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Abstract
This study aims to estimate the maximum power consumption that guarantees a thermally safe operation for a titanium-
enclosed chest wall unit (CWU) subcutaneously implanted in the pre-pectoral area. This unit is a central piece of an envi-
sioned fully-implantable bi-directional brain–computer interface (BD-BCI). To this end, we created a thermal simulation 
model using the finite element method implemented in COMSOL. We also performed a sensitivity analysis to ensure that 
our predictions were robust against the natural variation of physiological and environmental parameters. Based on this 
analysis, we predict that the CWU can consume between 378 and 538 mW of power without raising the surrounding tis-
sue’s temperature above the thermal safety threshold of 2 ◦ C. This power budget should be sufficient to power all of the 
CWU’s basic functionalities, which include training the decoder, online decoding, wireless data transmission, and cortical 
stimulation. This power budget assessment provides an important specification for the design of a CWU—an integral part 
of a fully-implantable BD-BCI system.

Keywords  Brain–computer interface (BCI) · Electrocorticography (ECoG) · Chest wall unit (CWU) · Finite element 
method (FEM)

Introduction

RECENT technological advancements have led to signifi-
cant improvements in implantable medical technology and 
have spurred the development of novel active implantable 
devices. These systems are crucial in tackling medical con-
ditions for which pharmacological or surgical approaches 
are deemed inadequate. Examples include next-generation 
pacemakers [1], implantable cardioverter-defibrillators [2], 
vagus nerve stimulators [3], deep brain stimulators (DBS) 

[4], and responsive neurostimulators [5]. Active, electri-
cally powered implants pose significant safety risks for the 
human body, including current leakage and thermal injury. 
Excessive heat dissipation from an active implant can lead to 
irreversible damage of cells and tissues, including necrosis 
[6]. Therefore, the Food and Drug Administration (FDA) 
imposes stringent limitations on the thermal impact of active 
implants.

Many of these systems employ an enclosure made out of 
titanium and other biocompatible materials, which is sub-
cutaneously implanted in the pre-pectoral area. These chest 
wall units (CWUs) typically house a battery, an electrical 
stimulator, as well as control and communication modules. 
Inspired by this common design, our group has been devel-
oping a fully-implantable electrocorticogram (ECoG)-based 
bi-directional brain–computer interface (BD-BCI) system 
(see Fig. 1). This system is intended to restore walking 
and leg sensation in people with paraplegia due to spinal 
cord injury (SCI). Specifically, we envision this system 
to decode leg motor intentions, actuate the leg prosthesis, 
sense the movement, and deliver artificial leg sensation by 
cortical electrostimulation. Our group has been working on 
such a system for several years, developing custom analog 
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ultra-low-power (ULP) front ends for recording [7–9], a low-
power transceiver for wireless communication [10], and a 
benchtop prototype of the overall system [11, 12].

The CWU processes motor and sensory data, controls all 
auxiliary BCI components, and communicates wirelessly 
with an end effector; therefore, it is the most “power-hungry” 
component of the system. Thus, we must evaluate its thermal 
impact on the surrounding tissues to ensure thermal safety. 
To this end, we propose to use computational models to esti-
mate CWU’s maximum power budget that guarantees its 
thermally safe operation. While previous studies have used 
computational models to analyze the thermal impact of active 
implants, to the best of our knowledge, there are no studies 
on the long-term thermal impact of CWU-like implantable 
devices. Researchers have used numerical models to simu-
late the thermal behavior of pacemakers [13] and deep brain 
stimulators [14, 15] under transient overheating conditions, 
like MRI scanning. Others have used simulations to analyze 
the thermal effects of specific operations, like biotelemetry for 
head and chest implants [16], deep neural implants [17], and 
cortical implants [18]. On the other hand, the studies that have 
modeled the long-term thermal effects of active devices have 

mainly focused on head implants. For example, researchers 
have used software like COMSOL Multiphysics to study the 
thermal impact of active intracortical microelectrode arrays 
[19], deep brain stimulator leads [20], retinal implants [21], 
and a BCI skull implant [22, 23]. Therefore, addressing the 
thermal impact of implantable BCI components remains an 
under-researched problem, which is further exacerbated by 
BCI implants consuming significantly more power than com-
monly used active implants [24]. For example, unlike pace-
makers which may draw 1 mW, BCI components, such as 
implantable neural data acquisition systems, can consume up 
to 100 mW [25]. Additional operations such as data telemetry, 
transcutaneous energy transfer, and power regulation can add 
tens of milliwatts [24]. These estimates are consistent with 
our BCI prototype that on average consumed ∼ 150 mW to 
perform the required functions [11].

Motivated by this knowledge gap, we sought to evalu-
ate the thermal impact of a subcutaneously implanted CWU 
on adjacent pectoral area tissues. To this end, we used the 
Finite Element Method (FEM) implemented in COMSOL 
Multiphysics (COMSOL Inc., Stockholm, Sweden) to simu-
late the temperature of nearby tissues in response to various 
CWU power consumption levels. We refer to this model as 
the bio-heat model. Furthermore, we performed a sensitiv-
ity analysis to assess the robustness of this bio-heat model 
against the natural variations of the physiological and envi-
ronmental parameters. This analysis also yielded the pre-
diction of a thermally safe CWU power budget range. Our 
ultimate goal is to verify these predictions in vivo and will 
be pursued in our future studies. In the interim, to validate 
our modeling approach we performed benchtop experiments. 
Specifically, we built a thermal prototype of CWU and meas-
ured its temperature under different power consumption lev-
els. We then designed a COMSOL model of the thermal 
prototype (benchtop model), simulated its thermal behavior, 
and compared these results to those obtained experimentally.

Materials & Methods

In this section, we first present the details of our compu-
tational bio-heat model, including its geometry and math-
ematical description. We also present a sensitivity analysis 
of the bio-heat model and a benchtop validation of our com-
putational approach.

