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generalizations, and demonstrate that each has its own merits, where 
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morphism of matroids, which admits a corank-nullity formula and a 
deletion-contraction recursion. The other generalization does not, but 
better reflects the geometry of flag varieties.
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1. Introduction

Matroids are combinatorial abstractions of hyperplane arrangements that have been fruitful 
grounds for interactions between algebraic geometry and combinatorics. One interaction con-
cerns the Tutte polynomial of a matroid, an invariant first defined for graphs by Tutte [40] and 

then for matroids by Crapo [11].
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Definition 1.1. Let M be a matroid of rank r on a finite set [n] = {1, 2, . . . , n} with the rank 

function rkM : 2[n] → Z≥0. Its Tutte polynomial TM (x, y) is a bivariate polynomial in x, y

defined by

TM (x, y) :=
∑

S⊆[n]

(x − 1)r−rkM (S)(y − 1)|S|−rkM (S).

An algebro-geometric interpretation of the Tutte polynomial was given in [16] via the K-
theory of the Grassmannian. Let Gr(r; n) be the Grassmannian of r-dimensional linear sub-
spaces in Cn, and more generally let Fl(r; n) be the flag variety of flags of linear spaces of 
dimensions r = (r1, . . . , rk). The torus T = (C∗)n acts on Gr(r; n) and Fl(r; n) by its stan-
dard action on Cn. A point L ∈ Gr(r; n) on the Grassmannian corresponds to a realization 

of a matroid, and its torus-orbit closure defines a K-class [OT ·L] ∈ K0(Gr(r; n)) that de-
pends only on the matroid. In general, a matroid M of rank r on {1, . . . , n} defines a K-class 
y(M) ∈ K0(Gr(r; n)). Fink and Speyer related y(M) to the Tutte polynomial TM (x, y) via the 

diagram

Fl(1, r, n − 1; n)

Gr(r; n) Gr(n − 1; n) × Gr(1; n) (P n−1)∨×P n−1,

πr
π(n−1)1

(1)
where πr and π(n−1)1 are maps that forget appropriate subspaces in the flag.

Theorem 1.2. [16, Theorem 5.1] Let O(1) be the line bundle on Gr(r; n) of the Plücker embed-

ding Gr(r; n) ↪→ P (n
r
)−1. With notations as above, we have

TM (α, β) = (π(n−1)1)∗π∗
r

(
y(M) · [O(1)]

)
∈ K0((P n−1)∨ × P n−1) � Q[α, β]/(αn, βn),

where α, β are the K-classes of the structures sheaves of the hyperplanes of (P n−1)∨, P n−1.

We extend this relation between matroids and the K-theory of Grassmannians to a relation 

between flag matroids and the K-theory of flag varieties. As a result, we show that there are (at 
least) two different generalizations of the Tutte polynomial to flag matroids, each with its own 

merits.
A flag matroid is a sequence of matroids M = (M1, . . . , Mk) on a common ground set 

such that every circuit of Mi is a union of circuits of Mi−1 for all 2 ≤ i ≤ k. The rank of M
is the sequence (rk(M1), . . . , rk(Mk)). Most of this paper will concern the case of k = 2. In 

this case, the two-step flag matroids (M1, M2) are often called matroid morphisms or matroid 

quotients. They are combinatorial abstractions of graph homomorphisms, linear surjections, 
and embeddings of graphs on surfaces. See §2.1 for details on flag matroids and matroid quo-
tients.
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Many features of matroids naturally generalize to flag matroids. For instance, just as a point on 

a Grassmannian corresponds to a realization of a matroid, a point L on the flag variety Fl(r; n)

corresponds to a realization of a flag matroid. The torus-orbit closure of L defines a K-class 
[OT ·L] ∈ K0(Fl(r; n)) that depends only on the flag matroid. In general, a flag matroid M of 
rank r on a ground set {1, . . . , n} defines a K-class y(M) of the flag variety Fl(r; n). See §2.3
or [8, §8.5] for details.

At this point, however, extending the constructions on matroids to flag matroids splits into 

several strands, for there are (at least) two distinguished ways to generalize the diagram (1).

• The “flag-geometric” diagram:

Fl(1, r, n − 1; n)

Fl(r; n) (P n−1)∨ × P n−1

πr
π(n−1)1 (Fl)

where πr and π(n−1)1 are maps that forget appropriate subspaces in the flag.
• The “Las Vergnas” diagram:

F̃ l(1, r, n − 1; n)

Fl(r; n) (P n−1)∨ × P n−1

π̃r
π̃(n−1)1 (F̃ l)

where F̃ l(1, r, n − 1; n) is the variety defined as

F̃ l(1, r, n − 1; n)

:=

{
linear subspaces

(�, L1, . . . , Lk, H)

∣∣∣∣
dim � = 1, dim H = n − 1, (L1, . . . , Lk) ∈ Fl(r; n),

and � ⊆ Lk and L1 ⊆ H

}
,

and π̃r and π̃(n−1)1 are maps that forget appropriate subspaces in the flag.

Let us first consider the construction (F̃ l). While the construction (F̃ l) may seem geometri-
cally unnatural, since F̃ l(1, r, n − 1; n) is not a flag variety, it leads to the previously established 

notion of Las Vergnas’ Tutte polynomials of morphisms of matroids, defined as follows.

Definition 1.3. Let M = (M1, M2) be a two-step flag matroid on a ground set [n] = {1, . . . , n}. 
For i = 1, 2, let us write ri for the rank of Mi, and ri(S) for the rank of S ⊆ [n] in Mi. The Las 

Vergnas Tutte polynomial of (M1, M2) is a polynomial in three variables x, y, z defined by

LV TM(x, y, z) :=
∑

S⊆[n]

(x − 1)r1−r1(S)(y − 1)|S|−r2(S)zr2−r2(S)−(r1−r1(S)).
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Las Vergnas introduced this generalization of the Tutte polynomial in [27], and studied its 
properties in a series of subsequent works [28–30,14,31,32]. Our first main theorem is a K-
theoretic interpretation of the Las Vergnas Tutte polynomial.

Theorem 5.2. Let M = (M1, M2) be a flag matroid with r1 = rk(M1), r2 = rk(M2). Let 

O(0, 1) be the line bundle on Fl(r1, r2; n) of the map Fl(r1, r2; n) → Gr(r2; n) ↪→ P
( n

r2
)−1

, 

and let S2/S1 be the vector bundle on Fl(r1, r2; n) whose fiber over a point (L1, L2) ∈

Fl(r1, r2; n) is L2/L1. Then,

LV TM(α, β, w) =

r2−r1∑

m=0

(π̃(n−1)1)∗π̃∗
r

(
y(M)[O(0, 1)][

m∧
(S2/S1)]

)
wm

as elements in K0((P n−1)∨ × P n−1)[w] � Q[α, β, w]/(αn, βn).

Let us now consider the construction (Fl). It leads to the following different generalization 

of the Tutte polynomial, first defined in the review [8].

Definition 6.1. Let M be a flag matroid of rank r = (r1, . . . , rk) on {1, . . . , n}, and let O(1)

be the line bundle of the embedding Fl(r; n) ↪→ Gr(r1; n) × · · · × Gr(rk; n) ↪→ P
( n

r1
)−1 ×

· · · × P
( n

rk
)−1. The flag-geometric Tutte polynomial of M, denoted KTM(x, y), is the unique 

bivariate polynomial in x, y of bi-degree at most (n − 1, n − 1) such that

KTM(α, β) = (π(n−1)1)∗π∗
r

(
y(M) · [O(1)]

)
∈ K((P n−1)∨ × P n−1) � Q[α, β]/(αn, βn).

While the construction (Fl) may be more geometrically natural than the construction (F̃ l), 
we show that the flag-geometric Tutte polynomial KTM fails to display the two characteristic 

combinatorial properties of the usual Tutte polynomial that the Las Vergnas Tutte polynomial 
satisfies.

The first property is the “corank-nullity formula”: Both the usual Tutte polynomial and the 

Las Vergnas Tutte polynomial can be expressed as a summation over all subsets of the ground 

set, with terms involving coranks and nullities of subsets. As a result, for a matroid M or a flag 

matroid (M1, M2) on {1, . . . , n}, one has TM (2, 2) = 2n and LV T(M1,M2)(2, 2, 1) = 2n. We 

show that the value of KTM(2, 2) is more intricate.

Theorem 6.7. Let M be a two-step flag matroid M = (M1, M2) on a ground set [n] =

{1, . . . , n}. Let pB(M) be the set of subsets S ⊆ [n] such that S is spanning in M1 and in-

dependent in M2. Then with q as a formal variable, we have

KTM(1 + q−1, 1 + q) = q−r2 · (1 + q)n ·
( ∑

S∈pB(M)

q|S|
)

,

in particular, KTM(2, 2) = 2n · |pB(M)|.
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The second property is the deletion-contraction recursion that the Tutte polynomial and the 

Las Vergnas Tutte polynomial both satisfy. Unlike them, the flag-geometric Tutte polynomial 
KTM does not satisfy the usual deletion-contraction recursion. We instead show the following 

deletion-contraction-like relation.

Theorem 6.8. Let M be a matroid on a ground set {0, 1, . . . , n} such that the element 0 is 

neither a loop nor a coloop in M . Then we have

KT(M,M)(x, y) = KT(M/0,M/0)(x, y) + KT(M/0,M\0)(x, y) + KT(M\0,M\0)(x, y).

The three main theorems Theorem 5.2, Theorem 6.7, and Theorem 6.8 are obtained by prov-
ing stronger torus-equivariant versions of the statements. The resulting torus-equivariant state-
ments are then reduced to computing certain summations of lattice point generating functions, 
techniques for which we review, extend, and specialize in Section §4. Our main contribution here 

is Theorem 4.7, which serves as a key technical tool in this paper and may be of independent 
interest in the study of lattice polyhedra.

The reduction to lattice point generating functions is done via the method of equivariant 
localization, reviewed in Section §2.2, aided by certain push-pull computations in Section §3. 
Section §2 is largely a summary of a more detailed account [8, §8] on flag matroids and the 

torus-equivariant K-theory of flag varieties. We discuss some future directions in Section §7.

1.1. Computation

At https://github.com /chrisweur /kTutte, the reader can find a Macaulay2 code for computa-
tions with torus-equivariant K-classes and flag matroids. In particular, it computes the polyno-
mials LV TM and KTM and their torus-equivariant versions.

1.2. Notation

Throughout we set [n] := {1, . . . , n}. For i = 1, . . . , n, we set ei to be the standard coor-
dinate vector in Rn (or Cn), and write eS :=

∑
i∈S ei for a subset S ⊆ [n]. Let 〈·, ·〉 be the 

standard inner product on Rn. Cardinality of a set S is denoted by |S|, and disjoint unions by 	. 
A variety is a reduced and irreducible proper scheme over C.

2. Preliminaries: flag matroids and their K-classes on flag varieties

Here we review flag matroids and their (torus-equivariant) K-classes on flag varieties. Most 
of the material in this section is described in more detail in the review [8].

