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1. Introduction

Matroids are combinatorial abstractions of hyperplane arrangements that have been fruitful

grounds for interactions between algebraic geometry and combinatorics. One interaction con-

cerns the Tutte polynomial of a matroid, an invariant first defined for graphs by Tutte [40] and

then for matroids by Crapo [11].
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Definition 1.1. Let M be a matroid of rank 7 on a finite set [n] = {1,2,...,n} with the rank
function rky; : 207 — Z>. Its Tutte polynomial Ty, (z,y) is a bivariate polynomial in z,y
defined by

TM($7y) = Z (.’E _ 1)T—rkM(S) <y _ 1)|S|—rkM(S).
SCln]

An algebro-geometric interpretation of the Tutte polynomial was given in [16] via the K-
theory of the Grassmannian. Let Gr(r;n) be the Grassmannian of r-dimensional linear sub-
spaces in C™, and more generally let Fi(r;n) be the flag variety of flags of linear spaces of
dimensions r = (71, ...,7). The torus T' = (C*)™ acts on Gr(r;n) and Fl(r;n) by its stan-
dard action on C™. A point L € Gr(r;n) on the Grassmannian corresponds to a realization
of a matroid, and its torus-orbit closure defines a K-class [O77] € K°(Gr(r;n)) that de-
pends only on the matroid. In general, a matroid M of rank r on {1,...,n} defines a K-class
y(M) € K°(Gr(r;n)). Fink and Speyer related y(M) to the Tutte polynomial T (z,y) via the
diagram

Fi(1,r,n—1;n)
Gr(r;n) Gr(n—1;n) x Gr(l;n) == (P~ 1)V xPn-1,

ey

where 7, and 7(,,_1); are maps that forget appropriate subspaces in the flag.

Theorem 1.2. [16, Theorem 5.1] Let O(1) be the line bundle on Gr(r;n) of the Pliicker embed-

ding Gr(r;n) < P () =1, With notations as above, we have

Tar(a, 8) = (mu-1y)ms (y(M) - [O(1)]) € KO(P"™)Y x P"™) = Qla, A/ (a”, ),
where o, 3 are the K -classes of the structures sheaves of the hyperplanes of (P"~1)V, P"~1,

We extend this relation between matroids and the K -theory of Grassmannians to a relation
between flag matroids and the K -theory of flag varieties. As a result, we show that there are (at
least) two different generalizations of the Tutte polynomial to flag matroids, each with its own
merits.

A flag matroid is a sequence of matroids M = (My,..., M) on a common ground set
such that every circuit of M; is a union of circuits of M;_; for all 2 < ¢ < k. The rank of M
is the sequence (rk(My),...,rk(My)). Most of this paper will concern the case of £ = 2. In
this case, the two-step flag matroids (M7, M) are often called matroid morphisms or matroid
quotients. They are combinatorial abstractions of graph homomorphisms, linear surjections,
and embeddings of graphs on surfaces. See §2.1 for details on flag matroids and matroid quo-
tients.
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Many features of matroids naturally generalize to flag matroids. For instance, just as a point on
a Grassmannian corresponds to a realization of a matroid, a point L on the flag variety F'l(r;n)
corresponds to a realization of a flag matroid. The torus-orbit closure of L defines a K -class
[O7x] € K°(Fl(r;n)) that depends only on the flag matroid. In general, a flag matroid M of
rank r on a ground set {1, ..., n} defines a K-class y(M) of the flag variety Fi(r;n). See §2.3
or [8, §8.5] for details.

At this point, however, extending the constructions on matroids to flag matroids splits into
several strands, for there are (at least) two distinguished ways to generalize the diagram (1).

* The “flag-geometric” diagram:

Fi(l,r,n —1;n)

/ “ (Fl)

Fl(r;n) (]P>n—1)\/ % IP)n—l

where 7, and 7(,,_1); are maps that forget appropriate subspaces in the flag.
¢ The “Las Vergnas” diagram:

ﬁ(l,r,n—l;n)

y &z (F1)

Fl(r;n) (Pr—1)V x pn—t

where ﬁ(l, r,n — 1;n) is the variety defined as

Fl(l,r,n—1;n)

| linear subspaces | dim¢=1,dimH =n—1,(Ly,...,L;) € Fl(r;n),
) (¢, Ly,..., Ly, H) and¢ C Lyand Ly C H ’

and 7, and 7(,,_1); are maps that forget appropriate subspaces in the flag.

Let us first consider the construction (/Z:;l). While the construction (ﬁ) may seem geometri-
cally unnatural, since FI(1,r,n — 1;n) is not a flag variety, it leads to the previously established
notion of Las Vergnas’ Tutte polynomials of morphisms of matroids, defined as follows.

Definition 1.3. Let M = (M7, M>) be a two-step flag matroid on a ground set [n] = {1,...,n}.
For i = 1, 2, let us write r; for the rank of M;, and r;(.S) for the rank of S C [n] in M;. The Las
Vergnas Tutte polynomial of (M7, Ms) is a polynomial in three variables z, y, z defined by

LV Tu(z,y,2) = Z (x — 1)7”1*7“1(3) (y — 1)\S\*Tz(s)zrz*Tz(s)*(ﬁ*h(s))_
SC[n]
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Las Vergnas introduced this generalization of the Tutte polynomial in [27], and studied its
properties in a series of subsequent works [28-30,14,31,32]. Our first main theorem is a K-
theoretic interpretation of the Las Vergnas Tutte polynomial.

Theorem 5.2. Let M = (My, Ms) be a flag matroid with r1 = tk(M,), ro = rk(My). Let
O(0,1) be the line bundle on Fl(ry,r2;n) of the map Fl(ry,ra;n) — Gr(re;n) < P("T;)fl,
and let S3/S;1 be the vector bundle on Fl(ry,ra;n) whose fiber over a point (L1, Ls) €
Fl(r1,re;n) is Lo/ L. Then,

T2—T1

LV Tu(a, B,0) = 3 (Fon )7 (s M)OO, DA S2/S1)] )™

m=0
as elements in K°((P"~1)V x P 1)[w] ~ Q[a, 8, w]/(a™, B7).

Let us now consider the construction (F'1). It leads to the following different generalization
of the Tutte polynomial, first defined in the review [8].

Definition 6.1. Let M be a flag matroid of rank r = (ry,...,7r) on {1,...,n}, and let O(1)
be the line bundle of the embedding Fi(r;n) < Gr(ri;n) X -+ X Gr(rg;n) < IP’('fnl)fl X

cee X IP’(:;)*I. The flag-geometric Tutte polynomial of M, denoted KT (x, y), is the unique
bivariate polynomial in z, y of bi-degree at most (n — 1,n — 1) such that

KTaa(a, ) = (muiyn)-i (5(M) - [O(V)]) € (P x P"~1) = Qla, 6]/(a”, 8").

While the construction (F'l) may be more geometrically natural than the construction (ﬁ),
we show that the flag-geometric Tutte polynomial K Ty fails to display the two characteristic
combinatorial properties of the usual Tutte polynomial that the Las Vergnas Tutte polynomial
satisfies.

The first property is the “corank-nullity formula”: Both the usual Tutte polynomial and the
Las Vergnas Tutte polynomial can be expressed as a summation over all subsets of the ground
set, with terms involving coranks and nullities of subsets. As a result, for a matroid M or a flag
matroid (M1, M) on {1,...,n}, one has T/(2,2) = 2" and LV T (s, a,)(2,2,1) = 2". We
show that the value of K Tn(2,2) is more intricate.

Theorem 6.7. Let M be a two-step flag matroid M = (M, Ms) on a ground set [n] =
{1,...,n}. Let pB(M) be the set of subsets S C [n] such that S is spanning in M, and in-
dependent in My. Then with q as a formal variable, we have

KTu(l+q 1+ =g (1+g" (Y ),
SepB(M)

in particular, K7Tm(2,2) =2" - [pB(M)|.
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The second property is the deletion-contraction recursion that the Tutte polynomial and the
Las Vergnas Tutte polynomial both satisfy. Unlike them, the flag-geometric Tutte polynomial
KT does not satisfy the usual deletion-contraction recursion. We instead show the following
deletion-contraction-like relation.

Theorem 6.8. Let M be a matroid on a ground set {0,1,...,n} such that the element 0 is
neither a loop nor a coloop in M. Then we have

KTy (@, y) = KTag0,0/0) (T, y) + KT aj0,000) (%, y) + KT aro,a0\0) (T, Y)-

The three main theorems Theorem 5.2, Theorem 6.7, and Theorem 6.8 are obtained by prov-
ing stronger torus-equivariant versions of the statements. The resulting torus-equivariant state-
ments are then reduced to computing certain summations of lattice point generating functions,
techniques for which we review, extend, and specialize in Section §4. Our main contribution here
is Theorem 4.7, which serves as a key technical tool in this paper and may be of independent
interest in the study of lattice polyhedra.

The reduction to lattice point generating functions is done via the method of equivariant
localization, reviewed in Section §2.2, aided by certain push-pull computations in Section §3.
Section §2 is largely a summary of a more detailed account [8, §8] on flag matroids and the
torus-equivariant K -theory of flag varieties. We discuss some future directions in Section §7.

1.1. Computation

At https://github.com/chrisweur/kTutte, the reader can find a Macaulay2 code for computa-
tions with torus-equivariant K -classes and flag matroids. In particular, it computes the polyno-
mials LV T and K7 and their torus-equivariant versions.
1.2. Notation

Throughout we set [n] := {1,...,n}. Fori = 1,...,n, we set e; to be the standard coor-
dinate vector in R™ (or C™), and write es := ), g e; for a subset S C [n]. Let (-, -) be the
standard inner product on R™. Cardinality of a set S is denoted by |S|, and disjoint unions by L.
A variety is a reduced and irreducible proper scheme over C.

