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Abstract
When hybridization or other forms of lateral gene transfer have occurred, evolution-
ary relationships of species are better represented by phylogenetic networks than by
trees. While inference of such networks remains challenging, several recently pro-
posed methods are based on quartet concordance factors—the probabilities that a tree
relating a gene sampled from the species displays the possible 4-taxon relationships.
Building on earlier results, we investigate what level-1 network features are identifi-
able from concordance factors under the network multispecies coalescent model. We
obtain results on both topological features of the network, and numerical parameters,
uncovering a number of failures of identifiability related to 3-cycles in the network.
Addressing these identifiability issues is essential for designing statistically consistent
inference methods.
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1 Introduction

Statistical inference of phylogenetic networks, showing evolutionary relationships
between species when hybridization or other horizontal gene transfer has occurred,
poses substantial theoretical and practical problems. With data in the form of many
sequenced and aligned genes, standard phylogenetic methods can be used to infer gene
trees. However, due to both horizontal inheritance and the population genetic effect
of incomplete lineage sorting, these gene trees reflect the species network topology
only indirectly. Extracting the network signal with an acceptable computational time,
and even determining what aspects of the network can be inferred under the Network
Multispecies Coalescent (NMSC) model, is challenging.

Several recently-developed network inference methods utilize summaries of
(inferred) gene trees through counts of their displayed quartet trees, that is, empir-
ical quartet concordance factors (CFs). SNaQ (Solís-Lemus and Ané 2016) uses
pseudolikelihood on these CFs to pick an optimal network among those of level 1.
NANUQ (Allman et al. 2019) also uses quartet counts in the level-1 setting, but avoids
pseudolikelihood computations, by conducting hypothesis tests for each quartet, fol-
lowed by a distance-based approach to avoid searching over networks. (PhyloNet Yu
and Nakhleh 2015 similarly uses pseudolikelihood, though with rooted triple counts
and without the level-1 restriction).

While these methods strike a balance between thorough statistical analysis and
computational effort, a complete exploration of what level-1 network features are
identifiable from CFs under the NMSC has yet to be undertaken. First results in this
direction (Solís-Lemus and Ané 2016) showed certain semidirected level-1 network
topologies were distinguishable from those obtained by dropping a hybrid edge, and
that in some cases numerical parameters were identifiable up to a finite number of
possibilities, i.e., were locally identifiable. Topological identifiability was later inves-
tigated (Baños 2019), establishing that semidirected level-1 network topologies are
identifiable up to contraction of 2- and 3-cycles and directions of hybrid edges in 4-
cycles, for generic parameters. While these works provide our starting point, we seek
to fill in unaddressed gaps. Appendix A gives more detail on how this work comple-
ments its predecessors, and discusses the claims and arguments in Solis-Lemus et al.
(2020) for work described in Solís-Lemus and Ané (2016).

We rigorously establish what can be identified, and what cannot, from quartet CFs
under the NMSC. Our concern here is with the theoretical question of identifiability.
We thus delineatewhatmight be consistently inferred by amethodusingquartet counts,
although particular methodsmay not be able to do so. Our results also imply parameter
identifiability results for data types from which quartet counts can be obtained (e.g.,
topological gene trees, or metric gene trees), although for such data it is possible that
stronger identifiability claims could be established.

Our main results address identifiability of the full semidirected topology of a binary
network, including hybrid edge directions (Theorem19), and the numerical parameters
of edge lengths and hybridization (or inheritance) probabilities (Theorem 30). One
interesting aspect is that the presence of a 3-cycle can generally be detected, but
whether the hybrid node of that cycle can be identified or not depends on the numerical
parameters. The subsets of parameters onwhich this question has a positive or negative
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answer both have positive measure, and thus neither set can be dismissed as non-
generic. This means, in particular, that the direction of gene flow between recently
diverged populations may simply be unknowable from CFs in some instances. (We
do not, however, suggest CFs be abandoned as a useful data summary, as the limits of
identifiability from alternative data summaries has not been similarly investigated.)

The precise statements of these main theorems have exceptions for cycles adjacent
to pendant edges. However, these simplify if one has multiple samples per taxon. Then
the semidirected network topology is generically identifiable except for the presence
of 2-cycles and (sometimes) hybrid nodes in 3-cycles. If the semidirected network
topology with 2-cycles removed is known, then all numerical parameters except those
relating to 3-cycles and their adjacent edges are generically identifiable.

Underlying our results are analyses of algebraic varieties associated with certain
small networks using computational algebra software. These lead to algebraic (poly-
nomial equality) tests of quartet CFs for different network substructures. However,
3-cycle identifiability results depend on semialgebraic tests (polynomial inequalities).
These tests were motivated by equalities found for related networks, but their con-
struction is not purely computational.

Our identifiability results for numerical parameters are based on explicit rational
formulas for parameters in terms of CFs, so if a topological network is known or
proposed, one could in principle estimate numerical parameters with them. But while
some of these formulas are simple, others are quite complicated, and should not be
expected to provide good estimates from data. These formulas may, however, give
useful initial estimates of parameters that could then be refined through optimization,
such as with likelihood methods.

Sections 2 and 3 give definitions and earlier results that we use as our starting point.
In Sect. 4 we study topological identifiability of level-1 binary networks from quartet
CFs, and in Sect. 5 the identifiability of numerical network parameters from the same
information. Section6 discusses implications for data analysis.

Appendix A explains how our results complement earlier work, and Appendix B
catalogs the computational results for specific networks that underly our arguments.

2 Definitions

2.1 Rooted and Unrooted Phylogenetic Networks

A topological binary rooted phylogenetic network N+ is a finite rooted graph, with all
edges directed away from the root, whose non-root internal nodes form two classes:
Tree nodes have indegree 1 and outdegree 2, while hybrid nodes have indegree 2
and outdegree 1. Hybrid edges and tree edges are classified according to their child
nodes. Leaves of the network are bijectively labelled by taxa in a set X . A network
is metric if in addition each tree edge is assigned a positive length, each hybrid edge
a non-negative length and a positive probability γ , such that for every pair of hybrid
edges e, e′ with a common child γ + γ ′ = 1. More formal definitions of phylogenetic
networks appear in Solís-Lemus and Ané (2016), Baños (2019), Steel (2016).
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Fig. 1 (left) A rooted network N+ on X with root r = LSA(X), and (right) the unrooted network N−
obtained from N+

We often depict these networks with their root at the top, referring to edges and
nodes as above or below one another in the natural way.

As explained in Ané et al. (2024), for gene quartet-based methods of inference a
useful form of an unrooted network is more subtle than that for a tree. Substructures
above the least stable ancestor (LSA) of the taxa Steel (2016) are undetectable by these
methods, as is the LSA itself. The topological unrooted phylogenetic network induced
from N+, is the semidirected network N = N−, obtained from N+ by deleting all
vertices and nodes above the LSA, undirecting tree edges, and suppressing the LSA.
Since our concern in this work is the identifiability of unrooted phylogenetic networks,
we will often use N rather than the more cumbersome N− to denote them. We refer
to N as unrooted or semidirected interchangeably. Note that N naturally inherits a
metric structure if N+ has one.

Figure 1 shows an example of a network N+ and its semidirected network N−.
While in that example all leaves are equidistant from the root of N+, we do not assume
ultrametricity generally.

Tree edges can be further partitioned into cut and noncut edges, according to
whether their deletion results in a graph with 2 connected components or not. Note
that hybrid edges are never cut edges.

Of particular interest are unrooted networks on four taxa obtained from a larger
network by restricting the taxon set. Recall that a binary unrooted topological tree
on four taxa a, b, c, d is called a quartet ab|cd if deletion of its sole internal edge
gives connected components with taxa {a, b} and {c,d}. When n ≥ 4, an n-taxon tree
displays a quartet ab|cd if the induced unrooted tree on the four taxa is ab|cd. A
formal extension of this concept to quartet networks follows.

Definition 1 Let N+ be a rooted network on X , and let a, b, c, d ∈ X . The induced
quartet network N |Q on Q = {a, b, c, d} is the unrooted network obtained by

1. Retaining only the nodes and edges of N+ ancestral to at least one of a, b, c, d,
2. Suppressing nodes of degree 2, and
3. Unrooting the resulting network.
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Fig. 2 Several semidirected quartet networks induced from the network in Fig. 1

If N+ is a metric network, its quartet networks naturally are as well. If Y ⊂ X with
|Y | ≥ 5, then the induced subnetwork N |Y is defined similarly.

An analogous definition for induced quartet networks of N is given inBaños (2019),
which also shows that the quartet networks induced from N+ and N are isomorphic.
Figure2 shows some metric quartet networks induced from the networks of Fig. 1.

2.2 Level-1 Networks

We restrict our study to the family of level-1 phylogenetic networks. These have been
the focus ofmanyworks (Solís-Lemus andAné 2016; Allman et al. 2019; Baños 2019;
Huber et al. 2017; Huson et al. 2010; Gusfield et al. 2007; Rosselló andValiente 2009),
though only a few of these incorporate the coalescent model that is central here.

By a cycle in either a rooted or unrooted phylogenetic network we mean a set of
edges and nodes that form a cycle when all edges are treated as undirected.

Definition 2 Let N be a (rooted or unrooted) binary topological network. If no two
cycles in the undirected graph of N share a node, then N is level-1.

In some works level-1 networks are defined as those in which no cycles share an
edge; i.e., cycles are edge-disjoint rather than the stricter vertex-disjoint condition we
adopt. However, in our context of binary networks these are equivalent (Rosselló and
Valiente 2009).

In a level-1 network a cycle that is composed of m edges, (2 hybrid edges and
m − 2 tree edges) is said to be an m-cycle. More specifically, it is an mk-cycle if
there are exactly k taxa descended from its unique hybrid node (Baños 2019). This
terminology can be used for semidirected networks, since ‘descended from a hybrid
node’ is unambiguous, regardless of where the network is rooted.

Let N be an unrooted level-1 network on X with an m-cycle C . Then C induces
a partition of X into m subsets according to the connected components obtained by
deleting all edges in the cycle. Elements of this partition are the blocks ofC . The hybrid
block of C is the block of taxa descended from the hybrid node in C . If the blocks
of C have n1, n2, . . . , nm taxa, then we say C induces a (n1, n2, . . . , nm) partition.
Finally, for a cut edge e = (v,w) in semidirected network, the taxon block below w

is the set of taxon labels in the subgraph that contains w when e is deleted from the
network.
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3 The NetworkMultispecies Coalescent Model and Quartet
Concordance Factors

The Network Multispecies Coalescent (NMSC) model (Meng and Kubatko 2009)
mechanistically describes the formation of gene treeswithin a species network, as gene
lineages are traced backward in time to common ancestors in the edge populations of
the network. Under it, gene trees may differ in topology from any displayed trees on
the species network. Given a metric rooted phylogenetic network, the NMSC assigns
positive probabilities to all resolved metric gene trees, and, through marginalization,
to topological gene trees and induced gene quartet topologies.

Definition 3 Let N+ be a metric rooted network on a taxon set X , and A, B, C , D
a gene sampled from individuals in species a, b, c, d ∈ X respectively. The (scalar)
quartet concordance factor CFab|cd = CFab|cd(N+) is the probability under the
NMSC on N+ that a gene tree displays the quartet AB|CD. The (vector) quartet
concordance factor CFabcd = CFabcd(N+) is the triple

CFabcd = (CFab|cd ,CFac|bd ,CFad|bc)

of concordance factors of each possible quartet on the taxa a, b, c, d.

That CFs for quartet networks depend only on the semidirected quartet network,
was proved in Baños (2019). That result implies the following.

Lemma 1 Under the NMSC on a level-1 network N+ the values of the quartet CFs
depend only on the induced semidirected network N.

Following on the first steps investigating level-1 network identifiability fromquartet
CFs taken in Solís-Lemus and Ané (2016), the next result, that most topological
features of a level-1 species network are identifiable from quartet CFs, appeared in
Baños (2019).

Theorem 2 (Baños 2019, Theorem 4) Let N be a binary semidirected metric level-1
species network on taxon set X with |X | ≥ 4. Let N ′ be the semidirected topological
network obtained from N by contracting all 2- and 3-cycles, suppressing degree-2
nodes, and undirecting hybrid edges in 4-cycles. Under the NMSCmodel with generic
numerical parameters, the network N ′ is identifiable from quartet CFs for N.

We take this theorem as our starting point, and in Sect. 4 focus on the remaining
questions of topological identifiability: From quartet CFs can any aspects of 2-cycles
or 3-cycles can be identified, and for 4-cycles can the hybrid node be identified? In
Sect. 5 we turn to identifiability of the numerical parameters of edge lengths and
hybridization probabilities. While these were not a focus in Baños (2019), partial
results on local identifiability of numerical parameters were given in Solís-Lemus and
Ané (2016). Note that for 4-cycle quartet networks, the map to CFs is overparame-
terized, and Gröbner basis methods easily yield the following.

Lemma 3 Under the NMSC on a semidirected 4-taxon 4-cycle network with generic
parameters, neither the hybrid node nor individual numerical parameters are identi-
fiable from CFs.
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Proof Consider the 4-taxon, 4-cycle network on taxa Q = {a, b, c, d}, with a the
hybrid descendant, obtained from Fig. 12 (center), by setting a = a1, and removing
taxon a2. From (Baños 2019) the hybrid node is not identifiable. But even if the hybrid
node is known, the hybrid edge probabilities h1, h2 do not appear in the formulas
for the CFs, so they cannot be identified. Computational algebra software (Decker
et al. 2022; Grayson 2002) shows the elimination ideals retaining exactly one of the
parameters γ, x1, x2 are generated by CFab|cd + CFac|bd + CFad|bc − 1. Thus no
nontrivial formula relating CFs and a single parameter exists. ��

Unless explicitly stated otherwise, we assume that exactly 1 gene lineage is sampled
per taxon. If 2 lineages were sampled for a taxon, say a, ‘pseudotaxa,’ a1 and a2 can
be introduced by attaching a cherry leading to these at the leaf a of the network. Under
the NMSC, CFs for the modified network with 1 sample from each ai are identical to
those for the original network with 2 samples from a. Sampling more than 2 lineages
per taxon only introduces new CFs in which 3 or 4 pseudotaxa from the same taxon
appear, but due to exchangeability of lineages under the NMSC these CFs are always
1/3. Thus identifiability results for any multiple sampling scheme will follow from
the single sample case on a modified network. No edge lengths are needed in the
pseudotaxa cherries, since no coalescent event may occur on them.

Under the NMSC one can derive formulas for CFs for any fixed network in terms
of the numerical parameters. These have the form of polynomials in the hybridization
parameters γ and the exp(−t) for all edge lengths t . The expression exp(−t) has
a simple interpretation as the probability that two gene lineages entering an edge of
length t coalescent units (tracing time backwards) do not coalesce within that edge. By
reparameterizing using edge probabilities � = exp(−t) ∈ (0, 1] rather than lengths
t ∈ [0,∞), all formulas for CFs are given by polynomial formulas in the �s and γ s.

The 3
(n
4

)
scalar quartet CFs for a fixed topological network N on n taxa then

define a polynomial map from the numerical parameter space into R
3(n4). Extending

the map to allow complex �, γ , gives a parameterized algebraic variety. The set of
multivariate polynomials in the CFs that vanish on the parameterization’s image is an
ideal, denoted I(N ) = I(N+) = I(N−). The zero set V(N ) of the polynomials in
I(N ) is the Zariski closure of the parameterized variety. These notions from applied
algebraic geometry provide a framework for our work. Elements of I(N ) are called
invariants, and depend only the network topology, and not its numerical parameters.