2.1. Matroid quotients and flag matroids

We assume familiarity with the fundamentals of matroid theory, and point to [35,43,42] as 
references. We write Ur,n for the uniform matroid of rank r on [n]. For a linear subspace L ⊆



6 R. Dinu et al. / Journal of Combinatorial Theory, Series A 181 (2021) 105414

Cn, let M(L) denote the linear matroid whose ground set is the image of {e1, . . . , en} under 
the dual map Cn

� L∨. For a matroid M on a ground set [n] we set:

• rkM : 2[n] → Z to be the rank function of M , with r(M) := rkM ([n]),
• M |S, M \S and M/S to be the restriction to, the deletion of, and the contraction by a subset 

S ⊆ [n] (respectively),
• B(M) to be the set of bases of M , and
• Q(M) ⊂ Rn to be the base polytope of M , which is the convex hull of {eB | B ∈ B(M)}.

In this paper, by morphisms of matroids we will mean matroid quotients, as defined below.1

They are combinatorial abstractions of the graph homomorphisms, linear maps, and graphs em-
bedded on surfaces; see [12] for illustrations of these examples.

Definition 2.1. Let M1, M2 be two matroids on a common ground set [n]. We say that M1 is a
matroid quotient of M2, written M1 � M2, if any of the following equivalent conditions are 

met [7, Proposition 7.4.7]:

(1) every circuit of M2 is a union of circuits of M1,
(2) rkM2

(B) − rkM2
(A) ≥ rkM1

(B) − rkM1
(A) for any A ⊆ B ⊆ [n],

(3) there exists a matroid N on a ground set [n] 	 S with |S| = r(M2) − r(M1) such that 
M1 = N/S and M2 = N \ S.

Example 2.2. Matroid quotients are combinatorial abstractions of linear maps of maximal rank. 
An inclusion of linear subspaces L1 ↪→ L2 ⊆ Cn, or equivalently a quotient Cn

� L∨
2 � L∨

1 , 
defines matroids M(L1) and M(L2), which form a matroid quotient M(L1) � M(L2).

Example 2.3 (Canonical matroid quotients). Just as any linear space L has two canonical linear 
maps, the identity L → L and the zero map L → 0, any matroid M has two canonical matroid 

quotients, the identity M � M and the trivial quotient M � U0,n.

A matroid quotient M1 � M2 is an elementary quotient if r(M2) − r(M1) = 1. Ev-
ery matroid quotient M1 � M2 can be realized as a composition of a series of elemen-
tary quotients. A canonical one is given by the Higgs factorization M1 = M (r2−r1)

�

· · · � M (1)
� M (0) = M2, defined by B(M (i)) = {S ⊆ [n] | |S| = r(M2) −

i, S spans M1 and is independent in M2}. The subsets S ⊆ [n] that span M1 and are indepen-
dent in M2 are called pseudo-bases of (M1, M2). The set of pseudo-bases of M = (M1, M2)

is denoted by pB(M). For a more on matroid quotients, we refer the reader to [7, §7.4] or [35, 
§7.3].

1 The behavior of a morphism of matroids, in a more general sense of [12] or [22], is largely governed by an associated matroid 
quotient [12, Lemma 2.4].
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Definition 2.4. A flag matroid is a sequence of matroids M = (M1, . . . , Mk)2 on a ground set 
[n] such that Mi � Mi+1 for all i = 1, . . . , k − 1. The matroids Mi are constituents of M, 
and the rank of M is the sequence of ranks of its constituents (r(M1), . . . , r(Mk)). The set of
bases of M, denoted B(M), is the set of all k-flags of subsets (B1 ⊆ B2 ⊆ · · · ⊆ Bk) such that 
Bi ∈ B(Mi).

Example 2.5 (Linear flag matroids). A sequence of matroids (M(L1), . . . , M(Lk)) defined by 

a flag L of linear subspaces L1 ⊆ · · · ⊆ Lk ⊆ Cn is a flag matroid. We denote this flag matroid 

by M(L). Flag matroids arising in this way are called linear (or realizable) flag matroids.

For S = (S1, . . . , Sk) a flag of subsets of [n], we write eS = eS1
+ · · · + eSk

. The base 

polytope Q(M) of a flag matroid M is the convex hull of {eB | B ∈ B(M)}, whose vertices 
are in bijection with the bases of M. The polytope Q(M) is also the Minkowski sum of the 

base polytopes Q(Mi) of the constituents of M. The classical theorem of Gelfand, Goresky, 
MacPherson, and Serganova [18] a characterizes base polytopes of matroids. The analogue for 
flag matroids holds:

Theorem 2.6. [3, Theorem 1.11.1] A lattice polytope P ⊂ Rn is the base polytope of a rank 

(r1, . . . , rk) flag matroid on [n] if and only if the following two conditions hold:

(1) every vertex of P is a Sn-permutation of e{1,2,...,r1} + · · · + e{1,2,...,rk}, and

(2) every edge of P is parallel to ei − ej for some i, j ∈ [n].

In particular, the normal fan of the base polytope Q(M) of a flag matroid is a coarsening of the 

braid arrangement, which is the normal fan of the zonotope 
∑

1≤i<j≤n Conv(ei, ej).

Consequently, every face of a base polytope of a flag matroid is again a base polytope of a 

flag matroid. The faces can be described explicitly. For u ∈ Rn and a polytope Q ⊂ Rn, let 
Qu := {x ∈ Q | 〈x, u〉 = maxy∈Q〈y, u〉} be the face maximizing in the direction of u.

Proposition 2.7. Let M = (M1, . . . , Mk) be a flag matroid on [n] or rank r = (r1, . . . , rk), and 

let S = S1 ⊆ · · · ⊆ Sm be a flag of subsets of [n]. Then Q(M)eS is the base polytope of a flag 

matroid whose i-th constituent (for i = 1, . . . , k) is

Mi|S1 ⊕ Mi|S2/S1 ⊕ · · · ⊕ Mi|Sm/Sm−1 ⊕ Mi/Sm.

In other words, the bases of the flag matroid of Q(M)eS are bases B = (B1, . . . , Bk) of M

such that rkMi
(Sj) = |Bi ∩ Sj | for all 1 ≤ i ≤ k and 1 ≤ j ≤ m.

2 We remark that, unlike [3] but in agreement with [12] and [8], we allow repetition of matroids in the sequence of matroids that 
constitute a flag matroid.
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Proof. Note that if Q =
∑k

i=1 Qi is a Minkowski sum of polytopes, then for any u ∈ Rn, the 

face Qu is the Minkowski sum 
∑k

i=1 Qu
i of faces. The proof of the proposition is thus reduced 

to the case of M being a matroid M . In this case, the statement is an immediate consequence of 
the greedy algorithm structure for matroids. �

2.2. Torus-equivariant K-theory of flag varieties

We will study combinatorial properties of flag matroids through the geometry of (partial) flag 

varieties and their (torus-equivariant) K-theory. We point to [8, §8] or [15, §2] (and references 
therein) for a detailed exposition of equivariant K-theory of flag varieties.

We begin by describing torus-equivariant K-theory and the method of localization. Let T =

(C∗)n, and write Z[t±] := Z[t±
1 , . . . , t±

n ] = Z[Z[n]] for the character ring of T . Let X be a 

smooth variety with a T -action, and let E be a (T -equivariant) vector bundle on X . We write:

• K0(X) for the Grothendieck ring of vector bundles on X , which is isomorphic to the 

Grothendieck group of coherent sheaves K0(X) since X is smooth,
• K0

T (X) for the T -equivariant Grothendieck ring,
• [E ] ∈ K0(X) for the K-class of E and [E ]T ∈ K0

T (X) for its T -equivariant K-class,
• f∗ for the (derived) pushforward map and f∗ for the pullback map of K-classes along a 

proper map f : X → X ′ of smooth varieties,
• χ for the pushforward along the structure map X → Spec C, and
• χT for the T -equivariant pushforward to K0

T (pt) = Z[t±], the Lefschetz trace [34, §4].

We now assume that X has finitely many T -fixed points, denoted XT , and finitely many 

1-dimensional T -orbits. Moreover, we assume X to be equivariantly formal and contracting, 
the precise definitions of which can be found in [8, Remark 8.5 & Definition 8.6]. Examples 
of such X include flag varieties and smooth toric varieties. By definition, for each T -fixed 

point x ∈ XT , there is a T -invariant affine neighborhood Ux � Adim X whose characters 
{λ1(x), . . . , λdim X(x)} ⊂ Zn generate a pointed semigroup. Fundamental results from the 

method of equivariant localization are collected in the following theorem.

Theorem 2.8. Let X be a equivariantly formal and contracting smooth T -variety with finitely 

many T -fixed points and finitely many 1-dimensional T -orbits. Then:

(1) [41, Corollary 5.12], [25, Corollary A.5] (cf. [34, Theorem 3.2], [39, Theorem 2.7]) The 

restriction map

K0
T (X) ↪→ K0

T (XT ) � (Z[t±])XT

, ε �→ ε(·)

is injective. Moreover, an element ε(·) ∈ (Z[t±])XT

is in the image if and only if for every 

one-dimensional T -orbit in X with boundary points x, y ∈ XT in the closure, the function 

ε(·) : XT → Z[t±] satisfies
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ε(x) ≡ ε(y) mod 1 − t
λ

where λ is the character of the action of T on the one-dimensional orbit.

(2) [15, Theorem 2.6], [33, Theorem 8.34] Let E be a T -equivariant coherent sheaf on X , and 

let x ∈ XT . The image [E ]T (x) of [E ]T under the restriction K0
T (X) → K0

T (x) � Z[t±] is 

K(E(Ux); t) where

Hilb(E(Ux)) :=
K(E(Ux); t)

∏dim X
i=1 (1 − t−λi(x))

is the multigraded Hilbert series of the OX(Ux)-module E(Ux) [33, Theorem 8.20].

(3) [9, Theorem 5.11.7] (cf. [34, §4]) Let f : X → Y be a proper T -equivariant map of equiv-

ariantly formal, contracting, and smooth T -varieties, and let α ∈ K0
T (X), β ∈ K0

T (Y ). 

Then we have

(f∗β)(x) = β(f(x)) for every x ∈ XT , and

(f∗α)(y) =

(
dim Y∏

i=1

(1 − t
−λi(y))

) ⎛
⎝ ∑

x∈XT ∩f−1(y)

α(x)
∏dim X

i=1 (1 − t−λi(x))

⎞
⎠

for every y ∈ Y T .

We now specialize our discussion of K-theory to flag varieties. For a sequence of non-
negative integers r = (r1, . . . , rk) such that 0 < r1 ≤ · · · ≤ rk < n, denote by Fl(r; n)

the flag variety

Fl(r; n) := {L = (L1 ⊆ · · · ⊆ Lk ⊆ Cn) linear subspaces with dim Li = ri ∀1 ≤ i ≤ k}.