Bio‑heat Model

Geometry

The simulated geometry represents a rectangular region (150 
× 150 × 72 mm) of the thoracic cavity (see Fig. 2). The 
skin was assumed to be in direct contact with the air. We 
further assumed that the CWU is placed below the clavicle 

Fig. 1   The envisioned fully-implantable ECoG-based BCI system for 
restoration of walking and leg sensation after SCI. (Left) Leg pros-
thesis component consisting of an exoskeleton for walking. (Right) 
Implantable BCI components and connections. The motor electrodes 
on the leg cortex record leg movement intentions. These signals are 
routed to a skull unit (SU), where they are amplified, serialized, and 
digitized. A subcutaneously implanted tunneling cable (similar to 
current DBS systems) sends them to the CWU, where they are ana-
lyzed and decoded. The CWU wirelessly transmits commands to 
the exoskeleton. The CWU also receives sensor data from the exo-
skeleton and translates it into stimulation patterns. These are routed 
through the tunneling cable to the SU and delivered to the leg sen-
sory cortex via sensory electrodes to elicit artificial leg sensation. The 
implants’ dimensions and positions are for illustration purposes.
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(pre-pectoral implantation), under the skin and fat tissues, 
but above the pectoral muscle, similar to implantable pulse 
generators (IPGs) for pacemakers [26] and DBS [27]. This 
model also included the ribs, surrounded by intercostal mus-
cle, and lung tissue. Each tissue’s thickness was taken from 
literature with specific values listed in Table 1.

The CWU was modeled as a rectangular prism (59 × 50 
× 12 mm) made out of a 1-mm-thick titanium (Ti) shell 
(Fig. 2). Note that these dimensions are well within the range 
of common IPG enclosures [27]. We envision the CWU to 
contain a battery and an electronics layer consisting of a 
printed circuit board (PCB) with the necessary electronic 
components. We modeled the battery and electronics as 

adjacent 8-mm-thick blocks of equal size, surrounded by 
1-mm air gap on top and bottom. This arrangement of the 
battery and electronic components as well as their overall 
volumes were inspired by the design of commonly used 
IPGs [27, 32].

Bio‑heat equation

Heat transfer through biological tissues is typically described 
by Penne’s bio-heat equation [33]:

where � (kg/m3 ) and C (J/(kg K)) are the tissue’s mass den-
sity and specific heat capacity, respectively, and T (K) is 
the temperature at a position (x, y, z) and time t. The first 
term on the right-hand side is the heat conduction, where k 
(W/(m K)) is the tissue’s thermal conductivity. The second 
term models the effect of blood perfusion, where � ((ml/s)/
ml) is the volumetric flow rate of the perfusing blood per 
unit volume and the subscript, b , refers to arterial blood. 
Finally, the term Qm (W/m3 ) is the metabolic heat pro-
duced by the tissue, and Qext (W/m3 ) is the heat produced 
by external sources (e.g., the CWU). Note that Qext = 0 for 
all layers except for the electronics layer. It is defined as 
Qext = PCWU∕Velec , where PCWU (W) is the CWU’s power 
consumption and Velec (m3 ) is the volume of the electron-
ics layer. The software applied the partial differential equa-
tion (PDE) given by Eq. (1) to all tissue layers and CWU 
components, setting to 0 those terms that do not apply and 
enforcing temperature continuity at the layer interfaces. To 
study the long-term thermal effects of the CWU, we solved 
the steady-state solution of Eq. (1).

The thermal parameters for each tissue layer are given 
in Table 2. The tissue’s thermal conductivity can vary by 
as much as 50%; therefore. we took the average values 
as reported in [34]. Similarly, we computed the tissues’ 
metabolic heat as the average of the values found in [35] 
and [36]. Since the tissues’ blood perfusion significantly 
depends on physical activity, we used the values corre-
sponding to light exercise or slow walking (1 mph, 80 
bpm). Specifically, the fat and ribs’ blood perfusion values 
were estimated from [37] and [38], respectively. For the 
muscle’s blood perfusion, we first estimated the oxygen 
consumption corresponding to light exercise (0.4 l/min) 
[39] and then used this information to estimate the blood 
perfusion from [40], which provides a link between oxy-
gen consumption and blood perfusion. Likewise, for the 
lungs’ blood perfusion, we first estimated the mean pul-
monary artery pressure associated with light exercise (17 
mmHg) [41] and then used this value to estimate blood 
perfusion from [42], which gives the relationship between 
blood perfusion and pulmonary artery pressure. Finally, 

(1)�C
�T

�t
= k∇2T − �bCb �(T − Tb) + Qm + Qext,

Table 1   The average thickness of the relevant tissue layers

Tissue Thickness, l (mm) References

Skin 2.5 [28]
Fat 4.7 [29]
Muscle 8.4 [30]
Ribs 6.0 [31]

Fig. 2   Geometric model of the thoracic area and CWU from differ-
ent views, dimensions in mm. A 3D view. The red line indicates the 
axis where the thermal impact due to the CWU is highest, see Sect. 
“Bio-heat Model”  for details. B Central cross-section of the volume 
in (A). C A zoomed-in view of the inset in (B). D Different layers of 
the CWU.
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we estimated that during light exercise the skin’s blood 
perfusion increases 9% with respect to resting state [43], 
and we computed the blood perfusion at rest as the average 
of the values found in [43–49].

The thermal conductivities of the titanium shell and 
air were 19 W/(m K) [50] and 0.03 W/(m K) [51], respec-
tively. Due to its internal multi-layer structure, the bat-
tery has a highly anisotropic thermal conductivity, with 
kxy = 15 and kz = 1 (W/(m K)) [52]. For the electronics 
layer, we assumed that its thermal properties are similar 
to those of the PCB. Similar to the battery, the PCB’s 
thermal conductivity is also anisotropic and depends on 
the number of layers. For a six-layer PCB, as used in our 
preliminary benchtop CWU prototype [11], we estimated 
the thermal conductivity as kxy = 28.15 and kz = 0.31 (W/
(m K)), based on formulas provided in [53].