Our arguments use symbolic computations with CFs from specific networks, per-
formed and verified by the softwareSingular (Decker et al. 2022) andMacaulay2
(Grayson 2002). Despite their essential role, for brevity all computational results are
stated in Appendix B. That section also contains an exposition of certain linear invari-
ants that can be derived without computation, and which simplify both computations
and statements of results.
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4 Identifiability of Semidirected Network Topologies

4.1 2-Cycles

We first show 2-cycles (parallel edges) in level-1 networks are never identifiable. By
replacing a 2-cycle with parental node u and child node v by an edge, or suppressing
a 2-cycle, we mean removing its two edges, introducing a new directed edge (u, v)

with a specified edge probability, and suppressing resulting nodes of degree 2.
The content of the following Lemma was essentially given in Solís-Lemus and Ané

(2016), and has appeared in other works subsequently, including a generalization to
2-blobs (Ané et al. 2024, Theorem 4).

Lemma 4 Let N+ be a level-1 rooted binary metric phylogenetic network, with a
2-cycle composed of hybrid edges with edge probabilities h1, h2, and corresponding
hybridization parameters γ1, γ2 = 1−γ1. Then quartet CFs for N+ under the NMSC
are unchanged if the 2-cycle is replaced by an edge with edge probability � ∈ (0, 1)
determined by the equation

1 − � = γ 2
1 (1 − h1) + (1 − γ1)

2(1 − h2).

Since varying the 2-cycle parameters in the above expression causes � to range over
the full interval (0, 1), we obtain the following.

Corollary 5 Using quartet CFs, under the NMSC a topological level-1 phylogenetic
network N with a 2-cycle cannot be distinguished from the network Ñ obtained by
replacing that 2-cycle with an edge.

4.2 3-Cycles

The first study of whether 3-cycles on networks were detectable from CFs (Solís-
Lemus andAné2016) introducednotions of “good” and “bad” triangles, corresponding
to the networks in Fig. 6(right) and Figs. 3 and 5, with the terminology indicating
whether the presence of a 3-cycle and partial information about its numerical parame-
ters could be detected from CFs. Although we do not use these terms here, in Sect. 6
we discuss issues concerning 3-cycle inference from CFs relevant to that work.

Using Theorem 2, the question of identifying topological 3-cycles in a network is
reduced to distinguishing between the network that theorem identifies, and networks
obtained from it by replacing some set of non-cycle tree nodes with 3-cycles.We focus
here on level-1 networks with 5 or more taxa, as the 4-taxon case is fully studied in
Baños (2019).

4.2.1 3-Cycles Near Leaves

We begin with a non-identifiability result, for certain 3-cycles adjacent to two pendant
edges of a network, as shown in Fig. 3.
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Fig. 3 Networks with 3-cycles inducing (1, 1, n− 2) partitions. The shaded triangle represents an arbitrary
semidirected subnetwork. (left, right) correspond to cases (1, 2) of Proposition 6

Proposition 6 Suppose a binary semidirected network N on n ≥ 4 taxa has a 3-cycle
C inducing a (1, 1, n − 2) partition of the taxa. Let N ′ be the network obtained by
contracting C to a node. Then under the NMSC:

1. If C is a 31-cycle, so its hybrid node has only 1 descendant taxon, the topologies
of N and N ′ cannot be distinguished using quartet CFs. That is, for any choice of
parameters on one of these networks, there exist parameters on the other giving
identical CFs. Moreover, the parameters other than those associated to C and
internal edges adjacent to C may be chosen to be identical on both networks.

2. If C is a 3k-cycle with k = n − 2 ≥ 2, and the parameter spaces are extended
to allow all real edge lengths in the CF formulas, then for any choice of extended
parameters on N there are extended parameters on N ′ giving identical CFs, and
vice versa. Moreover, the parameters other than those associated to C and internal
edges adjacent to C may be chosen to be identical on N and N ′.
Furthermore, for strictly positive edge lengths on N and N ′, there are two positive-
measure subsets of parameters,�1,�2, for N, such that on�1 the topologies of N
and N ′ are not distinguishable using quartet CFs, and on�2 are distinguishable.

Note that case (1) implies that if N is as shown in Fig. 3(left) then N and N ′ also
cannot be distinguished from the network obtained from N by interchanging the a
and b labels. In case (2), if parameters are such that N is not distinguishable from
N ′, then case (1) implies that they are also not distinguishable from the two networks
obtained by redesignating the hybrid node in the 3-cycle to have a single descendant
taxon. When N is distinguishable from N ′, then by case (1) it is distinguishable from
those two other networks as well.

Proof Let a, b denote the taxa in the singleton blocks. For case (1), we may assume
the network is rooted, with the root outside C and not on the pendant edges leading to
a, b (Fig. 3(left)). Then under the NMSC there is a probability p ∈ (0, 1), depending
on the numerical parameters of the 3-cycle, that lineages a and b fail to coalesce before
leaving the 3-cycle. Replacing the 3-cycle and its adjacent edges by a 3-leaf tree where
the edge leading toward the n−2 taxa has edge probability p leaves the distribution of
topological gene trees, and hence quartet CFs, unchanged. Varying parameters over
the 3-cycle or over the 3-leaf tree allows all probabilities p ∈ (0, 1) to be achieved.

In case (2), let v denote the hybrid node in the 3-cycle, so a, b are not descendants
of v for any rooting. (Fig. 3(right)). The value of any CF involving at most one of a, b

123



  110 Page 10 of 48 E. S. Allman et al.

Fig. 4 Figure for the proof of Proposition 6, case (2). A 32-cycle quartet network with internal cut edge
contracted to length 0, other edge probabilities h1, h2, x , and hybridization parameter γ

is determined by the network and numerical parameters below v, since as a gene tree
forms either a coalescent event occurs below v, or 3 or 4 lineages reach v, so that all
three gene quartet topologies have probability 1/3. Thus the 3-cycle only affects values
of CFs involving both a and b, and only through events in which no coalescence has
occurred below v.Wemay thus replace the cycle and its adjacent edges to a, bwith any
graphical structure and parameters that produce the same probabilities of gene quartet
topologies when exactly two lineages enter at v. These conditional probabilities are
the CFs of the quartet network shown in Fig. 4:

CFac|bc =
(
γ 2h1 + (1 − γ )2h2

)
/3 + γ (1 − γ ) (1 − x/3) ,

CFab|cc = 1 − 2CFac|bc. (1)

Note that we have dropped the subscripts 1, 2 from the c taxa, since by exchangeability
of those lineages under the NMSC, they may be assigned arbitrarily.

Now a quartet tree with topology ab|cc and internal edge probability z yields

CFac|bc = z/3, CFab|cc = 1 − 2CFac|bc.

so, using (1), without changing the CFs the 3-cycle and edges to a, b in N could be
replaced by a 3-leaf tree with an edge leading to an ab cherry having edge probability

z = γ 2h1 + (1 − γ )2h2 + γ (1 − γ ) (3 − x) .

provided 0 < z < 1. Since this inequality holds on a set of positive measure in
parameter space, on that set the topologies N and N ′ are not distinguishable.

However, z > 1 also occurs on a set of positive measure. Suppose in this case that
the edge e = (v,w) below v has as its child w a node outside of a cycle, and let c1, c2
be taxa chosen from distinct taxon blocks below that node. Then if parameters on N
are in the set determined by z > 1 and the edge probability p for e satisfies pz > 1,
then for N

CFac|bc = pz/3 > 1/3.

Since for a quartet tree CFac|bc < 1/3, N is distinguishable from N ′ on this set.
If w is instead in a cycle, a similar argument applies. ��
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Fig. 5 (left) The 5-taxon unrooted binary tree T5; (center) the 5-taxon network N5−31 with a 31-cycle; and
(right) the 5-taxon network N5−32 with a 32-cycle, with numerical parameters shown. Edge probabilities of
hybrid edges in N5−31 and of pendant edges in networks are omitted, since they do not appear in formulas
for the CFs

This proof essentially follows arguments given inBaños (2019) for quartet networks
with a 31-cycle and 32-cycle. In case (2) the parameters for which the 3-cycle is
topologically identifiable are ones that make the quartet network anomalous, in the
sense of Ané et al. (2024).

4.2.2 3-Cycles on Small Networks: Algebraic Conditions

Figure 5 shows a 5-taxon tree, T5, and two 5-taxon networks with 3-cycles,
N5−31, N5−32 . Propositions 32–34 of Appendix B give computational results on the
ideals I(T5), I(N5−31), and I(N5−32), showing that the polynomial

fabc = 3CFab|acCFab|bc − CFab|ab (2)

is in I(T5), but not in I(N5−31) nor I(N5−32). Using expressions for CFs in terms
of parameters from Proposition 32, fabc can be interpreted as expressing the total
internal path length in the tree T5 is the sum of the lengths of the two internal edges.
This polynomial, and variants of it, will play an important role in identifying 3-cycles.
The first result in this direction is the following.

Theorem 7 Under the NMSC model, the vanishing of fabc distinguishes a 5-taxon
unrooted tree T5 from the 5-taxon semidirected networks with a central 3-cycle whose
contraction yields the tree T5, for generic numerical parameters.

Proof Consider the networks of Fig. 5 and a fourth obtained by interchanging the a, b
taxa in Fig. 5 (right). Since fabc /∈ I(N ) for the non-tree N , it does not vanish for
all parameters on them, and is zero only for a set of measure zero in their parameter
space. Thus generically the vanishing of fabc distinguishes T5 from the others. ��

Propositions 32–34 also show that the two 5-taxon networks of Fig. 5 have the
same associated ideals, I(N5−31) = I(N5−32) ⊂ I(T5). As a result, there is no purely
algebraic means (using only polynomial equalities) of distinguishing them usingCFs.

Computational results for the 6-taxon networks T6 and Na of Fig. 6 appear in
Propositions 35 and 36. Note that I(T6) contains 3 polynomials, fabc, fbca, fcab, none
of which are in I(Na), expressing three different internal path length relationships in
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Fig. 6 (left) The 6-taxon tree T6 with three cherries. (right) The 6-taxon network Na with a central 3-cycle
surrounded by 3 cherries, with a1, a2 descending from the hybrid node. The network Nb is obtained by
‘rotating’ the three pairs of taxa so b1, b2 descend from the hybrid node, and similarly for Nc

the tree. Proposition 36 implies I(Na) = I(Nb) = I(Nc), where Nb and Nc differ
from Na inwhich taxa are below the hybrid node. Thus the hybrid node of the 3-cycle in
these three networks cannot be determined from purely algebraic conditions on CFs.
While the vanishing of any of the three fabc, fbca, fcab (and hence all) distinguishes
the tree T6 from Na , Nb, and Nc, that was already implicit in Theorem 7.

4.2.3 3-Cycles on Small Networks: Semialgebraic Conditions

WhileSect. 4.2.2 has shown thepresence of a 3-cycle canbedetected in somenetworks,
that result pertains only to the undirected cycle. To obtain information on the hybrid
node, we use a semialgebraic approach, focusing on polynomial inequalities.

Proposition 8 Let N be one of T5, N5−31 , N5−32 of Fig. 5, or the network N ′
5−32

obtained from interchanging the a, b taxon labels on N5−32 . Let fabc be as in Eq. (2).
Then for generic numerical parameters under the NMSC,

N =

⎧
⎪⎨

⎪⎩

T5 if, and only if, fabc = 0,

N5−32 or N
′
5−32

if fabc < 0,

N5−31, N5−32 , or N ′
5−32

if fabc > 0.

Moreover, fabc is identical on thenetworks N5−32 and N
′
5−32

for the sameparameter
values, so fabc gives no information to distinguish between these.

Finally, there are positive measure subsets of the numerical parameter space for
N5−32 on which fabc < 0 and on which fabc > 0.

Proof Theorem 7 states that fabc = 0 for generic parameters if, and only if, N = T5. If
N = N5−31 then using the formulas forCFs in Proposition 33 gives, for γ, x, �1, �2 ∈
(0, 1),

fabc = [�1�2(γ + x − γ x)(1 − γ + γ x) − �1�2x]/3
= �1�2γ (1 − γ )(x − 1)2/3 > 0.
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Since fabc is invariant under interchanging the as and bs, its values for N5−32 and
N ′
5−32

are the same.
Specific examples of parameters on N5−32 show both fabc < 0 and fabc > 0 can

occur, and by continuity there are positive measure subsets of parameter space on
which these occur. ��

If a 5-taxon network does have a 3-cycleC , then this proposition may provide some
information on the hybrid node’s location. For instance, fabc < 0 implies the taxon c
which is not in a cherry on the tree obtained by contracting C to a vertex is also not a
hybrid descendant of the 3-cycle. However, for other numerical parameters fabc > 0,
in which case there is no information on the hybrid location.

To further develop semialgebraic tests for 3-cycle hybrid nodes, we again consider
the 6-taxon networks Na, Nb, Nc described in Fig. 6. Define the following functions
of the CFs, building on the fxyz :

Gabc = − fabcCFac|bc + 2 fbcaCab|ac − fcabCab|bc
= CFac|acCFab|bc − 2CFbc|bcCFab|ac + CFab|abCFac|bc,

Gcab = CFbc|bcCFab|ac − 2CFab|abCFac|bc + CFac|acCFab|bc,
Gbca = CFab|abCFac|bc − 2CFac|acCFab|bc + CFbc|bcCFab|ac. (3)

Note that Gxyz ∈ I(T6), Gxyz = Gxzy and Gabc + Gcab + Gbca = 0.

Proposition 9 Under the NMSC, for CFs arising from the tree T6, Gxyz = 0 for all
x, y, z, while Gxyz > 0 for CFs arising from the network Nx .

If a network is known to have one of the topologies Na, Nb, Nc, then at least one of
these topologies can be ruled out by the signs of Gabc,Gcab,Gbca: If Gxyz < 0 then
the network is not Nx .

Finally, there are positive measure subsets of the numerical parameter space for
Ny and Nz on which Gxyz < 0 and on which Gxyz > 0.

Proof That Gxyz = 0 for T6 restates that Gxyz ∈ I(T6). Using formulas from Propo-
sition 36, for CFs from Na ,

9Gabc = 9(CFac|acCFab|bc − 2CFbc|bcCFab|ac + CFab|abCFac|bc)
= �1�3(γ

2h1x + γ 2h2 − 2γ 2 − 2γ h2 + 2γ + h2)�2(x + γ − γ x)

− 2x�2�3�1(γ
2h1 + γ 2h2 + γ 2x − 3γ 2 − 2γ h2 − γ x + 3γ + h2)

+ �1�2(γ
2h1 + γ 2h2x − 2γ 2 − 2γ h2x + 2γ + h2x)�3(γ x − γ + 1)

= γ (1 − γ )(1 − x)2�1�2�3[h1γ + h2(1 − γ ) + 2] > 0.

Since Gabc + Gcab + Gbca = 0 and one of these terms is positive for each of
Na, Nb, Nc, at least one is negative.

One can find specific parameters on Ny for which Gxyz < 0 and Gxyz > 0, and by
continuity these conditions hold on sets of positive measure. ��
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Na

Nb

Nc

Fig. 7 Values of (Gabc,Gbca ,Gcab) plotted in three dimensions, for random numerical parameter values
on each of the three networks Na , Nb, Nc . Color indicates network topology. Plotted points lie in the plane
x+ y+ z = 0, which is viewed orthogonally. The three coordinate planes x = 0, y = 0, z = 0 intersect this
plane in the colored lines, separating the points by color into overlapping half-planes. Numerical parameters
for networks were chosen uniformly from the interval [0, 1] (Color figure online)

Figure 7 illustrates the proposition, showing (Gabc,Gbca,Gcab) for randomly cho-
sen numerical parameters on each of the networks Na, Nb, Nc, with color indicating
the network topology. Since the points lie in a plane P through the origin, the axes
have been rotated to view the plane orthogonally. The three planes Gxyz = 0 intersect
P in lines which divide the plot into six sectors. On three of these sectors exactly one
color appears, indicating that the network topology is determined by the positivity
of exactly one Gxyz . On the 3 sectors where two colors appear, two of the Gxyz are
positive, so only one of the network topologies is ruled out.