For each i = 1, . . . , k, we have the tautological sequence of vector bundles on Fl(r; n)

0 → Si → Cn → Qi → 0

where Si is the (i-th) universal subbundle. It is a vector bundle whose fiber at a point 
L ∈ Fl(r; n) is the subspace Li. For a = (a1, . . . , ak) ∈ Zk we denote by O(a) the 

line bundle 
⊗k

i=1(det S∨
i )⊗ai , and by O(1) the line bundle O(1, 1, . . . , 1) on Fl(r; n). The 

torus T := (C∗)n acts on Fl(r; n) by its action on Cn where (t1, . . . , tn) · (x1, . . . , xn) =

(t−1
1 x1, . . . , t−1

n xn). With this T -action, a flag variety is a equivariantly formal and contracting 

space with the following structure:

• The T -fixed points xS of Fl(r; n) are flags of coordinate subspaces, which are in bijection 

with flags of subsets S1 ⊆ · · · ⊆ Sk ⊆ [n] with |Si| = ri for all i = 1, . . . , k.
• For a flag S, denote by Ex(S) the set of (i, j) ∈ [n] × [n] such that i ∈ S� and j /∈ S� for 

some 1 ≤ � ≤ k. Then the set of characters of the T -neighborhood US of xS is {ei − ej |

(i, j) ∈ Ex(S)}.
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The sign-convention we have adopted for the action of T ensures that T acts on the sections of 
S∨

i by positive characters. For instance, we have [S∨
i ]T (xS) =

∑
j∈Si

tj and [Q∨
i ]T (xS) =

∑
j∈[n]\Si

tj , and moreover [
∧p S∨

i ]T (xS) =
∑

A ⊆ Si

|A| = p

t
eA and [

∧p Si]
T (xS) =

∑

A ⊆ Si

|A| = p

t
−eA

(likewise for 
∧q Q∨

i , 
∧q Qi).

2.3. K-class of a flag matroid

Flag matroids enter into the K-theory of flag varieties as T -equivariant K-classes as follows. 
Let M be a flag matroid of rank r on a ground set [n]. For B a basis of M, define a polyhedral 
cone ConeB(M) := Cone(Q(M) − eB) ⊂ Rn, also known as the tangent cone of Q(M) at the 

vertex eB, and let HilbB(M) be the multigraded Hilbert series of C[tλ | λ ∈ ConeB(M) ∩ Zn]

(see [33, Theorem 8.20]).

Definition 2.9. [8, Definition 8.19] Let M be a flag matroid of rank r on a ground set [n]. Then 

define y(M)T (·) ∈ K0
T (Fl(r; n)T ) by

y(M)T (xS) :=

⎧
⎪⎨
⎪⎩

HilbS(M) ·
∏

(i,j)∈Ex(S)

(1 − t−1
i tj) if S a basis of M

0 otherwise.

By combining Theorem 2.8.(1) and Theorem 2.6, one observes that y(M)T can be considered 

as a class in K0
T (Fl(r; n)) [8, Proposition 8.20]. We will write y(M) for the underlying non-

equivariant K-class. The geometric motivation for this K-class constitutes the remark below.

Remark 2.10. Recall from Example 2.5 that a point L ∈ Fl(r; n) defines a flag matroid M :=

M(L) of rank r. One observes that the torus-orbit closure T · L is isomorphic to the toric variety 

of the base polytope Q(M), and then by applying Theorem 2.8.(2) one shows that the class 
[OT ·L]T ∈ K0

T (Fl(r; n)) satisfies [OT ·L]T (·) = y(M)T (·). See [8, §8.5] for details.

Remark 2.11. Let P(FMatr;n) be a group generated by the indicator functions 1(Q) : Rn → R

of base polytopes Q of rank r flag matroids on [n]. A function ϕ from the set of flag matroids of 
rank r on [n] to an abelian group A is (strongly) valuative if it factors through P(FMatr;n). As 
taking tangent cones and taking Hilbert series are valuative, it follows easily from the definition 

that the assignment M �→ y(M) is valuative.

When r = (r) (that is, we are concerned with the Grassmannian Gr(r; n) and hence matroids 
of rank r on [n]), invariants of a matroid M built from y(M) were explored in [38] and [16] as 
follows. To avoid confusion we write P n−1 for Gr(1; n) and (P n−1)∨ for Gr(n − 1; n). Recall 
the diagram:
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Fl(1, r, n − 1; n)

πr
π(n−1)1

Gr(r; n) (P n−1)∨ × P n−1.

(2)

Let α be the K-class of the structure sheaf of a hyperplane in (P n−1)∨ and β the likewise K-
class from P n−1. We remark that our notation of α, β is flipped from the notation in [16].3 Recall 
that K0((P n−1)∨ × P n−1) � Q[α, β]/(αn, βn).

Theorem 2.12. [16, Theorem 5.1] Let M be a matroid of rank r on [n], and let TM (x, y) be its 

Tutte polynomial. Then we have

TM (α, β) = (π(n−1)1)∗π∗
r

(
y(M) · [O(1)]

)
.

We will generalize this K-theoretic formulation of Tutte polynomials of matroids to flag 

matroids in two different ways in subsequent sections. In both cases, similarly to Theorem 2.12, 
the Tutte polynomials of flag matroids are formulated via diagrams like (2), which we introduce 

in the next section.

3. Two diagrams and a fundamental computation

The main goal of this section is to prove Proposition 3.1, which relates a pushforward of 
a pullback of K-classes to Euler characteristics of certain associated sheaves. As this sec-
tion is closely adapted from [16, §4], we only give sketches of proofs, save for the modified 

parts.
Let r = (r1, . . . , rk) be a sequence of non-negative integers. For each i = 1, . . . , k, re-

call that we have tautological bundles Si and Qi on Fl(r; n) fitting into the short exact se-
quences

0 → Si → Cn → Qi → 0. (3)

For two vector bundles E , F on X = Fl(r; n), we write π : BiProj(E , F) → X for the 

bi-projectivization of the direct sum E ⊕ F . That is, BiProj(E , F) := Proj(Sym• E) ×X

Proj(Sym• F), so that for each point x ∈ X , the fiber π−1(x) is P (E∨
x ) × P (F∨

x ). We consider 
the following two distinguished cases; note that the two cases are identical when k = 1 (i.e. 
when Fl(r; n) is a Grassmannian Gr(r; n)).

3 In [16], the authors consider π1(n−1) : F l(1, r, n − 1; n) → P
n−1 × (P

n−1)∨, and set α and β as the K-classes of the 
structure sheaves of hyperplanes from P n−1 and (P

n−1)∨ (respectively). Our flipped naming of α, β is to remedy a minor error 
in the proof of [16, Lemma 4.1] (bottom three lines on pg. 2709), which accidentally flips the correspondence of α, β to appropriate 
K-classes.
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• BiProj(S∨
1 , Qk) � Fl(1, r, n − 1; n). In this case, we have maps:

Fl(1, r, n − 1; n)

πr
π(n−1)1

Fl(r; n) (P n−1)∨ × P n−1

(Fl)

where πr and π(n−1)1 are given by forgetting the linear spaces of appropriate dimensions.

• BiProj(S∨
k , Q1) � F̃ l(1, r, n − 1; n) where F̃ l(1, r, n − 1; n) is a variety

F̃ l(1, r, n − 1; n)

:=

{
linear subspaces

(�, L1, . . . , Lk, H)

∣∣∣∣
dim � = 1, dim H = n − 1, (L1, . . . , Lk) ∈ Fl(r; n),

and � ⊆ Lk and L1 ⊆ H

}
.

In this case, we also have maps:

F̃ l(1, r, n − 1; n)

π̃r
π̃(n−1)1

Fl(r; n) (P n−1)∨ × P n−1

(F̃ l)

where π̃r and π̃(n−1)1 are given by forgetting the linear spaces of appropriate dimensions.

As before, let α = [OH1
] be the K-class of the structure sheaf of a hyperplane in (P n−1)∨

and β = [OH2
] the likewise K-class from P n−1. The main statement of this section is as follows.

Proposition 3.1. Let ε ∈ K0(Fl(r; n)). With u and v as formal variables, define polynomials

Rε(u, v) :=
∑

p,q

χ
(

ε · [

p∧
Sk][

q∧
Q∨

1 ]
)

upvq and

R̃ε(u, v) :=
∑

p,q

χ
(

ε · [

p∧
S1][

q∧
Q∨

k ]
)

upvq.

Then we have the following identities in K0((P n−1)∨ × P n−1).

Rε(α − 1, β − 1) = (π(n−1)1)∗π∗
r (ε) and R̃ε(α − 1, β − 1) = (π̃(n−1)1)∗π̃∗

r (ε).

When k = 1, i.e. Fl(r; n) is a Grassmannian, Proposition 3.1 reduces to [16, Lemma 4.1]. 
We remark that, just as in [16], Proposition 3.1 is an identity in the non-equivariant K-theory. 
The proof of Proposition 3.1 is a minor modification of the proof of [16, Lemma 4.1]. Here, as 
a lemma, we separate out and also fix a minor error in the part of the proof in [16] that needs 
modification.



R. Dinu et al. / Journal of Combinatorial Theory, Series A 181 (2021) 105414 13

Lemma 3.2. Denote η1 := (1 − α)−1 = [O(1, 0)] and η2 := (1 − β)−1 = [O(0, 1)], and let t

be a formal variable. Then the following identities hold in K0(Fl(r; n))[[t]].

∑

p

[

p∧
Sk]tp = (1 + t)n(πr)∗π∗

(n−1)1

( 1

1 + tη1

)
and

∑

q

[

q∧
Q∨

1 ]tq

= (1 + t)n(πr)∗π∗
(n−1)1

( 1

1 + tη2

)
.

And likewise,

∑

p

[

p∧
S1]tp = (1 + t)n(π̃r)∗π̃∗

(n−1)1

( 1

1 + tη1

)
and

∑

q

[

q∧
Q∨

k ]tq = (1 + t)n(π̃r)∗π̃∗
(n−1)1

( 1

1 + tη2

)
.

Proof. For each i = 1, . . . , k note that

( ∑

�

[

�∧
Si]t

�
)( ∑

m

[

m∧
Qi]t

m
)

= (1 + t)n, (4)

which follows from the short exact sequence (3) and [13, A2.2.(c)]. We also have an identity

( ∑

�

[

�∧
Si]t

�
)( ∑

m

(−1)m[Symm Si]t
m

)
= 1 (5)

and likewise identities for Qi and the duals S∨
i , Q∨

i , which follow from the exactness of the 

Koszul complex [13, A2.6.1]. Now, we note by [21, Exercise III.8.4] that

(πr)∗π∗
(n−1)1(η�

2ηm
1 ) = [Sym� S∨

1 ⊗ Symm Qk] and

(π̃r)∗π̃∗
(n−1)1(η�

2ηm
1 ) = [Sym� S∨

k ⊗ Symm Q1].
(6)

Combining (4), (5), and (6) then yields the desired identities. �

Sketch of proof of Proposition 3.1. One combines Lemma 3.2 with the projection formula for 
K-theory [17, §15.1]. Then by expanding the power series in u and v, which is in fact a finite 

sum, comparing coefficients yields the desired identity. See the proof in [16] for details. �

4. Summations of lattice point generating functions

The method of equivariant localization §2.2, aided by Proposition 3.1, will reduce our K-
theoretic computations to summations of lattice point generating functions. Here we collect 
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some useful results concerning summations of lattice point generating functions arising from 

polyhedra, along with variants that are suitable for our purposes. Our main novel contribution 

is Theorem 4.7, which is a useful variant of the method of flipping cones. The reader may see 

Example 4.12 for illustrations of main theorems here.

4.1. Brion’s formula

Here we review the results in [6,23]. For a subset S ⊂ Rn, denote by 1(S) : Zn → Q its 
indicator function sending x �→ 1 if x ∈ S and 0 otherwise. Let Pn be a vector space of Q-
valued functions on Zn generated by {1(P ) | P ⊂ Rn lattice polyhedra}. It follows from the 

Brianchon-Gram formula [5,19,37] that Pn is generated by indicator functions of cones, and by 

triangulating one concludes that Pn is generated by indicator functions of smooth cones.
We will often consider elements of Pn as elements in the power series ring Q[[t±

1 , . . . , t±
n ]] by 

identifying 1(P ) with 
∑

λ∈P ∩Zn t
λ. The following fundamental theorem concerns convergence 

of these power series to a rational function.

