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Abstract

We use the geometry of the stellahedral toric variety to study matroids. We identify the valuative group of matroids

with the cohomology ring of the stellahedral toric variety and show that valuative, homological and numerical

equivalence relations for matroids coincide. We establish a new log-concavity result for the Tutte polynomial

of a matroid, answering a question of Wagner and Shapiro–Smirnov–Vaintrob on Postnikov–Shapiro algebras,

and calculate the Chern–Schwartz–MacPherson classes of matroid Schubert cells. The central construction is the

‘augmented tautological classes of matroids’, modeled after certain toric vector bundles on the stellahedral toric

variety.
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1. Introduction

Let ý = {1, . . . , ÿ}. For ÿ ⊆ ý , we write eÿ for the sum of the standard basis vectors
∑
ÿ∈ÿ eÿ in the

vector space Rý . A matroid M on E is a collection ℬ of subsets of E, called the bases of M, such that

every edge of the convex hull

ÿ(M) ≔ conv{eý | ý ∈ ℬ} ⊆ R
ý

is parallel to eÿ − e ÿ for some i and j in E. By definition, the coordinate sum of any point in the base

polytope ÿ(M) is a constant integer rk(M), called the rank of M, which is equal to |ý | for any ý ∈ ℬ.
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Figure 1. An element of Mat2 ([4]) that is valuatively equivalent to zero.

The condition on the edges of the base polytope is equivalent to the basis exchange property appearing

in the work of Whitney [Whi35] that introduced matroids.

For any ý1, ý2 ∈ ℬ and any ÿ ∈ ý1 \ ý2, there is ÿ ∈ ý2 \ ý1 such that (ý1 \ ÿ) ∪ ÿ ∈ ℬ.

The above definition of matroids via base polytopes arose from the study of moment map images of

torus orbit closures in Grassmannians by Gelfand, Goresky, MacPherson and Serganova in [GGMS87].

See [Kun86, Chapter 1] for an excellent historical overview of early contributions and [Ard22] and [Eur]

for snapshots of recent advances in the theory of matroids. For a general introduction to matroids, and

for any undefined matroid terms, we refer to [Oxl11].

For a nonnegative integer ÿ ≤ ÿ, we consider the free abelian group generated by the set of matroids

of rank r on E:

Matÿ (ý) ≔
{ ∑

ÿ

ýÿMÿ

��� ýÿ is an integer and Mÿ is a rank ÿmatroid on ý
}
.

We study three equivalence relations on Matÿ (ý) – valuative, homological and numerical.

Definition 1.1. Let 1ÿ (M) be the indicator function of the base polytope of M, which is the function

Rý → Z defined by 1ÿ (M) (ý) = 1 if ý ∈ ÿ(M) and 1ÿ (M) (ý) = 0 otherwise. An element
∑
ÿ ýÿMÿ is

said to be valuatively equivalent to zero if the function
∑
ÿ ýÿ1ÿ (Mÿ) is zero.

Figure 1 illustrates an element of Mat2 ([4]) that is valuatively equivalent to zero. The valuative

group of rank r matroids on E, denoted Valÿ (ý), is the group Matÿ (ý) modulo the subgroup of elements

valuatively equivalent to zero. A homomorphism of abelian groups Matÿ (ý) → ÿ is said to be valuative

if it factors through the valuative group. Many matroid invariants, including the Tutte polynomial,

the Kazhdan–Lusztig polynomial, the motivic zeta function, the Chern–Schwartz–MacPherson (CSM)

cycle and the volume polynomial of the Chow ring, turn out to be valuative. See [AFR10; AS23; Ard22]

for extensive lists and history of the study of valuative matroid invariants.

For the homological equivalence relation, we use the augmented Bergman fan ΣM of M, which is an

r-dimensional simplicial fan in Rý obtained by gluing together the order complex of the lattice of flats

and the independence complex of M. For an explicit description, see Definition 5.10. The augmented

Bergman fan, introduced in [BHM+22], is a central object in the proof of the Dowling–Wilson top-heavy

conjecture and the nonnegativity of the matroid Kazhdan–Lusztig polynomial [BHM+20]. The constant

weight 1 is balanced on the augmented Bergman fan, defining a Minkowski weight [ΣM] in the sense of

[FS97]. We review the definition of Minkowski weights and their identification with homology classes

on toric varieties in Section 5.2.