2. Preliminaries: flag matroids and their K -classes on flag varieties

Here we review flag matroids and their (torus-equivariant) K -classes on flag varieties. Most
of the material in this section is described in more detail in the review [8].

2.1. Matroid quotients and flag matroids

We assume familiarity with the fundamentals of matroid theory, and point to [35,43,42] as
references. We write U, ,, for the uniform matroid of rank  on [n]. For a linear subspace L C
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C™, let M (L) denote the linear matroid whose ground set is the image of {ej,...,e,} under
the dual map C™ — LV. For a matroid M on a ground set [n] we set:

* ks : 2[" — 7Z to be the rank function of M, with (M) := rky;([n]),

M|S, M\ S and M/S to be the restriction to, the deletion of, and the contraction by a subset
S C [n] (respectively),

* B(M) to be the set of bases of M, and

* Q(M) C R™ to be the base polytope of M, which is the convex hull of {eg | B € B(M)}.

In this paper, by morphisms of matroids we will mean matroid quotients, as defined below.'
They are combinatorial abstractions of the graph homomorphisms, linear maps, and graphs em-
bedded on surfaces; see [12] for illustrations of these examples.

Definition 2.1. Let M7, M5 be two matroids on a common ground set [n]. We say that M is a
matroid quotient of My, written M; « Moy, if any of the following equivalent conditions are
met [7, Proposition 7.4.7]:

(1) every circuit of M5 is a union of circuits of M,

(2) tkar, (B) — rkag, (A) > tkay, (B) — tkay, (A) forany A C B C [n],

(3) there exists a matroid N on a ground set [n] U .S with |S| = r(Msy) — r(M;) such that
M; =N/Sand My = N\ S.

Example 2.2. Matroid quotients are combinatorial abstractions of linear maps of maximal rank.
An inclusion of linear subspaces L; < Ly C C™, or equivalently a quotient C* —» LY — LY,
defines matroids M (L1) and M (Ls), which form a matroid quotient M (L) «— M (Ls).

Example 2.3 (Canonical matroid quotients). Just as any linear space L has two canonical linear
maps, the identity L — L and the zero map L — 0, any matroid M has two canonical matroid
quotients, the identity M — M and the trivial quotient M — U ,,.

A matroid quotient M; « M, is an elementary quotient if r(Ms) — r(M;) = 1. Ev-
ery matroid quotient M; « M, can be realized as a composition of a series of elemen-
tary quotients. A canonical one is given by the Higgs factorization M, = M (ra=r)

e M « MO = M,, defined by BIM®D) = {S C [n] | |S| = r(My) —
i, S spans M and is independent in Ms}. The subsets S C [n] that span M and are indepen-
dent in M, are called pseudo-bases of (M7, Ms). The set of pseudo-bases of M = (M7, My)
is denoted by p3(M). For a more on matroid quotients, we refer the reader to [7, §7.4] or [35,
§7.31].

! The behavior of a morphism of matroids, in a more general sense of [12] or [22], is largely governed by an associated matroid
quotient [12, Lemma 2.4].
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Definition 2.4. A flag matroid is a sequence of matroids M = (Mj, ..., M})” on a ground set
[n] such that M; « M, foralli = 1,...,k — 1. The matroids M, are constituents of M,
and the rank of M is the sequence of ranks of its constituents (r(My),...,r(My)). The set of

bases of M, denoted B(M), is the set of all k-flags of subsets (B; C By C - -+ C By) such that

Example 2.5 (Linear flag matroids). A sequence of matroids (M (L4), ..., M(Ly)) defined by
a flag LL of linear subspaces L; C --- C L, C C" is a flag matroid. We denote this flag matroid
by M (L). Flag matroids arising in this way are called linear (or realizable) flag matroids.

For S = (S4,...,Sk) a flag of subsets of [n], we write es = eg, + --- + eg,. The base
polytope Q(M) of a flag matroid M is the convex hull of {eg | B € B(M)}, whose vertices
are in bijection with the bases of M. The polytope Q(M) is also the Minkowski sum of the
base polytopes Q(M;) of the constituents of M. The classical theorem of Gelfand, Goresky,
MacPherson, and Serganova [18] a characterizes base polytopes of matroids. The analogue for
flag matroids holds:

Theorem 2.6. [3, Theorem 1.11.1] A lattice polytope P C R™ is the base polytope of a rank
(r1,...,rt) flag matroid on [n] if and only if the following two conditions hold:

(1) every vertex of P is a &,,-permutation ofefio,..rmy - tea. . ry and
(2) every edge of P is parallel to e; — e; for some i,j € [n].

In particular, the normal fan of the base polytope QQ(M) of a flag matroid is a coarsening of the
braid arrangement, which is the normal fan of the zonotope 3, -, _;,, Conv(e;, e;).

Consequently, every face of a base polytope of a flag matroid is again a base polytope of a
flag matroid. The faces can be described explicitly. For u € R™ and a polytope Q C R™, let
Q" :={r € Q| (z,u) = max,eq(y, u)} be the face maximizing in the direction of u.

Proposition 2.7. Let M = (M, ..., My,) be a flag matroid on [n] or rankx = (r1, ..., 1), and

letS =51 C--- C Sy, be aflag of subsets of [n]. Then Q(M)®S is the base polytope of a flag
matroid whose i-th constituent (fort =1,... k) is

M1|Sl D M1|52/31 b b Mi|Sm/Sm—1 ¥ Mz/Sm

In other words, the bases of the flag matroid of Q(M)®S are bases B = (B1,...,Bi) of M
such that vk, (S;) = |B;N S| forall1 <i<kand1 < j <m.

2 We remark that, unlike [3] but in agreement with [12] and [8], we allow repetition of matroids in the sequence of matroids that
constitute a flag matroid.
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Proof. Note that if Q) = Zle Q; is a Minkowski sum of polytopes, then for any v € R", the
face Q" is the Minkowski sum Zle Q' of faces. The proof of the proposition is thus reduced
to the case of M being a matroid M. In this case, the statement is an immediate consequence of
the greedy algorithm structure for matroids. O

2.2. Torus-equivariant K -theory of flag varieties

We will study combinatorial properties of flag matroids through the geometry of (partial) flag
varieties and their (torus-equivariant) K -theory. We point to [8, §8] or [15, §2] (and references
therein) for a detailed exposition of equivariant K -theory of flag varieties.

We begin by describing torus-equivariant K -theory and the method of localization. Let T' =
(C*)", and write Z[t*] := Z[t{,...,tE] = Z[Z!"] for the character ring of 7. Let X be a
smooth variety with a T-action, and let £ be a (1-equivariant) vector bundle on X. We write:

¢ K%(X) for the Grothendieck ring of vector bundles on X, which is isomorphic to the
Grothendieck group of coherent sheaves K (X) since X is smooth,

KY.(X) for the T-equivariant Grothendieck ring,

[€] € K°(X) for the K-class of £ and [€]T € K9(X) for its T-equivariant K -class,

f« for the (derived) pushforward map and f* for the pullback map of K-classes along a
proper map f : X — X’ of smooth varieties,

* x for the pushforward along the structure map X — Spec C, and

xT for the T-equivariant pushforward to K% (pt) = Z[t*], the Lefschetz trace [34, §4].

We now assume that X has finitely many T-fixed points, denoted X7, and finitely many
1-dimensional T-orbits. Moreover, we assume X to be equivariantly formal and contracting,
the precise definitions of which can be found in [8, Remark 8.5 & Definition 8.6]. Examples
of such X include flag varieties and smooth toric varieties. By definition, for each 7T'-fixed
point z € X7, there is a T-invariant affine neighborhood U, ~ A%™X whose characters
{M(Z),...; Aaimx(z)} C Z™ generate a pointed semigroup. Fundamental results from the

method of equivariant localization are collected in the following theorem.

Theorem 2.8. Let X be a equivariantly formal and contracting smooth T-variety with finitely
many T-fixed points and finitely many 1-dimensional T-orbits. Then:

(1) [41, Corollary 5.12], [25, Corollary A.5] (cf. [34, Theorem 3.2], [39, Theorem 2.7]) The
restriction map

KH(X) = Kp(XT) = @), e e()
is injective. Moreover, an element ¢(-) € (Z[ti])XT is in the image if and only if for every

one-dimensional T-orbit in X with boundary points x,y € X' in the closure, the function
e(-) : XT — Z[t*] satisfies
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e(z) = e(y) mod 1 —t*

where X is the character of the action of T on the one-dimensional orbit.

(2) [15, Theorem 2.6], [33, Theorem 8.34] Let € be a T-equivariant coherent sheaf on X, and
let v € XT. The image [E]7 (x) of [E]T under the restriction K9.(X) — K9 (x) ~ Z[t*] is
K(E(Uy);t) where

K(E(U,); t)
I (1 = t=2(@)

Hilb(E(U,)) =

is the multigraded Hilbert series of the O x (U )-module E(U,) [33, Theorem 8.20].

(3) [9, Theorem 5.11.7] (cf. [34, §4]) Let f : X — Y be a proper T-equivariant map of equiv-
ariantly formal, contracting, and smooth T-varieties, and let o« € K%(X), B € KX(Y).
Then we have

(f*B)(x) = B(f(x)) forevery z € XT, and

dimY G{(.’L‘)
(fea)(y) = < H (1— t—Ai(y))> Z dimX(1 —gn@)

i=1 sextr-1(y) =1

forevery y € Y7

We now specialize our discussion of K-theory to flag varieties. For a sequence of non-
negative integers r = (r1,...,7rg) such that 0 < r; < --- < rp < n, denote by Fl(r;n)
the flag variety

Fl(r;n) :={L=(L; C--- C Ly C C") linear subspaces with dim L; = r; V1 < i < k}.
Foreachi = 1,..., k, we have the tautological sequence of vector bundles on F'i(r;n)
0585 —-C"—-Q;,—0

where S; is the (i-th) universal subbundle. It is a vector bundle whose fiber at a point
L € Fl(r;n) is the subspace L;. For a = (ay,...,ax) € ZF we denote by O(a) the
line bundle ®f:1(det §Y)®%, and by O(1) the line bundle O(1,1,...,1) on Fi(r;n). The
torus 7' := (C*)™ acts on Fi(r;n) by its action on C™ where (t1,...,t,) « (1,...,%n) =
(tflxl, ..., t>'x,). With this T-action, a flag variety is a equivariantly formal and contracting
space with the following structure:

¢ The T-fixed points xg of Fl(r;n) are flags of coordinate subspaces, which are in bijection
with flags of subsets S; C --- C Si, C [n] with |S;| =r; foralli =1,... k.