Theorem 4.1. [23, Theorem 1.2]4 Consider Pn as a Q[t±
1 , . . . , t±

n ]-submodule of Q[[t±
1 , . . . ,

t±
n ]], and let Q(t1, . . . , tn) be the fraction field. There exists a unique Q[t±

1 , . . . , t±
n ]-linear map

Hilb : Pn → Q(t1, . . . , tn)

such that if C = Cone(v1, . . . , vk) ⊂ Rn is a smooth cone with primitive ray generators 

v1, . . . , vk ∈ Zn then Hilb(1(C)) =
∏k

i=1
1

1−tvi
.

Two remarks about the above linear map Hilb follow:

(1) The notation Hilb agrees with our previous notion of Hilbert series: when C is a pointed 

rational polyhedral cone, not necessarily smooth, Hilb(1(C)) equals the multigraded Hilbert 
series of C[tλ | λ ∈ C ∩ Zn] in the sense of [33, Theorem 8.20].

(2) If P is a lattice polyhedron with a non-trivial lineality space, then Hilb(1(P )) = 0.

For P a lattice polyhedron, we will often by abuse of notation write Hilb(P ) for Hilb(1(P )). 
An important result on rational generating functions for cones is the formula of Brion [6], which 

was slightly generalized in [23]. Here we will only need the following special case of [23, The-
orem 2.3].

Theorem 4.2. Let P ⊂ Rn be a lattice polyhedron with a nonempty set of vertices (so P has 

no lineality space), and let C(P ) be its recession cone. For every vertex v of P , write Cv for 

Cone(P − v). Then we have

4 Fink and Speyer in [16] and Postnikov in [36] cite [24], whereas Ishida in [23] writes that the theorem is originally due to Brion.
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Hilb(P ) =
∑

v∈Vert(P )

Hilb(Cv + v) and Hilb(C(P )) =
∑

v∈Vert(P )

Hilb(Cv).

4.2. Lawrence-Varchenko formula (flipping cones) and variants

Here we review the method of flipping cones [15, §6], [4, (11)]. Our contribution is a gener-
alization Theorem 4.7, which will serve as a key technical tool in subsequent sections.

Let ζ ∈ Rn. For every a ∈ R, we will denote the hyperplane {x ∈ Rn|〈ζ, x〉 = a} by Hζ=a

and the half-space {x ∈ Rn|〈ζ, x〉 ≥ a} by Hζ≥a. For an element f ∈ Pn, by considering 

f as an element of Q[[t±
1 , . . . , t±

n ]] we write f |Hζ=a
for the sum of terms ctw in f such that 

〈w, ζ〉 = a.

Definition 4.3. A polyhedron P ⊂ Rn is ζ-pointed if P ⊆ Hζ≥a for some a ∈ R. Let Pζ
n be 

the Q-vector space generated by ζ-pointed elements in Pn.

We note the following useful observation: Let P ⊂ Rn be a polyhedron with vertices 
Vert(P ), and as before let Cv := Cone(P − v) for v ∈ Vert(P ). Then, for ζ ∈ Rn, the 

cone Cv is ζ-pointed if and only if v is a vertex of the face P −ζ of P minimizing in the ζ

direction.
If f ∈ Pζ

n , then one can compute Hilb(f) “slice-by-slice” in the following sense.

Lemma 4.4. Let f, g ∈ Pζ
n and suppose that Hilb(f) = Hilb(g). Then for every a ∈ R, it holds 

that Hilb(f |Hζ=a
) = Hilb(g|Hζ=a

).

Proof. Write b = f − g, and suppose by contradiction that there is an a ∈ R with 

Hilb(b|Hζ=a
) �= 0. Since b ∈ Pζ

n , there is a minimal such a, which we denote by a0. Writ-
ing b =

∑
i pi 1(Ci) with Ci smooth cones and pi Laurent polynomials, we define a nonzero 

Laurent polynomial q(t) =
∑

e∈Zn λete by q(t) :=
∏

i

∏
ji

(1 − t
ji) where ji ranges over 

the primitive rays of Ci. By construction q · b has finite support, i.e. is a Laurent polynomial, 
and Hilb(q · b) = q Hilb(b) = 0. Hence, we have q · b = 0. Let c = min{〈ζ, e〉|λe �= 0}, 
and let q0 =

∑
e:〈ζ,e〉=c λete. Then 0 = Hilb((q · b)|Hζ=a0+c

) = q0 Hilb(b|Hζ=a0
) �= 0, a 

contradiction. �

Suppose that ζ = (ζ1, . . . , ζn) is chosen such that the ζi’s are Q-linearly independent, in 

which case we say “ζ is irrational.” Then for any a ∈ R, the intersection Hζ=a ∩ Zn consists 
of at most one point. In this case Lemma 4.4 reduces to saying Hilb : Pζ

n → Q(t1, . . . , tn) is 
injective, recovering [15, Lemma 6.3]. We next recall the notion of cone flips. We begin with a 

lemma for their existence.

Lemma 4.5. [20, Lemma 6], [16, Lemma 2.1] Assume ζ is irrational. For every f ∈ Pn, there 

is a unique fζ ∈ Pζ
n such that Hilb(f) = Hilb(fζ). The map f �→ fζ is linear.
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The map (·)ζ in the lemma is described explicitly as follows. Let C ⊆ Rn be a rational 
simplicial cone

C = {w +
∑n−1

i=0 aivi | ai ≥ 0 for all i ∈ [n]}.

Then the image Cζ ∈ Pζ
n under the map of Lemma 4.5 is given by

Cζ = (−1)�
1

({
w +

n−1∑

i=0

aivi

∣∣∣∣∣
ai ≥ 0 for all i with 〈ζ, vi〉 > 0,

and ai < 0 for all i with 〈ζ, vi〉 < 0

})
, (7)

where � is the number of rays vi for which 〈ζ, vi〉 < 0. We will refer to Cζ as the cone flip of C
in direction ζ. For a general pointed rational cone C, one defines the flipped cone Cζ ∈ Pζ

n by 

triangulating the cone.5

Remark 4.6. The assumption that ζ is irrational is essential for Lemma 4.5: if ζ is not irrational 
then Pζ

n contains some lattice polyhedron P with a non-trivial lineality space, and Hilb(P ) =

0 = Hilb(0), contradicting uniqueness.

Now, suppose we are given an expression over a finite index set Λ

ϕ =
∑

λ∈Λ

aλ Hilb(Cλ) ∈ Q(t1, . . . , tn), (8)

where the Cλ are pointed cones with vertices not necessarily at the origin and aλ ∈ Q are scalars. 
Suppose we know that ϕ ∈ Q(t1, . . . , tn) is in fact a Laurent polynomial, for example, because 

ϕ arose from a computation in T -equivariant K-theory. Then we can use cone-flipping to get 
partial information about the coefficients of ϕ. The following proposition is our “cone-flipping 

in slices” technique which will be used repeatedly in later sections.

Theorem 4.7. Suppose ϕ =
∑

λ aλ Hilb(Cλ) is a Laurent polynomial, i.e. ϕ ∈ Q[t±
1 , . . . , t±

n ], 

and let P be the convex hull of the vertices of the Cλ. For ζ ∈ Rn, not necessarily irrational, 

and b ∈ R, suppose that every cone Cλ whose vertex wλ satisfies 〈ζ, wλ〉 < b is ζ-pointed. Then

ϕ|Hζ=b
=

∑

Cλ∈Pζ
n

aλ Hilb(Cλ ∩ Hζ=b).

In particular, if P ∩ Hζ=b is the face P −ζ of P minimizing in the ζ direction, then

ϕ|Hζ=b
=

∑

ζ-pointed Cλ whose
vertex wλ is on P −ζ

aλ Hilb(Cλ ∩ Hζ=b).

5 We remark that calling Cζ the “flipped cone” of C is a slight abuse of terminology when C is not simplicial, since Cζ is not 
necessarily the support function of a polyhedron. It can be a genuine linear combination of some of those; see [15, Remark 6.7].
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We note two useful immediate consequences of Theorem 4.7 in the following corollary, of 
which the second statement appeared previously in [15].

Corollary 4.8. With assumptions as in Theorem 4.7, one has the following:

(a) If Hζ=b ∩ P = {w} is a vertex of P , the coefficient of tw in ϕ is equal to 
∑

aλ, where the 

sum is over all λ for which Cλ ∈ Pζ
n and the vertex of Cλ is at w.

(b) [15, Corollary 6.9] The Newton polytope Newt(ϕ) of ϕ is contained in P .

Proof. The first statement is a special case of Theorem 4.7. For the second statement, observe 

that for any lattice point v ∈ Newt(ϕ) and any ζ ∈ Rn, there must exist a cone Cλ such 

that its vertex wλ satisfies 〈ζ, wλ〉 ≤ b where b = 〈ζ, v〉, since otherwise ϕ|Hζ=b
= 0 by 

Theorem 4.7. �

We prepare for the proof by noting a useful feature of the cone-flipping operation, starting 

with the following notion.

Definition 4.9. Let C be a pointed cone, and ζ ∈ Rn. We say that an irrational ζ′ ∈ Rn is an
irrational approximation of ζ with respect to C, if for every ray generator v ∈ Rn of C it 
holds that 〈ζ, v〉 > 0 =⇒ 〈ζ′, v〉 > 0 and that 〈ζ, v〉 < 0 =⇒ 〈ζ′, v〉 < 0.

Note that an irrational approximation of ζ can always be obtained as a small perturbation 

of ζ. The following is a minor generalization of [16, Lemma 2.3], with almost identical proof, 
which we have included for completeness.

Lemma 4.10. Let ζ ∈ Rn, let C be a pointed cone with vertex at w, and let ζ′ ∈ Rn be an 

irrational approximation of ζ. Then its cone flip Cζ′

is supported in the half space {x | 〈ζ, x〉 ≥

〈ζ, w〉}. Furthermore, if C is not contained in {x | 〈ζ, x〉 ≥ 〈ζ, w〉}, then Cζ′

is supported in 

the open half space {x | 〈ζ, x〉 > 〈ζ, w〉}; in particular w /∈ Cζ′

.

Proof. If C is simplicial, the result follows immediately from the construction of cone flips (7)
and Definition 4.9. For general C, we can obtain the first statement by considering any triangu-
lation of C. For the second one, choose a ray v of C such that 〈ζ, v〉 < 0 and a triangulation of 
C such that every interior cone contains v. Such a triangulation can for instance be constructed 

by triangulating the faces of C that do not contain v, and then coning that triangulation from 

v. Now C =
∑

F (−1)dim C−dim F
1(F ) and Cζ′

=
∑

F (−1)dim C−dim F
1(F )ζ′

, where the 

sum is over all interior cones of the triangulation. The result now follows from the simplicial 
case. �

Proof of Theorem 4.7. Since the summation defining ϕ is over a finite collection of cones 
{Cλ}λ∈Λ, there exists a ζ′ ∈ R which is an irrational approximation of ζ with respect to every 

cone Cλ. By assumption ϕ = Hilb(f), where f ∈ Pn has finite support, in particular f ∈ Pζ
n . 