Definition 1.2. An element
∑
ÿ ýÿMÿ is said to be homologically equivalent to zero if the Minkowski

weight
∑
ÿ ýÿ [ΣMÿ

] is zero.

For the numerical equivalence, we use the bilinear intersection pairing

Matÿ (ý) ×Matÿ−ÿ (ý) −→ Z, (M, M′) ↦−→ deg(M ∧M′),
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where the integer deg(M ∧M′), for a rank r matroid M and a rank ÿ − ÿ matroid M′ on E, is

deg(M ∧M′) =

{
1 if there are bases ý of M and ý′ of M′ such that ý ∩ ý′ = ∅,

0 if otherwise.

We will identify this intersection pairing with an instance of the intersection product on the homology

of a certain n-dimensional smooth projective variety; see Theorem 1.6 and Section 7.

Definition 1.3. An element
∑
ÿ ýÿMÿ is said to be numerically equivalent to zero if it is in the kernel of

the intersection pairing.

Our first main result states that these three equivalence relations coincide.

Theorem 1.4. The following conditions are equivalent for any ÿ ∈ Matÿ (ý).

(1) ÿ is valuatively equivalent to zero.

(2) ÿ is homologically equivalent to zero.

(3) ÿ is numerically equivalent to zero.

We establish this equivalence via the combinatorics and algebraic geometry of the stellahedron Πý

of E, which is an n-dimensional simple polytope in Rý with the following equivalent descriptions.

• The permutohedron of E is the convex hull of the permutations

Πý ≔ conv{ý · (1, 2, . . . , ÿ) | ý is a permutation of ý} ⊆ Rý .

Writing Rý
≥0

for the nonnegative orthant, the stellahedron of E is

Πý =
{
ÿ ∈ Rý≥0

�� there exists ÿ ∈ Πý such that ÿ − ÿ ∈ Rý≥0

}
.

This description shows that the permutohedron Πý is the facet of Πý on which the standard inner

product with eý is maximized.

• The independence polytope of a matroid M is the convex hull

ý (M) = conv{eý | ý ⊆ ý for some basis ý of M} ⊆ Rý .

Writing Uÿ ,ý for the uniform matroid of rank r on E, whose bases are all size r subsets of E, the

stellahedron of E is the Minkowski sum

Πý =

ÿ∑

ÿ=0

ý (Uÿ ,ý ).

This description shows that the standard n-dimensional simplex ý (U1,ý ) and the standard

n-dimensional cube ý (Uÿ,ý ) are Minkowski summands of the n-dimensional stellahedron Πý .

Figure 2 illustrates the case ý = [3].

We remark that the stellahedron Πý is a realization of the graph associahedron of the star graph with the

set of endpoints E; see, for example, [PRW08, §10.4]. We refer to [CD06] and [Dev09] for discussions

of graph associahedra and their realizations.1

The stellahedral fan Σý is the normal fan of the stellahedron Πý . It is a simplicial fan that is

unimodular with respect to the lattice Zý ⊆ Rý . The stellahedral variety of E is the associated smooth

projective toric variety ÿý . In this introduction, all varieties will be over the complex numbers. We follow

1In [FS05; PRW08; Pos09], an n-dimensional graph associahedron is realized as a generalized permutohedron in Rÿ+1. For the
star graph with the set of endpoints E, the stellahedron Πý and the projection of that graph associahedron to Rý have the same
normal fan.
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Figure 2. The stellahedron of [3] as the sum of three independence polytopes.

the conventions of [Ful93] and [CLS11] for toric varieties. The compact complex manifold ÿý is the

central geometric object behind Theorem 1.4.

Let T be the open torus (C∗)ý of the stellahedral variety ÿý . The two descriptions of the stellahedron

have the following geometric consequences:

• The permutohedral variety ÿý , the toric variety of the permutohedron Πý , admits a T-equivariant

embedding

ÿý : ÿý −→ ÿý ,

corresponding to the permutohedral facet Πý of Πý .

• There is a birational toric morphism to the n-dimensional projective space

ÿý : ÿý −→ P
ý ,

corresponding to the Minkowski summand ý (U1,ý ) of Πý .

• There is a birational toric morphism to the n-dimensional product of projective lines

ÿ1ý : ÿý −→ (P
1)ý ,

corresponding to the Minkowski summand ý (Uÿ,ý ) of Πý .

Summarizing, we have T-equivariant maps

ÿý ÿý

Pý (P1)ý .