Remark 1 It is natural to ask if fxyz or Gxyz could be used to detect 3-cycles in
situations where incomplete lineage sorting is negligible, so that all gene trees are
displayed on the species network. This scenario is modeled by immediate coalescence
of gene lineages on entering a common network edge or, equivalently, by a limiting
model of the NMSC, in which all edge probabilities go to 0. (See Allman et al.
2022, Sect. 6.2 for more details.) The formulae for CFs given in this work still apply
with all edge probabilities set to 0, and one finds that for all the 5-taxon networks of
Proposition 8 fabc = 0, while for all the 6-taxon networks of Proposition 9 Gxyz = 0.
Indeed, these functions depend only on CFs for quartet trees not displayed on the
networks, which are therefore all zero.

Another model of interest, the common inheritance coalescent model (Gerard et al.
2011), gives only gene trees arising from the coalescent process on the displayed trees
of the species network, with the probability of each displayed tree the product of its
edges’ hybridization parameters. For this model, the functions fabc,Gxyz are gener-
ically non-zero, and produce a figure similar to Fig. 7 (calculations and figure not
shown). Although our investigation of identifiability of that model and its generaliza-
tion to the correlated inheritance coalescent model (Fogg et al. 2023) are not complete,
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this illustrates how a coalescent model of some sort allows for greater identifiability
of network structure.

Proposition 9 and Fig. 7 suggest determining which of Na, Nb, or Nc produced
certain numericalCFsmay be impossible, whichwe rigorously show by the following
example.

Example 1 (Non-identifiability of the hybrid node in a 3-cycle) Consider the network
Na with parameters

γ (a) = 28

100
, h(a)

1 = 83

100
, h(a)

2 = 78

100
, x (a) = 98

100
,

�
(a)
1 = 88

100
, �

(a)
2 = 61

100
, �

(a)
3 = 50

100
,

and the network Nb with parameters

γ (b) = 236700

253367
, h(b)

1 = 84456638

87243675
, h(b)

2 = 27286250

31593489
,

x (b) = 2722883

2976250
, �

(b)
1 = 809409

1315000
, �

(b)
2 = 1

2
, �

(b)
3 = 26191

31250
,

where the parameters for Nb are as shown for Na in Fig. 6 but with taxon labels
(a1, a2), (b1, b2) and (c1, c2) replaced by (b1, b2), (c1, c2) and (a1, a2) respectively.
Then the CFs of Na and Nb are equal. Specifically, for both Na and Nb,

CFbc|bc = 2989

30000
, CFab|ab = 906412969

5859375000
, CFac|ac = 29951713

234375000
,

CFab|ac = 602701

2343750
CFab|bc = 9394

46875
, CFac|bc = 1243

7500
.

In fact, there is a neighborhood in V(Na) = V(Nb) of theCF point of this example
contained in the image of the parameterizations of both Na and Nb. Indeed, a compu-
tation of the Jacobians for the two parameterization maps at the example parameters
shows that locally the images are of dimension 6, which matches the dimension of the
variety. A sufficiently small neighborhood of the CF point is thus in the image of the
parameterizations for both Na and Nb, with inverse images of positive measure. One
may similarly show, using a CF point that arises only from Na (lying in a uniformly
colored sector in Fig. 7), that there is a set of positive measure in the Na parameter
space which gives CFs in the image of the parametrization of Na only. We combine
these results formally in the following theorem.

Theorem 10 There exists a positive measure subset of the numerical parameter space
of Na for which it is distinguishable from T6, Nb, and Nc, and a positivemeasure subset
of the parameter space for which only the undirected network can be distinguished
from T6, with 1 node in the 3-cycle determined to be non-hybrid.

Again using the parameter values in Example 1, an analog of this result for 5-taxon
networks with a single 3-cycle can be established.
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Theorem 11 There exist positive measure subsets of the numerical parameter spaces
of N5−31 and N5−32 for which the semidirected network topologies are distinguish-
able from the other networks among T5, N5−31 , N5−32 , N

′
5−32

, and positive measure
subsets of the parameter spaces for which they are not distinguishable from at least
one other of N5−31 , N5−32 , N

′
5−32

.

Proof First, suppose the network is N5−32 . Dropping a taxon to pass to a quartet
network with a 32-cycle, Proposition 6 implies that the semidirected topology is iden-
tifiable on some positive measure subset of parameters. That there is such a set on
which the semidirected topology is not identifiable follows from using the parameter
values of Example 1 (after dropping an appropriately chosen taxon) on such networks
with different hybrid cherries, and computing Jacobians to verify that an open set of
such examples exists.

To investigate identifiability for the network N5−31 , consider the function

f̃ = fabc − (1/2)CFab|ab. (4)

We first show that f̃ < 0 for all parameters on N5−32 . Using Proposition 34 to expand
in terms of parameters,

f̃ = �1�2[(γ 2h1 + γ (1 − γ )(3 − x) + (1 − γ )2h2)(γ + (1 − γ )x)/3

− (γ 2h1 + 2γ (1 − γ ) + (1 − γ )2h2x)/2].

Since h1 appears linearly in this expression with a negative coefficient, we set h1 = 0
to bound f̃ above. The coefficient of h2, which also appears linearly, may be positive
or negative, so we consider h2 = 0 and 1. If h2 = 0,

f̃ = �1�2
[
(γ (1 − γ )(3 − x))(γ + (1 − γ )x)/3 − γ (1 − γ )

]

= −�1�2γ (1 − γ )
[
3(1 − x)(1 − γ ) + x(γ + (1 − γ )x)

]
/3 < 0,

while if h2 = 1,

f̃ = �1�2

[
(γ (1 − γ )(3 − x) + (1 − γ )2)(γ + (1 − γ )x)/3 − (2γ (1 − γ )

+(1 − γ )2x)/2
]

= −�1�2(1 − γ )
[
γ x(γ + (1 − γ )x) + (1 − γ ) (2γ (1 − x) + x/2)

]
/3 < 0.

It is easy, however, to find an open set of parameters for N5−31 for which f̃ > 0, and
on that set c is identifiable as the hybrid block.

We obtain a set on which the semidirected topology of N5−31 is not identifiable by
again using the parameter values in Example 1. ��
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Fig. 8 (left) A decomposition of a level-1 network N+ with a 3-cycle into 4 subnetworks, denoted
A, B,C, D, with root in C . (right) The semidirected 3-cycle network N6−32 with 3 cherries, which is
a simple instance of the network on the left

4.2.4 Large Networks with 3-Cycles

After considering specific 5- and 6-taxon networkswith a single 3-cycle, we shift focus
to 3-cycles in general networks N+. We extend the previous results on semialgebraic
identifiability of both cycles and hybrid nodes, using a decomposition of N+ into 4
subnetworks, as in Fig. 8. A similar decomposition is used in Gross et al. (2023), of
a level-1 network into trees and ‘sunlets,’ but that work does not model coalescence,
so the details are quite different. Our decomposition extends to larger cycles but we
present only the 3-cycle case needed here.

The subnetworks in Fig. 8 are:

D: The 3-cycle and its three adjacent cut edges, with pendant vertices a, b, c,
where a is the child of the hybrid node of the cycle;

A, B,C : The connected components containing a, b, c, respectively, when the
edges and internal nodes of D are deleted from N+.

Note that a, b, c are each in two of these subnetworks. Since the root must be above
D’s hybrid node, and the semidirected network is unchanged bymoving the root along
tree edges, we may assume the root lies in B or C , and, after renaming, in C .

The CF of any quartet under the NMSC on N+ has an algebraic decomposition
into terms associated to the subnetworks A, B,C, D, which we next develop. We use
two facts about coalescent events between 4 lineages leading to gene quartets:

1. The first coalescent event between 2 of the lineages determines the gene quartet
tree that forms, and

2. Conditioned on 3 or 4 lineages reaching a common node with no previous coales-
cence, by exchangeability of lineages each quartet has probability 1/3.

For S ∈ {A, B,C, D} and a gene quartet xy|zw where x, y, z, w ∈ X are taxa on
N+, we define an event, denoted CS → xy|zw, that captures whether the behavior
of gene lineages in S ensures that under the coalescent model the gene tree xy|zw is
formed, or will be, with a determined probability. This may be due to a coalescent
event occurring in S, or 3 or 4 lineages reaching a common node in S without having
yet coalesced. Since any coalescent event between any of the four lineages that occurs
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below S would already determine the quartet tree, we define events conditional on the
lineages from those of {x, y, z, w} that are below S not having coalesced below S. For
instance, in Fig. 8(left) if S is D and the quartet of interest is {a1, b1, b2, c1}, with a1
on A, b1, b2 on B, and c1 on C then we condition on b1, b2 not having coalesced in
B. More formally, consider the following events, described backwards in time:

E = E(S, {x, y, z, w}) = No coalescence between any of the lineages x, y, z, w

that may enter S occurs below their entry to S.

F = F(S, xy|zw) = There is a node v in S that 3 or 4 of the x, y, z, w lineages reach

with no coalescence occurring below v, and then xy|zw forms.

G = G(S, xy|zw) = A first coalescence occurs at some node v in S so that

xy|zw forms, without 3 or 4 lineages having reached a

common node below v.

Then CS → xy|zw denotes (F ∪ G)|E .
Let P(CS → xy|zw) denote the conditional probability of the event CS → xy|zw.

Then with ai , bi , ci distinct taxa from A, B,C , respectively, a few example decom-
positions of CFs are:

CFa1a2|a3b1 = P(CA → a1a2|a3b1),
CFa1a2|b1c1 = P(CA → a1a2|b1c1) + (1 − P(CA → a1a2|b1c1))P(CD → a1a2|b1c1),
CFa1a2|c1c2 = P(CA → a1a2|c1c2) + (1 − P(CA → a1a2|c1c2))P(CD → a1a2|c1c2)

+ (1 − P(CA → a1a2|c1c2))(1 − P(CD → a1a2|c1c2))P(CC → a1a2|c1c2).

For calculating probabilities associated to D, we suppress indices on taxa. This is
allowable since, conditioned on distinct lineages entering D, a1, a2 are exchangeable,
as are b1, b2. Thus, for instance,

P(CD → ab|bc) = P(CD → a1b1|b2c1) = P(CD → a2b2|b1c2).
Significantly, all CFs for N+ can be computed using only the following probabil-

ities associated to D together with expressions dependent only on A, B,C :

p1 = P(CD → ab|cc) = 1 − �3(1 − γ + γ x),

p2 = P(CD → aa|cc) = 1 − �1�3(γ
2h1x + 2γ (1 − γ ) + (1 − γ )2h2),

p3 = P(CD → bb|cc) = 1 − x�2�3,

p4 = P(CD → ab|bc) = �2 (γ + (1 − γ )x) /3,

P(CD → bb|ac) = 1 − 2p4,

p5 = P(CD → ab|ac) = �1(γ
2h1 + γ (1 − γ )(3 − x) + (1 − γ )2h2)/3,

P(CD → aa|bc) = 1 − 2p5,

p6 = P(CD → ab|ab) = �1�2(γ
2h1 + 2γ (1 − γ ) + (1 − γ )2h2x)/3,

P(CD → aa|bb) = 1 − 2p6.
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The 6 linearly independent polynomials, p1, p2, . . . , p6 parameterize a variety,
V(D). Combined with the previous discussion of decomposing CF formulas, this
yields the following.

Proposition 12 Let VN be the CF variety for a semidirected network (not necessarily
level-1) N with the form shown in Fig. 8, and numerical parameter space �(N ) =
�A,B,C ×�D. Let VD denote the Zariski closure of the image of the parameterization
φ : C7 → C

6, defined by

φ(γ, �1, �2, �3, h1, h2, x) = (p1, p2, p3, p4, p5, p6),

with the pi given above. Then the map CF : �(N ) → C
3(n4) factors as

CF : �(N ) = �A,B,C × �D
π×φ−−→ �A,B,C × VD → VN ⊂ C

3(n4). (5)

where π is the map projecting �(N ) onto the numerical parameters on A, B,C only.

Proposition 37 shows that VD = C
6, and thus φ is an infinite-to-1 map, establishing

the following.

Corollary 13 Consider a semidirected topological network N with a 3-cycle, with
decomposition as in Fig. 8(left). Then no test using polynomial equalities in quartet
CFs can identify the hybrid node in the 3-cycle.

Specifically, if N’s root must be in the subnetwork C because of the semidirected
topology of C, then the network NB which has A, B interchanged from N = NA, so
that B is below the 3-cycle’s hybrid node, leads to the same ideal of invariants, that
is, I(NA) = I(NB). If the semidirected topology of N allows for rooting in either
subnetwork B or C, then I(NA) = I(NB) = I(NC ).

Proof If deleting the 3-cycle from the network induces a (n1, n2, n3) partition of the
taxa with all ni ≥ 2, then the corollary follows directly from Proposition 12 and
Proposition 37. Cases with ni = 1 then follow by deleting taxa from an appropriate
network with all ni ≥ 2, intersecting the ideals with a ring generated by fewer CFs. ��

Note that this corollary applies to networks with more than one 3-cycle. However,
when multiple cycles are present, the location of one cycle’s hybrid node indicates
that one of the nodes in a descendant cycle cannot be hybrid. Thus for a network with
k 3-cycles, there are between 2k and 3k networks differing only in the choice of hybrid
nodes in the 3-cycles, all of which are algebraically indistinguishable using CFs.

Nonetheless, using semialgebraic tests, we can obtain additional information on
hybrid node location, as the following generalization of Proposition 9 shows.

Proposition 14 Consider a partition of a taxon set X into three blocks of size at least
2. For any network N (not necessarily level-1) with a node or 3-cycle inducing these
blocks, denote the node or 3-cycle and its adjacent edges by D, and the subgraphs
attached to D as A, B,C (as in Sect. 4.2.4 for a cycle).
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Let Gabc, Gcab, Gbca be as defined by Eq. (3), for any distinct taxa ai on A, bi on
B, and ci on C. Then D is:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a 3-leaf tree if Gabc = Gbca = Gcab = 0,
a 3-cycle and adjacent edges if Gxyz > 0, Gyzx ≤ 0, Gzxy ≤ 0
with x below the hybrid node for {x, y, z} = {a, b, c},

a 3-cycle and adjacent edges with if Gxyz > 0, Gyzx > 0, Gzxy < 0
x or y below the hybrid node for {x, y, z} = {a, b, c}.

Moreover, for a network N with a 3-cycle D and descendants of x forming its hybrid
block, there exist positive measure subsets of parameters on D on which Gyzx and
Gzxy satisfy both of the above sign conditions.

Proof First suppose D is a 3-cycle and, without loss of generality, A is below the
hybrid node. Then we decompose formulas for CFs for N as

CFab|ab = (1 − P(CA → aa|bb))(1 − P(CB → aa|bb))P(CD → ab|ab),
CFac|bc = (1 − P(CD → ab|cc))P(CC → ac|bc),
CFac|ac = (1 − P(CA → aa|cc))(1 − P(CD → aa|cc))P(CC → ac|ac),
CFab|bc = (1 − P(CB → ac|bb))P(CD → ab|bc),
CFbc|bc = (1 − P(CB → bb|cc))(1 − P(CD → bb|cc))P(CC → bc|bc),
CFab|ac = (1 − P(CA → aa|bc))P(CD → ab|ac).