We applied the following boundary conditions to the 
boundary value problem (1). Consistent with [19] and 
[21], we assumed that heat transfer occurred through free 
convection at the skin–air interface:

where n is the outward normal vector, h (W/m2 K) is the 
convection heat transfer coefficient ,and Text (K) is the room 
temperature. For this model, we used h = 5 W/(m3K), which 
corresponds to free airflow in the environment [54] and 
Text = 20◦ C. Consistent with other studies, we omitted the 
effect of radiation from the skin surface to the outside air 
[19]. For the innermost boundary, we assumed the tempera-
ture to be equal to the body core temperature [19, 20], with 
T = 37◦ C [55]. Finally, we assumed that there was no heat 
transfer across the lateral boundary:

This assumption is justified given the relatively large dis-
tance between the lateral boundary and the CWU heat 
source. Therefore, the temperature gradients at the lat-
eral boundary are negligible. We will refer to the param-
eters described here and Sect. “Geometry” as the nominal 
parameters.

(2)n ⋅ (k∇T) = h(Text − T),

(3)n ⋅ (k∇T) = 0.

To estimate the maximum power consumption of the 
CWU that guarantees thermal safety, we first computed the 
steady-state solution ( �T∕�t = 0 ) of Eq. (1) by iterating over 
values of PCWU within our range of interest (defined below). 
Based on ISO 14708-1 (the FDA-recognized standard), 
which states that active implants must not increase surround-
ing tissues’ temperature by more than 2◦ C, we then defined 
Pmax
CWU

 as the maximum value of PCWU that satisfies this con-
dition. Specifically, to find Pmax

CWU
 , we first ran the simulation 

model assuming PCWU = 0 (i.e., inactive implant) and stored 
the resulting temperature field, T(0), for all tissues. Then, 
we ran the simulation by iteratively increasing the values 
of PCWU (up to 500 mW, with a step size of 100 mW). For 
each simulation result, T(PCWU) , we defined the temperature 
increase as ΔT(PCWU) = T(PCWU) − T(0) . For the first value 
of PCWU whose ΔT violated the 2◦ C constraint, we decreased 
and locally refined PCWU with a step size of 1 mW. Finally, 
Pmax
CWU

 was defined as the maximum value that guaranteed 
ΔT(PCWU) ≤ 2◦C:

Sensitivity Analysis

We performed a sensitivity analysis to ensure the robust-
ness of our prediction against the natural variations of physi-
ological and environmental parameters. To this end, the 
nominal parameters introduced in the previous section were 
perturbed in both directions based on their physiological 
and environmental variance. Specifically, we considered the 
effect of perturbing the following 21 parameters: all those 
in Tables 1 and 2, Text , Tcore , and h. We omitted perturbing 
the parameters pertaining to the geometry and materials of 
CWU, given that the CWU’s design is fixed.

Table 3 lists these parameters with their nominal and 
perturbed values. The upper and lower values for the tis-
sues’ thickness, l, were taken from [28–31]. For the ther-
mal conductivity, k, the negative and positive perturbation 
values were estimated from [34]. For the metabolic heat, 
Qm , the perturbation bounds for the fat and muscle tissues 
were taken from [36]. Since physiological ranges for the skin 
and lungs were not available, we estimated their variance at 
±10% (the average perturbation from fat and muscle). On 
the other hand, the lower bounds of blood perfusion were 
estimated from values at rest, while the upper bounds were 
estimated from values at double the nominal walking speed 
(2 mph, 90 bpm). The skin’s blood perfusion at rest was esti-
mated as the average of the values from [43–49]. Similarly, 
the fat’s blood perfusion value at rest was estimated from 
[37, 46–49], and the muscle’s blood perfusion at rest was 
estimated from [44–49, 56]. The ribs’ resting blood perfu-
sion was taken from [49], and the lungs’ blood perfusion 

(4)Pmax
CWU

= argmax
PCWU∈[0,500]

ΔT(PCWU) ∶ ΔT(PCWU) ≤ 2◦C.

Table 2   The average values of tissues’ thermal parameters: thermal 
conductivity, k, metabolic heat, Qm , and blood perfusion, �bCb�

k W/(m K) Qm W/m3  �bCb� W/(m3 K) References

Skin 0.36 1004 5192 [34, 35, 43]
Fat 0.24 180 1504 [34, 36, 37]
Muscle 0.50 661 3580 [34, 36, 40]
Ribs 0.43 0 1232 [34, 35, 38]
Lungs 0.44 370 222589 [34, 35, 42]
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value at rest was taken from [42]. The upper bound values 
for blood perfusion for the skin, fat, muscle, ribs, and lungs 
were estimated from [37, 38, 40, 42, 43], respectively. Addi-
tionally, the range for the heat transfer coefficient, h, was 
taken from [54]. Finally, we approximated the natural vari-
ations of the temperatures Tb and Text.

Our sensitivity analysis was based on calculating the 
sensitivity coefficient, Si , defined as the relative change of 
ΔT(PCWU) over the relative change of the parameter �i [57]:

In other words, Si quantifies the impact that the variation of 
the parameter �i has on the tissue’s temperature increase in 
our bio-heat model. In Eq. (5), ΔT(Pmax

CWU
,Θ0) is the maxi-

mum temperature increase across all tissues corresponding 
to Pmax

CWU
 and Θ0 , where Θ0 = [�0

1
, �0

2
,⋯ , �0

21
] is the vector of 

perturbed nominal parameters as shown in Table 3. Like-
wise, ΔT(Pmax

CWU
,Θ*

i
) is the maximum temperature increase 

across all tissues corresponding to Pmax
CWU

 and Θ*
i
 , where 

Θ*
i
= [�0

1
,⋯ , �*

i
,⋯ , �0

21
] and �*

i
 is the perturbed value of 

the ith parameter. To quantify sensitivity in both directions, 

(5)

Si =

(
ΔT(Pmax

CWU
,Θ*

i
) − ΔT(Pmax

CWU
,Θ0)

)
∕ΔT(Pmax

CWU
,Θ0)

(
�*
i
− �0

i

)
∕�0

i

,

i = 1, 2,⋯ , 21

.

for each parameter �i , we calculated S+
i
 , corresponding to 

�*
i
= �+

i
 (positive perturbation), and S-

i
 , corresponding to 

�*
i
= �-

i
 (negative perturbation), as shown in Table 3.