ÿý

ÿ
1ýÿý

The image of ÿý in Pý is the hyperplane at infinity P(Cý ), and the image of ÿý in (P1)ý is the point

∞ý . Note that Pý and (P1)ý are equivariant compactifications of the additive group Cý . In Section 3,

we observe that the stellahedral variety ÿý is also a Cý -equivariant compactification of Cý , and that

both maps to Pý and (P1)ý are equivariant with respect to Cý .

Theorem 1.5. For every integer r, the assignment M ↦→ [ΣM] defines an isomorphism

Valÿ (ý)
∼
→ ÿ2ÿ (ÿý ,Z)

from the valuative group of matroids on E to the homology of the stellahedral variety of E.

Theorem 1.5 explains the coincidence of the valuative and the homological equivalence relations in

Theorem 1.4. In Corollary 7.9, we use Theorem 1.5 to give a geometric interpretation of a result of
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Derksen and Fink on a combinatorial basis of the valuative group [DF10]. The restriction of [ΣM] to

the permutohedral variety ÿý is given by the Minkowski weight [ΣM], which is the constant balanced

weight 1 on the Bergman fan ΣM if the matroid is loopless and the constant balanced weight 0 if

otherwise. Thus, Theorem 1.5 also recovers a result of Hampe that identifies the homology of ÿý with

the valuative group of loopless matroids [Ham17].

Poincaré duality for ÿý endows the homology of ÿý with the intersection product that is dual to the

cup product on the cohomology of ÿý . We identify this intersection product with matroid intersection.

Recall that the matroid intersection of matroids M and M′ on E is a matroid M ∧M′ on E whose bases

are the minimal members of the family

{ý ∩ ý′ | ý is a basis of M and ý′ is a basis of M′}.

In particular, M ∧M′ has rank zero if and only if M and M′ have bases B and ý′ that are disjoint. Let

us denote by crk(M) = ÿ − ÿ the corank of a rank r matroid M on E.

Theorem 1.6. The intersection product on ÿý satisfies

[ΣM] · [ΣM′] =

{
[ΣM∧M′] if crk(M) + crk(M′) = crk(M ∧M′),

0 if otherwise.

Theorem 1.6, together with Poincaré duality for ÿý , explains the coincidence of the homological and

the numerical equivalence relations in Theorem 1.4. By restricting to the permutohedral variety ÿý ,

we recover the following description of the intersection product on the homology of ÿý , previously

established by Speyer in [Spe08, Proposition 4.4].

Corollary 1.7. The intersection product on ÿý satisfies

[ΣM] · [ΣM′] =

{
[ΣM∧M′] if M ∧M′ is loopless,

0 if otherwise.

Recall that a realization of M over C is an r-dimensional linear subspace ÿ ⊆ Cý such that

ℬ =
{
ý ⊆ ý

�� the projection Cý � Cý restricts to an isomorphism ÿ
∼
→ Cý

}
.

The augmented wonderful variety ÿÿ is the closure of L in ÿý . We show in Corollary 5.11 that the

homology class of the augmented wonderful variety in the stellahedral variety is given by

[ÿÿ] = [ΣM] ∈ ÿ2ÿ (ÿý ,Z).

The intersection of ÿÿ and ÿý is the wonderful variety ÿ
ÿ

of de Concini and Procesi [DCP95],

which is the closure of the projective hyperplane arrangement complement P(ÿ) ∩ (C∗)ý/C∗ in ÿý .

The main geometric objects behind the displayed identity and the proofs of Theorems 1.5 and 1.6 are

certain T-equivariant vector bundles on ÿý which we call ‘augmented tautological bundles’. For a linear

subspace ÿ ⊆ Cý , these are T-equivariant vector bundles Qÿ and Sÿ on ÿý that have the following

properties:

• The augmented wonderful variety ÿÿ is the vanishing locus of a distinguished global section of Qÿ

(Theorem 5.2). Consequently, the normal bundle Nÿÿ/ÿý
is isomorphic to the restriction of Qÿ to

ÿÿ (Corollary 5.4).

• The logarithmic tangent bundle Tÿÿ
(− log ÿÿÿ) of ÿÿ , viewed as a compactification of ÿ = ÿÿ \

ÿÿÿ , is isomorphic to the restriction of Sÿ to ÿÿ (Theorem 9.2).