Hence, by Lemma 4.4, ϕ|Hζ=b
= Hilb(

∑
aλ 1(Cζ′

λ ∩ Hζ=b)). If Cλ /∈ Pζ
n , then by assumption 
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the vertex wλ of Cλ satisfies 〈ζ, wλ〉 ≥ b, and by Lemma 4.10 Cζ′

λ is supported on the open 

half-space {x | 〈ζ, x〉 > b}, in particular Cζ′

λ ∩ Hζ=b = ∅. If Cλ ∈ Pζ
n , then since Cλ and Cζ′

λ

are both in Pζ
n , it follows from Lemma 4.4 that Hilb(Cζ′

λ ∩ Hζ=b) = Hilb(Cλ ∩ Hζ=b). �

4.3. Flipping cones for base polytopes

Let us now specialize our discussion of summing lattice point generating functions to ones 
arising from flag matroids. For the rest of this section, let M be a flag matroid of rank r =

(r1, . . . , rk) on a ground set [n], whose constituent matroids have rank functions rk1, . . . , rkk. 
As before, for a basis B of M let us write ConeB(M) := Cone(Q(M) − eB).

Consider the expression below, which is a finite summation

ϕ =
∑

λ∈Λ

aλt
wλ Hilb(ConeBλ

(M)), (9)

where aλ ∈ Q, wλ ∈ Zn, and Bλ a basis of M. We allow the same basis to occur several times 
in the sum. Note that twλ Hilb(ConeBλ

(M)) = Hilb(Cλ), where Cλ is a cone with vertex at 
wλ, so (9) is a special case of (8). As before, we assume that ϕ ∈ Q[t±

1 , . . . , t±
n ], i.e. ϕ is a 

Laurent polynomial, and we write P := Conv(wλ | λ ∈ Λ) for the convex hull of the wλ. We 

will assume that all wλ lie in Zn
≥0, and that there exists a c ∈ Z≥0 such that the sum of the 

entries of any wλ is equal to c. Let P̃ := Conv(σ · wλ | σ ∈ Sn, λ ∈ Λ) be the convex hull of 
all points in Zn

≥0 that are equal to one of the wλ up to permuting entries.
The following theorem will be repeatedly applied in the next sections.

Theorem 4.11. Let ϕ, P , and P̃ be as above, and let v be a vertex of P̃ . Write v = eS1
+

· · · + eSm
, with S1 ⊆ . . . ⊆ Sm ⊆ [n]. Fix a basis B = (B1, . . . , Bk) of M such that eB is 

a vertex of the face Q(M)v of Q(M) maximizing the direction v, that is, a basis B satisfying 

|Si ∩ Bj | = rkMj
(Si) for all 1 ≤ i ≤ m and 1 ≤ j ≤ k (Proposition 2.7). Then the coefficient 

of tv in ϕ ∈ Q[t±
1 , . . . , t±

n ] is equal to the sum of all aλ for which wλ = v and Bλ = B.

Proof. Since the Newton polytope of ϕ is contained in P (Corollary 4.8. (b)), the result is 
true for v /∈ P . So, we now consider the case v ∈ P . Let us write v = (v1, . . . , vn) and 

eB = (b1, . . . , bn). By permuting the coordinates of Nn, we may assume that vi ≥ vi+1 for all 
i ∈ [n], and that bi ≥ bi+1 whenever vi = vi+1.

We first show that we may choose a ζ′ = (ζ ′
1, . . . , ζ ′

n) ∈ Rn that satisfies the following 

properties:

(i) The vertex {v} is the face of P̃ maximizing in the ζ′ direction, and hence is the vertex of P
maximizing in the ζ′ direction.

(ii) ζ ′
1 > ζ ′

2 > . . . > ζ ′
n.

To choose such a ζ′, start with any ζ′ satisfying (i), which by perturbing the entries, we may 

assume to have all distinct entries. For any pair i, j ∈ [n] such that vi > vj , we have ζ ′
i > ζ ′

j , 
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(0, 2, 1)

(1, 2, 0)

(2, 1, 0)

(0, 1, 2)

(1, 0, 2)

(2, 0, 1)

(0,2,0) (0,1,1) (0,0,2)

(1,1,0) (1,0,1)

(2,0,0)

Fig. 1. Base polytope Q(M) and translates of its vertex cones. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

since else we can swap vi and vj and obtain a vertex of P̃ where ζ′ attains a larger value. For 
any collection i, i + 1, . . . , j ∈ [n] such that vi = · · · = vj , we may reorder the corresponding 

entries of ζ′ in decreasing order, since such a reordering does not change the value of 〈ζ′, v〉. This 
procedure produces the desired ζ′ since we had assumed (v1, . . . , vn) to be weakly decreasing.

We then claim that the vertex face of Q(M) maximizing in the ζ′ direction is {eB}. Indeed, 
note that ζ′ is an interior point in the cone

Cone(e1, e1 + e2, . . . , e1 + · · · + en−1) + Re[n],

of which the cone

Cone(eS1
, eS2

, . . . , eSm
) + Re[n]

is a face. This face contains v in its relative interior. These two cones are cones in the braid 

arrangement, of which the normal fan of Q(M) is a coarsening (Theorem 2.6). Thus, the vertex 

face of Q(M) maximizing in the ζ′ direction is among the vertices of Q(M)v, and our assump-
tion bi ≥ bi+1 for all i = 1, . . . , n such that vi = vi+1 ensures that eB is indeed the one. Now, 
applying Corollary 4.8.(a) with ζ = −ζ′ gives the desired statement. �

Example 4.12. We illustrate Theorem 4.2, Theorem 4.7, and Theorem 4.11 in an example. Let 
M be the flag matroid (U1,3, U2,3). Its base polytope Q(M) is drawn on the left in Fig. 1. We 

arrange the six vertex cones of Q(M) as on the right hand side of the figure, getting a summation

ϕ =t1t2 Hilb(Cone(2,1,0)(M)) + t1t3 Hilb(Cone(2,0,1)(M)) (in blue)

+ t2
2 Hilb(Cone(1,2,0)(M)) + t2

3 Hilb(Cone(1,0,2)(M)) (in green)

+ t2
2 Hilb(Cone(0,2,1)(M)) + t2

3 Hilb(Cone(0,1,2)(M)) (in red)

By generalized Brion’s theorem (second half of Theorem 4.2), one may replace the two cones 
at (0, 2, 0), one red and one green, by a single cone Cone(e1 − e2, e3 − e2), and likewise for 
the two cones at (0, 0, 2). Then ϕ is now a summation of the four vertex cones of the trapezoid 

Conv(2e2, 2e3, e1 + e2, e1 + e3), whose value by Brion’s theorem (first half of Theorem 4.2) is

ϕ = t1t2 + t1t3 + t2
2 + t2t3 + t2

3.



20 R. Dinu et al. / Journal of Combinatorial Theory, Series A 181 (2021) 105414

If we apply Theorem 4.7 with ζ = e1 and b = 0, noting that the e1-pointed cones are 

Cone(0,2,1)(M) and Cone(0,1,2)(M), colored red in the figure, we find that, as expected,

ϕ|He1=0
=

t2
2

1 − t3t−1
2

+
t2
3

1 − t2t−1
3

=
t3
2 − t3

3

t2 − t3
= t2

2 + t2t3 + t2
3.

To apply Theorem 4.11, we first note that the polytope P̃ is the convex hull of (2, 0, 0),

(0, 2, 0), (0, 0, 2). Since there are no cones placed at (2, 0, 0), Theorem 4.11 says that the co-
efficient of t2

1 is equal to 0. For the coefficient of t2
2, we can take either B = (1, 2, 0) or 

B = (0, 2, 1); in both cases Theorem 4.11 tells us that the coefficient of t2
2 is equal to 1.

In Example 4.12, because we had only one translate of each vertex cone, arranged in a suitable 

manner, we could apply Brion’s theorem to compute ϕ. In subsequent sections, we will typically 

have several parallel translates of each vertex cone, where Theorem 4.7 or Theorem 4.11 will 
better suit our needs.

5. The Las Vergnas Tutte polynomial of a matroid quotient

In [27], Las Vergnas introduced a Tutte polynomial of a matroid quotient as follows, and 

studied its properties in a series of subsequent works [28–30,14,31,32]. The reader may find the 

survey [28] particularly useful.

Definition 5.1. Let M = (M1, M2) be a two-step flag matroid on a ground set [n]. For i = 1, 2

write ri for the rank of Mi and ri(S) for the rank of S ⊆ [n] in Mi. The Las Vergnas Tutte 

polynomial of M is

LV TM(x, y, z) :=
∑

S⊆[n]

(x − 1)r1−r1(S)(y − 1)|S|−r2(S)zr2−r2(S)−(r1−r1(S)) (10)

For the remainder of this section, we let M be a two-step flag matroid, i.e. a matroid quotient 
M1 � M2 on a ground set [n]. We show in this section that LV TM arises K-theoretically from 

y(M). We start by recalling the construction (F̃ l) of F̃ l(1, r1, r2, n − 1; n) in §3 with the maps

F̃ l(1, r1, r2, n − 1; n)

π̃r
π̃(n−1)1

Fl(r1, r2; n) (P n−1)∨ × P n−1.

We have an inclusion of tautological vector bundles 0 → S1 → S2 on the flag variety 

Fl(r1, r2; n). Let S2/S1 be the quotient bundle.
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Theorem 5.2. With the notations as above, we have

LV TM(α, β, w) =

r2−r1∑

m=0

(π̃(n−1)1)∗π̃∗
r

(
y(M)[O(0, 1)][

m∧
(S2/S1)]

)
wm (11)

as elements in K0((P n−1)∨ × P n−1)[w].

We will prove the stronger statement that the T -equivariant version of Theorem 5.2 holds. By 

Proposition 3.1, we have that the following equality implies Theorem 5.2:

LV TM(u + 1, v + 1, w) =
∑

p,q,m

χ
(

y(M)[O(0, 1)][

p∧
S1][

q∧
Q∨

2 ][

m∧
(S2/S1)]

)
upvqwm.

(12)
We thus define the T -equivariant Las Vergnas Tutte polynomial of M by

LV T T
M(u + 1, v + 1, w)

:=
∑

p,q,m

χT
(

y(M)T [O(0, 1)]T [

p∧
S1]T [

q∧
Q∨

2 ]T [

m∧
(S2/S1)]T

)
upvqwm.

Theorem 5.3. With the notations as above, we have

LV T T
M(u + 1, v + 1, w) =

∑

S⊆[n]

t
eS ur1−r1(S)v|S|−r2(S)wr2−r1−r2(S)+r1(S).