Based on these sensitivity coefficients, we defined criti-
cal parameters as those whose perturbations considerably 
affected the bio-heat model, i.e., |Si| > 10−4 . In other words, 
the parameters whose relative change of 1% resulted in a 
relative change of ΔT ≤ 10−4% were considered non-crit-
ical. Since Eq. (5) considers the perturbation of a single 
parameter at a time, we also sought to investigate the effects 
of perturbing multiple parameters simultaneously. This is 
necessary to account for the interactions between parameters 
and to get a more realistic idea of the potential variations 
that the bio-heat model could experience. For this reason, 
we re-estimated Pmax

CWU
 while simultaneously perturbing all 

the critical parameters. Specifically, we ran simulations 
for the worst-case scenario (WCS) and best-case scenario 
(BCS). In the WCS, we perturbed the critical parameters in 
the direction that would lead to an increase in ΔT  , which, in 
turn, would reduce the CWU’s power budget. On the other 
hand, for the BCS, we perturbed the critical parameters in 
the direction that would lead to a decrease in ΔT  , which 
would result in a higher power budget. In both scenarios the 
non-critical parameters were held at their nominal values. 
We will refer to the re-estimated power budgets for each 
scenario as PWCS

CWU
 and PBCS

CWU
.

Benchtop Validation

We used benchtop open-air experiments to validate our 
modeling approach. Ultimately, our power budget predic-
tions will be confirmed using in vivo testing and will be 
pursued in our future studies (see Sect. “Discussion”). An 
alternative approach would have been to perform in vitro 
experiments using phantom tissues. For example, we made 
skin, fat, and muscle phantom tissues to test the wireless 
communication capabilities of our CWU prototype [10]. 
Unlike electrical conductivity and permittivity, which we 
could easily manipulate in phantom tissues, metabolic heat 
production and blood perfusion effects cannot be easily rep-
licated [58]. Furthermore, our sensitivity analysis shows that 
blood perfusion is among the most critical parameters of the 
bio-heat model. Thus, our bio-heat model could not be accu-
rately reproduced in vitro, and as an alternative, we chose 
to validate our modeling approach using benchtop open-air 
experiments. To this end, we built a thermal replica of the 
CWU with a Ti enclosure whose dimensions and power con-
sumption levels match those of the bio-heat model. We then 
measured the surface temperature of this thermal prototype 
in an open-air experiment and compared these experimental 
results to those obtained via simulations.

Table 3   The nominal parameters, �0
i
 and their negatively and posi-

tively perturbed values, �-
i
 and �+

i
 , respectively

�i �0
i

�-
i

�+
i

�1 = lskin        2.50        2.24        2.88
�2 = lfat        4.70        1.98        7.90
�3 = lmuscle        8.40        7.78        9.02
�4 = lrib        6.00        4.00        8.00
�5 = �skin    5192.00    4751.00    6413.00
�6 = �fat    1504.00    1331.00    1909.00
�7 = �muscle    3580.00    1896.00    5897.00
�8 = �rib    1232.00     847.00    1617.00
�9 = �lung 222589.00 133173.00 317713.00
�10 = Qskin

m
   1004.00     904.00    1104.00

�11 = Qfat
m

    198.00     169.00     214.00
�12 = Qmuscle

m
    694.00     640.00     759.00

�13 = Q
lung
m

    370.00     333.00     407.00

�14 = kskin        0.36        0.25        0.47
�15 = kfat        0.24        0.22        0.26
�16 = kmuscle        0.50        0.49        0.51
�17 = krib        0.43        0.34        0.52
�18 = klung        0.44        0.42        0.46
�19 = Tb       37.00       36.50       39.50
�20 = h        5.00        2.50       25.00
�21 = Text       20.00        5.00       35.00
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Specifically, we fabricated the thermal prototype as a 
rectangular-shaped prism (59 × 50 × 12 mm), assembled 
from two clamshell Ti alloy (ASTM B265 Grade 2) parts, 
which were laser welded in a hermetic fashion. This alloy 
is a commonly used material for medical implants due to 
its biocompatibility [59]. The Ti case (1-mm-thick shell) 
encloses a PCB with resistors to mimic the CWU’s elec-
tronic layer and a battery connected to external switches (see 
Fig. 3A and B). With these switches, the prototype could be 
powered and set to operate at one of four power consumption 
levels (300, 400, 500, and 600 mW). The prototype also had 
a connector to enable the battery to be charged externally. 
Note that the thermal prototype dimensions, enclosure mate-
rial, wall thickness, and power consumption levels closely 
match those of the bio-heat model described in Sect. “Bio-
heat Model.” With the exception of the connector cables, 
the arrangement of the battery and resistors also mimics 
the arrangement of the battery and electronic layer within 
the CWU.