* For a flag S, denote by Ez(S) the set of (4, j) € [n] x [n] such thati € Sy and j ¢ S, for
some 1 < ¢ < k. Then the set of characters of the T-neighborhood Usg of zg is {e; — e; |
(i.j) € Ex(S)}.
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The sign-convention we have adopted for the action of 7" ensures that 7" acts on the sections of
S) by positive characters. For instance, we have [S)]|T (zg) = jes, tj and [QY]T (zs) =
> icim\s, tj> and moreover [A\* S/|" (zs) = Z t°4 and (AP S;]T (zs) = Z tea

ACS ACS;
p

i
[Al=p |Al =

(likewise for A7 QY, A\? Q,).
2.3. K-class of a flag matroid

Flag matroids enter into the K -theory of flag varieties as T-equivariant K -classes as follows.
Let M be a flag matroid of rank r on a ground set [n]. For B a basis of M, define a polyhedral
cone Coneg (M) := Cone(Q(M) —ep) C R", also known as the tangent cone of Q(M) at the
vertex e, and let Hilbg (M) be the multigraded Hilbert series of C[t* | A € Coneg(M)NZ"]
(see [33, Theorem 8.20]).

Definition 2.9. [8, Definition 8.19] Let M be a flag matroid of rank r on a ground set [n]. Then
define y(M)7'(-) € K&(Fl(r;n)T) by

Hilbs(M)- J] (1—t;"t;) ifSabasisof M
y(M) (zg) == (i.7)EEa(S)
0 otherwise.

By combining Theorem 2.8.(1) and Theorem 2.6, one observes that y(M)*' can be considered
as a class in K3 (Fl(r;n)) [8, Proposition 8.20]. We will write y(M) for the underlying non-
equivariant K -class. The geometric motivation for this K -class constitutes the remark below.

Remark 2.10. Recall from Example 2.5 that a point L € Fl(r;n) defines a flag matroid M :=
M (L) of rank r. One observes that the torus-orbit closure 7" - L is isomorphic to the toric variety
of the base polytope Q(M), and then by applying Theorem 2.8.(2) one shows that the class
[O75)T € K% (Fl(r;n)) satisfies [O75]T () = y(M)T(-). See [8, §8.5] for details.

Remark 2.11. Let P(FMat,.,,) be a group generated by the indicator functions 1(Q@) : R™ — R
of base polytopes @ of rank r flag matroids on [n]. A function ¢ from the set of flag matroids of
rank r on [n] to an abelian group A is (strongly) valuative if it factors through P(FMaty.,). As
taking tangent cones and taking Hilbert series are valuative, it follows easily from the definition
that the assignment M +— y(M) is valuative.

When r = (r) (that is, we are concerned with the Grassmannian Gr(r; n) and hence matroids
of rank r on [n]), invariants of a matroid M built from y(M) were explored in [38] and [16] as
follows. To avoid confusion we write P"~! for Gr(1;n) and (P"~1)V for Gr(n — 1;n). Recall
the diagram:
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Fi(1,r,n—1;n) 2)
/ m\
Gr(r;n) (Pr—1)V x pn-lL,

Let « be the K-class of the structure sheaf of a hyperplane in (P"~1)" and 3 the likewise K-
class from P™~!. We remark that our notation of c, 3 is flipped from the notation in [16].° Recall
that K°((P"~ 1)V x P"~1) ~ Qla, 8]/ (a™, B7).

Theorem 2.12. [ 16, Theorem 5.1] Let M be a matroid of rank r on [n), and let Tys(x,y) be its
Tutte polynomial. Then we have

Taa (@, 8) = (maevy)oms (v(M) - [O(1)]).

We will generalize this K-theoretic formulation of Tutte polynomials of matroids to flag
matroids in two different ways in subsequent sections. In both cases, similarly to Theorem 2.12,
the Tutte polynomials of flag matroids are formulated via diagrams like (2), which we introduce
in the next section.

3. Two diagrams and a fundamental computation

The main goal of this section is to prove Proposition 3.1, which relates a pushforward of
a pullback of K-classes to Euler characteristics of certain associated sheaves. As this sec-
tion is closely adapted from [16, §4], we only give sketches of proofs, save for the modified
parts.

Letr = (rq,...,7r;) be a sequence of non-negative integers. For each i = 1,...,k, re-
call that we have tautological bundles S; and Q; on Fli(r;n) fitting into the short exact se-
quences

0—-8 —-C"— Q,—0. 3)

For two vector bundles £, F on X = Fl(r;n), we write 7 : BiProj(€,F) — X for the
bi-projectivization of the direct sum & & F. That is, BiProj(€, F) := Proj(Sym®¢&) xx
Proj(Sym® F), so that for each point x € X, the fiber 7~ (z) is P(£Y) x P(F.Y). We consider
the following two distinguished cases; note that the two cases are identical when k£ = 1 (i.e.
when Fl(r;n) is a Grassmannian Gr(r; n)).

3 In [16], the authors consider Ti(n—1) : FI(1,r,n —1;n) — P! x (P~ 1)V, and set o and 3 as the K -classes of the
structure sheaves of hyperplanes from P™~! and (P™~1)" (respectively). Our flipped naming of v, § is to remedy a minor error
in the proof of [16, Lemma 4.1] (bottom three lines on pg. 2709), which accidentally flips the correspondence of «, 3 to appropriate
K -classes.



12 R. Dinu et al. / Journal of Combinatorial Theory, Series A 181 (2021) 105414

¢ BiProj(Sy, Qk) =~ FI(1,r,n — 1;n). In this case, we have maps:

Fl(l,r,n—1;n) (F)

/ Rl)l/\
Pn

where 7, and 7(,,_1); are given by forgetting the linear spaces of appropriate dimensions.
* BiProj(Sy, Q1) ~ Fi(1,r,n — 1;n) where Fl(1,r,n — 1;n) is a variety

F 1 Vo pr—1

ﬁ(l,r n—1;n)

linear subspaces | dim¢ =1,dimH =n —1, (L1,..., L) € Fi(r;n),
(,Ly,...,Lg, H) andECLkandLlCH

In this case, we also have maps:

Nlrn
/ \1)14\
Pnl

where 7, and 7(,,_1); are given by forgetting the linear spaces of appropriate dimensions.

(FI)

F Pnfl

As before, let = [Op, | be the K-class of the structure sheaf of a hyperplane in (P"~1)V
and 8 = [Op,] the likewise K -class from P"~!. The main statement of this section is as follows.

Proposition 3.1. Let e € K°(Fl(r;n)). With u and v as formal variables, define polynomials

R (u,v) ::Z ( /\Sk /\QV )upvq and

p,q

Re(u,v) := Zx(e . [/P\Sl][;\ Q%])upvq.

p.q

Then we have the following identities in K°((P"~1)V x Pn—1),

R(a—=1,8=1) = (m(n-1y)wms(e) and Re(a—1,8—1) = (Fn_1)1)-75 (e).

When k& = 1, i.e. Fl(r;n) is a Grassmannian, Proposition 3.1 reduces to [16, Lemma 4.1].
We remark that, just as in [16], Proposition 3.1 is an identity in the non-equivariant K -theory.
The proof of Proposition 3.1 is a minor modification of the proof of [16, Lemma 4.1]. Here, as
a lemma, we separate out and also fix a minor error in the part of the proof in [16] that needs
modification.
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Lemma 3.2. Denote 1 := (1 — a)™! = [O(1,0)] and 2 := (1 — B)~1 = [0(0,1)], and let t
be a formal variable. Then the following identities hold in K°(FI(r;n))[[t]].

STIASI = (0 +07(m)m (15 and S Qe

p

=(1+ t)"(ﬂr)*ﬁn—m( : )

1+t
And likewise,
P ~ ~
;[/\ S = (1+ t)”(ﬂr)*wz‘nil)l(m) and
A Vieg ni~\ ok 1
SN = (14 Fo)itnin (7))
Proof. Foreach?=1,...,k note that

(Z[/l\&]#)(Z[}n\ Q™) = (1+1)", @

4 m

which follows from the short exact sequence (3) and [13, A2.2.(c)]. We also have an identity

(Z[/\ SIt) (S (=1 [sym™ Sjm) =1 )

14 m

and likewise identities for Q; and the duals Siv , ;/, which follow from the exactness of the
Koszul complex [13, A2.6.1]. Now, we note by [21, Exercise II1.8.4] that

(Te) (1)1 (M5n7") = [Sym’ 8) ® Sym™ Q4] and ©
(Te) T (et (m31") = [Sym® S ® Sym™ Q1.
Combining (4), (5), and (6) then yields the desired identities. O
Sketch of proof of Proposition 3.1. One combines Lemma 3.2 with the projection formula for
K-theory [17, §15.1]. Then by expanding the power series in v and v, which is in fact a finite
sum, comparing coefficients yields the desired identity. See the proof in [16] for details. O

4. Summations of lattice point generating functions

The method of equivariant localization §2.2, aided by Proposition 3.1, will reduce our K-
theoretic computations to summations of lattice point generating functions. Here we collect
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some useful results concerning summations of lattice point generating functions arising from
polyhedra, along with variants that are suitable for our purposes. Our main novel contribution
is Theorem 4.7, which is a useful variant of the method of flipping cones. The reader may see
Example 4.12 for illustrations of main theorems here.