Proof. First, it follows from Theorem 2.8.(3) that

∑

p,q,m

χT
(

y(M)T [O(0, 1)]T [

p∧
S1]T [

q∧
Q∨

2 ]T [
m∧

(S2/S1)]T
)

upvqwm

=
∑

B = (B1, B2),
B ∈ B(M)

Hilb(ConeB(M)) · t
eB2

( ∑

p′⊆B1

t
−ep′ u|p′|

)( ∑

q⊂[n]\B2

t
eqv|q|

)

×
( ∑

m′⊆B2\B1

t
−em′ w|m′|

)

=
∑

B∈B(M)

Hilb(ConeB(M)) ·
(

t
eB1

∑

p′⊆B1

t
−ep′ u|p′|

)( ∑

q⊂[n]\B2

t
eqv|q|

)

×
(

t
eB2\B1

∑

m′⊆B2\B1

t
−em′ w|m′|

)

=
∑

B∈B(M)

Hilb(ConeB(M))
∑

p ⊆ B1
m ⊆ B2 \ B1
q ⊆ [n] \ B2

t
ep+em+equr1−|p|v|q|wr2−r1−|m|. (13)
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We can now compute the sum

∑

B∈B(M)

Hilb(ConeB(M))
∑

p ⊆ B1, |p| = p
m ⊆ B2 \ B1, |m| = m
q ⊆ [n] \ B2, |q| = q

t
ep+em+eq ,

for fixed p, m, q.
To compute the coefficient of teS , we apply Theorem 4.11. Pick a basis (B1, B2) such that 

|S ∩ B1| = rk1(S) and |S ∩ B2| = rk2(S). We need to compute the number of terms in the 

sum above for which B = (B1, B2) and ep + em + eq = eS . But such a term needs to satisfy 

p = S ∩ B1, p ∪ m = S ∩ B2, and p ∪ m ∪ q = S. In particular p = rk1(S), p + m = rk2(S), 
and p + m + q = |S|. If these three equalities are satisfied, there is indeed exactly one such 

term. �

Remark 5.4. We remark that the Las Vergnas polynomial, and our K-theoretic interpretation of 
it, generalizes the Tutte polynomial of a matroid in the following ways. Recall that any matroid 

M has two canonical matroid quotients, M � M and M � U0,n.

• When M = (M) (i.e. one constituent), the equation (11) reduces to the one in Theorem 2.12
[16, Theorem 5.1].

• When M = (M, M), one can observe from (10) or (11) that LV TM(x, y, z) = TM (x, y).
• When M = (U0,n, M), one can observe from (10) or (12) that LV TM(x, y, z) = TM (z +

1, y).

Remark 5.5. The Las Vergnas Tutte polynomial satisfies a deletion-contraction relation similar 
to that of the Tutte polynomial [28, Proposition 5.1]. We remark that our “cone-flipping with 

slices” (Theorem 4.7) can be used to show deletion-contraction relation for LV TM and TM . For 
example, if i ∈ [n] is neither a loop nor a coloop of M2,

LV TM1,M2
(x, y, z) = LV TM1\i,M2\i(x, y, z) + LV TM1/i,M2/i(x, y, z).

This identity is obtained by applying Theorem 4.7 to (13) as follows. By considering ζ = ei, 
we find that the terms in (13) that are not divisible by ti sum to LV T T ′

M1\i,M2\i(x, y, z), where 

T ′ = (C∗)n−1. By considering ζ = −ei, we find that the terms that are divisible by ti sum to 

tiLV T T ′

M1/i,M2/i(x, y, z). We leave the details to the reader.

Remark 5.6. Unlike the Tutte polynomials of matroids, the constant term of LV TM is no longer 
necessarily zero. This reflects the fact that for most L ∈ Fl(r1, r2; n), the map π̃(n−1)1 :

π̃−1
r (T · L) → (P n−1)∨ × P n−1 is surjective. If further r2 − r1 = 1, then this map is a fi-

nite morphism, and by a similar computation as in [38, Theorem 5.1], one can show that the 

degree of the map is the Crapo’s beta invariant β(N) where N is a matroid such that M1 = N/e

and M2 = N \ e.
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Remark 5.7. It follows from Remark 2.11 and Theorem 5.2 that the assignment M �→ LV TM

is valuative.

6. Flag-geometric Tutte polynomial of a flag matroid

In this section, we explore the behavior of another notion of Tutte polynomials of flag 

matroids that differs from that of Las Vergnas in the previous section. Here, instead of the con-
struction (F̃ l), we consider the more geometrically natural construction (Fl) in §3 with the 

maps

Fl(1, r, n − 1; n)

πr
π(n−1)1

Fl(r; n) (P n−1)∨ × P n−1.

Definition 6.1. [8, Definition 8.23] Let M be a flag matroid of rank r = (r1, . . . , rk) on [n]. 
Then the flag-geometric Tutte polynomial of M, denoted KTM(x, y) ∈ Z[x, y], is the (unique) 
polynomial of bi-degree at most (n − 1, n − 1) such that

KTM(α, β) = (π(n−1)1)∗π∗
r

(
y(M) · [O(1)]

)
. (14)

While the construction (Fl) leading to KTM may be more geometrically natural than (F̃ l), 
the combinatorial properties of KTM seem more mysterious than those of LV TM. For example, 
in contrast to LV TM, the polynomial KTM does not readily reduce to the Tutte polynomial of 
M when M is one of the two canonical matroid quotients of a matroid M (i.e. M � M and 

U0,n � M ).
We illuminate some combinatorial structures of KTM as follows.

• There is no known (corank-nullity) combinatorial formula for KTM that is similar to (10)
for LV TM. Our result in §6.2, which in particular computes KTM(2, 2), can be considered 

as a first step in this direction.
• No deletion-contraction relation is known to hold for KTM; one may construe this to be a 

consequence of the fact that the base polytope of a flag matroid generally has lattice points 
that are not vertices. In §6.3 we formulate and prove a deletion-contraction-like relation for 
elementary matroid quotients.

6.1. First properties of KTM

Again, by Proposition 3.1, we have that

KTM(u + 1, v + 1) =
∑

p,q

χ
(

y(M)[O(1)][

p∧
Sk][

q∧
Q∨

1 ]
)

upvq,
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which leads us to the following T -equivariant version of KTM.

Definition 6.2. The T -equivariant flag-geometric Tutte polynomial of a flag matroid M is

KT T
M(u + 1, v + 1) :=

∑

p,q

χT
(

y(M)T [O(1)]T [

p∧
Sk]T [

q∧
Q∨

1 ]T
)

upvq.

Theorem 2.8.(3) again yields KT T
M

as a sum of rational functions as follows via a similar 
computation as one in the proof of Theorem 5.2.

Lemma 6.3. For a flag matroid M = (M1, . . . , Mk) on a ground set [n], we have

KT T
M(u+1, v+1) =

∑

B∈M

Hilb(ConeB(M))
∑

p⊆Bk

∑

q⊆[n]\B1

t
eB1 +···+eBk−1

+ep+equrk−|p|v|q|.

(15)

Many of our results on KTM will be obtained by manipulation with the equation (15). We 

start with the following example.

Example 6.4. For any matroid M on [n], we have KTU0,n,M (x, y) = ynTM (x, 1).6 To verify 

this, we compute

KT T
U0,n,M (u + 1, v + 1) =

∑

B∈B(M)

Hilb(ConeB(M))
∑

p⊆B

∑

q⊆[n]

t
ep+equr−|p|v|q|

=
( n∏

i=1

(1 + tiv)
)

·
∑

B∈B(M)

Hilb(ConeB(M))
∑

p⊆B

t
epur−|p|

=
( n∏

i=1

(1 + tiv)
)

· KT T
M (u + 1, 1).

(16)

Setting ti = 1, u = x − 1, and v = y − 1 yields the desired claim. This example shows that we 

cannot recover TM from KTU0,n,M although U0,n � M is a canonical matroid quotient of M .

Proposition 6.5. Let M = (M1, . . . , Mk) be a flag matroid on [n]. The following properties 

hold for the flag-geometric Tutte polynomial KT T
M

:

(1) (Direct sum) If M is a direct sum M′ ⊕ M
′′ of two flag matroids on ground sets A, B

with A 	 B = [n], then KT T
M

(x, y) = KT T ′

M′(x, y) · KT T ′′

M′′(x, y) (where T ′ = (C∗)A, 

T ′′ = (C∗)B).

6 The diagram (F l) makes sense only when r1 ≥ 1, so KTU0,n,M cannot be defined as a push-pull of a K-class. However, we 
define KTU0,n,M by specializing KT T

U0,n,M at ti = 1.
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(2) (Loops & coloops) Let � be the number of loops in M1, and c the number of coloops in Mk. 

Then xcy� divides KTM(x, y).

(3) (Duality) If M∨ is the dual flag matroid of M, whose constituents are matroid duals of the 

original, then KTM(y, x) = KTM∨(x, y).

(4) (Base polytope) KT T
M

(1, 1) = Hilb(Q(M)).

(5) (Valuativeness) The map M �→ KTM is valuative.

Proof. The first two statements follow from manipulating with the identity (15) in a similar way 

as the computation (16) in Example 6.4. For the third statement, we claim that the T -equivariant 
version of the statement is te[n]KT T −1

M
(y, x) = KTM∨(x, y), where the T −1 superscript means 

that we have replaced ti by t−1
i . Verifying this identity is then another easy manipulation with 

(15). The fourth statement follows from Brion’s formula (Theorem 4.2). The last statement fol-
lows from Remark 2.11. �

We can use Theorem 4.11 to compute some of the terms in (15):

Theorem 6.6. Let M = (M1, M2) be a 2-step flag matroid and let tkur2−ivj be a monomial 

occurring in (15). Then 
∑n

�=1 k� = r1 + i + j. Let c denote the number of entries in k that are 

equal to 1. If c ≤ |r1 + j − i|, the coefficient of tkur2−ivj is equal to

(1) 1, if S2 is spanning for M1, S1 is independent in M2, and c = |r1 + j − i|,

(2) 0, otherwise,

where S1 and S2 are defined by S1 ⊆ S2 and k = eS1
+ eS2

.

Proof. The equality 
∑n

�=1 k� = r1 + i + j follows immediately from (15). The coefficient of 
ur2−ivj is equal to

∑

B = (B1, B2),
B ∈ B(M)

Hilb(ConeB(M))
∑

p ⊆ B2,
|p| = i

∑

q ⊆ J1,
|q| = j

t
eB1 +ep+eq , (17)

where we have denoted J1 := [n] \B1. The vertices of P̃ have |r1 +j −i| entries equal to 1. This 
proves that the coefficient is 0 if c < |r1 + j − i|. So from now on we assume c = |r1 + j − i|.

Next, we apply Theorem 4.11. Writing k = eS1
+ eS2

, and noting that |S1| = min(i, r1 + j)

and |S2| = max(i, r1 + j), we find a basis B = (B1, B2) of M for which rj(Si) = |Si ∩ Bj |. 
We now need to compute the number of ways k can be written as a sum eB1

+ ep + eq. If S2

is not spanning for M1, or if S1 is not independent in M2, there are no ways to do this, and the 

coefficient is 0. Otherwise, if i ≤ r1+j, we need to put p = S1 and q = S2 \S1. If i ≥ r1+j, we 

need to put q = S1 ∩ J1 and p = S1 ∪ J1. In both cases, there is just one way, so the coefficient 
is 1. �
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6.2. Towards a corank-nullity formula

For a matroid M on [n], the corank-nullity formula for the Tutte polynomial TM (x, y) =∑
S⊆[n](x −1)r−r(S)(y−1)|S|−r(S) expresses TM as a sum over all subsets of [n]. In particular, 

we have TM (2, 2) = 2n; in fact, KT T
M (2, 2) =

∏n
i=1(1 + ti). As a first step towards a similar 

formula for KTM, we show the following for a two-step flag matroid.