Since

P(CA → aa|bb) = P(CA → aa|cc) = P(CA → aa|bc),
P(CB → aa|bb) = P(CB → bb|cc) = P(CB → ac|bb),
P(CC → ac|bc) = P(CC → ac|ac) = P(CC → bc|bc),

it follows that

Gabc(N ) = (1 − P(CA → aa|bb))(1 − P(CB → aa|bb))P(CC → ac|ac)
×

[
(1 − P(CD → aa|cc))P(CD → ab|bc)

− 2(1 − P(CD → bb|cc))P(CD → ab|ac)
+ P(CD → ab|ab)(1 − P(CD → ab|cc))

]
.

But the terms in the last factor, all of which depend only on D, arise as multiples
of CFs on the network N6−32 of Fig. 8(right),

1 − P(CD → aa|cc) = 3CFac|ac(N6−32 ), P(CD → ab|bc) = CFab|bc(N6−32 ),

1 − P(CD → bb|cc) = 3CFbc|bc(N6−32 ), P(CD → ab|ac) = CFab|ac(N6−32 ),

P(CD → ab|ab) = CFab|ab(N6−32 ), 1 − P(CD → ab|cc) = 3CFac|bc(N6−32 ).
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Thus, by Proposition 9, Gabc(N ) =

3(1 − P(CA → aa|bb))(1 − P(CB → aa|bb))P(CC → ac|ac)Gabc(N6−32) > 0.

Since Gabc + Gcab + Gbca = 0, either 1 or 2 of these terms are positive, and the
two cases for 3-cycle Ds follow. The case of the network N with D a node is obtained
by setting x = h1 = h2 = 0 in the formulas for any of the 3-cycle networks, showing,
for instance, that Gabc(N ) is a multiple of Gabc(T6) = 0.

The final statement on positive measure subsets of parameter space follows from
Proposition 9. ��

Proposition 14 yields the following generalization of Theorem 10.

Theorem 15 Consider a partition of a taxon set X into three blocks of size at least 2.
Then for all networks (not necessarily level-1) with a node or 3-cycle inducing these
blocks, the presence of the node or the (undirected) 3-cycle along with one non-hybrid
block is identifiable. If the network has a 3-cycle then there are positive measure
subsets of its parameter space on which the hybrid node can be determined, and on
which it cannot.

Proof By Proposition 14, an undirected 3-cycle is signaled by the non-vanishing of at
least one of Gabc, Gbca or Gcab, and for a 3-cycle, a non-hybrid block is identifiable
since one of the Gs must be negative. That the hybrid node can be identified on a
positive measure set follows from the existence of such a set for which only one G is
positive. That the hybrid node cannot be identified on another set is seen by choosing
specific parameters on 3-cycles with different hybrid nodes (e.g., using parameters
given in Example 1 for the 3-cycle and adjacent edge parameters) which produce the
same values for the pi . ��

If ni = 1 for some i , then similar arguments as given for Proposition 14 and
Theorem15 shows the function fxyz can identify the presence of a 3-cycle, but possibly
not its hybrid node. While we omit the proof, we state the result.

Proposition 16 Consider a partition of a taxon set X into three blocks of size 1, n1, n2
with ni ≥ 2. For any network N (not necessarily level-1) with a node or 3-cycle
inducing these blocks, let D denote the node or 3-cycle and adjacent edges, and
A, B,C the subgraphs attached to D by the adjacent edges, with C being a single
node. Let fabc be as in Proposition 8, for any distinct ai on A, bi on B, and c on C.
Then for generic numerical parameters, D is:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a 3-leaf tree if, and only if, fabc = 0,

a 3-cycle and adjacent edges with

A or B below the hybrid node if fabc < 0,

a 3-cycle and adjacent edges with

A, B, orC below the hybrid node if fabc > 0.
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Finally, there are positive measure subsets of the numerical parameter space for
the networks with a 3-cycle D and either A or B below its hybrid node on which
fabc < 0 and on which fabc > 0.

For identifying the hybrid node in a 3-cycle inducing a (1, n1, n2) partition when
there is a single descendant of the hybrid node, we generalize Theorem 11.

Theorem 17 Consider a partition of a taxon set X into three blocks of sizes 1, n1, n2
with ni ≥ 2. Then for all networks (not necessarily level-1) with a 3-cycle inducing
these blocks, there are positive measure subsets of the parameter space on which the
hybrid node of the 3-cycle is identifiable, and on which it is not.

Proof Let f̃ be as defined in Eq. (4). We first show the result for a general network N
with a 3-cycle with a single hybrid descendant. For such a network, using decompo-
sitions as in Sect. 4.2.4 but with C a hybrid singleton taxon and the root in B, we find
that for any choices of two taxa in the A and B blocks

f̃ (N ) = 3(1 − P(CA → aa|bc))P(CB → ab|bc) f̃ (N5−31),

where N5−31 is given parameters from the 3-cycle and adjacent edges of N . Similarly,
if a non-hybrid block C is the singleton

f̃ (N ) = 3(1 − P(CA → aa|bc))P(CB → ab|bc) f̃ (N5−32),

where N5−32 is given parameters from the 3-cycle and adjacent edges of N . Thus the
signs of f̃ on N can be used as in the proof of Theorem 11 to obtain the claim when
the hybrid block is a singleton.

If the singleton block is not hybrid on N the claim is established as for Theorem 11,
by passing to a subnetwork with a 32-cycle and using the parameters of Example 1. ��

Finally, if a 3-cycle induces a (1, 1, n − 2) partition then Proposition 6 applies
directly to analyze identifiability.

4.3 4-Cycles

To study topological 4-cycle identifiability beyond the results of Solís-Lemus and
Ané (2016) and Baños (2019), we consider first the networks Ns , Nw, Nn on 5 taxa of
Fig. 9, called good (Nw) and bad (Ns, Nn) diamonds in Solís-Lemus and Ané (2016).
Note that hybrid edge probabilities are not labeled for the networks Nw and Nn , since
no coalescence can occur in those edges as they have only one descendant taxon.

For any network N , an ideal J (N ) of linear invariants is easy to construct from
certain symmetries inCFs under the NMSC. There are, for example, trivial invariants
like 1 − (

CFab|cd + CFac|bd + CFad|bc
)
, as well as cut invariants derived from cut

edges in N and exchange invariants derived from exchangeable lineages under the
NMSC. These linear invariants form a subideal J (N ) of the full ideal I(N ) for the
network variety, and depend only on N ’s undirected topology. See Appendix B.1 for
full details.
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Fig. 9 The semidirected 5-taxon binary networks with a single 4-cycle, up to taxon labelling. We denote
these by Ns , Nw , Nn from left to right, according to compass directions for the a1, a2 cherry when the
hybrid node is located at south. Note that Ne is omitted since, up to taxon labelling, it is the same as Nw .
Edge probabilities and the hybridization parameter γ are shown next to edges

Fig. 10 The semidirected 5-taxon level-1 binary networks with a single 4-cycle and 3-cycle, up to taxon
labelling

Since Ns , Nw and Nn all have the same undirected topology,

J (Ns) = J (Nw) = J (Nn),

and the location of the hybrid node can not be determined using these linear invari-
ants. However, computations of the full ideals of invariants for these three networks,
presented as Propositions 38–40, with additional computation, yield the following
identifiability result for hybrid nodes.

Proposition 18 Consider a semidirected binary level-1 network on n ≥ 5 taxa whose
topology is known up to contracting 2- and 3-cycles and undirecting hybrid edges in
4-cycles. Then for generic numerical parameter values on the network, the 4-cycle
hybrid edge directions are identifiable from CFs.

Proof Suppose first a network N has exactly 5 taxa, and a 4-cycle. Then after con-
tracting 2-cycles N yields Ns , Nw, Nn , or one of the five networks shown in Fig. 10.
Although we do not know whether N has a 3-cycle, if it does then by Proposition 6
it has the same associated variety as the network with that 3-cycle contracted, so we
investigate the relationships of the varieties V(Ns), V(Nw), and V(Nn).

Proposition 38 to 40 show that V(Ns), V(Nw), and V(Nn) have dimensions 5, 4,
and 3, respectively. Moreover, V(Ns) contains both V(Nw) and V(Nn). Additional
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computations show that the intersection

V(Nw) ∩ V(Nn) = V1 ∪ V2 ∪ V3

has dimension 2, with three irreducible components V1, V2, V3 whose ideals are

I(V1) = 〈CFab|cd − CFac|bd , CFab|ad − CFac|ad , 3CFac|adCFac|bd − CFab|ac〉 + I(Ns ),

I(V2) = 〈CFab|cd + 2CFac|bd − 1, CFab|ad − CFab|ac, 3CFab|acCFac|bd − CFac|ad 〉 + I(Ns ),

I(V3) = 〈CFac|ad , CFab|ac, CFab|ad 〉 + I(Ns ).

Thus generic parameters for Ns give points neither on V(Nw) nor V(Nn), while
generic parameters for Nw give points not on V(Nn), and generic parameters for Nn

give points not on V(Nw). Thus for generic parameters, the hybrid node in the 4-cycle
can be determined by testing invariants to seewhether theCFs lie onV(Nn) orV(Nw),
or neither.

If N has more than 5 taxa, choose one taxon from each of 3 of the taxon blocks
determined by a 4-cycle, and 2 from the remaining block, and pass to the induced
network on these 5 taxa to apply the result for 5-taxon networks. ��
Remark 2 The components V1,V2, and V3 of V(Nw)∩V(Nn) arise naturally from the
parameterizations. Restricting to γ = 1 on Nw and γ = 0 on Nn , essentially giving
the unrooted tree ((a1, a2), (b, c), d) for both, yields V1. V2 arises from γ = 0 on Nw

and γ = 1 on Nn which gives the unrooted tree ((a1, a2), b, (c, d)). V3 arises from
� = 0 on both Nw and Nn , which by corresponding to an infinite edge length, ensures
a1, a2 form a cherry in any gene tree involving those two taxa, and for those involving
only one ai , gives CFs from a 41-cycle with a non-identifable hybrid node.

4.4 Summary of Topological Identifiability

The results of this section combined with Theorem 2 and Lemma 3 yield the following
theorem.

Theorem 19 (Topological Identifiability from quartet CFs) Let N+ be a binary level-
1 phylogenetic network on n ≥ 4 taxa, with generic numerical parameters. Then
no 2-cycle on the semidirected network can be identified from CFs, so let Ñ be
the topological semidirected network induced by N+ with all 2-cycles replaced with
edges. Then the topological structure of Ñ , including directions of hybrid edges, is
identifiable from quartet CFs of N+, with the following exceptions:

1. If a 3-cycle induces a (1, 1, n − 2) partition of taxa, then if the hybrid node has
a single descendant taxon the network cannot be distinguished from the network
in which the cycle is contracted to a node, or from the network in which the
hybrid and other singleton block are interchanged. If the hybrid node has n − 2
descendant taxa, then there are positive-measure subsets of parameters on which
the semidirected 3-cycle is and is not identifiable.

2. If a 3-cycle induces a (1, n1, n2) partition with n1, n2 ≥ 2 then the undirected
3-cycle can be identified. There are positive measure subsets of parameters on
which the semidirected 3-cycle is and is not identifiable.
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3. If a 3-cycle induces an (n1, n2, n3) partition with all ni ≥ 2, then the undirected
3-cycle can be identified, and at least 1 of the 3-cycle nodes can be determined
not to be hybrid, but there are positive measure subsets of parameters on which
the semidirected 3-cycle is and is not identifiable.

4. If a 4-cycle induces a (1, 1, 1, 1) partition, then the location of the hybrid node is
not identifiable.

5 Identifiability of Numerical Parameters

To address identifiability of numerical parameters—both edge lengths and hybridiza-
tion parameters—we assume the network has no 2-cycles, as these are not identifiable.
For the remainder of the section we thus study Ñ , the semidirected metric binary phy-
logenetic network induced from a rooted network N+, with 2-cycles replaced by
edges. In showing an edge in Ñ has identifiable length, we are showing that if the
original network did have a 2-cycle, then an “effective" length of an edge resulting
from replacing the cycle as in Lemma 4 is identifiable.

Since we assume exactly one sample per taxon for each gene, no coalescent event
can occur in pendant edges. Thus no pendant edge length appears in CF parameteri-
zations, and such lengths cannot be identified from CFs, yielding the following.

Proposition 20 Let N be a semidirected phylogenetic network. Then pendant edge
lengths are not identifiable from quartet CFs under the NMSCmodel with one sample
per taxon.

5.1 Lengths of Edges Defined by 4 Taxa

We focus first on edges in Ñ for which it is simple to identify edge lengths.
With Q = {a, b, c, d} a set of 4 taxa from X , let Ñ (Q) denote the subgraph of Ñ

obtained as is the induced quartet graph N |Q in Definition 1 but without suppressing
degree-2 nodes.

Definition 4 Let e be an edge in Ñ . If Q = {a, b, c, d} is a set of 4 taxa and Ñ (Q)

the subgraph of Ñ described above, then we say that e is defined by a set Q if:

1. Edge e lies in the subnetwork Ñ (Q),
2. Edge e is a cut edge of Ñ (Q) separating pairs of taxa, say a, b from c, d, and
3. In Ñ (Q) there are 4 cut edges adjacent to e, separating each of a, b, c, d, respec-

tively, from the others.

In an unrooted tree, every internal edge is defined by some Q, even if the tree is not
binary. But for a network, even if binary and level-1 as in Fig. 11, this is not the case.
In such a network, a k-cycle, with k ≥ 5, has k − 4 edges in it that are defined by such
sets, with the hybrid edges and those adjacent to them exceptions, as will be proved
in the next proposition. Edges descended from hybrid nodes are also never defined by
a set Q. These examples show edges defined by a set Q need not be cut edges, and
not all cut edges are defined by a set Q.
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Fig. 11 A semidirected network with edges defined by sets Q of 4 taxa highlighted in blue (Color figure
online)

For a binary network, an alternate characterization of edges defined by sets Q can
be given.

Proposition 21 For a binary level-1 semidirected network Ñ , there is a set Q of 4
taxa defining an edge e if, and only if, e is an internal edge that is neither hybrid nor
adjacent to a hybrid edge.

Proof Suppose e is defined by Q. If e were either hybrid or adjacent to a hybrid edge,
then Q would contain a descendant of a hybrid node. But then Ñ (Q) contains all
edges of the cycle in which the hybrid edge lies. This contradicts that both e and its
adjacent edges are cut edges in Ñ (Q), since the hybrid edges are not cut.

Conversely, suppose e is neither hybrid nor adjacent to a hybrid edge. If none of
these 5 edges is in a cycle in Ñ , then choosing one taxon in each component obtained
by deleting e and its incident nodes and adjacent edges gives a set Q defining e.

If any one of these edges is in a cycle, then since Ñ is level-1 and binary, exactly
one of the following holds: a) e is in a cycle, together with exactly 2 adjacent edges,
one at each endpoint of e, b) e is not in a cycle, but exactly one cycle contains two
edges adjacent to e at the same endpoint of e, or c) e is not in a cycle, but all 4 edges
adjacent to e are, with e adjacent to two different cycles.

For case (a), the 2 edges adjacent to e that are not in the cycle must be cut edges,
and the two adjacent to e that are in the cycle must be adjacent to 2 other distinct
cut edges not in the cycle. Choosing taxa from the non-e components left by deleting
these 4 cut edges gives a set Q defining e.