4.1. Brion’s formula

Here we review the results in [6,23]. For a subset S C R™, denote by 1(S) : Z™ — Q its
indicator function sending = +— 1 if x € S and 0 otherwise. Let P,, be a vector space of Q-
valued functions on Z™ generated by {1(P) | P C R™ lattice polyhedra}. It follows from the
Brianchon-Gram formula [5,19,37] that P,, is generated by indicator functions of cones, and by
triangulating one concludes that P, is generated by indicator functions of smooth cones.

We will often consider elements of PP, as elements in the power series ring Q[[t, . . ., tX]] by
identifying 1(P) with >, . prz- t*. The following fundamental theorem concerns convergence
of these power series to a rational function.

Theorem 4.1. /23, Theorem 1.2]* Consider P,, as a Q[tli, <o tE]-submodule of Q[[tli, e
tE]], and let Q(ty, . .. ,t,) be the fraction field. There exists a unique Q[tL, ... t]-linear map

Hilb : P, = Q(t1,. .., tn)

such that if C = Cone(vy,...,v;) C R™ is a smooth cone with primitive ray generators
V1, v € Z7 then Hilb(1(C)) = [T, 1=ter-

Two remarks about the above linear map Hilb follow:

(1) The notation Hilb agrees with our previous notion of Hilbert series: when C' is a pointed
rational polyhedral cone, not necessarily smooth, Hilb(1(C')) equals the multigraded Hilbert
series of C[t* | A € C'N Z"] in the sense of [33, Theorem 8.20].

(2) If P is a lattice polyhedron with a non-trivial lineality space, then Hilb(1(P)) = 0.

For P a lattice polyhedron, we will often by abuse of notation write Hilb(P) for Hilb(1(P)).
An important result on rational generating functions for cones is the formula of Brion [6], which
was slightly generalized in [23]. Here we will only need the following special case of [23, The-
orem 2.3].

Theorem 4.2. Let P C R"™ be a lattice polyhedron with a nonempty set of vertices (so P has

no lineality space), and let C(P) be its recession cone. For every vertex v of P, write C,, for
Cone(P — v). Then we have

* Fink and Speyer in [16] and Postnikov in [36] cite [24], whereas Ishida in [23] writes that the theorem is originally due to Brion.
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Hilb(P)= > Hib(C,+v)  and Hilb(C(P))= Y Hilb(C,).
vEVert(P) vEVert(P)

4.2. Lawrence-Varchenko formula (flipping cones) and variants

Here we review the method of flipping cones [15, §6], [4, (11)]. Our contribution is a gener-
alization Theorem 4.7, which will serve as a key technical tool in subsequent sections.

Let ¢ € R™. For every a € R, we will denote the hyperplane {x € R™[({,z) = a} by He—q
and the half-space {z € R"|({,z) > a} by H¢>,. For an element f € P,, by considering
f as an element of Q[[tT,...,tF]] we write f]| H,_, for the sum of terms ct* in f such that

<w7 C> = a.

Definition 4.3. A polyhedron P C R" is ¢-pointed if P C H¢>, for some a € R. Let P§ be
the QQ-vector space generated by ¢-pointed elements in P,,.

We note the following useful observation: Let P C R"™ be a polyhedron with vertices
Vert(P), and as before let C,, := Cone(P — v) for v € Vert(P). Then, for { € R", the
cone C, is ¢-pointed if and only if v is a vertex of the face P~¢ of P minimizing in the ¢
direction.

If f € P&, then one can compute Hilb(f) “slice-by-slice” in the following sense.

Lemma 4.4. Let f, g € PS and suppose that Hilb(f) = Hilb(g). Then for every a € R, it holds
that Hilb(f|HC:a) = Hilb(g|H<:a).

Proof. Write b = f — g, and suppose by contradiction that there is an ¢ € R with
Hilb(b| Hg:a,) # 0. Since b € PS, there is a minimal such a, which we denote by ag. Writ-
ingb = Zl p; 1(C;) with C; smooth cones and p; Laurent polynomials, we define a nonzero
Laurent polynomial ¢(t) = > . cz. At by q(t) := [[,I[;, (1 - t7) where j; ranges over
the primitive rays of C;. By construction ¢ - b has finite support, i.e. is a Laurent polynomial,
and Hilb(q - b)) = ¢Hilb(b) = 0. Hence, we have ¢ - b = 0. Let ¢ = min{(¢,e)|\. # 0},
and let o = > ¢ oy Act®. Then 0 = Hilb((q~b)|HC:a0+c) = qo Hilb(b|g,_,,) # 0, a
contradiction. O

Suppose that { = ({1,...,(,) is chosen such that the ¢;’s are Q-linearly independent, in
which case we say “( is irrational.” Then for any a € R, the intersection H¢e—, N Z™ consists
of at most one point. In this case Lemma 4.4 reduces to saying Hilb : PS — Q(ty,...,t,) is
injective, recovering [15, Lemma 6.3]. We next recall the notion of cone flips. We begin with a
lemma for their existence.

Lemma 4.5. [20, Lemma 6], [16, Lemma 2.1] Assume ( is irrational. For every [ € P, there
is a unique f¢ € PS such that Hilb(f) = Hilb(f¢). The map f + f¢ is linear.
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The map (-)¢ in the lemma is described explicitly as follows. Let C C R” be a rational
simplicial cone

C={w+ Z?:_()l a;v; | a; > 0forall i € [n]}.

Then the image C¢ € 735 under the map of Lemma 4.5 is given by

n—1
CC = (—1)2 1 <{w + Z a;v;
=0

a; > 0 for all ¢ with (¢, v;) > 0, } )
and a; < 0 for all 4 with (¢, v;) <0 ’

where / is the number of rays v; for which (¢, v;) < 0. We will refer to C¢ as the cone flip of C
in direction ¢. For a general pointed rational cone C, one defines the flipped cone C¢ € 735 by
triangulating the cone.’

Remark 4.6. The assumption that ¢ is irrational is essential for Lemma 4.5: if { is not irrational
then P$ contains some lattice polyhedron P with a non-trivial lineality space, and Hilb(P) =
0 = Hilb(0), contradicting uniqueness.

Now, suppose we are given an expression over a finite index set A

e =" a\Hilb(C)) € Q(t1,... . tn), ®)

AEA

where the C'y are pointed cones with vertices not necessarily at the origin and a) € Q are scalars.
Suppose we know that ¢ € Q(t1,...,t,) is in fact a Laurent polynomial, for example, because
 arose from a computation in T-equivariant K -theory. Then we can use cone-flipping to get
partial information about the coefficients of (. The following proposition is our “cone-flipping
in slices” technique which will be used repeatedly in later sections.

Theorem 4.7. Suppose ¢ = ), ax Hilb(Cy) is a Laurent polynomial, i.e. ¢ € Q[tf,... tF),
and let P be the convex hull of the vertices of the C. For { € R"™, not necessarily irrational,
and b € R, suppose that every cone C), whose vertex wy, satisfies (¢, wy) < bis {-pointed. Then

elue_, = Y axHilb(Cy N Hep).
CreP§

In particular, if P N He—y, is the face P~¢ of P minimizing in the ¢ direction, then

olu, = Y, axHilb(Cx N Hey).

¢-pointed C'\ whose
vertex wy ison P~ ¢

> We remark that calling C* the “flipped cone” of C'is a slight abuse of terminology when C' is not simplicial, since C* is not
necessarily the support function of a polyhedron. It can be a genuine linear combination of some of those; see [15, Remark 6.7].
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We note two useful immediate consequences of Theorem 4.7 in the following corollary, of
which the second statement appeared previously in [15].

Corollary 4.8. With assumptions as in Theorem 4.7, one has the following:

(a) If He=p N P = {w} is a vertex of P, the coefficient of t* in @ is equal to  , ax, where the
sum is over all \ for which Cx € PS and the vertex of Cl is at w.
(b) [15, Corollary 6.9] The Newton polytope Newt () of o is contained in P.

Proof. The first statement is a special case of Theorem 4.7. For the second statement, observe
that for any lattice point v € Newt(y) and any ¢ € R”, there must exist a cone C) such
that its vertex wy satisfies (¢, wx) < b where b = ((,v), since otherwise ¢|n,_, = 0 by
Theorem 4.7. O

We prepare for the proof by noting a useful feature of the cone-flipping operation, starting
with the following notion.

Definition 4.9. Let C be a pointed cone, and ¢ € R™. We say that an irrational ¢’ € R” is an
irrational approximation of ¢ with respect to C, if for every ray generator v € R” of C'it
holds that (¢,v) >0 = (¢’,v) > 0and that (¢,v) <0 = (¢',v) <O0.

Note that an irrational approximation of ¢ can always be obtained as a small perturbation
of ¢. The following is a minor generalization of [16, Lemma 2.3], with almost identical proof,
which we have included for completeness.

Lemma 4.10. Let ¢ € R™, let C be a pointed cone with vertex at w, and let ¢’ € R™ be an
irrational approximation of ¢. Then its cone flip C€ is supported in the half space {x | (¢, x) >
(¢, w)}. Furthermore, if C' is not contained in {z | (¢,z) > (¢, w)}, then C< is supported in
the open half space {x | (¢,z) > (¢, w)}; in particular w ¢ CS.