Theorem 6.7. Let M be a two-step flag matroid M = (M1, M2) of rank (r1, r2), and let pB(M)

be the set of pseudo-bases of M, i.e. subsets S ⊆ [n] such that S is spanning in M1 and 

independent in M2. With q as a formal variable, we have

KT T
M(1 + q−1, 1 + q) = q−r2

( n∏

i=1

(1 + tiq)
)( ∑

S∈pB(M)

t
eS q|S|

)
,

and in particular, we have

KTM(1 + q−1, 1 + q) = q−r2 · (1 + q)n ·
( ∑

S∈pB(M)

q|S|
)

,

KT T
M(2, 2) =

( n∏

i=1

(1 + ti)
)( ∑

S∈pB(M)

t
eS

)
, and

KTM(2, 2) = 2n|pB(M)|.

Proof. Setting u = q−1 and v = q in (15) of Lemma 6.3 gives us

KT T
M(1 + q−1, 1 + q)

=
∑

B = (B1, B2),
B ∈ B(M)

Hilb(ConeB(M))
∑

p⊆B2

∑

q⊆[n]\B1

t
eB1 +ep+eqq|p|+|q|−r2

=
∑

B = (B1, B2),
B ∈ B(M)

Hilb(ConeB(M))
∑

R⊆E

∑

S⊆B2\B1

t
eB1 +eR+eS q|R|+|S|−r2

= q−r2

∏

i∈E

(1 + tiq)
∑

B = (B1, B2),
B ∈ B(M)

Hilb(ConeB(M))
∑

S⊆B2\B1

t
eB1 +eS q|S|.

We now use Theorem 4.11 to compute the sum

ϕr :=
∑

B = (B1, B2),
B ∈ B(M)

Hilb(ConeB(M))
∑

B1 ⊆ p ⊆ B2,
|p| = r

t
ep

for a fixed r1 ≤ r ≤ r2. First, we note that the polytope P̃ = Conv(eS | S ⊆ E, |S| = r), 
obtained as the convex hull of the Sn-orbit of {ep | B1 ⊆ p ⊆ B2, |p| = r}, has no interior 
lattice points.
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For S ⊆ E with |S| = r, if S is not a pseudo-basis of M1 � M2, then there is no basis B of 
M such that B1 ⊆ S ⊆ B2, and hence the coefficient of teS is 0 in this case. Now, suppose S is 
a pseudo-basis of M1 � M2, which by definition implies that there exists basis B = (B1, B2)

of M with B1 ⊆ S ⊆ B2. This basis B is a vertex of the face Q(M)eS by Proposition 2.7, and 

thus by Theorem 4.11 the coefficient of teS is equal to 1 in ϕr. �

We do not know of analogues of Theorem 6.7 for flag matroids with more than two con-
stituents.

6.3. A deletion-contraction-like relation

In this section, we consider KTM of an elementary quotient M = (M1, M2). By definition 

we have r(M2) − r(M1) = 1, and in this case there is a unique matroid M on a ground set 
[ñ] := {0} 	 [n] such that M1 = M/0 and M2 = M \ 0 [35, §7.3]. Our main theorem of this 
subsection is the following deletion-contraction-like relation.

Theorem 6.8. Let M be a matroid of rank r on [ñ] := {0} 	 [n] such that the element 0 is 

neither a loop nor a coloop in M . Let T̃ = C∗ × T = (C∗)n+1 be the torus with character ring 

Z[t±
0 , . . . , t±

n ]. Then we have

KT T̃
M,M (x, y) = t2

0KT T
M/0,M/0(x, y) + t0KT T

M/0,M\0(x, y) + KT T
M\0,M\0(x, y). (18)

In particular, we have KTM,M (x, y) = KTM/0,M/0(x, y) +KTM/0,M\0(x, y) +KTM\0,M\0(x,

y).

We use {e0, . . . , en} for the standard basis of Rn+1 = R ⊕ Rn. For a polyhedron P ⊂ Rn, 
we will often abuse the notation and write P also for {0} × P ⊂ R ⊕ Rn. We prepare for the 

proof of Theorem 6.8 by an observation that motivated the theorem.
As the base polytope Q(M) is a (0, 1)-polytope (i.e. a lattice polytope contained in the 

Boolean cube [0, 1]n+1 ⊂ Rn+1), every lattice point is a vertex. Moreover, observe that the 

vertices of Q(M) partition into two parts, the bases of M/0 and the bases of M \ 0. As a result, 
the lattice points of Q(M, M) = Q(M) + Q(M) partition into the following three parts, with 

Q1 = 1
2(Q0 + Q2):

• Q2 := Q(M, M) ∩ He0=2 = {2e0} × Q(M/0, M/0),
• Q1 := Q(M, M) ∩ He0=1 = {e0} × Q(M/0, M \ 0), and
• Q0 := Q(M, M) ∩ He0=0 = {0} × Q(M \ 0, M \ 0).

The case of setting x = y = 1 (cf. Proposition 6.5.(4)) in (18) of Theorem 6.8 witnesses this 
partition of the lattice points of Q(M, M). The following lemma in preparation for the proof of 
Theorem 6.8 is a consequence of Q1 = 1

2 (Q0 + Q2).
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Lemma 6.9. Let the notations be as above. Then for B ∈ B(M) with 0 /∈ B, we have

Hilb(ConeB(Q(M, M)) ∩ He0=1) =
∑

I ∈ B(M/0),
I ⊂ B

t0t−1
B\I Hilb(Cone(I,B)(Q(M/0, M \ 0))

and

Hilb(ConeB(Q(M, M)) ∩ He0=0) =
∑

I ∈ B(M/0),
I ⊂ B

Hilb(Cone(I,B)(Q(M/0, M \ 0)).

Proof. We have an equality of polyhedra

ConeB(Q(M, M)) ∩ He0=1 = ConeB(Q(M \ 0)) + Q1 − 2eB .

We claim that ConeB(Q(M \0)) +Q1 has vertices {eI +eB} for I ∈ B(M/0) such that I ⊂ B. 
The two statements in the lemma then follow from Brion’s formula Theorem 4.2.

For the claim, we start by noting that if I ∈ B(M/0) then there exists B′ ∈ B(M \ 0) such 

that I ⊂ B′ (since M/0 � M \0). Consequently, if eB is the vertex of Q(M \0) that minimizes 
〈v, eB〉 for some v ∈ Rn, then a vertex of Q(M/0) that minimizes 〈v, ·〉 must be eI satisfying 

I ⊂ B. Our claim now follows from Q1 = 1
2 (Q0 + Q2). �

Proof of Theorem 6.8. Let us begin by noting that the equation (15) for KT T̃
M,M reads

KT T̃
M,M (u + 1, v + 1) =

∑

B∈B(M)

Hilb(ConeB(Q(M, M)))
∑

p⊆B

∑

q⊆[ñ]\B

t
eB+ep+equr−|p|v|q|.

(19)
We apply Theorem 4.7 with ζ = e0 and L defined by t0 = 0. Note that ConeB(Q(M, M)) ∈ Pζ

n

if and only if 0 /∈ B. Hence all cones occurring in (19) with vertex on L are in Pζ
n , and we find 

that the terms in (19) not divisible by t0 sum to

∑

B ∈ B(M),
0 /∈ B

Hilb(ConeB(Q(M, M)) ∩ He0=0)
∑

p⊆B

∑

q⊆[n]\B

t
eB+ep+equr−|p|v|q|

=
∑

B∈B(M\0)

Hilb(ConeB(M \ 0))
∑

p⊆B

∑

q⊆[n]\B

t
eB+ep+equr−|p|v|q|

= KT T
M\0,M\0(u + 1, v + 1).

A similar argument, with ζ = −e0, shows that the coefficient of t2
0 in (19) is KT T

M/0,M/0.
Finally, we apply Theorem 4.7 once more, this time with ζ = e0 and L = He0=1. We find 

that the terms in (19) divisible by t0 but not by t2
0 sum to
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( ∑

B ∈ B(M),
0 /∈ B

Hilb(ConeB(Q(M, M)))
∑

p⊆B

∑

q⊆[ñ]\B

t
eB+ep+equr−|p|v|q|

)∣∣∣
He0=1

=
( ∑

B ∈ B(M),
0 /∈ B

Hilb(ConeB(Q(M, M)))
∑

p⊆B

∑

q⊆[n]\B

t
eB+ep+eq(1 + t0v)ur−|p|v|q|

)∣∣∣
He0=1

=
∑

B ∈ B(M),
0 /∈ B

Hilb(ConeB(Q(M, M)) ∩ He0=1)
∑

p⊆B

∑

q⊆[n]\B

t
eB+ep+equr−|p|v|q|

+ t0

∑

B ∈ B(M),
0 /∈ B

Hilb(ConeB(Q(M, M)) ∩ He0=0)
∑

p⊆B

∑

q⊆[n]\B

t
eB+ep+equr−|p|v|q|+1,

which by Lemma 6.9 is equal to

∑

B ∈ B(M),
0 /∈ B

∑

I ∈ B(M/0),
I ⊂ B

t0t−1
B\I Hilb(Cone(I,B)(Q(M/0, M \ 0)))

×
∑

p⊆B

∑

q⊆[n]\B

t
eB+ep+equr−|p|v|q|

+ t0

∑

B ∈ B(M),
0 /∈ B

∑

I ∈ B(M/0),
I ⊂ B

Hilb(Cone(I,B)(Q(M/0, M \ 0)))

×
∑

p⊆B

∑

q⊆[n]\B

t
eB+ep+equr−|p|v|q|+1

= t0

∑

(I,B)∈B(M/0,M\0)

Hilb(Cone(I,B)(Q(M/0, M \ 0)))

×
( ∑

p⊆B

∑

q⊆[n]\B

t
eI +ep+eq(1 + tB\Iv)

)
ur−|p|v|q|

= t0

∑

(I,B)∈B(M/0,M\0)

Hilb(Cone(I,B)(Q(M/0, M \ 0)))

×
( ∑

p⊆B

∑

q⊆[n]\I

t
eI +ep+eq

)
ur−|p|v|q|

= t0KT T
M/0,M\0(u + 1, v + 1),

as desired. �

Remark 6.10. We remark that for a general flag matroid M, the slices {Q(M) ∩ Hei=k}k∈Z

need not be flag matroid base polytopes. Moreover, even when they are, we do not observe an 

identity like the one in Theorem 6.8 that expresses KTM in terms of the slices.
For example, consider M = (U1,3, U2,3). We have KTM(x, y) = x2y2 + x2y + xy2 +

x2 + 2xy + y2. In any coordinate direction, its three slices are (U0,2, U1,2), (U1,2, U1,2), and 

(U1,2, U2,2), whose KT are (respectively), xy2 + y2, xy + x + y, and x2y + x2.
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Remark 6.11. One can generalize Theorem 6.8 as follows. Denote by M � := (M, . . . , M), the 

flag matroid whose constituents are M repeated � times. Then we have

KT T̃
M� = t�

0KT T
(M/0)� + t�−1

0 KT T
(M/0)�−1,M\0 + · · · + KT(M\0)� .

The proof is essentially identical to one given for Theorem 6.8.

7. Future directions

We list two future directions stemming from our work here.

7.1. g and h polynomials for flag matroids

For a matroid M , Speyer introduced in [38] a polynomial invariant gM (t) ∈ Q[t] and a close 

cousin hM (t) ∈ Q[t], which is related to gM (t) by hM (t) = (−1)cgM (−t) where c is the 

number of connected components of M . A K-theoretic interpretation of the polynomial hM

was given in [16].