In case (b), The two edges in the cycle must be adjacent to distinct cut edges other
than e which are not in the cycle. Choosing taxa from the non-e components of the
graph obtained by deleting these two edges and the two non-cycle edges adjacent to e
gives a quartet defining e. Case (c) is similar, treating each cycle the same way. ��

For any network, regardless of level or other special structure, lengths of edges
defined by sets Q are easily identified.

Proposition 22 If an edge e in a metric network Ñ is defined by a set Q of 4 taxa, then
its length is identifiable from quartet CFs.

Proof If e is defined by Q = {a, b, c, d} has length t and in Ñ |Q induces the split
ab|cd, then CFac|bd = exp(−t)/3, so t = − log(3CFac|bd). ��
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5.2 Numerical Parameters Associated to 3-Cycles

Edges either in or adjacent to a 3-cycle are always adjacent to a hybrid edge. Thus in
binary networks, these edges are not defined by sets of 4 taxa, so Proposition 22 does
not apply. Propositions 33(c), 34(c) and 36(c) illustrate that, at least for specific small
networks, the numerical parameters associated to 3-cycles are not identifiable. More
generally, we obtain the following.

Proposition 23 If C is a 3-cycle on a semidirected binary level-1 network Ñ , then
neither the hybridization parameters nor the lengths of any edges in or adjacent to C
can be identified from quartet CFs.

Proof Suppose first the 3-cycle induces an (n1, n2, n3)-partition of the taxa with all
ni ≥ 2. Then using Propositions 12 and 37(a) we see that the map from numerical
parameters to CFs factors by sending the 7 numerical parameters associated to the
3-cycle and its adjacent edges into a 6-dimensional variety. This implies that the
numerical parameters cannot all be identifiable. To see that no single parameter can
be identified, first observe that from the factorization of maps in Eq. (5), if a single
parameter were identifiable, it would have to be identifiable from a point in VD .
However, Proposition 37(b) shows that is not the case.

If a 3-cycle induces a (1, n2, n3)- or (1, 1, n3)-partition of taxa, then by considering
samples of 2 individuals for each gene from the singleton taxa, we can modify the
network by attaching cherries of pseudotaxa for each singleton. Since in this case we
already know that numerical parameters around the 3-cycle are not identifiable from
all CFs, with access only to CFs using only one of the pseudotaxa, they are still not
identifiable. But that means they are not identifiable for the original network. ��

5.3 Other Numerical Parameters

The remaining numerical parameters on a binary level-1 network to be considered
include lengths of hybrid edges, lengths of edges adjacent to hybrid edges, and
hybridization parameters, all when the relevant cycle is of size ≥ 4.

Proposition 24 Let Ñ be a level-1 metric binary semidirected network with no 2-
cycles, containing a k-cycle C with k ≥ 5. Then hybridization parameters and lengths
of the cycle edges adjacent to the hybrid edges in C can be identified from quartet
CFs. If the hybrid node of C has at least 2 descendant taxa, the lengths of the hybrid
edges can also be identified. If the hybrid node has only one descendant taxon then
the lengths of the hybrid edges are not identifiable.

Proof From Proposition 22 we already know that the k − 4 edges in the cycle that are
not hybrid or adjacent to a hybrid edge have identifiable lengths. If the taxon blocks for
the cycle are, proceeding from the hybrid around the cycle, X1, X2, . . . , Xk , then pick
one taxon from each of X1, X2, X3, X4, and Xk and pass to the induced subnetwork.
Replacing any 2-cycles with edges, we may assume we have a 5-cycle sunlet network
as in Fig. 12(left), in which the edge probability y of the edge opposite the hybrid
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Fig. 12 Subnetworks used in the proof of Proposition 24

node is known, and the edge probability x is that of the edge in C which is adjacent
to a hybrid edge, lying between blocks X2 and X3.

Using y and CFs we can identify γ , and then x through

CFac|de − CFad|ce = γ (1 − y) , CFab|cd − CFac|bd = γ (1 − x) .

Similarly, the other edge in C adjacent to a hybrid edge has identifiable length.
If the hybrid node has 2 descendant taxa, then by picking two taxa from X1 and

one from each of X2, X3, Xk we pass to an induced subnetwork which, after replacing
2-cycles by edges, has the form of the network of Fig. 12(center) or (right) with the
same hybrid edge lengths as the full network. In case (center), with a cherry below the
hybrid node, applying the result of Proposition 38 (c) on NS identifies the hybrid edge
lengths from CFs using the already identified γ . In case (right), a 31-cycle below the
hybrid node, by Proposition 6 all CFs are unchanged if the 3-cycle is contracted to a
node and the edge length above it modified appropriately. Then the identifiability of
the hybrid edge lengths follows from the cherry case.

If the hybrid node has only 1 descendant taxon, then at most 1 lineage may enter
(going backwards in time) the hybrid edges of C , so no coalescent events may occur
on the hybrid edges. Thus theCFs do not depend on the lengths of those edges, which
are therefore not identifiable from CFs. ��

We next turn to cut edges adjacent to a single hybrid edge.

Proposition 25 Let Ñ be a level-1 metric binary semidirected network with no 2-
cycles, containing an internal cut edge eadjacent to exactly one hybrid edge (at its
non-hybrid node), with the hybrid edge in a k-cycle. If k ≥ 4, then the length of e is
identifiable.

Proof If k ≥ 4, by passing to the induced network on a subset of the taxa, we may
assume k = 4. Since e is not pendant, and not adjacent to a hybrid edge of another
cycle, after again passing to an induced subnetwork and replacing any 2-cycles with
single edges, we may assume the network has the structure of Nw in Fig. 9 (center),
with e the edge joining the cherry to the 4-cycle. But then Proposition 39(c) gives the
claim. ��
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Fig. 13 Semidirected binary networks on 6 taxa with two 4-cycles joined by an edge adjacent to two or
more hybrid edges

If an edge is adjacent to hybrid edges at both of its endpoints, but neither endpoint
is a hybrid node, as in Fig. 13 (left), then the following applies.

Proposition 26 Let Ñ be a level-1 metric binary semidirected network with no 2-
cycles, containing an edge ε adjacent to exactly two hybrid edges which lie in two
different cycles. If the sizes of both cycles are ≥ 4, then the length of ε is identifiable.

Proof If both cycles are of size ≥ 4, then the network has an induced subnetwork
which, after suppressing 2-cycles has the form shown in Fig. 13 (left), with the central
edge arising from ε, with edge probability �.

Using Proposition 39 on the induced network after dropping taxon f we may
identify γ, x1, x2 and the product �y1. Similarly, dropping a we may identify y1,
which then gives �. ��

Next we consider edges adjacent to two hybrid edges at one endpoint, that is, edges
with a hybrid node as an endpoint, as in Fig. 13 (center, right). If the hybrid node is in
a large cycle we obtain the following.

Proposition 27 Let Ñ be a level-1 metric binary semidirected network with no 2-
cycles, containing an edge q whose parent is the hybrid node of a k-cycle with k ≥ 5.
If q has at least two descendant taxa, and the child node of q is not in a 3-cycle, then
the length of q is identifiable.

Proof Since the cycle is of size ≥ 5, by Proposition 24 its hybridization parameter γ

is identified.
First suppose the child node of q is not incident to a hybrid edge. If q has two

descendant taxa, there is an induced subnetwork which, after replacing 2-cycles by
edges, has the form of Ns of Fig. 9 (left), with q the child edge of the hybrid node.
With γ in hand, by Proposition 38(c) the length of q is identified.

If instead the child node of q is incident to a hybrid edge, assume that edge lies in a
cycle of size ≥ 4. We may then pass to a network with the structure of Fig. 13 (right)
where q is the edge joining the two cycles. But dropping taxon f again yields a network
of form Ns , so using γ we identify �y1. Instead dropping b from Fig. 13 (right), by
Proposition 6, the 3-cycle on this can then be contracted to a node, adjusting the edge
length of q (now possibly negative) so CFs are unchanged. Then Proposition 39 can
be applied to identify y1. Thus � is identifiable. ��
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Fig. 14 Semidirected binary networks on 6 taxa with a 4-cycle and two cherries: (left) Nsw and (right) Nsn

Fig. 15 A 4-cycle in a larger network, partitioning the taxa into 4 blocks A, B,C, D

The remaining parameters to consider are the edge probabilities and hybridization
parameter in 4-cycles, and the edge probability of the child edge of the hybrid node
in a 4-cycle. Identifiability of these is more complicated, as it can depend on the sizes
of the taxon blocks of the cycle. In handling these cases, we use the following.

Lemma 28 Consider a 6-taxon semidirected network with a 4-cycle, a cherry below
the cycle’s hybrid node, and one other cherry, as shown in Fig. 14. Then all numerical
parameters are identifiable from quartet CFs.

Proof Consider Fig. 14 (left), Nsw. Then the subnetwork obtained by dropping taxon
a2 has the form of Nw, and Proposition 39 shows γ, x1, x2, �2 are identifiable. But the
network obtained by dropping taxon b2 has the form of Ns , so using Proposition 38
and the known value of γ identifies h1, h2, �1.

The identifiability of all parameters for Fig. 14(right), Nsn , follows from another
computation, presented as Proposition 41. ��

Proposition 29 Let Ñ be a level-1 metric binary semidirected network on n ≥ 4
taxa with no 2-cycles, containing a 4-cycle, as shown in Fig. 15, with taxon blocks
A, B,C, D of size nA, nB, nC , nD and edge probabilities and hybridization param-
eters on and below the cycle as shown. Then the parameters x1, x2, h1, h2, γ, � are
identifiable according to the following cases, at least one of which must hold.
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(a) nB = nC = nD = 1: none identifiable
(b) nA = 1 and

(i) nB = nD = 1: none identifiable
(ii) nB or nD ≥ 2: x1, x2, γ identifiable, h1, h2, � not identifiable

(c) nA ≥ 2; nB, nC , or nD ≥ 2 and

(i) the child of the edge with probability � is not in a 3-cycle: all identifiable
(ii) the child of the edge with probability � is in a 3-cycle: x1, x2, h1, h2, γ iden-

tifiable, � not identifiable

Simple instances of the 5 cases in the proposition may be helpful to consider. The
network Ns falls under case a), Nn under b)i), Nw under b)ii), and Nsw and Nsn

under c)i). Examples for case c)ii) are obtained from Nsw and Nsn by replacing the
cherry below the hybrid edge with a 3-cycle. The proof of the proposition leverages
computational results for these to obtain more general statements.

Proof That at least one of these cases must hold is most easily seen by noting that case
c) is the complement of the union of a) and b). We consider each case to establish its
claim.
Case a): The 4-cycle determines a hybrid block of taxa A and three taxa, b, c, d, in
singleton blocks. If nA = 1, then the result is Lemma 3. If nA ≥ 2, the only CFs
dependent on the parameters θ = (x1, x2, h1, h2, γ, �) are those involving at most
two elements of A, since with 3 or 4 elements of A either a coalescence has occurred
below the hybrid node, or at least 3 lineages reach it and are then exchangeable,
giving probabilities 1/3 for each quartet tree. Those CFs dependent on θ decompose
into sums of products of expressions involving only parameters outside of θ or only
parameters in θ , similar to the approach in Sect. 4.2.4. The expressions involving only
parameters in θ can even be chosen from theCFs for the network Ns of Proposition 38.
But that Proposition shows the parameters in θ are not identifiable from the CFs for
Ns , so they cannot be identified from those for Ñ .
Case b)i): The 4-cycle determines a hybrid singleton a, two adjacent singleton blocks
of b and d, and a larger subnetwork C opposite the hybrid. Viewing the network as
rooted inC , theCFs for Ñ depend on parameters x1, x2, h1, h2, γ, � only through the
various probabilities of first coalescent events among subsets of {a, b, d} determining
the quartet tree before lineages leave the 4-cycle and enter C . Using D to denote the
subnetwork below C which contains the 4-cycle, these are

p1 = P(CD → ab|cc) = γ (1 − x1),

p2 = P(CD → ad|cc) = (1 − γ )(1 − x2),

P(CD → bd|cc) = 0,

P(CD → bd|ac) = (γ x1 + (1 − γ )x2)/3 = (1 − p1 − p2)/3,

P(CD → ab|dc) = γ (1 − 2x1/3) + (1 − γ )x2/3 = (1 + 2p1 − p2)/3,

P(CD → ad|bc) = γ x1/3 + (1 − γ ) (1 − 2x2/3) = (1 − p1 + 2p2)/3.
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Since these probabilities are linear functions of p1, p2, and none of γ, x1, x2 are
identifiable from p1, p2, none of the parameters are identifiable from CFs for Ñ .
Case b)ii): Pick two taxa in one of the blocks adjacent to the hybrid one, and one
taxon in all others. Passing to the induced subnetwork and removing 2-cycles yields
either a network with the form Nw or one where the cherry in Nw is replaced by
a 3-cycle. Using Proposition 6, we may replace such a 3-cycle with a node without
changing CFs, provided we modify the edge length leading to the 4-cycle, including
allowing for a possibly negative branch length. But then the network has the form Nw

and applying Proposition 39 shows γ, x1, x2 can be identified.
Since there is only one taxon descended from the hybrid node, there can be no

coalescent event in either of the hybrid edges or their descendant, and thus these edge
lengths do not appear in the formulas for the CFs for Ñ . Therefore these parameters
cannot be identifiable.
Case c)i): Pick two taxa in one of the non-hybrid blocks, two taxa in the hybrid block,
and one taxon from each of the others. Passing to the induced subnetwork on these 6
taxa, and removing any 2-cycles, we obtain a network of one of the forms in Fig. 14, or
ones where 3-cycles appear in place of one or both cherry nodes. If there are 3-cycles,
by Proposition 6 we may replace them with nodes without changing CFs (provided
wemodify edge lengths leading to the 4-cycle). Then using Lemma 28 we can identify
γ, x1, x2, h1, h2.

To identify �, let v be the child node of the edge with this probability. If v is not
in a cycle in Ñ , then picking one taxon descended from each of its child edges and
passing to an induced subnetwork, � is identifiable by Lemma 28.

If v is in a cycle, it is of size ≥ 4. Passing to an induced subnetwork, we may
assume that v is in a 4-cycle. Note that v cannot be the hybrid node of that cycle, else
the semidirected network would not be rootable. If v is opposite the hybrid node, then
we may pass to an induced subnetwork which, after replacing 2-cycles with edges,
has a cherry below v and follow the previous argument. If v is adjacent to the hybrid
node, then the subnetwork has the form of Fig. 13(right). Since γ is identified, the
argument used in Proposition 27 then shows � is identifiable.
Case c)ii): The argument of the first paragraph for Case c)i) shows γ, x1, x2, h1, h2
are identifiable. Since the edge descending from the hybrid node of the 4-cycle is
incident to a 3-cycle, its length is not identifiable by Proposition 23. ��

5.4 Summary of Numerical Parameter Identifiability

We summarize this section’s results with the following.

Theorem 30 (Numerical parameter identifiability from quartetCFs) Let Ñ be a level-
1 metric binary semidirected network on X with no 2-cycles, and |X | ≥ 4. Then from
quartet CFs under the NMSC with one sample per taxon all numerical parameters
on Ñ are identifiable except for the following, which are not identifiable:

1. Pendant edge lengths,
2. For 3-cycles, hybridization parameters and the lengths of the six edges in and

adjacent to the cycle,
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3. For 4-cycles, the hybridization parameter and edge lengths in the cycle and
descended from the hybrid node, as stated in Proposition 29.