For each power consumption level, we conducted an 
open-air experiment, as described below. We placed the 
thermal prototype on a laminate wood benchtop, turned the 
prototype on with a certain power consumption configura-
tion, and waited for one hour for heat to reach a quasi-steady 
state. Next, we measured the prototype’s top surface tem-
perature using both a thermocouple, Tp,t and a thermal cam-
era (FLIR C2, Teledyne FLIR, Wilsonville, OR), Tp,c(x, y) . 
To minimize reflection and accommodate more accurate 
temperature measurements with the thermal camera, we 
painted the top surface of the prototype black. We also took 

periodic measurements of the room temperature, Text , the 
battery’s voltage, Vb , and its current, Ib , since these variables 
changed over time, thus affecting the prototype’s surface 
temperature. Specifically, the room-temperature measure-
ments were taken with a thermocouple in close proximity 
to the air surrounding the prototype and repeated every 
10 min for about an hour. Moreover, we measured the bat-
tery’s voltage and current every 10 min from the moment 
the prototype was powered until the end of the experiment. 
These measurements were taken using a digital multimeter 
(Tenma 72-8400, Tenma Test Equipment, Springboro, OH). 
Note that as the battery discharges over time, Vb decreases, 
which, in turn, lowers the prototype’s instantaneous power 
consumption.

We then created a COMSOL model of the CWU thermal 
prototype in an open-air environment, which we refer to as 
the benchtop model. Its dimensions precisely matched those 
of the thermal prototype, including the 1-mm Ti shell, bat-
tery (36 × 29 × 4.7 mm), resistors (2.5 mm diameter, 6.5 
mm length), and board (43 × 38 × 1.6 mm), as shown in 
Fig. 3C and D. The prototype was modeled sitting on top of 
a rectangular laminate wood benchtop (600 × 600 × 30 mm).

We modeled heat transfer using the same approach as in 
the bio-heat model (see Sect. “Bio-heat equation”). Given 
that metabolic heat and blood perfusion do not apply to the 
benchtop model, we set Qm and � from Eq. (1) to 0. Analo-
gous to the bio-heat model, the software applied this PDE 
to each component of the benchtop model and computed its 
steady-state solution. To do so, we first chose the param-
eters of the benchtop model as follows. We set the thermal 
conductivity, k, of Ti (ASTM B265 Grade 2) and the bench-
top’s laminated wood to be 21.8 W/(m K) [60] and 0.12 W/
(m K) [61], respectively. We also set the thermal conductiv-
ity of the resistors and board to be 1.88 W/(m K) [62] and 
0.29 W/(m K) [63], respectively. Additionally, we kept the 
thermal conductivity of the battery and air the same as in 
the bio-heat model (see Sect. “Bio-heat equation”). Finally, 
we defined the heat source as Qext = Pb∕VR , where Pb is 
the battery’s power usage and VR is the overall volume of 
the selected resistors, as determined by the combination of 
switches. The battery’s power was estimated as Pb = Vb × Ib , 
where Vb and Ib were measured throughout the benchtop 
experiments, as described above.

For this boundary problem, we enforced temperature 
continuity at the benchtop–prototype interface and all other 
internal interfaces. We also assumed that the heat transfer 
occurred through free convection on all external bounda-
ries, similar to the skin–air boundary of the bio-heat model, 
Eq. (2). In this equation, we estimated the room temperature, 
Text , as the time average of the temperature measurements 
taken throughout the benchtop experiment. Another critical 
parameter of this equation is the heat transfer coefficient, 
h, which is sensitive to local air flow and temperature, and 

Fig. 3   Different views of our custom-designed CWU thermal pro-
totype and its COMSOL model. A  View of the prototype’s interior 
prior to laser-welding the two clamshells. Different switch positions 
engage different combinations of resistors for the prototype to oper-
ate at different powers. B A front view of the laser-welded prototype. 
C  Cross-section of the prototype’s COMSOL model (lateral view). 
D Cross-section of the prototype’s model (top view).
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can vary greatly across environments [54]. Therefore, we 
estimated h experimentally using Newton’s law of cooling. 
Specifically, a 306 × 52 × 10-mm Ti (ASTM B265 Grade 2) 
bar was placed in the oven and heated to at least 40◦ C above 
the room temperature. Then, the bar was removed from the 
oven and placed on the same benchtop as the thermal proto-
type to let it cool. The bar’s temperature was recorded every 
30 s for about an hour. These measurements were then used 
to fit a linear regression to the logarithmic form of the cool-
ing equation:

where ΔT(t) = Tbar(t) − Tr , Tbar(t) is the time dependent-
temperature of the bar, and Tr is the room air tempera-
ture, respectively. The parameters A, m, and c are the area 
(m2 ), mass (kg), and heat capacity (J/(kg K)) of the Ti bar, 
respectively.

For each of the four experiments, we simulated the COM-
SOL benchtop model twice and compared these results to 
the experimental measurements. This was necessary to rec-
oncile a constant power consumption assumed by the steady-
state solution of Eq. (1) and a decreasing power consumption 
observed experimentally due to battery draining over the 
course of each experiment. Specifically, we simulated the 
model while assuming two extreme power consumptions, 
Pmax
b

 and Pmin
b

 , which were derived from the battery voltage 
and current measurements taken at the beginning and end 
of each benchtop experiment. For each case, we computed 
the average temperature of the modeled prototype’s top sur-
face, Tm(Pmax

b
) and Tm(Pmin

b
) , respectively. These values were 

then compared to the experimentally derived temperature Tp , 
where Tp is the average of the thermal image measurements, 
Tp,c (averaged over space), and the thermocouple measure-
ments, Tp,t . The value Tp was calculated every 10 min and 
compared to the simulated range [Tm(Pmin

b
) and Tm(Pmax

b
)].

Results

Bio‑heat Model

We simulated the bio-heat model in Eq. (1) using the FEM 
in COMSOL. To determine the appropriate mesh size, we 
used an adaptive physics-controlled mesh algorithm. Spe-
cifically, we solved Eq. (1) using the following predefined 
COMSOL mesh sizes: coarser, coarse, normal, fine, finer, 
and extra fine. The difference in the resulting temperature 
going from coarser to extra fine mesh size kept decreasing, 
with the difference between the finer and extra fine mesh 
size being < 0.001◦ C. This suggested that the simulation 
had converged with respect to the mesh size [19]. Therefore, 

(6)ln
ΔT(t)

ΔT(0)
= −

hA

mc
t,

we chose the finer mesh size in our bio-heat model to bal-
ance accuracy and computational cost. We ran the simula-
tions using the geometric parameters shown in Table 1 and 
Sect. “Geometry,” and the thermal parameters from Table 2 
and Sect. “Bio-heat equation.”