See Definition 4.2 for the construction of the augmented tautological bundles. By restricting these

bundles Qÿ and Sÿ to the permutohedral variety ÿý , one recovers the ‘tautological bundles’ Qÿ and

Sÿ (Definition 4.5) introduced in [BEST23].
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In general, for an arbitrary matroid M with possibly no realization overC, instead of vector bundles on

ÿý we have T-equivariant K-classes [QM] and [SM] on ÿý . These classes, which we call ‘augmented

tautological classes’, satisfy the following properties:

• If ÿ ⊆ Cý is a realization of M, then [QM] = [Qÿ] and [SM] = [Sÿ] as T-equivariant K-classes

(Proposition 4.4).

• The assignments M ↦→ [QM] and M ↦→ [SM] are both valuative maps from Matÿ (ý) to the

Grothendieck ring of T-equivariant vector bundles on ÿý (Proposition 4.7).

• By restricting [QM] and [SM] to the permutohedral variety ÿý , one recovers the ‘tautological classes

of matroids’ [Q
M
] and [SM] introduced in [BEST23].

The Chern classes of augmented tautological classes relate well to independence polytopes and aug-

mented Bergman classes of matroids:

• Under the correspondence between base-point-free divisor classes on toric varieties and polytopes

[CLS11, Section 6.2], the first Chern class ý1 (QM) of [QM] corresponds to the independence polytope

ý (M⊥) of the dual M⊥ of M.

• The top Chern class ýÿ−ÿ (QM) ∩ [ÿý ] of [QM] is the augmented Bergman class [ΣM].

The augmented tautological classes behave particularly well with respect to the following exceptional

isomorphisms between the Grothendieck ring of vector bundles ÿ (ÿý ) and the cohomology ring

ÿ•(ÿý ,Z). For any K-class [E], we write ý(E) for its total Chern class and [det E] for the K-class of

its determinant line bundle.

Theorem 1.8.

(1) There is a unique ring isomorphism

ÿ : ÿ (ÿý )
∼
→ ÿ•(ÿý ,Z)

that satisfies ÿ([detQÿ]) = ý(Qÿ) for any linear subspace ÿ ⊆ Cý .

(2) There is a unique ring isomorphism

ÿ : ÿ (ÿý )
∼
→ ÿ•(ÿý ,Z)

that satisfies ÿ ([Oÿÿ
]) = [ÿÿ] for any linear subspace ÿ ⊆ Cý .

Recall that the classical Hirzebruch–Riemann–Roch formula requires the use of rational coefficients.

We show that the isomorphisms ÿ and ÿ satisfy the following Hirzebruch–Riemann–Roch-type formula

with integer coefficients. We write the sheaf Euler characteristic map and the degree map by

ÿ : ÿ (ÿý ) → Z and

∫

ÿý

: ÿ•(ÿý ,Z) → Z.

For each i in E, let ÿÿ : ÿý → P
1 be the i-th factor of the map ÿ1ý : ÿý → (P

1)ý .

Theorem 1.9. For any ÿ ∈ ÿ (ÿý ), the exceptional isomorphisms ÿ and ÿ satisfy

ÿ
(
ÿ
)
=

∫

ÿý

ÿ
(
ÿ
)
· ý

( ⊕

ÿ∈ý

ÿ∗ÿOP1 (1)
)
=

∫
ÿ
(
ÿ
)
· ý

(
ÿ∗ýOPý (−1)

)−1
.

Despite apparent similarities, these identities are not consequences of the classical Hirzebruch–

Riemann–Roch theorem since ÿ and ÿ differ from the Chern character map. The integral classes

ý
( ⊕

ÿ∈ý ÿ∗ÿOP1 (1)
)
and ý

(
ÿ∗
ý
OPý (−1)

)−1
play the role of the Todd class for ÿ and ÿ . The isomorphisms

ÿ and ÿ are closely related to the isomorphism ÿ (ÿý )
∼
→ ÿ•(ÿý ,Z) in [BEST23, Theorem D] in two

different ways; see Remark 6.7.
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We prove the existence of the isomorphisms in Theorem 1.8 in Section 6 and use it to prove Theorems

1.5 and 1.6 in Section 7.1. The uniqueness of the isomorphisms in Theorem 1.8 is then derived from

Theorem 1.5 in Section 7.1. We prove Theorem 1.9 in Section 8.1.