If two individuals are sampled in some taxon x , as discussed earlier this can be
modeled by attaching a cherry of pseudotaxa x1, x2 at the leaf x . Doing so for all taxa
resolves the non-identifiability issues of Items 1 and 3, yielding the following.

Corollary 31 Let Ñ be a level-1 metric binary semidirected network with no 2-cycles.
Then from quartet CFs under the NMSC with two or more samples for all taxa,
all numerical parameters on Ñ are identifiable except hybridization parameters and
lengths of edges in and adjacent to 3-cycles.

6 Implications for Data Analysis

Attempting to infer the non-identifiable can either be misleading (unless all possible
alternatives are reported), or very slow (spending computational time considering
equally good possibilities), so our results here should inform development and use of
CF-based inference methods.

The issues with identifiability of 3-cycles from CFs under the NMSC shown here
are perhaps the greatest source of problems for practical inference. Hybridization or
gene flow is generally believed to occur most frequently among recently diverged
populations, and when this occurs between sister populations it leads to a 3-cycle.
Thus these cycles may commonly underlie empirical data. We have shown that in
many cases CFs may indicate the presence of a 3-cycle, though not necessarily its
hybrid node, but that the numerical parameters associated to it are not identifiable.

This poses particular issues for likelihood and pseudolikelihood approaches. Quar-
tet CFs may carry signals of undirected 3-cycles (even in certain “bad triangle” cases
not considered in SNaQ’s search), and ignoring the possibility of such cycles could
have unknown consequences under these optimality criteria. Since for some parameter
values there is a signal of a 3-cycle’s hybrid node in the CFs, the search cannot be
limited to undirected 3-cycles in all circumstances.

Even if only the network topology is sought, these criteria require optimization
over numerical parameters, so these must be dealt with in a search. However, since the
numerical parameters are not identifiable, searching over them directly will be slow.
Reducing the over-parameterization at 3-cycles (e.g., from 7 parameters to 6 when the
3-cycle is not near a leaf) is desirable, but how to do so while maintaining the same
range of CFs is unclear. Even if this were accomplished, as the numerical parameters
vary, the semidirected topology may pass between identifiable and non-identifiable
regimes, and the boundaries of these are not known. Without such information, one
must consider all possibilities for the location of a hybrid node in a 3-cycle throughout,
but allow for multiple optimal networks.

SNaQ (Solís-Lemus and Ané 2016), with its default settings, restricts its search for
3-cycles in networks to those with all cycle blocks of size at least 2 (“good triangles”),
corresponding to our Theorem 19 (3). It addresses the numerical overparameterization
at 3-cycles by setting the edge probability below the putative hybrid node (�1 in
Fig. 6, right) to 1, reducing the number of numerical parameters to be estimated to six
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(γ, h1, h2, x, �2, �3), matching the dimension of the variety. The estimated parameters
are then composite parameters, which are functions of the original ones producing the
same CFs. While our computations (not shown) indicate that this parameterization
of CFs is 2-to-1, unlike the 1-to-1 map suggested by Proposition 37, that is not
necessarily problematic but could result in multiple optima.

More worrisome is the fact that both of these maps are only guaranteed to give
complex parameterizations of the relevant variety, and when restricted to stochastic
parameters do not necessarily produce the same collection of CFs as the original
map. We experimented with 40,000 sets of 7 parameters (γ and 6 edge probabilities)
chosen uniformly-at-random in [0, 1] for the network in Fig. 6(right), and found in
93.4% of the cases there were no stochastic parameters with �1 = 1 producing the
sameCFs. In 6.4% there was a single stochastic parameter choice producing theCFs,
and in the remaining 0.2% there were two. A full numerical parameter search with the
SNaQ approach thus requires examining non-stochastic parameter values (negative,
> 1, or even complex), and then verifying optimal values give CFs that also arise
from some set of stochastic parameters (without �1 restricted to 1). While limiting the
search space to both be lower dimensional and only give CFs arising from stochastic
parameters would be desirable, how to do so is an open problem.

Since exactly what information in CFs is extracted by maximizing the pseudo-
likelihood function is difficult to analyze theoretically, using simulation the impact
of 3-cycles on inference needs to be studied thoroughly, both for SNaQ and for Phy-
loNet’s similar inference from rooted triples (Yu andNakhleh 2015).NANUQ(Allman
et al. 2019) does not suffer from these problems, as its inference goal is more modest,
providing a statistically consistent estimate only of larger cycle topology, without any
search over the numerical parameter space. Whether NANUQ can be supplemented
to extract CF information on the existence of 3-cycles should also be explored.

Although our goal in this work was to understand the theoretical question of param-
eter identifiability fromCFs under theNMSC for level-1 networks, some of our results
for small networks also address the question of practical identifiability for networks
with any number of taxa. For example, a true reticulate evolutionary history for a
large number of taxa might be described by a graph containing a 4-cycle in which
some or all of the cut edges leading to cycle blocks are long. Long branch lengths
(in coalescent units) can arise from either small population sizes (bottlenecks) or long
times in generations. Regardless, the probability that all lineages entering those long
edges coalesce before entering the cycle may be close to 1, almost ensuring that only a
single lineage reaches the 4-cycle from such a cut edge. This reduces what parameters
may be practically identifiable from a finite data set, with the extreme case of a single
lineage from each of the 4 cut edges yielding only the undirected topological 4-cycle,
and no numerical information. Using standard likelihood-based approaches, network
details such as these may be inferred and reported, even when there is little signal in
the data supporting them.

In closing we remark that identifiability theorems needed to justify network infer-
ence methods from data types other than CFs are largely lacking. Studies of the
parameter identifiability question for these data are urgently needed as well.
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Appendix A: Context for This Work

A.1 EarlierWork

Here we discuss how results in this work fit into and complement earlier work. In what
follows, all statements should be restricted to the class of level-1 binary networks.

Questions of identifiability of both network topology and numerical parameters
from quartetCFs were first considered in Solís-Lemus and Ané (2016), a work which
also introduced the pseudolikelihood inference of networks fromempiricalCFs via the
SNaQ software.With the publication directed primarily to a biological audience, much
of the presentation of themathematical results appeared in the supplementarymaterial,
without formal statements of propositions and theorems, making it difficult to discern
exactly what has been fully established. Subsequently, Baños (2019) reconsidered the
identifiability of level-1 network topology from quartet CFs with more mathematical
formality. A later preprint (Solis-Lemus et al. 2020) gives more details on the work
behind Solís-Lemus and Ané (2016) and its supplement.

As does this paper, Solís-Lemus and Ané (2016) uses algebraic computations to
study what information quartet CFs might carry about a network. However, the
computations concerning network topology are focused not on the full question of
identifiability, but on a more restricted question the authors called detectability of
hybridizations. This notion is an instance of the broader concept of distinguishability
presented subsequently in Degnan (2018). Distinguishability for a specified collec-
tion of possible models using some specified information source means that a model
x that is known to be in the collection can be determined from that information for
x . In Solís-Lemus and Ané (2016) the models correspond to certain networks, and
the information is expected CFs arising from them under the NMSC. As stated in
Solís-Lemus and Ané (2016),

…for networks with n ≥ 4 taxa, we restrict our focus to the case when N ′ is the
network topology obtained from N by removing a single hybrid edge of interest.
…The presence of the hybridization of interest can be detected if the quartet
CFs from N ′ cannot all be equal to the quartet CFs from N simultaneously.

In other words, that work focused on distinguishability of the 2-element set {N , N ′}
using quartet CFs. While investigating this question was certainly a strong first con-
tribution to the broader question of identifiability of level-1 network topology from
CFs, addressing the full question would require showing distinguishability of the set
of all possible level-1 networks on a taxon set X , including networks with completely
unrelated topologies. More fully, one would need to show this for sets X of arbitrary
size. The approach taken to prove detectability by Solís-Lemus and Ané (2016), how-
ever, depends on equating formulas for CFs in terms of numerical parameters on the
two networks and solving the system, and it is unclear how this could be applied to
the full identifiability question.

Note that while Solís-Lemus and Ané (2016) states that their detectability results
extend to level-1 networks with many cycles (where multiple hybrid edges may be
removed to get the set of distinguishable networks), a justification for this claim was
only given in Solis-Lemus et al. (2020), with Lemma 3 of that work being key. Unfor-
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tunately, that lemma is incorrect as stated. (See Sect. A.2 of this appendix for a
counterexample.) While it might be possible to obtain a correct justification using
similar ideas, doing so seems unnecessary given the results of Baños (2019), which
we describe next.

After presenting a detailed study of all level-1 networks on 4 taxa and their CFs,
Baños (2019) used combinatorial arguments to show that information about larger
networks could be obtained through induced quartet networks, and hence CFs. In
particular, the topological identifiability result stated in this paper as Theorem 2 was
established. This work also clarified several points that were either implicit or unad-
dressed in Solís-Lemus and Ané (2016): First, the semidirected network was formally
defined, highlighting that network structure above the LSA needed to be excised.
Second, identifiability of large cycles (more than 4 edges) was explicitly addressed
(although Solis-Lemus et al. 2020 later provided an argument for detectability). Third,
identifiability for networks with multiple cycles was shown. However, because it con-
sidered only oneCF at a time to deduce information about an induced quartet network,
without exploring whether additional information might be found in the relationship
of CFs for overlapping sets of taxa, it did not obtain the strongest possible result. As
an example, while Solís-Lemus and Ané (2016) showed the distinguishability of the
hybrid node of a 4-cycle in certain sufficiently large networks, results in (Baños 2019)
simply left all 4-cycles undirected in its network identifiability result.

Moreover, in (Solís-Lemus and Ané 2016) it was shown that in some cases 3-
cycles were detectable, while the main result of Baños (2019) omits 3-cycles in its
identifiability result. It did contain a theorem, though, suggesting a 32-cycle on a 4-
taxon network may be identifiable for some parameter values. In both works, then,
questions about 3-cycle identifiability were left open.

In short, the general question, in arbitrary level-1 networks, of topological identifi-
ability of both directed and undirected 3-cycles and of directed 4-cycles, the focus of
Sects. 4.2 and 4.3 of this work, remained.

Although not considered by Baños (2019), the study of identifiability of numeri-
cal parameters was also initiated by Solís-Lemus and Ané (2016). Using calculations
of Gröbner bases of ideals of polynomial relationships between CFs, arguments in
Solís-Lemus and Ané (2016) (with a technical matter corrected in Solis-Lemus et al.
2020) investigated whether the dimension of the associated algebraic variety allowed
for all numerical parameters to be identifiable. If this dimension is less than the num-
ber of parameters, then not all parameters can be identified, though it is possible that
a subset are. If the dimension and number of parameters are equal, then the param-
eterization map must be generically finite-to-1. For specific networks Solís-Lemus
and Ané (2016) determined whether or not the parameterization was finite-to-1, but
passing to networks with more than 1 cycle again depended on the faulty Lemma
3 of Solis-Lemus et al. (2020). Moreover, the calculations in Solís-Lemus and Ané
(2016) are focused on numerical parameters associated to cycles (cycle edge lengths,
hybridization parameters, and possibly lengths of edges adjacent to a cycle). Although
the arguments do not seem to cover edges not adjacent to any cycles, this omission is
easily overcome (for instance as in our Proposition 22). On the other hand, it is unclear
how the computations can be applied to answer whether the edges adjacent to hybrid
edges in two different cycles have identifiable lengths. Moreover, when a dimension
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computation leads to a valid conclusion that a full set of numerical parameters cannot
be identified, it still is possible that some subset of the parameters could be. This issue
was not explored.

Finally, establishing that there can only be finitely many choices of parameters
that yield the CFs on a network is a local identifiability result, and Solís-Lemus and
Ané (2016) emphasized it leaves open the question of global identifiability: Does this
finite set actually contain only one such choice? This cannot be settled by dimension
computations of the sort in Solís-Lemus and Ané (2016). There are in fact simple sta-
tistical models (outside of phylogenetics) where parameterizations are finite-to-1, but
not 1-to-1, in surprising ways (Allman et al. 2015). Investigating global identifiability
is thus highly desirable.

Several questions of identifiability of numerical parameters questions thus remained
open: identifiability of certain edge lengths, especially in multicycle networks; iden-
tifiability of subsets of parameters when a full set was not identifiable; and the broad
question of global identifiability. These questions are the focus of Sect. 5.

When identifiability of individual parameters fails, it remains possible that com-
posite parameters (i.e., functions of the parameters) might be identifiable and used in
inference. For instance, for the network in Lemma 3, Solís-Lemus and Ané (2016)
observed thatCFab|cd−CFac|bd = γ (1−x1) andCFad|bc−CFac|bd = (1−γ )(1−x2).
In optimizing the pseudolikelihood function, SNaQ makes use of composite parame-
ters in some situations when the original ones are not identifiable. While this can be an
important issue in algorithm design, we do not focus on it in this work, though some
of these known composite parameters appear in our arguments.

As the manuscript for this work was being completed, the preprint (Tiley and Solis-
Lemus 2023) appeared. This includes work on distinguishability of several different
6-taxon networks with 4-cycles and several cherries, but not on the full network iden-
tifiability questions even for 6-taxon networks with 4-cycles. It does however include
simulation work to investigate practical identifiability, the extent to which with finite
data sets one can infer such cycles, using several pseudolikelihood methods.

A.2 An Example

Consider the two networks shown in Fig. 16, where the right network is obtained
from the left by removing a hybrid edge in the top 4-cycle. This is an instance of
the construction implied in the statement of Lemma 3 of Solis-Lemus et al. (2020),
which is used to justify analyzing CFs only of level-1 networks with a single cycle to
understand those with multiple cycles. We show here that the statement of Lemma 3
is not correct for this pair of networks.

We first note that this lemma states that the CF’s for the two networks which
depend on parameters associated to the cycle are equal. This is not strictly true as
stated: Focusing on the lower cycle of the left network, for instance, CFab|ce depends
on γ, x1 aswell as on δ for the left network, but for the right network has no dependence
on δ. Other interpretations of this statement are that the described set of CFs for the
two networks produce the same values as parameters vary, or that the varieties defined
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Fig. 16 (left) A network with a 4-cycle of interest at bottom, and (right) a network with a single cycle
obtained by removing a hybrid edge from each pair not in the cycle of interest

by the parameterized CFs are the same. As this last interpretation is the broadest, we
show it is also false.

Consider CFac|d f and CFac|e f for the two networks. For the left network

CFac|d f = 1

3
�y1(γ + (1 − γ )x2),

CFac|e f = 1

3
�(γ + (1 − γ )x2)(δ + (1 − δ)y1),

which are not equal for generic parameter values. However, for the right network

CFac|d f = CFac|e f = 1

3
�y1(γ + (1 − γ )x2)

since d, e can be exchanged in the graph because they form a cherry. Thus the variety
for the right network has a defining equation that does not hold for the left.

This example illustrates an important point that in passing to smaller induced net-
works a cycle other than the one of immediate focus may have an impact on CFs.
In particular, a more detailed treatment of networks with multiple cycles, such as our
work in Sect. 4.3, seems to be a necessary part of addressing the full identifiability
question.

Appendix B: Propositions from Computations

B.1 Ideals of CF Invariants

Several observations simplify investigating the ideals I(N ) described in Sect. 3. First,
since the entries of any vector concordance factor add to 1, at most two of the 3 entries
of a CF are linearly independent. We consider the polynomials expressing that CF
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entries add to 1 to be trivial invariants, as they hold for all network topologies. If only
4 taxa a, b, c, d are considered, then the trivial invariant is

CFab|cd + CFac|bd + CFad|bc − 1,

while for n taxa there are
(n
4

)
such invariants, one for each possible quartet.

