithm with a theoretical computational cost of only O(1) high-end GPU.
This algorithm improves on detection performance while requiring at least a factor O(10?) less
in computer relative to a matched filter template bank, which would be the classical approach to
signal detection in Gaussian noise. Future work that obtains real-life benchmarks of the CNN and
matched filter algorithms are required to support these conclusions, but this study has indicated that
a real-time signal detection algorithm for an antenna array CRES experiment is computationally
feasible without an extraordinary increase in resources.

It is worth emphasizing that, while this real-time signal detection algorithm has been developed
specifically for the FSCD experiment, which uses a 60-channel array of antennas, this approach
allows one to combine the signals from an array with an arbitrary number of receiving elements.
Therefore, this general procedure could be implemented to perform signal reconstruction with
close to optimal efficiency, especially if a matched filter classifier is used, for significantly larger
antenna-based CRES experiments.
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While this work has focused on the real-time detection of CRES signals from antenna arrays, these
same signal classifiers could be used in CRES experiments utilizing different detector technologies,
since the same principles of signal detection will apply. For example, previous CRES measurements
by the Project 8 collaboration that utilized a waveguide gas cell, could in principle increase detection
efficiency by employing a matched filter or neural network classifier to identify trapped electrons with
pitch angles that are too small to be detected by the power threshold approach. Furthermore, alternative
CRES detector technologies such as resonant cavities [5] could also see similar improvements in
detection efficiency, which is of crucial importance to future efforts by the Project 8 collaboration
to utilize CRES to measure the neutrino mass.

A Derivation of the matched filter score PDF

The matched filter template h is a simulated signal (x;) with a normalization factor

Xn
9
Vrixp|?

where 7 is the noise variance. Inserting this into equation (3.8) and expressing the data as a sum

h= (A.1)

between a signal and a cWGN vector yields,

1 Nbin Nbin
T = x [nlx[n] + Y x| [n]v[n]|. (A2)
e Zl ! Zl !

The first term is a scalar product between the signal and template vectors and the second term
is a complex Gaussian distributed variable with variance one. For the purposes of identifying the
statistical distribution, it is useful to rewrite the summation describing an inner product

Nbin
x| [n]x[n] = xp - x = |xp - x|e? < |xp]|x|e"? (A.3)
h =Xp X = ([Xp < Xn ) .
n=1
the last step utilizes the Cauchy-Schwarz inequality, where equality is guaranteed when x = x;,. Instead
of the inequality it is useful to define a quantity called “match” such that

Ixp, - x|’ = |xp||x|Te'?, (A4)

where the match factor I' € [0, 1]. The match factor quantifies how well the template matches the signal.

The fact that the second term in equation (A.2) is a random complex Gaussian variable with
unity variance can be seen by noting that each of the noise samples are drawn from the complex
Gaussian distribution, N(0, 7). Therefore,

i
x,; [n x, [n]xp[n
] v[n] ~ N |o, ] ';[ 1. (A.5)
7|xp 2 x|
Nbin Noin 114, n
I 1 O BV I 2l "[2] nln] = N(0, 1). (A.6)
n=1 T|Xh|2 |Xh|
Equation (A.2) can now be simplified
7 = |Ih||x[Te’” + |, (A7)
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where equation (A.1) has been used to redefine the inner product term. The quantity |h||x|I" is a
real number, which is the matched filter score that one would expect if the data contained no noise.
Since h and x can potentially be mismatched, I' is not necessarily equal to 1. The final simplification
is to define 7y = |h||x|T", from which one obtains

T =|Toe'? +n|. (A.8)

From equation (A.8) on can see that 7 is simply the magnitude of a complex number with added
c¢WGN of variance 1, which follows the Rician distribution

Rice(x; 75, 1/2) = 2x exp (— (x2 + 752))10 (2xT5) . (A.9)
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