We found Pmax
CWU

 by the iterative procedure described in 
Sect. “Bio-heat equation.” To simplify the interpretation 
of volumetric temperature data, we focused on the worst-
case scenario line segment (marked by the red-dashed line 
in Fig. 2A), where the thermal impact due to the CWU, 
judged by ΔT(PCWU) , is highest. Figure 4 shows the simu-
lated ΔT(PCWU) along this segment for different values of 
PCWU within our range of interest. For all power consump-
tion levels, we observed the highest temperature increase 
in the fat layer, followed by the muscle, skin, ribs, and 
lungs. We also observed that ΔT  peaked at the same depth, 
d∗ ≈ 12.2 mm, for all power levels. This depth corresponds 
to the point where the worst-case scenario line is tangential 
to the implant. This figure also shows that ΔT(500) violated 
the 2◦ C threshold in the fat tissue layer. Therefore, we iter-
ated the value of PCWU below 500 mW with a precision of 
1 mW, and we found the maximum power consumption to 
be Pmax

CWU
= 458 mW. Figure 4 confirms that ΔT(458) ≤ 2◦ C 

for all tissue layers.
Figure 5 shows the 2D distribution of ΔT  corresponding 

to the maximum power consumption, Pmax
CWU

= 458 mW, over 
the central cross-section. Consistent with Fig. 4, the highest 
tissue temperature increase occurred in the fat tissue. Note 
that ΔT  exceeded the 2 ◦ C thermal safety threshold in the 

Fig. 4   Temperature increase, ΔT(PCWU) , for different values of PCWU , 
calculated along the axis of the CWU with the tissues’ highest ΔT  . 
This region undergoes the highest thermal impact within the overall 
geometry. The solid vertical lines mark the boundaries of each layer, 
which are colored in different shades of gray and labeled at the top. 
The dashed horizontal line marks the 2◦ C thermal safety threshold. 
The dotted vertical line marks the depth, d∗ , at which ΔT  is highest 
for all power levels.
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interior of CWU (parts of the electronics layer and Ti shell). 
However, only the biological tissues are subjected to the 
thermal safety threshold.

Sensitivity Analysis

To quantify the robustness of the bio-heat model with respect 
to the nominal parameter values, we computed the sensitiv-
ity coefficient, Si , for all the parameters, �i ( i = 1, 2,⋯ , 21 ). 
Table 4 shows the values of Si for the positive and negative 
perturbations as shown in Table 3. Based on the criteria 
|Si| > 10−4 , the simulation results were sensitive to 15 criti-
cal parameters. The perturbations of the remaining 6 non-
critical parameters did not significantly alter the simulation 
results.

Finally, we modeled the combined effect of all the criti-
cal parameters. We perturbed the 15 critical parameters 
simultaneously (while keeping the nominal values of the 
non-critical parameters) to simulate a worst and best-case 
scenario. We then re-estimated the maximum power con-
sumption for each case, namely PWCS

CWU
 and PBCS

CWU
 , and found 

the power budget range to be between 378 mW and 538 mW.

Benchtop Validation

The benchtop experiments were performed in a dedicated 
room with minimal disturbance from external factors. As 
explained in Sect. “Benchtop Validation,” we placed the 
CWU thermal prototype on the benchtop, turned the power 
on, and waited for one hour before taking temperature meas-
urements from the device’s surface. We also periodically 
measured the room temperature, as well as the battery’s volt-
age and current throughout the experiment. We repeated the 
experiment for the nominal power consumption levels of 
300, 400, 500, and 600 mW. Figure 6A shows a representa-
tive example of the prototype’s quasi-steady-state surface 
temperature for the 500-mW set-up.

We then simulated these experiments in COM-
SOL, using our benchtop computational model (see 
Sect. “Benchtop Validation”). Consistent with the bio-
heat model, we used the predefined finer mesh setting for 
these simulations. The model used the parameters speci-
fied in Sect. “Benchtop Validation,” except for the heat 
transfer coefficient, h. As explained earlier, this parameter 
critically depends on the environment and, therefore, had 
to be determined experimentally in the same dedicated 
room as above. To this end, we used the Ti bar temperature 

Fig. 5   ΔT(458) in ◦ C over the central 2D cross-section from Fig. 2B. 
Areas where ΔT > 2◦ C were not assigned a color to visually preserve 
the temperature resolution. The red-dashed line indicates the axis 
with the tissues’ highest ΔT .

Table 4   The sensitivity coefficients, S-
i
 and S+

i
 , for the respective 

perturbation of each parameter, as indicated in Table 3. The critical 
parameters are highlighted in gray