Second, if there is a cut edge on an induced quartet network separating two of the
taxa, a, b from the others c, d, then the CFs associated with the discordant topologies
ac|bd and ad|bc must be equal. This was shown in the level-1 case in Baños (2019)
and for general networks in Allman et al. (2022). The invariant expressing this is

CFac|bd − CFad|bc.

We call such polynomials cut invariants.
Third, when a network has one or more cherries (2 taxa joined by pendant edges to

a common node), we will label the taxa in each cherry by the same subscripted letter,
such as a1, a2. (See for instance Fig. 5.) In CFs involving such taxa, we may then
suppress the subscripts, since under the NMSC model on a suitably rooted version of
the semidirected network the taxa a1 and a2 are exchangeable, giving the same CF
values when they are interchanged. Thus, for example, on a network with a cherry
formed by a1, a2,

CFab|cd = CFa1b|cd = CFa2b|cd ,

and

CFab|ac = CFa1b|a2c = CFa2b|a1c.

We call these exchange invariants, but note that some of these these are also cut
invariants. For computations, our notational simplification of surpressing subscripts
allows for their omission.

Definition 5 For a topological phylogenetic network N , the ideal generated by all
trivial, cut, and exchange invariants of N is denoted J (N ).

Note that J (N ) depends on the topology of the network N due to the cut and
exchange invariants. However, it only depends on the undirected topology. Also, while
J (N ) ⊆ I(N ) these ideals are typically not equal. Since the generators of J (N ) are
linear, and simple to enumerate,weuse them for removing someCFs fromcalculations
of I(N ), and for stating results on ideal generators more succinctly.

B.2 Propositions from 3-Cycle Computations

Proposition 32 Let T5 = ((a1, a2), c, (b1, b2)) be a 5-taxon tree, as shown in Fig. 5
(left). Then
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(a) The quartet concordance factors of T5 are

CFaabc =
(
1 − 2

3
�1,

1

3
�1,

1

3
�1

)
,

CFacbb =
(
1 − 2

3
�2,

1

3
�2,

1

3
�2

)
,

CFaabb =
(
1 − 2

3
�2�1,

1

3
�2�1,

1

3
�2�1

)
.

(b) The ideal defining VT5 ⊂ C
9 is I(T5) = J (T5) + 〈 fabc〉, where

fabc = 3CFab|acCFba|bc − CFab|ab.

The variety VT5 has dimension 2.
(c) The numerical parameters �1 and �2 can be determined from quartet CFs:

�1 = 3CFab|ac, �2 = 3CFab|cb.

Proposition 33 Let N5−31 be a 5-taxon level-1 network with a central 31-cycle, as in
Fig. 5 (center). Then

(a) The quartet concordance factors of N5−31 are

CFaabc =
(
1 − 2

3
�1(γ + x − γ x),

1

3
�1(γ + x − γ x),

1

3
�1(γ + x − γ x)

)
,

CFacbb =
(
1 − 2

3
�2(1 − γ + γ x),

1

3
�2(1 − γ + γ x),

1

3
�2(1 − γ + γ x)

)
,

CFaabb =
(
1 − 2

3
�2�1x,

1

3
�2�1x,

1

3
�2�1x

)
.

(b) The ideal defining V(N5−31) ⊂ C
9 is I(N5−31) = J (N5−31) = J (T5), The

variety VN5−31
has dimension 3.

(c) None of the numerical parameters γ , x, �1, �2 can be determined from quartet
CFs. They can be determined with one degree of freedom, for instance if �1 is
known:

�2 = 3�1CFab|cb − 3CFab|ab
�1 − 3CFab|ac

, x = �1CFab|ab − 3CFab|abCFab|ac
�21CFab|cb − �1CFab|ab

,

γ = 3�1CFab|cbCFab|ac − �1CFab|ab
�21CFab|cb − 2�1CFab|ab + 3CFab|abCFab|ac

.

Proposition 34 Let N5−32 be a 5-taxon level-1 semidirected network with a central
32-cycle, as in Fig. 5 (right). Then,

(a) The quartet concordance factors of N5−32 are

CFaabc =
(
1 − 2

3
�1u,

1

3
�1u,

1

3
�1u

)
, with u = γ 2h1 + γ (1 − γ )(3 − x) + (1 − γ )2h2,

CFacbb =
(
1 − 2

3
�2v,

1

3
�2v,

1

3
�2v

)
, with v = γ + (1 − γ )x,

CFaabb =
(
1 − 2

3
�1�2w,

1

3
�1�2w,

1

3
�1�2w

)
, with w = γ 2h1 + 2γ (1 − γ ) + (1 − γ )2h2x .

(b) The ideal defining VN5−32
⊂ C

9 is I(N5−32) = J (N5−32) = J (T5). The variety
VN5−32

has dimension 3.
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(c) None of the numerical parameters γ , h1, h2, x, �1, �2 can be determined from
quartet CFs. They can be determined with three degrees of freedom. If γ , �1 and
�2 are known then:

x = γ �2 − 3CFab|bc
γ �2 − �2

, h2 = γ �1�2 − 3γ �1CFab|bc − 3�2CFab|ac + 3CFab|ab
�1

(
�2 − 3CFab|bc

)
(γ − 1)

,

h1 = 1

γ 2�1�2
(
�2 − 3CFab|bc

)
[
3

(
γ �1

(−3CFab|bc − γ �2 + 3�2
) − 3�2CFab|ac

)
CFab|bc

+ 3γ �22CFab|ac + 3�2CFab|ab(1 − γ ) − γ �1�
2
2(2 − γ )

]
.

Proposition 35 Let T6 be the 6-taxon tree with a central node and 3 cherries, as in
Fig. 6 (right). Then,

(a) The quartet concordance factors of T6 are

CFaabb =
(
1 − 2

3
�2�1,

1

3
�2�1,

1

3
�2�1

)
,

CFaabc =
(
1 − 2

3
�1,

1

3
�1,

1

3
�1

)
,

CFabbc =
(
1

3
�2,

1

3
�2, 1 − 2

3
�2

)
,

CFabcc =
(
1 − 2

3
�3,

1

3
�3,

1

3
�3

)
,

CFaacc =
(
1 − 2

3
�3�1,

1

3
�3�1,

1

3
�3�1

)
,

CFbbcc =
(
1 − 2

3
�3�2,

1

3
�3�2,

1

3
�3�2

)
.

(b) The ideal defining VT6 ⊂ C
18 is I(T6) = J (T6) + 〈 fabc, fbca, fcab〉 where

fabc = 3CFab|acCFab|bc − CFab|ab,
fbca = 3CFab|bcCFac|bc − CFbc|bc,
fcab = 3CFab|acCFac|bc − CFac|ac.

The variety VT6 has dimension 3.
(c) The numerical parameters �1, �2, �3 can be determined from quartet CFs by:

�1 = 3CFab|ac, �2 = 3CFab|bc, �3 = 3CFac|bc.

Proposition 36 Let N6−32 = Na be a 6-taxon level-1 semidirected network with a
central 32-cycle and 3 cherries, as shown in Fig. 6 (left). Then,

(a) The quartet concordance factors of N6−32 are

CFaabb = (1 − 2α, α, α), with α = 1

3
�1�2(γ

2h1 + 2γ (1 − γ ) + (1 − γ )2h2x),

CFaabc = (1 − 2β, β, β), with β = 1

3
�1(γ

2h1 + γ (1 − γ )(3 − x) + (1 − γ )2h2),

CFabbc = (η, η, 1 − 2η), with η = 1

3
�2(x + γ − γ x),

CFabcc = (1 − 2δ, δ, δ), with δ = 1

3
�3(1 − γ + γ x),
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CFaacc = (1 − 2ε, ε, ε), with ε = 1

3
�1�3(γ

2h1x + 2γ (1 − γ ) + (1 − γ )2h2),

CFbbcc = (1 − 2ζ, ζ, ζ ), with ζ = 1

3
x�2�3.

(b) The ideal defining VN6−32
⊂ C

18 is I(N6−32) = J (N6−32) = J (T6). The variety
VN6−32

has dimension 6.
(c) None of the numerical parameters γ , x, �1, �2, �3, h1, h2 can be determined from

quartet CFs. They can be determined with one degree of freedom, for instance if
�3 is given:

γ = (�3 − 3CFac|bc)(�3CFab|bc − CFbc|bc)
(�23CFab|bc − 2�3CFbc|bc + 3CFbc|bcCFac|bc)

, x = CFbc|bc(�3 − 3CFac|bc)
�3(�3CFab|bc − CFbc|bc)

,

�1 = −g

(CFbc|bc − 3CFab|bcCFac|bc)(�3 − 3CFac|bc)
, �2 = 3(�3CFab|bc − CFbc|bc)

(�3 − 3CFac|bc)
,

h1 = gh1 (CFbc|bc − 3CFab|bcCFac|bc)
g(�3 − 3CFac|bc)(�3CFab|bc − CFbc|bc)

, h2 = gh2 (�3 − 3CFac|bc)
g�3(CFbc|bc − 3CFab|bcCFac|bc)

.

where

g = �23CFab|ab − 3�23CFab|acCFab|bc − 3�3CFab|abCFac|bc + 3�3CFac|acCFab|bc
− 3CFbc|bcCFac|ac + 9CFbc|bcCFab|acCFac|bc,

gh1 = �33CFab|ab − 6�33CFab|acCFab|bc + 6�23CFbc|bcCFab|ac − 3�23CFab|abCFac|bc
+ 6�23CFac|acCFab|bc − 9�3CFbc|bcCFac|ac + 9CFbc|bcCFac|acCFac|bc,

gh2 = 2�33CFab|abCFab|bc − 6�33CFab|acCF2
ab|bc − 3�23CFbc|bcCFab|ab

+ 12�23CFbc|bcCFab|acCFab|bc − 6�23CFab|abCFab|bcCFac|bc + 3�23CFac|acCF2
ab|bc

− 6�3CF2
bc|bcCFab|ac + 12�3CFbc|bcCFab|abCFac|bc − 6�3CFbc|bcCFac|acCFab|bc

+ 3CF2
bc|bcCFac|ac − 9CFbc|bcCFab|abCF2

ac|bc.

Proposition 37 Let the parameterized variety VD be as in Proposition 12.

(a) VD is defined by the 0 ideal, and thus VD = C
6.

(b) From a point (p1, p2, p3, p4, p5, p6) in the image of the parameterization of VD,
none of the parameters can be determined. They can be determined with 1 degree
of freedom, for instance, if �3 is given:

γ = − 3p4�
2
3 + (−3p1 p4 + p3 − 3p4 − 1)�3 + p1 p3 − p1 − p3 + 1

3p4�
2
3 + (2p3 − 2)�3 + p1 p3 − p1 − p3 + 1

,

x = − (p3 − 1)(�3 + p1 − 1)

�3(3p4�3 + p3 − 1)
,

�1 = [
(9p4 p5 + 3p6)�

2
3 + (−3p2 p4 + 3p1 p6 + 3p4 − 3p6)�3 + 3p1 p3 p5 − p2 p3 − 3p1 p5 − 3p3 p5

+ p2 + p3 + 3p5 − 1
]
/(3p1 p4 − p3 − 3p4 + 1)(�3 + p1 − 1),

�2 = 3p4�3 − p3 + 1

�3 + p1 − 1
,

h1 = f1
g1

, h2 = f2
g2

,

where
f1 = −(54p24 p5 − 18p4 p6)�

4
3 + (−54p1 p

2
4 p5 + 9p2 p

2
4 + 36p3 p4 p5 − 54p24 p5 − 36p1 p4 p6
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− 9p24 − 36p4 p5

− 9p3 p6 + 36p4 p6 + 9p6)�
3
3 + (9p1 p2 p

2
4 + 36p1 p3 p4 p5 − 18p21 p4 p6 + 6p2 p3 p4

− 9p1 p
2
4 − 9p2 p

2
4

+ 6p23 p5 − 36p1 p4 p5 − 36p3 p4 p5 − 21p1 p3 p6 + 36p1 p4 p6 − 6p2 p4 − 6p3 p4

+ 9p24 − 12p3 p5

+ 36p4 p5 + 21p1 p6 + 21p3 p6 − 18p4 p6 + 6p4 + 6p5 − 21p6)�
2
3

+ (6p1 p2 p3 p4 + 6p1 p
2
3 p5 − 15p21 p3 p6 p2 p

2
3 − 6p1 p2 p4 − 6p1 p3 p4 − 6p2 p3 p4

− 12p1 p3 p5 − 6p23 p5

+ 15p21 p6 + 30p1 p3 p6 − 2p2 p3 − p23 + 6p1 p4 + 6p2 p4 + 6p3 p4 + 6p1 p5

+ 12p3 p5 − 30p1 p6

− 15p3 p6 + p2 + 2p3 − 6p4 − 6p5 + 15p6 − 1)�3 − 3p31 p3 p6 + p1 p2 p
2
3 + 3p31 p6

+ 9p21 p3 p6

− 2p1 p2 p3 − p1 p
2
3 − p2 p

2
3 − 9p21 p6 − 9p1 p3 p6 + p1 p2 + 2p1 p3 + 2p2 p3

+ p23 + 9p1 p6 + 3p3 p6

− p1 − p2 − 2p3 − 3p6 + 1,

g1 = �3(3p1 p4 − p3 − 3p4 + 1)
(
(9p4 p5 − 3p6)�

2
3 + (3p2 p4 − 3p1 p6 − 3p4 + 3p6)�3

− 3p1 p3 p5 + p2 p3 + 3p1 p5 + 3p3 p5 − p2 − p3 − 3p5 + 1
)
,

f2 = +(54p1 p
2
4 p5 + 18p3 p4 p5 + 54p24 p5 + 9p1 p4 p6 − 18p4 p5 − 3p3 p6 − 9p4 p6 + 3p6)�

3
3

+ (−18p1 p2 p
2
4 − 18p1 p3 p4 p5 + 9p21 p4 p6 + 6p2 p3 p4 + 18p1 p

2
4 + 18p2 p

2
4 + 6p23 p5

+ 18p1 p4 p5 + 18p3 p4 p5 − 3p1 p3 p6 − 18p1 p4 p6 − 6p2 p4 − 6p3 p4 − 18p24 − 12p3 p5

− 18p4 p5 + 3p1 p6 + 3p3 p6 + 9p4 p6 + 6p4 + 6p5 − 3p6)�
2
3

+ (−9p1 p2 p3 p4 + 3p2 p
2
3 + 9p1 p2 p4 + 9p1 p3 p4 + 9p2 p3 p4 − 6p2 p3 − 3p23 − 9p1 p4

− 9p2 p4 − 9p3 p4 + 3p2 + 6p3 + 9p4 − 3)�3

− 3p21 p2 p3 p4 + p1 p2 p
2
3 + 3p21 p2 p4 + 3p21 p3 p4 + 6p1 p2 p3 p4 − 2p1 p2 p3 − p1 p

2
3 − p2 p

2
3

− 3p21 p4 − 6p1 p2 p4 − 6p1 p3 p4 − 3p2 p3 p4 + p1 p2 + 2p1 p3 + 2p2 p3 + p23 + 6p1 p4 + 3p2 p4

+ 3p3 p4 − p1 − p2 − 2p3 − 3p4 + 1,

g2 = (�3 + p1 − 1)(3p4�3 + p3 − 1) · (
(9p4 p5 − 3p6)�

2
3 + (3p2 p4 − 3p1 p6 − 3p4 + 3p6)�3

− 3p1 p3 p5 + p2 p3 + 3p1 p5 + 3p3 p5 − p2 − p3 − 3p5 + 1
)
.