Proof. If C is simplicial, the result follows immediately from the construction of cone flips (7)
and Definition 4.9. For general C, we can obtain the first statement by considering any triangu-
lation of C. For the second one, choose a ray v of C such that (¢, v) < 0 and a triangulation of
C such that every interior cone contains v. Such a triangulation can for instance be constructed
by triangulating the faces of C' that do not contain v, and then coning that triangulation from
v. Now O = Y p(—1)dimC—dim F g (Fy and €€ = 3 (—1)dm C—dim F ()¢ where the
sum is over all interior cones of the triangulation. The result now follows from the simplicial
case. O

Proof of Theorem 4.7. Since the summation defining ¢ is over a finite collection of cones
{Cy}ren, there exists a ¢’ € R which is an irrational approximation of ¢ with respect to every
cone Cl. By assumption ¢ = Hilb(f), where f € P, has finite support, in particular f € PS.
Hence, by Lemma 4.4, ¢|g,._, = Hilb(}_ ax ]l(C’S N He—yp)). If Cy ¢ PS, then by assumption
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the vertex wy of C) satisfies (¢, wy) > b, and by Lemma 4.10 Cf\/ is supported on the open
half-space {z | (¢, z) > b}, in particular C§l N He—p = 0.1f Cy € P&, then since C) and Cf/
are both in PS, it follows from Lemma 4.4 that Hilb(CS NHe—p) =Hilb(CxN Hemp). O

4.3. Flipping cones for base polytopes

Let us now specialize our discussion of summing lattice point generating functions to ones
arising from flag matroids. For the rest of this section, let M be a flag matroid of rank r =
(r1,...,7) on a ground set [n], whose constituent matroids have rank functions rky, ..., rky.
As before, for a basis B of M let us write Coneg (M) := Cone(Q(M) — eg).

Consider the expression below, which is a finite summation

¢ =) axt™ Hilb(Coneg, (M)), )
AEA

where a) € Q, wy € Z™, and B a basis of M. We allow the same basis to occur several times
in the sum. Note that t** Hilb(Conep, (M)) = Hilb(C)), where C}, is a cone with vertex at
wy, so (9) is a special case of (8). As before, we assume that p € Q[tli, e ,tf], ie. pisa
Laurent polynomial, and we write P := Conv(wy | A € A) for the convex hull of the wy. We
will assume that all wy lie in Z%,, and that there exists a ¢ € Zx>( such that the sum of the
entries of any wy is equal to c. Let P := Conv(o - wy | ¢ € Sy, A € A) be the convex hull of
all points in ZZ, that are equal to one of the w up to permuting entries.

The followi;lg theorem will be repeatedly applied in the next sections.

Theorem 4.11. Let ¢, P, and P be as above, and let v be a vertex of P. Write v = eg, +
--t+eg, ,withSy C ... C S, Cn| Fix a basis B = (By,...,By) of M such that eg is
a vertex of the face Q(M)? of Q(M) maximizing the direction v, that is, a basis B satisfying
|Si N Bj| = rkag, (S;) forall 1 <i < mand1 < j <k (Proposition 2.7). Then the coefficient
of tVin p € Q[ti, ... tF] is equal to the sum of all ay for which wy = v and By = B.

Proof. Since the Newton polytope of ¢ is contained in P (Corollary 4.8. (b)), the result is
true for v ¢ P. So, we now consider the case v € P. Let us write v = (v1,...,v,) and
e = (b1,...,b,). By permuting the coordinates of N”, we may assume that v; > v; 1 for all
i € [n], and that b; > b; 1 whenever v; = v;41.

We first show that we may choose a ¢’ = (¢f,...,¢,) € R™ that satisfies the following
properties:

(i) The vertex {v} is the face of P maximizing in the ¢’ direction, and hence is the vertex of P
maximizing in the ¢’ direction.
) ¢ >¢G>...>¢,.

To choose such a ¢’, start with any ¢’ satisfying (i), which by perturbing the entries, we may
assume to have all distinct entries. For any pair ¢, j € [n] such that v; > v;, we have ¢ > (/,
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[ J [ J [ ) [ ) [
(2,0,0)
(1,1,0) (1,0,1)
(2,1,0) (2,0,1) . .
(1,2,0) (1,0.2) N VAR AVARN
(0,2,0) (0,1,1) (0,0,2)
(0.2,1) 0,1,2) c o o o e

Fig. 1. Base polytope Q (M) and translates of its vertex cones. (For interpretation of the colors in the figure(s), the reader is referred
to the web version of this article.)

since else we can swap v; and v; and obtain a vertex of P where ¢’ attains a larger value. For
any collection ¢,7 + 1, ..., € [n] such that v; = --- = v;, we may reorder the corresponding
entries of ¢’ in decreasing order, since such a reordering does not change the value of (¢’, v). This
procedure produces the desired ¢’ since we had assumed (v, . .., v,) to be weakly decreasing.

We then claim that the vertex face of (M) maximizing in the ¢’ direction is {eg }. Indeed,

note that ¢’ is an interior point in the cone
Cone(er,e; +ez,...,e1 + -+ e, 1)+ Rep,,
of which the cone
Cone(eg,,es,,...,€s,, )+ Re,

is a face. This face contains v in its relative interior. These two cones are cones in the braid
arrangement, of which the normal fan of (M) is a coarsening (Theorem 2.6). Thus, the vertex
face of (Q(M) maximizing in the ¢’ direction is among the vertices of Q(M)", and our assump-
tion b; > b; 4 forall i = 1,...,n such that v; = v; 1 ensures that ep is indeed the one. Now,
applying Corollary 4.8.(a) with ¢ = —¢’ gives the desired statement. O

Example 4.12. We illustrate Theorem 4.2, Theorem 4.7, and Theorem 4.11 in an example. Let
M be the flag matroid (Uy 3, Us 3). Its base polytope QQ(M) is drawn on the left in Fig. 1. We
arrange the six vertex cones of QQ(M) as on the right hand side of the figure, getting a summation

@ =t1to Hilb(Cone sz 1,0y (M)) + t1t3 Hilb(Conez o,1)(M)) (in blue)
+ t3 Hilb(Cone(; 2,0y (M)) + 3 Hilb(Cone(; o 2)(M))  (in green)
+ t3 Hilb(Cone(g 2,1)(M)) + t3 Hilb(Coneg 1 2)(M)) (in red)
By generalized Brion’s theorem (second half of Theorem 4.2), one may replace the two cones
at (0,2,0), one red and one green, by a single cone Cone(e; — e3,e3 — e3), and likewise for

the two cones at (0, 0, 2). Then ¢ is now a summation of the four vertex cones of the trapezoid
Conv(2es, 2e3, €1 + €2, €1 + e3), whose value by Brion’s theorem (first half of Theorem 4.2) is

© = tity +tits + 13 + tatz + t3.
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If we apply Theorem 4.7 with { = e; and b = 0, noting that the e;-pointed cones are
Cone(g,2,1)(M) and Coneg 1 2)(M), colored red in the figure, we find that, as expected,

t3 t3 t3 —t3
-t 1~ 72
L—tatyt 1—tat; 2 —t3

§0|He1:0 -

= 13 + totz + t3.

To apply Theorem 4.11, we first note that the polytope P is the convex hull of (2,0,0),
(0,2,0), (0,0,2). Since there are no cones placed at (2,0,0), Theorem 4.11 says that the co-
efficient of 7 is equal to 0. For the coefficient of t3, we can take either B = (1,2,0) or
B = (0,2, 1); in both cases Theorem 4.11 tells us that the coefficient of 3 is equal to 1.

In Example 4.12, because we had only one translate of each vertex cone, arranged in a suitable
manner, we could apply Brion’s theorem to compute . In subsequent sections, we will typically
have several parallel translates of each vertex cone, where Theorem 4.7 or Theorem 4.11 will
better suit our needs.

5. The Las Vergnas Tutte polynomial of a matroid quotient

In [27], Las Vergnas introduced a Tutte polynomial of a matroid quotient as follows, and
studied its properties in a series of subsequent works [28-30,14,31,32]. The reader may find the
survey [28] particularly useful.

Definition 5.1. Let M. = (M7, M>) be a two-step flag matroid on a ground set [n]. For i = 1,2
write 7; for the rank of M, and r;(S) for the rank of S C [n] in M;. The Las Vergnas Tutte
polynomial of M is

LVTal(z,y, 2) = Z (z — 1)T17T1(S)(y _ 1)|S|*T2(S)Zrzfr2(5)*(r17r1(5)) (10)
SCn]

For the remainder of this section, we let M be a two-step flag matroid, i.e. a matroid quotient
M, « Ms on a ground set [n]. We show in this section that LV Ty arises K -theoretically from
y(M). We start by recalling the construction (E1) of Fi(1,r1,72,n — 1;n) in §3 with the maps

Fi(1l,r,r9,n —1;n)

Fl(ry,7m9;n) (Pr=1)V x pn-i,

We have an inclusion of tautological vector bundles 0 — S&; — S on the flag variety
Fl(ry,r9;n). Let S3 /8y be the quotient bundle.
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Theorem 5.2. With the notations as above, we have

LVTu(a,Bow) = > Fenn)- 72 (yMDIO©, DIAS:/S)])w™ (1)
m=0

as elements in K°((P"~1)V x P~ 1)[w].

We will prove the stronger statement that the T'-equivariant version of Theorem 5.2 holds. By
Proposition 3.1, we have that the following equality implies Theorem 5.2:

LV T+ 1o+ Lw) = 3 x(yDI0O, DI SUIA QIS8 )urviw™

p,q,m
(12)
We thus define the T-equivariant Las Vergnas Tutte polynomial of M by
LVTh(u+ 1,0+ 1,w)
m
= 3 (00, DA ST QI S
p.a,m
Theorem 5.3. With the notations as above, we have
LV (u+ 1,04+ 1,w) = Z tes 1T ISI=r2(S) gy ramra=ra (S)Fra(S)
5C[n]
Proof. First, it follows from Theorem 2.8.(3) that
P q m
S T (s 00, DIIA SITIA QT IAS:/S0IF )urviw
P.am
= > mib(Conen(M) e 37 eul ) (30 i)
B g p'CB aC[n]\B:
x ( 3 tfem/w|m’|>
m’ng\Bl
= Z Hilb(Coneg (M (teBl Z gyl |)( Z te“v‘q‘)
BeB(M) p'CB; n]\Ba
x (te32\51 3 t—em/w|m/|)
m’C B3\ B
= Z Hilb(Coneg (M)) Z terTemteayri—lplylalyra—ri=im| (13)
BeB(M) B,
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We can now compute the sum

S Hilb(Coneg(M)) 3 tertentes,

BeB(M) pC Bi,lpl=p
m C By \ By, m| =m
q C [n]\ Bz, |a]l = ¢

for fixed p, m, q.