�i S-
i

S+
i

�1 = lskin −9.43⋅10−2 −8.28⋅10−2

�2 = lfat −3.64⋅10−2 −1.39⋅10−2

�3 = lmuscle  4.42⋅10−2  3.88⋅10−2

�4 = lrib  4.27⋅10−2  2.99⋅10−2

�5 = �skin −8.21⋅10−2 −7.34⋅10−2

�6 = �fat −8.31⋅10−2 −7.89⋅10−2

�7 = �muscle −1.01⋅10−1 −7.55⋅10−2

�8 = �rib −7.34⋅10−4 −7.25⋅10−4

�9 = �lung −6.49⋅10−3 −3.60⋅10−3

�10 = Qskin
m

 2.34⋅10−8  2.34⋅10−8

�11 = Qfat
m

 1.19⋅10−8  1.19⋅10−8

�12 = Qmuscle
m

 7.05⋅10−10  7.07⋅10−10

�13 = Q
lung
m

−4.21⋅10−10 −4.15⋅10−12

�14 = kskin −3.45⋅10−2 −1.20⋅10−2

�15 = kfat −2.48⋅10−1 −2.22⋅10−1

�16 = kmuscle −2.32⋅10−1 −2.27⋅10−1

�17 = krib −1.53⋅10−2 −1.24⋅10−2

�18 = klung −4.77⋅10−3 −4.48⋅10−3

�19 = Tb −1.09⋅10−6 −1.42⋅10−6

�20 = h −2.29⋅10−2 −1.45⋅10−2

�21 = Text  1.00⋅10−5  8.78⋅10−5
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decay experiment to fit a linear regression based on Eq. (6) 
with A = 0.016 m 2 , m = 0.718 kg, and c = 523 J/(kg K) 
[64]. This resulted in a heat transfer coefficient estimate 
h = 13 W/(m3K). Figure 7 shows the temperature decay 
measured experimentally, as well as the prediction based 
on this value of h. Note that the goodness-of-fit measure, 
R 2=0.995, suggests a high concordance between experi-
mental data and model prediction. Once h was found, we 
simulated the benchtop model at the four nominal power 
consumption levels. Figure 6B shows an example of the 
simulated prototype’s surface temperature distribution for 
the 500-mW power consumption.

From experimental data, we calculated the ther-
mal prototype’s average surface temperature, Tp , every 
10 min, and compared these values to the simulated range 
[Tm(P

min
b

), Tm(P
max
b

)] (see Sect.  “Benchtop Validation”). 
Figure  8 shows the results at the four nominal power 

consumption levels. For each power level, there is an overlap 
between the values of Tp and the range [Tm(Pmin

b
), Tm(P

max
b

)] . 
As expected, higher power consumption levels led to a wider 
gap between the prototype’s surface temperature and the 
room temperature, and this was consistently observed in 
both experimental and simulated data. Also note that higher 
power configurations drained the battery’s voltage faster, 
which, in turn, widened the range of Tm . Finally, we quanti-
fied the agreement between the experimental and simulation 
results by calculating the correlation coefficient between Tp 
and Tm . Specifically, for each power level, we correlated 
the first and last value of Tp with Tm(Pmin

b
) and Tm(Pmax

b
) , 

respectively, and obtained the correlation coefficient of 0.86 
(p-value = 0.006).

Discussion

The thermal impact of fully-implantable BCI systems 
remains an under-researched topic [24]. Our CWU design 
in particular, and implantable BCIs in general (Fig. 1), bear 
some resemblance with commercially available IPGs. How-
ever, with an estimated range between 200 and 1600 � W 
[65], IPGs’ power consumption is about two orders of mag-
nitude lower than that of implantable BCIs. This power gap 
is expected to be even larger for BD-BCIs. For this reason, 
we cannot assume that the thermal behavior of commercially 
available IPGs generalizes to fully-implantable BCIs.

To the best of our knowledge, this is the first thermal 
impact study of a CWU, envisioned as part of a fully-
implantable BD-BCI. Based on this study, we estimated 

Fig. 6   2D temperature maps of the CWU thermal prototype and its 
benchtop COMSOL model for the 500-mW configuration. The bright 
spot in the lower right corner overlaps with the position of the resis-
tors. A Thermal camera image of the prototype placed on the bench-
top. B  An equivalent map produced by the benchtop computational 
model with Text = 22.9◦C.

Fig. 7   Cooling profile of a Ti bar in an open-air benchtop environ-
ment. The black dots show the temperature decay measured experi-
mentally, while the red line is an exponential model derived from 
Eq. (6), with the best linear fit, h = 13.
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the CWU’s maximum power budget that guarantees a ther-
mally safe operation. Specifically, we simulated the bio-
heat model with nominal parameters, and we predicted that 
the CWU’s power budget cannot exceed 458 mW without 
violating the 2◦ C thermal safety threshold. When perturb-
ing 21 nominal parameters within their natural physiologi-
cal and environmental range, 6 parameters had a negligible 
effect on the power budget. The remaining 15 parameters 
were critical and their simultaneous perturbation resulted 
in a power budget range between 378 and 538 mW. We 
believe that this power budget is sufficient for the CWU to 
perform its functions, such as training the decoder, online 
decoding, wireless communication and data transmis-
sion, and cortical stimulation. For example, our recently 
developed CWU benchtop prototype consumed on average 
150 mW of power while performing all the BCI functions 
except stimulation [11]. Our newest BD-BCI benchtop 
prototype showed that cortical stimulation may require up 
to an additional 230 mW [12]. Taken together, these values 
suggest that the power budget range estimated based on 
our simulations is sufficient to power an actual CWU and 
likely a fully-implantable BD-BCI.

Our bio-heat modeling approach makes several simpli-
fying assumptions. However, most of these assumptions 