Theorem 7.1. [16, Theorem 6.1 & Theorem 6.5] Let M be a matroid of rank r on [n] without 

loops or coloops. Let πr, π(n−1)1, α, β be as in §2.3. Then the polynomial hM is the (unique) 

univariate polynomial of degree at most n − 1 such that

(π(n−1)1)∗π∗
r

(
y(M)

)
= hM (α + β − αβ).

For a flag matroid M on [n], this motivates us to consider (π(n−1)1)∗π∗
r

(
y(M)

)
, where the 

maps are as in the flag-geometric construction (Fl). By Proposition 3.1, this is equal to

∑

p,q

χ
(

y(M)[

p∧
Sk][

q∧
Q∨

1 ]
)

(α − 1)p(β − 1)q.

Let us consider its torus-equivariant version

∑

p,q

χT
(

y(M)T [

p∧
Sk]T [

q∧
Q∨

1 ]T
)

upvq

where u and v are formal variables. We show that this is a polynomial in uv, which thereby 

establishes that (π(n−1)1)∗π∗
r

(
y(M)

)
is a polynomial in α + β − αβ (since the substitution 

u = α − 1, v = β − 1 yields 1 − uv = α + β − αβ).

Lemma 7.2. (cf. [16, Lemma 6.2]) Let M = (M1, . . . , Mk) be a flag matroid on [n], and sup-

pose every constituent of M is both loopless and coloopless. Then



R. Dinu et al. / Journal of Combinatorial Theory, Series A 181 (2021) 105414 31

∑

p,q

χT
(

y(M)T [

p∧
Sk]T [

q∧
Q∨

1 ]T
)

upvq ∈ Q[u, v]

is a polynomial in Q[uv].

We remark that the condition about a flag matroid M = (M1, . . . , Mk) being loopless or 
coloopless depends only on M1 or Mk, respectively. First, note that by the condition (2) in 

Definition 2.1, if � ∈ [n] is a loop in Mi then it is a loop in Mi−1 also. By duality, if � ∈ [n] is a 

coloop in Mi then it is a coloop in Mi+1 also. Hence, the flag matroid M is loopless (coloopless) 
if and only if M1 has no loops (Mk has no coloops).

Proof. Once more by Theorem 2.8.(3), we get

∑

p,q

χT
(

y(M)T [

p∧
Sk]T [

q∧
Q∨

1 ]T
)

upvq

=
∑

B∈M

Hilb(ConeB(M))
∑

p⊆Bk

∑

q⊆[n]\B1

t
−ep+equ|p|v|q|.

Fix |p| = i, |q| = j, and consider the sum

ϕij =
∑

B∈M

Hilb(ConeB(M))
∑

p ⊆ Bk,
|p| = i

∑

q ⊆ [n] \ B1,
|q| = j

t
−ep+eq . (20)

We need show that ϕij is zero if i �= j. Let P be the convex hull of {−ep + eq} appearing 

in the summation (20). Note that P is contained in the intersection of He[n]=j−i and the cube 

{x ∈ Rn | −1 ≤ x� ≤ 1 ∀� ∈ [n]}. By Corollary 4.8. (b), it thus suffices to show that 
ϕij |He�=−1

= 0 and ϕij |He�=1
= 0 for all � ∈ [n].

Let us now fix any � ∈ [n]. As none of the constituents have coloops (and in particular � is 
not a coloop in Mk), the intersection Q(M) ∩ He�=0 is a non-empty face of Q(M) minimizing 

in the e� direction, consisting of bases B = (B1, . . . Bk) such that � /∈ Bk. Thus, we have that 
ConeB(M) ∈ Pe�

n if and only if � /∈ Bk, and by Theorem 4.7 with ζ = e� we have

ϕij |He�=−1
=

∑

B:�/∈Bk

∑

p ⊆ Bk,
|p| = i

∑

q ⊆ [n] \ B1,
|q| = j

Hilb((−ep + eq + ConeB(M))|He�=−1
).

But since � /∈ Bk implies � /∈ p, every cone −ep + eq + ConeB(M) occurring in the sum above 

will have vertex v with v� > −1. Hence, noting that ConeB(M) ∈ Pe�
n for such cones, we have 

ϕij |He�=−1
= 0. A similar argument with ζ = −e�, noting that � is not a loop in M1, shows that 

ϕij |He�=1
= 0. �

We thus make the following definition that generalizes the polynomial hM of a matroid M to 

the setting of flag matroids. It is well-defined by Lemma 7.2.
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Definition 7.3. Let M = (M1, . . . , Mk) be a flag matroid [n] such that every constituent of M
is both loopless and coloopless. Let π(n−1)1, πr, α, β be as in §3. Then the polynomial hM is 
defined as the (unique) univariate polynomial of degree at most n − 1 such that

(π(n−1)1)∗π∗
r

(
y(M)

)
= hM(α + β − αβ).

Remark 7.4. We have constructed the polynomial hM via the flag-geometric diagram (Fl). Al-
though one may also consider a similar construction via the “Las Vergnas” diagram (F̃ l), a 

computer computation (§1.1) shows that the analogue of Lemma 7.2 fails in this case, for in-
stance with M = (U2,4, U3,4).

In the case of matroids realizable over C, the behavior of the polynomial gM of a matroid M , 
in particular the non-negativity of its coefficients, was used to establish a bound on the number 
of interior faces in a matroidal subdivision of a base polytope of a matroid [38]. Extending these 

results to arbitrary matroids is so far open, but an announcement of a relevant forthcoming work 

has been made in [26].
In another work [2], the authors study flag-matroidal subdivisions of base polytopes of flag 

matroids, and extend the tropical geometry of matroids used in [38] to the setting of flag ma-
troids. We are thus led to ask the following.

Question 7.5. Does a suitable modification of our polynomial hM give an analogue of the poly-
nomial gM for flag matroids, and does its behavior lead to a bound on the number of interior 
faces in a flag-matroidal subdivision of a base polytope of a flag matroid?

7.2. Characteristic polynomials of matroid morphisms

A recent breakthrough in matroid theory is the log-concavity of the coefficients of the char-
acteristic polynomial of a matroid [1]. We consider here several candidates for characteristic 

polynomials of morphisms of matroids. We begin with the one coming from the flag-geometric 

Tutte polynomial.

Definition 7.6. For a flag matroid M, define the flag-geometric characteristic polynomial

KχM(q) of M by

KχM(q) := (−1)rk KTM(1 − q, 0).

Like the usual characteristic polynomial, the polynomial KTM satisfies KχM(q) = 0 when-
ever the first constituent M1 of M has a loop by Proposition 6.5. The following conjecture is 
supported by computer computations (§1.1). It suggests that the flag-geometric characteristic 

polynomial of a two-step flag matroid may contain little information about the flag matroid it-
self.

Conjecture 7.7. Let M be a matroid of rank r with no loops, so that U1,n � M is a valid 

matroid quotient. Then Kχ(U1,n,M)(q) = (q − 1)r.
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Let us now turn to the Las Vergnas Tutte polynomial. The last two bullet points of Remark 5.4
suggest two different ways of generalizing the characteristic polynomial of a matroid. The case 

of M = (M, M) gives rise to the polynomial pM(q, s) := (−1)r2LV TM(1 − q, 0, −s), which 

was studied by Las Vergnas as the Poincaré polynomial of a matroid quotient [28, §4]. Here we 

introduce another generalization following the case of M = (U0,n, M).

Definition 7.8. For a flag matroid M = (M1, M2) on [n], define its beta polynomial βM(q) by

βM(q) := (−1)r2−r1LV TM(0, 0, −q).

When M = (U0,n, M), it follows from LV TM(x, y, z) = TM (z + 1, y) that βM(q) =

χM (q), the characteristic polynomial of M . The terminology for βM(q) is motivated by Propo-
sition 7.9 below. First, let us recall that the beta invariant β(M) of a matroid M of rank r is 
defined as

β(M) := (−1)r−1

(
d

dq χM (q)
∣∣∣
q=1

)
,

and that if e is an element that is neither a loop nor a coloop, then β(M/e) + β(M \ e) = β(M)

[10].

Proposition 7.9. Let M1 = M (r2−r1)
� · · · � M (1)

� M (0) = M2 be the Higgs 

factorization of a matroid quotient M1 � M2 as described in §2.1. The beta polynomial 

βM1,M2
(q) is divisible by (q − 1), and the reduced beta polynomial of M1 � M2, defined 

as βM1,M2
(q) := βM1,M2

(q)/(q − 1), satisfies

βM1,M2
(q) =

r2−r1−1∑

i=0

(−1)r2−r1−1−i
(
β(M (i)) + β(M (i+1))

)
qi.

If M̃ (i) is the (unique) matroid on [n] 	{0} such that M̃ (i)/0 = M (i+1) and M̃ (i)\0 = M (i), 
which exists by [35, §7.3], then β(M (i)) + β(M (i+1)) = β(M̃ (i)). So, the proposition says that

βM1,M2
(q) =

d−1∑

i=0

(−1)d−1−iβ(M̃ (i)) where d = r2 − r1.

Proof. Let M = (M1, M2) and d = r2 − r1. [28, Theorem 3.1] states that

LV TM(x, y, z) =
d∑

i=0

ti(M; x, y)zi,

where
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ti(M; x, y) =
1

xy − x − y

(
(y − 1)TM(i−1)(x, y) + (−xy + x + y − 2)TM(i)(x, y)

+ (x − 1)TM(i+1)(x, y)
)

for i = 1, . . . , d − 1, and

t0(M; x, y) =
1

xy − x − y

(
− TM(0)(x, y) + (x − 1)TM(1)(x, y)

)
,

td(M; x, y) =
1

xy − x − y

(
(y − 1)TM(d−1)(x, y) − TM(d)(x, y)

)
.

Let us express the beta invariant β(M) of a matroid M of rank r equivalently as

β(M) = (−1)r−1

(
d
dq χM (q)

∣∣∣
q=1

)
,

= (−1)r−1 lim
q→1

(−1)rTM (1 − q, 0) − (−1)rTM (0, 0)

q − 1
= − lim

q→1

TM (1 − q, 0)

q − 1
.

As LV TM(x, y, z) is a polynomial, each ti(M; x, y) is also a polynomial. Hence, we have 

ti(M; 0, 0) = limq→1 ti(M; 1 − q, 0), and thus the above expressions for ti(M; x, y) give

ti(M; 0, 0) = β(M (k−1)) + 2β(M (k)) + β(M (k+1)) for i = 1, . . . , d − 1, and

t0(M; 0, 0) = β(M (0)) + β(M (1)),

td(M; 0, 0) = β(M (d−1)) + β(M (d)).

As a result, we have

(−1)dLV TM(0, 0, −q) = (q − 1)
( d−1∑

i=0

(−1)d−1−i
(
β(M (i)) + β(M (i+1))

)
qi

)
,

yielding the desired result for the reduced beta polynomial βM(q). �

Log-concavity of the coefficients of the reduced characteristic polynomial χM (q) = χM (q)
q−1

was established in [1]. This motivates the following conjecture.

Conjecture 7.10. The coefficients of βM1,M2
(q) form a log-concave sequence. Consequently, 

the coefficients of LV TM(0, 0, q) form a log-concave sequence.

The coefficients of LV TM(1, 1, q) were shown to be (ultra) log-concave in [12].
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