To compute the coefficient of £S5, we apply Theorem 4.11. Pick a basis (B1, Bs) such that
|S N By = rky(S) and |S N Ba| = rko(S). We need to compute the number of terms in the
sum above for which B = (B1, By) and e, + e, + €, = eg. But such a term needs to satisfy
p=SNB,pUm=5SNBy,and pUmUq =S.In particular p = 1k (S), p + m = rka(5),
and p + m + ¢ = |S|. If these three equalities are satisfied, there is indeed exactly one such
term. O

Remark 5.4. We remark that the Las Vergnas polynomial, and our K -theoretic interpretation of
it, generalizes the Tutte polynomial of a matroid in the following ways. Recall that any matroid
M has two canonical matroid quotients, M — M and M — Uy y,.

* When M = (M) (i.e. one constituent), the equation (1 1) reduces to the one in Theorem 2.12
[16, Theorem 5.1].

* When M = (M, M), one can observe from (10) or (11) that LV Ty (z, vy, 2) = T (2, y).

* When M = (Up,,,, M), one can observe from (10) or (12) that LV Tam(z, y, 2) = Tar(z +
1,y).

Remark 5.5. The Las Vergnas Tutte polynomial satisfies a deletion-contraction relation similar
to that of the Tutte polynomial [28, Proposition 5.1]. We remark that our “cone-flipping with
slices” (Theorem 4.7) can be used to show deletion-contraction relation for LV Ty and T. For
example, if ¢ € [n] is neither a loop nor a coloop of M,

LV’]—]Wl,Mz ((E7 Y, Z) = LVTMl\'L',MQ\i(x7 Y, Z) + LVTMl/i,Mg/i($7 Y, Z)

This identity is obtained by applying Theorem 4.7 to (13) as follows. By considering ¢ = e;,
we find that the terms in (13) that are not divisible by ¢; sum to LVTA}";\ i Ma\ ;(x,y, z), where
T' = (C*)"~L. By considering { = —e;, we find that the terms that are divisible by ¢; sum to
tiLVmi Jing, i@, Y, 2). We leave the details to the reader.

Remark 5.6. Unlike the Tutte polynomials of matroids, the constant term of LV 7Ty is no longer
necessarily zero. This reflects the fact that for most L € Fi(ry,r2;n), the map 7(,_1); :
7 YT -L) — (P" 1)V x P*1 is surjective. If further 7o — r; = 1, then this map is a fi-
nite morphism, and by a similar computation as in [38, Theorem 5.1], one can show that the
degree of the map is the Crapo’s beta invariant 5(N') where N is a matroid such that M; = N/e

and My = N\ e.
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Remark 5.7. It follows from Remark 2.11 and Theorem 5.2 that the assignment M — LV Ty
is valuative.

6. Flag-geometric Tutte polynomial of a flag matroid

In this section, we explore the behavior of another notion of Tutte polynomials of flag
matroids that differs from that of Las Vergnas in the previous section. Here, instead of the con-
struction (F'l), we consider the more geometrically natural construction (F') in §3 with the
maps

Fl(l,r,n—1;n)

/ N\

Fl(r;n) (PP—1)V x Pn—l,

Definition 6.1. [8, Definition 8.23] Let M be a flag matroid of rank r = (r1,...,7%) on [n].
Then the flag-geometric Tutte polynomial of M, denoted K T (2, y) € Z[x, y], is the (unique)
polynomial of bi-degree at most (n — 1,n — 1) such that

KT, B) = (mn 1) (M) - [O(1)]). (14)

While the construction (F7) leading to KTy may be more geometrically natural than (f*:l),
the combinatorial properties of K Tys seem more mysterious than those of LV Tys. For example,
in contrast to LV Ty, the polynomial K Typ does not readily reduce to the Tutte polynomial of
M when M is one of the two canonical matroid quotients of a matroid M (i.e. M « M and
Uo,n «= M).

We illuminate some combinatorial structures of K 7y as follows.

* There is no known (corank-nullity) combinatorial formula for KTy, that is similar to (10)
for LV 7. Our result in §6.2, which in particular computes K T (2,2), can be considered
as a first step in this direction.

* No deletion-contraction relation is known to hold for K 7Tys; one may construe this to be a
consequence of the fact that the base polytope of a flag matroid generally has lattice points
that are not vertices. In §6.3 we formulate and prove a deletion-contraction-like relation for
elementary matroid quotients.

6.1. First properties of KTam

Again, by Proposition 3.1, we have that

q

KT+ Lo+ 1) = 3 x(sMIOWIA SIA QY1) uro?,

p,q
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which leads us to the following T-equivariant version of K Tyj.

Definition 6.2. The T-equivariant flag-geometric Tutte polynomial of a flag matroid M is
p q
KTap(u+ Lo +1) = S 3T (y)TOW)] A SITIA 117 Jurer.
p,q

Theorem 2.8.(3) again yields K75 as a sum of rational functions as follows via a similar
computation as one in the proof of Theorem 5.2.

Lemma 6.3. For a flag matroid Ml = (M, ..., M}) on a ground set [n], we have
KT (ut1,0+1) = > Hilb(Conep(M)) > S gemtrencterten,nlplylal,
BeM pC Bk qC[n]\B1

s)

Many of our results on K 7n; will be obtained by manipulation with the equation (15). We
start with the following example.

Example 6.4. For any matroid M on [n], we have KTy, . m(z,y) = y"Tar(x,1).° To verify
this, we compute

K7-T A{(U+1 v+1l)= Z Hilb(Coneg (M Z Z testeayr—Iplylal

BeB(M) pCB qC[n)
:(H(Ht-v))- Z Hﬂb(ConeB(M))ztepur—m 16)
i=1 BeB(M) pCB

(ﬁ 1+tv)~K7”A§(u+1,l).

Settingt; = 1,u = x — 1, and v = y — 1 yields the desired claim. This example shows that we
cannot recover Ty from KTy, . ar although Uy, «— M is a canonical matroid quotient of M.

Proposition 6.5. Let M = (M,..., My) be a flag matroid on [n]. The following properties
hold for the flag-geometric Tutte polynomial K Tyy:

(1) (Direct sum) If M is a direct sum M' & M of two flag matroids on ground sets A, B
with AU B = [n), then KT (x,y) = KTy (x,y) - Koo (x,y) (where T' = (C*)4,
T — ((C*)B)

% The diagram (F'l) makes sense only when 71 > 1, so KTy, ar cannot be defined as a push-pull of a K -class. However, we
define KTy, ,,m by specializing KTg; Lomatt; =1
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(2) (Loops & coloops) Let £ be the number of loops in My, and c the number of coloops in Mj,.
Then z¢y* divides KTy (z,v).

(3) (Duality) If MY is the dual flag matroid of M, whose constituents are matroid duals of the
original, then K'Tam(y, ) = KTwmv (2, ).

(4) (Base polytope) K’H\T,I(l, 1) = Hilb(Q(M)).

(5) (Valuativeness) The map M — KTy is valuative.

Proof. The first two statements follow from manipulating with the identity (15) in a similar way
as the computation (16) in Example 6.4. For the third statement, we claim that the 7-equivariant
version of the statement is ¢® K TMT_l (y,x) = KTnmv (,y), where the T~! superscript means
that we have replaced ¢; by ¢, ! Verifying this identity is then another easy manipulation with
(15). The fourth statement follows from Brion’s formula (Theorem 4.2). The last statement fol-
lows from Remark 2.11. O

We can use Theorem 4.11 to compute some of the terms in (15):

Theorem 6.6. Let M = (M1, My) be a 2-step flag matroid and let t“u™ v’ be a monomial
occurring in (15). Then Z?Zl ke = r1 + 1+ j. Let c denote the number of entries in k that are

equal to 1. If ¢ < |ry + j — i|, the coefficient of t*u">~"v7 is equal to

(1) 1, if S is spanning for M, S1 is independent in My, and ¢ = |r1 + j — 1|,
(2) 0, otherwise,

where S and Sy are defined by S C Sy and k = eg, + eg,.

Proof. The equality Y, , k¢ = 71 + i + j follows immediately from (15). The coefficient of
u"2 "% is equal to

Hilb(Coneg (M teB1Ter e 17
> ( ™M) >N

B = (B, B2), pC Ba, qC Ji,
B € B(M) pl=7 [al=1
where we have denoted .J; := [n]\ By . The vertices of P have |, + j —i| entries equal to 1. This

proves that the coefficient is 0 if ¢ < |r1 + j — 4|. So from now on we assume ¢ = |r; + j — i|.

Next, we apply Theorem 4.11. Writing k = eg, + eg,, and noting that |S1| = min(é, r; + j)
and |S2| = max(i,r1 + j), we find a basis B = (B, Bz) of M for which r;(S;) = |S; N Bj|.
We now need to compute the number of ways k can be written as a sum ep, + e, + e4. If S5
is not spanning for M7, or if S7 is not independent in M, there are no ways to do this, and the
coefficient is 0. Otherwise, if i < r;+j, weneed toputp = Sy and g = S5\ S1.If i > 1+ 7, we
need to put ¢ = S; N Jy and p = S U J;. In both cases, there is just one way, so the coefficient
isl. O
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6.2. Towards a corank-nullity formula

For a matroid M on [n], the corank-nullity formula for the Tutte polynomial Ths(x,y) =
Y (x—=1)"7") (y = 1)IS177(5) expresses Tay as a sum over all subsets of [n]. In particular,
we have Th(2,2) = 2"; in fact, KT;5(2,2) = []/—, (1 + ¢;). As a first step towards a similar
formula for K Ty, we show the following for a two-step flag matroid.