favored a more conservative power budget estimate, as 
described below. For example, we neglected the effects of 
radiative heat transfer. Since human skin is generally warmer 
than external room temperature, radiation would take heat 
away from the human body, and even more so when the 
CWU is powered. Therefore, the net effect of radiative heat 
transfer would be an even greater power budget. Another 
simplification of our approach is that we computed ΔT  by 
comparing the temperature resulting from the active CWU 
simulation to a model where the CWU is inactive. An alter-
native way to define ΔT  would be to compare the active 
simulation to a model where the CWU is not implanted. 
However, after comparing the two approaches, we conclude 
that the results presented here lead to a more conserva-
tive power budget estimate. However, after comparing our 
simulation results to those corresponding to a non-implant 
scenario, we conclude that the results presented here lead 
to a more conservative power budget estimate. Namely, in 
the absence of an implant, the fat and skin layers are closer 
to the body core and so their temperature is higher. This 
would, in turn, result in a lower value of ΔT  and, therefore, 
would yield an even higher power budget. Furthermore, our 
model neglected external clothing. However, our worst-case 
scenario simulations assumed a 2-cm-thick wool layer and 
showed the effect of clothing on the power budget estima-
tion to be minimal (< 2 mW). Additionally, we assumed 
a uniform electronics layer with thermal properties based 
on those of the PCB. Instead, a more detailed approach 
would be to split the electronics layer into the PCB and its 
electronic components (microcontroller core, H-bridge, 
current source, RAM module, NAND storage module, and 
radio TRX) [11, 12]. Given that the exact composition and 
arrangement of these components are currently unknown, 
we opted for a simpler approach. Once this information is 
known, such a detailed model could be used to rearrange the 
internal CWU components and further optimize the power 
budget. We also omitted a polymeric connection header that 
usually houses connectors and telemetry antenna in contem-
porary IPGs [27, 66]. However, since none of the elements 
in the header generate heat, we do not expect it to affect 
our power budget predictions. Additionally, the long-term 
heating of tissues can trigger adaptation mechanisms, such 
as angiogenesis, which increases blood perfusion and, in 
turn, reduces temperature. However, this process is poorly 
understood [67] and therefore could not be easily incorpo-
rated into our model. Finally, scar tissue encapsulation could 
occur around the CWU implant. When we repeated the sim-
ulations while encapsulating the CWU with 2-mm-thick scar 
tissue [68], the nominal power budget increased to from 458 
to 519 mW. This power increase is due to the higher thermal 
conductivity of collagen compared to nearby tissues, which 
helps reduce the temperature surrounding the implant.

Fig. 8   The average top surface temperature of the thermal proto-
type in comparison to the simulated temperature range for different 
power consumption levels. (A) Actual temperature. (B) The same val-
ues expressed as a deviation from the room temperature. The black 
crosses are experimental temperature measurements, Tp , repeated at ∼
10-min intervals. The cyan boxes represent the simulated temperature 
range [Tm(Pmin

b
),Tm(P

max
b

)] . The pink stars show the average room 
temperature, Text.
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Table 4 shows that the thermal conductivity of fat and 
muscle, as well as the muscle blood perfusion, were the three 
most critical parameters of our bio-heat model, followed by 
the skin thickness and the fat and skin blood perfusion. This 
conclusion is consistent with the findings reported by in vivo 
animal studies [69]. Table 4 also shows that the perturbation 
of the same parameter across multiple tissues may or may 
not have the same effect on ΔT . For example, the increase of 
the fat’s thickness led to a decrease in ΔT , while the increase 
of the muscle’s thickness led to an increase in ΔT  . (Note 
that from Eq. (5), it follows that both S+

i
> 0 and S-

i
< 0 cor-

respond to an increase in ΔT  ). For other parameters (e.g., 
blood perfusion), the perturbations in the same direction led 
to the same behavior across all tissues.

The main limitation of our study is the lack of in vivo val-
idation. Nonetheless, FEM simulations are widely accepted 
in predicting active implants’ behavior [20, 70–73]. This is 
especially true for preliminary studies, where it would be 
both unethical and cost ineffective to perform animal test-
ing. Once an active implant prototype has been finalized, 
animal studies are appropriate to test both its function and 
safety. These include long-term functional tests and FDA 
safety requirements, such as thermal impact, biocompatibil-
ity, and current leakage (ISO 14708-1). Additionally, the 
risks associated with prolonged exposure to mild heat due 
to the CWU implant can raise concerns. However, given that 
similar devices, such as DBS [20], have been shown to be 
safe even when operating continuously for years, we expect 
the CWU implant, which will operate intermittently, to be 
safe as well.

In the absence of animal testing, we used a benchtop 
model to validate the general FEM approach presented here. 
For this model, the simulation results overlapped with the 
experimental results for all power configurations (see Fig. 8), 
and therefore we conclude that the FEM reliably predicts 
experimental thermal behavior. The differences between the 
experimental and simulation results can be attributed to the 
model’s simplifying assumptions. First, the model assumed 
constant parameters, like Text and h. However, these param-
eters could have changed during the course of experiments 
due to sudden fluctuations in room temperature and air flow, 
caused by external factors (door opening/closing, A/C turn-
ing on/off). Additionally, the benchtop simulation omitted 
smaller components, like the cables, switches and connec-
tor; however, we do not expect these elements to have a 
great influence on the heat distribution. Lastly, observational 
errors from the experimental measurements could also have 
been a source of discrepancy.

Our estimated power budget range (378 to 538 mW) pro-
vides an informative constraint for the future design of a 
fully-implantable CWU and a BD-BCI system, as outlined 
in Fig. 1. This study focuses on the thermal analysis of the 
CWU because it is the most power-hungry component of the 

BD-BCI system. Other heat-dissipating components include 
the skull unit (SU) and sensory (stimulating) electrodes. Our 
preliminary power budget estimates for the SU are provided 
in [22], and efforts to incorporate the stimulating electrodes 
into this model are currently under way. Nevertheless, to 
ultimately validate the thermal safety of these components, 
in vivo animal testing must be done. However, animal test-
ing is out of the scope of this work and will be pursued in 
our future studies, where the CWU and other components 
of the BD-BCI system will be implanted in a large animal 
model. Specifically for the CWU, a temperature sensor 
(e.g., thermistor) can be integrated within the implant to 
continuously measure its surface temperature at the hottest 
region. Note that this temperature is equal to the temperature 
of the adjacent tissues due to temperature continuity (see 
Fig. 5). The CWU’s wireless communication system could 
be exploited to obtain periodic measurements of the CWU’s 
surface temperature. To validate the thermal safety of the 
device, its thermal impact can be assessed under different 
power consumption levels (generated by different operation 
modalities) and ensure that the 2◦ C threshold is not violated 
under any circumstances.
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