B.3 Propositions from 4-Cycle Computations

Proposition 38 Consider the 5-taxon level-1 network Ns with a single 4-cycle shown
in Fig. 9 (left). Then

(a) The quartet concordance factors of Ns are

CFabcd =
(

− 1

3
(2γ x1 + γ x2 − 3γ − x2),

1

3
(γ x1 − γ x2 + x2), 1 + 1

3
(γ x1 + 2γ x2 − 3γ − 2x2)

)
,

CFxyzw =
(
1 − 2

3
�uxyzw,

1

3
�uxyzw,

1

3
�uxyzw

)
for xyzw = aabc, aabd, aacd,

where

uaabc = γ 2h2x2 + γ 2h1 + γ 2x1 − γ h2x2 − 3γ 2 − 2γ x1 + 3γ + x1,

123



  110 Page 44 of 48 E. S. Allman et al.

uaabd = γ 2x1x2 + γ 2h1 + γ 2h2 − 2γ x1x2 − 3γ 2 − γ h2 + x1x2 + 3γ,

uaacd = γ 2h1x1 + γ 2h2 + γ 2x2 − 3γ 2 − γ h2 − 2γ x2 + 3γ + x2.

(b) The ideal defining VNs ⊂ C
12 is I(Ns) = J (Ns). The variety VNs has dimension

5.
(c) None of the numerical parameters x1, x2, h1, h2, �, γ can be determined from

quartet CFs. They can be determined with 1 degree of freedom, for instance, if γ
is given:

x1 = γ − CFab|cd + CFac|bd
γ

, x2 = γ − CFab|cd − 2CFac|bd
γ − 1

,

h1 = nh1
dh

, h2 = nh2
dh

, � = n�

d�
,

where
nh1 =

(
(CFab|ac − 2CFab|ad )CFab|cd + (CFab|cd − 1)CFac|ad − (CFab|ac + CFab|ad

− 2c fac|ad )CFac|bd + CFab|ad
)
γ 3 −

(
(CFab|ac + CFab|ad )CF2

ab|cd − 2(CFab|ac
− 2CFab|ad )CF2

ac|bd + 2(CFab|ac − 2CFab|ad )CFab|cd − 3(CF2
ab|cd − CFab|cd )CFac|ad

+ ((CFab|ac + 4CFab|ad )CFab|cd − 6CFab|cdCFac|ad − 2CFab|ac + CFab|ad )CFac|bd
)
γ 2

+
(
4CFac|adCF3

ac|bd + (2CFab|ac + CFab|ad )CF2
ab|cd − 4(CFab|ac − CFab|ad )CF2

ac|bd
+ (CFab|ac − 3CFab|ad )CFab|cd − (CF3

ab|cd + 3CF2
ab|cd − 3CFab|cd − 1)CFac|ad

+ (2(CFab|ac + 2CFab|ad )CFab|cd − 3(CF2
ab|cd + 2CFab|cd + 1)CFac|ad − CFab|ac

+ 3CFab|ad )CFac|bd − CFab|ad
)
γ − 4CFac|adCF3

ac|bd − CFab|acCF2
ab|cd + 2CFab|acCF2

ac|bd
+ CFab|adCFab|cd + (CF3

ab|cd − CFab|cd )CFac|ad − (CFab|acCFab|cd − (3CF2
ab|cd + 1)CFac|ad

+ CFab|ad )CFac|bd ,

nh2 =
(
(CFab|ac − 2CFab|ad )CFab|cd + (CFab|cd − 1)CFac|ad − (CFab|ac + CFab|ad

− 2CFac|ad )CFac|bd + CFab|ad
)
γ 3 +

(
(3CFab|ac − CFab|ad )CF2

ab|cd − (3CFab|ac + CFab|ad
− 2CFac|ad )CF2

ac|bd − CFab|acCFab|cd − (CF2
ab|cd − 1)CFac|ad + (2CFab|adCFab|cd

− (CFab|cd + 3)CFac|ad + CFab|ac + 3CFab|ad )CFac|bd − CFab|ad
)
γ 2 −

(
CFab|acCF3

ab|cd
+ 2CFab|acCF3

ac|bd + (3CFab|ac − 2CFab|ad )CF2
ab|cd − (3CFab|acCFab|cd + 3CFab|ac

+ 2CFab|ad − 2CFac|ad )CF2
ac|bd − 2CFab|adCFab|cd − (CF2

ab|cd − CFab|cd )CFac|ad
+ (4CFab|adCFab|cd − (CFab|cd + 1)CFac|ad + 2CFab|ad )CFac|bd

)
γ + CFab|acCF3

ab|cd
+ 2CFab|acCF3

ac|bd − CFab|adCF2
ab|cd + 2CFab|adCFab|cdCFac|bd − (3CFab|acCFab|cd

+ CFab|ad )CF2
ac|bd ,

dh =
(
(CFab|ac − 2CFab|ad )CFab|cd + (CFab|cd − 1)CFac|ad − (CFab|ac + CFab|ad

− 2CFac|ad )CFac|bd + CFab|ad
)
γ 3 +

(
CFab|adCF2

ab|cd − 2CFab|adCF2
ac|bd

− CFab|acCFab|cd + (CFab|adCFab|cd + CFab|ac)CFac|bd
)
γ 2,

n� = +3
(
(CFab|ac − 2CFab|ad )CFab|cd + (CFab|cd − 1)CFac|ad − (CFab|ac + CFab|ad

− 2CFac|ad )CFac|bd + CFab|ad
)
γ 2 + 3

(
CFab|adCF2

ab|cd − 2CFab|adCF2
ac|bd

− CFab|acCFab|cd + (CFab|adCFab|cd + CFab|ac)CFac|bd
)
γ,

d� = −
(
4CF3

ab|cd − 6CFab|cdCF2
ac|bd − 4CF3

ac|bd − 3CF2
ab|cd

+ (6CF2
ab|cd + 3CFab|cd + 1)CFac|bd − CFab|cd

)
γ 2
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+
(
CF4

ab|cd − 4(CFab|cd + 1)CF3
ac|bd + 4CF4

ac|bd + 4CF3
ab|cd

− (3CF2
ab|cd + 6CFab|cd + 1)CF2

ac|bd − 4CF2
ab|cd

+ (2CF3
ab|cd + 6CF2

ab|cd + 5CFab|cd + 1)CFac|bd − CFab|cd
)
γ − CF4

ab|cd + 4CFab|cdCF3
ac|bd

− 4CF4
ac|bd + (3CF2

ab|cd + 1)CF2
ac|bd + CF2

ab|cd − 2(CF3
ab|cd + CFab|cd )CFac|bd .

Proposition 39 Let Nw be the 5-taxon level-1 network with a single 4-cycle shown in
Fig. 9 (center). Then

(a) The quartet concordance factors of Nw are

CFabcd =
(
1

3
(−2γ x1 − γ x2 + 3γ + x2),

1

3
(γ x1 − γ x2 + x2), 1 + 1

3
(γ x1 + 2γ x2 − 3γ − 2x2)

)
,

CFxyzw =
(
1 − 2

3
�uxyzw,

1

3
�uxyzw,

1

3
�uxyzw

)
for xyzw = aabc, aabd, aacd,

where

uaabc = x1,

uaabd = −γ x1 + γ + x1,

uaacd = −γ x1x2 + x1x2 + γ.

(b) The ideal defining VNw ⊂ C
12 is

I(Nw) = J (Nw) + 〈CFab|cdCFab|ac − CFac|bdCFab|ac − CFab|ad + CFac|ad 〉,

and VNw has dimension 4.
(c) The numerical parameters x1, x2, �, γ can be determined from quartet CFs:

x1 = 3CFab|acCFac|bd − CFab|ac + CFab|ad − CFac|ad
CFab|ac − CFab|ad

,

x2 = −[
CFab|adCFab|cd − (CFab|cd − 2)CFac|ad − (CFab|ad + 2CFac|ad )CFac|bd + CFab|ac

− 2CFab|ad
]
/CFab|adCFab|cd + 2CFab|adCFac|bd − CFab|ac,

� = 3(CFab|ac − CFab|ad )

CFab|cd + 2CFac|bd − 1
,

γ = −CFab|adCFab|cd − (3CFab|ac − 2CFab|ad )CFac|bd + CFab|ac − 2CFab|ad + CFac|ad
3CFab|acCFac|bd − 2CFab|ac + 2CFab|ad − CFac|ad

.

Proposition 40 Let Nn be the 5-taxon level-1 network with a single 4-cycle shown in
Fig. 9 (right). Then

(a) The quartet concordance factors of Nn are

CFabcd =
(
1

3
(−2γ x1 − γ x2 + 3γ + x2),

1

3
(γ x1 − γ x2 + x2), 1 + 1

3
(γ x1 + 2γ x2 − 3γ − 2x2)

)
,

CFxyzw =
(
1 − 2

3
�uxyzw,

1

3
�uxyzw,

1

3
�uxyzw

)
for xyzw = aabc, aabd, aacd,

where
uaabc = γ + x2 − γ x2, uaabd = 1, uaacd = 1 − γ + γ x1.
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(b) the ideal defining VNn ⊂ C
12 is

I(Nn) = J (Nn) + 〈3CFac|bdCFad|ab + CFad|ab − CFac|ab − CFac|ad ,

CFab|cdCFac|ab + CFab|cdCFac|ad − CFac|bdCFac|ab + 2CFac|bdCFac|ad − CFac|ab,
3CFab|cdCFad|ab − 2CFad|ab − CFac|ab + 2CFac|ad 〉,

and VNn has dimension 3.
(c) The parameter � can be identified from quartet CFs:

� = 3CFa1ba2d ,

but none of x1, x2, and γ can be. However, the quantities x1γ −γ and x2(γ −1)−γ
can be determined from the quartet CFs, so if γ is known:

x1 = γ − CFabcd + CFacbd
γ

, x2 = γ − CFabcd − 2CFacbd
γ − 1

.

Proposition 41 Let Nsn be a 6-taxon level-1 network with a central 4-cycle as shown
in Fig. 14 (right). Then
(a) The quartet concordance factors of Nsn are

CFaabc = (1 − 2u, u, u), with u = �1

[
1

3
γ 2h1 + 1

3
(1 − γ )2h2x2 + γ (1 − γ )

(
1 − 1

3
x1

)]
,

CFaabd = (1 − 2u, u, u), with u = �1

[
1

3
γ 2h1 + 1

3
(1 − γ )2h2 + γ (1 − γ )

(
1 − 1

3
x1x2

)]
,

CFaacc = (1 − 2u, u, u), with u = �1�2

[
1

3
γ 2h1x1 + 1

3
(1 − γ )2h2x2 + 2

3
γ (1 − γ )

]
,

CFaacd = (1 − 2u, u, u), with u = �1

[
1

3
γ 2h1x1 + 1

3
(1 − γ )2h2 + γ (1 − γ )

(
1 − 1

3
x2

)]
,

CFabcc = (u, u, 1 − 2u), with u = �2
1

3
(γ x1 + (1 − γ )) ,

CFabcd =
(

γ

(
1 − 2

3
x1

)
+ (1 − γ )

1

3
x2,

1

3
(γ x1 + (1 − γ )x2), γ

1

3
x1 + (1 − γ )

(
1 − 2

3
x2

))
,

CFaccd = (u, u, 1 − 2u), with u = 1

3
�2(γ + (1 − γ )x2),

CFbccd = (u, u, 1 − 2u), with u = 1

3
�2.

(b) The ideal defining V(Nsn) ⊂ C
9 is

I(Nsn) = J (Nsn) + 〈Cab|cdCac|cd+Cab|cdCac|bc − Cac|cdCac|bd − Cac|cd
+ 2Cac|bdCac|bc, 3Cbc|cdCac|bd + Cbc|cd − Cac|cd − Cac|bc,
3Cbc|cdCab|cd − 2Cbc|cd − Cac|cd + 2Cac|bc〉.

The variety VNsn has dimension 7.
(c) The numerical parameters γ , h1, h2, x1, x2, �1, �2 can be determined from quartet

CFs: small

γ = nγ

dγ

, h1 = nh1
dh1

, h2 = nh2
dh2

, x1 = nx1
dx1

, x2 = nx2
dx2

,

�1 = −3Cab|acCbc|cd + 3Cab|adCbc|cd − 3Cbc|cdCac|ad + Cac|ac
−Cab|cdCac|bc − 2CacbdCac|bc − Cbc|cd + Cac|cd + Cac|bc

, �2 = 3Cbc|cd .
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where

nγ = −Cac|acC2
ab|cd − Cac|acCab|cdCacbd + 2Cac|acCacbd2 − 3Cab|acCab|cdCac|bc

− 3Cab|cdCac|adCac|bc − 6Cab|acCacbdCac|bc − 6Cac|adCacbdCac|bc − 3Cab|adCbc|cd
− Cac|acCab|cd + 3Cbc|cdCac|ad + 3Cab|acCac|cd + 3Cac|adCac|cd + Cac|acCacbd

+ 3Cab|adCac|bc − 3Cac|adCac|bc,
dγ = −3Cab|acCbc|cd − 4Cac|acCab|cd + 3Cbc|cdCac|ad + 6Cab|acCac|cd − 3Cab|adCac|cd

+ 3Cac|adCac|cd − 2Cac|acCacbd − 3Cab|acCac|bc + 3Cab|adCac|bc − 6Cac|adCac|bc + 2Cac|ac,
nh1 = (−3Cac|adCac|cd + Cac|ac)x1 + 6Cab|acCbc|cd − 3Cab|adCbc|cd + 3Cac|acCab|cd

− 6Cab|acCac|cd + 3Cab|adCac|cd + 3Cac|acCacbd + 3Cac|adCac|bc − 3Cac|ac,
dh1 = +3Cab|acCbc|cd − 3Cab|adCbc|cd − Cac|acCab|cd + 3Cbc|cdCac|ad + Cac|acCacbd

− 3Cab|acCac|bc + 3Cab|adCac|bc − 3Cac|adCac|bc,
nh2 = (3Cab|acCac|bc − Cac|ac)x2 + 3Cab|adCbc|cd + 3Cac|acCab|cd − 6Cbc|cdCac|ad

− 3Cab|acCac|cd − 3Cab|adCac|bc + 6Cac|adCac|bc,
dh2 = −3Cab|acCbc|cd + 3Cab|adCbc|cd − Cac|acCab|cd − 3Cbc|cdCac|ad + 3Cab|acCac|cd

− 3Cab|adCac|cd + 3Cac|adCac|cd − 2Cac|acCacbd + Cac|ac,
nx1 = +3Cab|acCbc|cd − 3Cab|adCbc|cd + 3Cac|acCab|cd − 3Cab|acCac|cd

+ 3Cab|adCac|cd + 3Cab|acCac|bc − 3Cab|adCac|bc + 6Cac|adCac|bc − 3Cac|ac,
dx1 = −3Cab|adCbc|cd − Cac|acCab|cd + 3Cbc|cdCac|ad + 3Cab|acCac|cd

+ 3Cac|adCac|cd − 2Cac|acCacbd − Cac|ac,
nx2 = +3Cab|adCbc|cd + 3Cac|acCab|cd − 3Cbc|cdCac|ad − 6Cab|acCac|cd

+ 3Cab|adCac|cd − 3Cac|adCac|cd + 3Cac|acCacbd − 3Cab|adCac|bc + 3Cac|adCac|bc,
dx2 = −3Cab|acCbc|cd + 3Cab|adCbc|cd − Cac|acCab|cd + Cac|acCacbd

− 3Cab|acCac|bc − 3Cac|adCac|bc + 2Cac|ac .
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