Theorem 6.7. Let M be a two-step flag matroid M = (M, M) of rank (r1, r2), and let pB(M)
be the set of pseudo-bases of M, i.e. subsets S C [n] such that S is spanning in M, and
independent in M. With q as a formal variable, we have

KTyg(l+q 149 =q " (H +th)( > teSq‘S‘),
=1 SepB(M)

and in particular, we have

KTM(1+q*171+Q)=Q’”-(1+Q)"-( > q‘s‘),
SepB(M)

KTﬁ(2,2):(ﬁ(1+ti))< 3 tes),and

SepB(M)
KTw(2,2) = 2" [pB(M)).

Proof. Setting v = ¢! and v = ¢ in (15) of Lemma 6.3 gives us

KTy(l+q¢ ', 1+4q)

= Y Hib(ConepM)) Y 3 temterteaglltialor:

B B pC B2 qCIn]\ By
— Z Hilb COHBB Z Z tesitertes \R|+|S| T2
o5 By RSk s m:
=¢ " [[+tq D  Hib(Conepg(M)) > temtesgldl,
ek B = (By, B), SCB>\B;
B € B(M)

We now use Theorem 4.11 to compute the sum

¢r:= > Hilb(Conep(M)) ter
B = (By, Ba), By CpC By,
B € B(M) [pl=r

for a fixed ;1 < r < ro. First, we note that the polytope P = Conv(es | S C E, |S| =),
obtained as the convex hull of the S,,-orbit of {e, | By C p C By, |[p| = r}, has no interior
lattice points.
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For S C E with |S| = r, if S is not a pseudo-basis of M7 « M, then there is no basis B of
M such that B; C S C Bs, and hence the coefficient of t°5 is 0 in this case. Now, suppose S is
a pseudo-basis of M « My, which by definition implies that there exists basis B = (B1, Bs)
of M with B; C S C Bs. This basis B is a vertex of the face Q(IM)®s by Proposition 2.7, and
thus by Theorem 4.11 the coefficient of t®5 is equalto 1 in ,. O

We do not know of analogues of Theorem 6.7 for flag matroids with more than two con-
stituents.

6.3. A deletion-contraction-like relation

In this section, we consider K Ty of an elementary quotient M = (M7, M>). By definition
we have r(Ms) — r(M7) = 1, and in this case there is a unique matroid M on a ground set
[7] := {0} U [n] such that My = M/0 and My = M \ 0 [35, §7.3]. Our main theorem of this
subsection is the following deletion-contraction-like relation.

Theorem 6.8. Let M be a matroid of rank r on [n] =
neither a loop nor a coloop in M. Let T = C* x T = (C
ZtE, ... tE]. Then we have

{0} U [n] such that the element O is
*>n+1

be the torus with character ring

KT (@,9) = 0K Tag 00070 4) + 0K T s, 005 9) + KTy ano(@: ). (18)

In particular, we have KTy ar(2,y) = KTar/0,m 702, ¥)+K Tarjo,m\0(25 ¥) K Taro, a0 (2,
Y)-

We use {ep, ..., e,} for the standard basis of R"*! = R & R". For a polyhedron P C R",
we will often abuse the notation and write P also for {0} x P C R & R"™. We prepare for the
proof of Theorem 6.8 by an observation that motivated the theorem.

As the base polytope Q(M) is a (0, 1)-polytope (i.e. a lattice polytope contained in the
Boolean cube [0, 1]’”rl C R, every lattice point is a vertex. Moreover, observe that the
vertices of (M) partition into two parts, the bases of M /0 and the bases of M \ 0. As a result,
the lattice points of Q(M, M) = Q(M) + Q(M) partition into the following three parts, with
Q1 = 3(Qo + Q2):

. Q2 = Q(M, M) N He():2 = {260} X Q(M/O,M/O),
e Q1= Q(M, M) Hoy—1 = {e0} x Q(M/0, M\ 0), and
L QO :Q(M,M)QHQ[):O:{O}XQ(M\O,M\O)

The case of setting x = y = 1 (cf. Proposition 6.5.(4)) in (18) of Theorem 6.8 witnesses this
partition of the lattice points of Q(M, M ). The following lemma in preparation for the proof of
Theorem 6.8 is a consequence of Q; = %(QO + Q2).



28 R. Dinu et al. / Journal of Combinatorial Theory, Series A 181 (2021) 105414

Lemma 6.9. Let the notations be as above. Then for B € B(M) with 0 ¢ B, we have

Hilb(Conep(Q(M, M)) N Hey1) = > totp\, Hilb(Cone(r, gy (Q(M/0, M \ 0))

1€ BOJ0),
and

Hilb(Conep(Q(M, M)) N Hey—0) = Z Hilb(Cone;, 5y (Q(M/0, M \ 0)).

1€ BO1J0),
Proof. We have an equality of polyhedra
Conep(Q(M, M)) N Hey,—1 = Conep(Q(M \ 0)) + Q1 — 2ep.

We claim that Conep (Q(M \0))+ Q1 has vertices {e; +ep} for I € B(M/0) suchthat I C B.
The two statements in the lemma then follow from Brion’s formula Theorem 4.2.

For the claim, we start by noting that if I € B(M/0) then there exists B’ € B(M \ 0) such
that I C B’ (since M /0 « M\ 0). Consequently, if e g is the vertex of Q(M \ 0) that minimizes
(v, ep) for some v € R™, then a vertex of Q(M/0) that minimizes (v, -) must be e satisfying
I C B. Our claim now follows from Q1 = 3(Qo + Q2). O

Proof of Theorem 6.8. Let us begin by noting that the equation (15) for K 7"1\1; s reads

KTy yuw+1v+1)= Y Hilb(Coneg(Q(M,M))) Y > terterteay —lplylal
BeB(M) pCB qC[R]\B
19)
We apply Theorem 4.7 with ¢ = e and L defined by to = 0. Note that Conep(Q(M, M)) € PS
if and only if 0 ¢ B. Hence all cones occurring in (19) with vertex on L are in S, and we find
that the terms in (19) not divisible by ¢o sum to

> Hilb(Conep(Q(M,M)) N Hey—g) 3 Y testerteayr=lvlylal

B¢ g(éw), PCEB qCn]\B
= Z Hilb(Coneg (M \ 0)) Z Z tenterteayr=Iplyll
BeB(M\0) pCB qCn]\B
= KTapoano(u+1,0+1).
A similar argument, with { = —ey, shows that the coefficient of 2 in (19) is K77§/0 Mo

Finally, we apply Theorem 4.7 once more, this time with { = ep and L = He,—1. We find
that the terms in (19) divisible by ¢y but not by t% sum to
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( Z Hilb(ConeB(Q(M,M)))Z Z teB+e“+e“uT7‘p‘v‘q‘>

B (M) pCB qCn]\B

=( > Hib(Conep(QUM, M) YT DT gerterten (L tgupurFlulal )

Be ( M), pCB qC[n]\B

Heozl

Hep=1

— Z Hilb(Conep (Q(M, M)) M Hey—1) Y Y tenterteayr=lplylal

Bg ( M), pCB qC[n]\B

+ %o Z Hilb(ConeB(Q(M,M))ﬁHeO:O)Z Z tentepteqyr—Iplylal+1

s CB
B gg(éw) pCB qC[n]\B

which by Lemma 6.9 is equal to

> > tot p\ ; Hilb(Cone(s ) (Q(M/0, M \ 0)))

BeB(M), Ic B(z\go),
0¢ B Ic

x 30 ST genterteny il

pCB qC[n]\B

ity Y. > Hilb(Cone(s,5)(Q(M/0,M \ 0)))

B € B(M), I € B(M/0),
0¢B ICB/

xS gemterteryr—olylai+t

pCBqC[n\B

=ty > Hilb(Cone(; 5(Q(M/0, M \ 0)))
(I,B)eB(M/0,M\0)

% (Z Z te1+ep+eq(1thB\Iv))uT*\Nv\‘ﬂ

pCB qC[n]\B

=ty > Hilb(Cone ;) (Q(M/0, M \ 0)))
(I,B)eB(M/0,M\0)

(X 3 e ur

PCB qC[n]\I

= tOKTE/O,M\O(U + ].7’U + 1),

as desired. O

Remark 6.10. We remark that for a general flag matroid M, the slices {Q(M) N He,—1 }kez
need not be flag matroid base polytopes. Moreover, even when they are, we do not observe an
identity like the one in Theorem 6.8 that expresses K Ty in terms of the slices.

For example, consider M = (U 3,Us3). We have KTy (z,y) = 2%y* + 2%y + xy® +
z? + 2zy + y2. In any coordinate direction, its three slices are (Up 2, U 2), (U1,2,U12), and
(U12,Us,2), whose KT are (respectively), zy? + y2, xy + = + y, and 2%y + 22,
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Remark 6.11. One can generalize Theorem 6.8 as follows. Denote by M := (M, ..., M), the
flag matroid whose constituents are M repeated ¢ times. Then we have

KT = t0K Ty + 0 K Tsop-1an0 + -+ KTanoy-
The proof is essentially identical to one given for Theorem 6.8.
7. Future directions
We list two future directions stemming from our work here.
7.1. g and h polynomials for flag matroids

For a matroid M, Speyer introduced in [38] a polynomial invariant g;(t) € Q[t] and a close
cousin hp(t) € Q[t], which is related to gar(t) by has(t) = (—=1)°ga(—t) where c is the
number of connected components of M. A K-theoretic interpretation of the polynomial A,y
was given in [16].

Theorem 7.1. [ 16, Theorem 6.1 & Theorem 6.5] Let M be a matroid of rank r on [n] without
loops or coloops. Let ., 7(n_1)1,, 3 be as in §2.3. Then the polynomial hyy is the (unique)
univariate polynomial of degree at most n — 1 such that

(ru-p)o (y(M)) = has(a+ B - aB).

For a flag matroid M on [n], this motivates us to consider (7(,,—1)1)«7y (y(M)), where the
maps are as in the flag-geometric construction (F'7). By Proposition 3.1, this is equal to

> x(vODIA SIA Q1) (a = 17(8 - 1.

P.q
Let us consider its torus-equivariant version
P q
ST (s IASITIA QY17 )urvr
p,q

where u and v are formal variables. We show that this is a polynomial in wv, which thereby
establishes that (m(,,—_1)1)«7y (y(M)) is a polynomial in o + 3 — af (since the substitution
u=a—1lv=p0—1yields 1 —uv =a+ p — af).

Lemma 7.2. (¢f. [16, Lemma 6.2]) Let M = (M, ..., M}) be a flag matroid on [n), and sup-
pose every constituent of M is both loopless and coloopless. Then
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p q
T T T T
ST (v TIASITIA QYT ) et € Qlu,v]
p.q
is a polynomial in Q[uv].

We remark that the condition about a flag matroid M = (Mj, ..., M}) being loopless or
coloopless depends only on M; or Mj, respectively. First, note that by the condition (2) in
Definition 2.1, if £ € [n] is a loop in M; then it is a loop in M;_; also. By duality, if £ € [n] is a
coloop in M; then it is a coloop in M, 1 also. Hence, the flag matroid M is loopless (coloopless)
if and only if M; has no loops (M}, has no coloops).

Proof. Once more by Theorem 2.8.(3), we get

> X" (y(M)T[/\ Skl I QY}T)upvq
= Z Hilb(Coneg(M)) Z Z terteaylPlylal,

BeM PCBr qC[n]\B1

Fix |p| = 4,|q| = j, and consider the sum

Pij = Z Hilb(Coneg (M Z Z t—erteq (20)

BeM Br, q C [n]\ By,
=1 lal =

4\0

We need show that ¢;; is zero if i # j. Let P be the convex hull of {—e, + e4} appearing
in the summation (20). Note that P is contained in the intersection of He, —;—; and the cube
{x €e R" | =1 < 2y < 1 V¢ € [n]}. By Corollary 4.8. (b), it thus sufﬁces to show that
YijlHe,-_, = 0and pij|p,,_, = 0forall £ € [n].

Let us now fix any £ € [n]. As none of the constituents have coloops (and in particular ¢ is
not a coloop in M}), the intersection Q(M) N He,—o is a non-empty face of Q (M) minimizing
in the e, direction, consisting of bases B = (B, ... By) such that £ ¢ By. Thus, we have that
Coneg(M) € Pgt if and only if ¢ ¢ By, and by Theorem 4.7 with ¢ = e, we have

Cijlte— = Y, > > Hilb((—e, +eq + Cones(M))|n,,_ ,)-

B:4¢ By, » C By, qC[n]\Bu
[p[ =74 lal =
But since ¢ ¢ By, implies ¢ ¢ p, every cone —e, + e, + Coneg (M) occurring in the sum above
will have vertex v with vy > —1. Hence, noting that Coneg (M) € P2 for such cones, we have
©ijl He,——, = 0. A similar argument with ¢ = —ey, noting that / is not a loop in M7, shows that
PijlHepey = 0. O

We thus make the following definition that generalizes the polynomial hj; of a matroid M to
the setting of flag matroids. It is well-defined by Lemma 7.2.
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Definition 7.3. Let M = (M, ..., M}) be a flag matroid [n] such that every constituent of M
is both loopless and coloopless. Let 7,11, Tr, @, 3 be as in §3. Then the polynomial hy is
defined as the (unique) univariate polynomial of degree at most n — 1 such that

(wn-1)+ms (y(M)) = ha(a + 8 = af).

Remark 7.4. We have constructed the polynomial hyy via the flag-geometric diagram (F'1). Al-
though one may also consider a similar construction via the “Las Vergnas” diagram (ﬁ), a
computer computation (§1.1) shows that the analogue of Lemma 7.2 fails in this case, for in-
stance with M = (Uz 4, U3 4).

In the case of matroids realizable over C, the behavior of the polynomial g, of a matroid M,
in particular the non-negativity of its coefficients, was used to establish a bound on the number
of interior faces in a matroidal subdivision of a base polytope of a matroid [38]. Extending these
results to arbitrary matroids is so far open, but an announcement of a relevant forthcoming work
has been made in [26].

In another work [2], the authors study flag-matroidal subdivisions of base polytopes of flag
matroids, and extend the tropical geometry of matroids used in [38] to the setting of flag ma-
troids. We are thus led to ask the following.

Question 7.5. Does a suitable modification of our polynomial hng give an analogue of the poly-
nomial gps for flag matroids, and does its behavior lead to a bound on the number of interior
faces in a flag-matroidal subdivision of a base polytope of a flag matroid?

7.2. Characteristic polynomials of matroid morphisms

A recent breakthrough in matroid theory is the log-concavity of the coefficients of the char-
acteristic polynomial of a matroid [1]. We consider here several candidates for characteristic
polynomials of morphisms of matroids. We begin with the one coming from the flag-geometric
Tutte polynomial.

Definition 7.6. For a flag matroid M, define the flag-geometric characteristic polynomial
Kxm(q) of M by

Kxm(q) = (—1)""KTm(1 —q,0).

Like the usual characteristic polynomial, the polynomial K Ty satisfies K xnm(q) = 0 when-
ever the first constituent M7 of M has a loop by Proposition 6.5. The following conjecture is
supported by computer computations (§1.1). It suggests that the flag-geometric characteristic
polynomial of a two-step flag matroid may contain little information about the flag matroid it-
self.

Conjecture 7.7. Let M be a matroid of rank v with no loops, so that Uy, « M is a valid
matroid quotient. Then Kx v, , ary(q) = (¢ —1)".
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Let us now turn to the Las Vergnas Tutte polynomial. The last two bullet points of Remark 5.4
suggest two different ways of generalizing the characteristic polynomial of a matroid. The case
of M = (M, M) gives rise to the polynomial ppm(q, s) := (=1)"2 LV Tam(1 — ¢, 0, —s), which
was studied by Las Vergnas as the Poincaré polynomial of a matroid quotient [28, §4]. Here we
introduce another generalization following the case of M = (Up ,, M).

Definition 7.8. For a flag matroid M = (M3, M>) on [n], define its beta polynomial Sy (g) by

BM((]) = (_1)r2—r1 LVTM(O, 0, —q).

When M = (Uyp,,, M), it follows from LV Tam(z,y,2) = Tm(z + 1,y) that Sm(g) =
X (q), the characteristic polynomial of M. The terminology for Sn(g) is motivated by Propo-
sition 7.9 below. First, let us recall that the beta invariant 5(A) of a matroid M of rank r is
defined as

500 = -1 (o) ).

and that if e is an element that is neither a loop nor a coloop, then S(M/e) + (M \ e) = S(M)
[10].

Proposition 7.9. Ler M; = M=) « ... « MO « MO = M, be the Higgs
factorization of a matroid quotient My « My as described in §2.1. The beta polynomial
Bty M, (q) is divisible by (¢ — 1), and the reduced beta polynomial of My « Ms, defined

as Br, a, (@) 7= Bary a1, (q)/(q — 1), satisfies

7'2—7'1—1

Baran (@) = Z (=) (BM D) + B(M ) g

=0

If M is the (unique) matroid on [n] {0} such that M) /0 = M+ and MD\0 = M©),
which exists by [35, §7.3], then S(M @) + B(M+1)) = B(M®). So, the proposition says that

d—1

Bar, s, (@) = Z(—l)dil*iﬂ(ﬁ(i)) where d =1y — 77.
=0

Proof. Let M = (M, Ms) and d = ro — 1. [28, Theorem 3.1] states that

d

=0

where
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1
ti(Msz,y) = e — ((y = DTye-n(z,y) + (—ay + 2 +y = 2)Tyo (2, y)

+ (. = D)The+n) (ffay))

fori=1,...,d—1,and

1

to(M;z,y) = P p— ( — Ty (2, y) + (2 — DTy (2, y)),
1

ta(Mjz,y) = m ((y = )Ty (2, y) — Ty (z, y)>.

Let us express the beta invariant (M) of a matroid M of rank r equivalently as

500 = (-1 (@) ).

(=1 lim (=D"Th(1-¢,0) ~ (=)"Tn(0,0) _ . Tu(-¢0)
g—1 q—1 g—1 q—1 '

As LV Tm(z,y,2) is a polynomial, each ¢;(M;x,y) is also a polynomial. Hence, we have

t;(M;0,0) = lim,—1 t;(M;1 — ¢,0), and thus the above expressions for ¢;(IM; z, y) give
t:(M;0,0) = B(MED) 4 23(MP®)) + g(ME+Y) fori=1,...,d -1, and
to(M;0,0) = B(M)) + (M),
ta(M;0,0) = B(M 1) + g(MD).

As a result, we have

d—1

(~D LV Taa(0,0, ) = (q = 1) ( D (=17 (BMD) + MO "),

i=0
yielding the desired result for the reduced beta polynomial By (q). O

X (q)

Log-concavity of the coefficients of the reduced characteristic polynomial Y ,,(q) = =)

was established in [1]. This motivates the following conjecture.

Conjecture 7.10. The coefficients of EMl, 11, (@) form a log-concave sequence. Consequently,
the coefficients of LV Tai(0, 0, ) form a log-concave sequence.

The coefficients of LV Ty (1, 1, ) were shown to be (ultra) log-concave in [12].
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