Theorem 1.9 reveals remarkable numerical properties of the augmented tautological classes. Recall

that the Tutte polynomial of a matroid M on E, introduced by Tutte [Tut67] for graphs and by Crapo

[Cra69] for matroids, is the bivariate polynomial

ÿM (ý, ÿ) =
∑

ÿ⊆ý

(ý − 1)rkM (ý)−rkM (ÿ) (ÿ − 1) |ÿ |−rkM (ÿ) ,

where rkM : 2ý → Z here denotes the rank function of M. We give the following geometric interpre-

tations of the Tutte polynomial as intersection numbers of the Chern and Segre classes of augmented

tautological classes. For a K-class [E] and a formal variable u, we set

ý(E , ÿ) =
∑

ÿ

ýÿ (E)ÿ
ÿ and ý(E , ÿ) =

∑

ÿ

ýÿ (E)ÿ
ÿ ,

where ýÿ (E) is the i-th Chern class of [E] and ýÿ (E) is the i-th Segre class of [E].

Theorem 1.10. For any rank r matroid M on E, we have

ÿM (ÿ + 1, ÿ + 1) =

∫

ÿý

ý(SM, ÿ) · ÿÿ−ÿ · ý(QM, ÿ−1) · ý
( ⊕

ÿ∈ý

ÿ∗ÿOP1 (1)
)
.

Eliminating S using Q∨, we get the following identity for the homogeneous polynomial

ýM(ý, ÿ, ÿ, ý) ≔ (ÿ + ÿ)ÿ (ý + ý)ÿ−ÿÿM

(
ý + ÿ

ÿ + ÿ
,
ý + ÿ + ÿ + ý

ý + ý

)
.

Theorem 1.11. For any rank r matroid M on E, we have

ýM (ý, ÿ, ÿ, ý) =

∫

ÿý

ý
(
ÿ∗ýOPý (−1), ý

)
· ý

( ⊕

ÿ∈ý

ÿ∗ÿOP1 (1), ÿ
)
· ý(Q∨M, ÿ) · ý(QM, ý).

The second formula implies the following analytic property of the Tutte polynomial.

Theorem 1.12. For any rank r matroid M on E, the polynomial ýM(ý, ÿ, ÿ, ý) is a denormalized

Lorentzian polynomial in the sense of [BH20; BLP23].

See Section 8.3 for a short review of Lorentzian polynomials, and see Remark 8.9 for a strengthening

of Theorem 1.12. If M has a realization ÿ ⊆ Cý , Theorem 1.12 follows from Theorem 1.11 and the fact

that the vector bundle Qÿ is globally generated. For an arbitrary, not necessarily realizable, matroid M,

we establish Theorem 1.12 by constructing tropical models of augmented tautological classes and then

by applying tools from tropical Hodge theory as developed in [ADH23, Section 5].

Remark 1.13. Consider the homogeneous polynomial

ýM(ý, ÿ, ÿ, ý) ≔ (ý + ÿ)−1(ÿ + ÿ)ÿ (ý + ý)ÿ−ÿÿM

(
ý + ÿ

ÿ + ÿ
,
ý + ÿ

ý + ý

)
.

In [BEST23, Theorems A and B], the authors show the identity

ýM (ý, ÿ, ÿ, ý) =

∫

ÿý

ý
(
ÿ∗ýOP(Cý ) (−1), ý

)
· ý(Q

U1,ý
, ÿ) · ý(Q∨

M
, ÿ) · ý(Q

M
, ý)
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8 C. Eur, J. Huh and M. Larson

and show that this polynomial is a denormalized Lorentzian polynomial. The authors do not know

whether this result can be deduced directly from Theorem 1.11 and 1.12, or vice versa.

Specializing Theorem 1.12 by setting ý = 1, ÿ = 0, ÿ = ÿ, ý = 0, we obtain the following corollary,

which appeared in [Wag98, Problem 6.10] and [SSV22, Conjecture 2] in the context of Postnikov–

Shapiro algebras of graphs [PS04].

Corollary 1.14. For any rank r matroid M, the coefficients of the polynomial ÿÿ ÿM (ÿ
−1, 1 + ÿ) form a

log-concave sequence with no internal zeroes.

We conclude with the study of the geometry of matroid Schubert varieties via augmented tautological

bundles. For a realization ÿ ⊆ Cý of a matroid M, its matroid Schubert variety ýÿ is the closure of L

in (P1)ý . Matroid Schubert varieties play a central role in the proof of the Dowling–Wilson top-heavy

conjecture in the realizable case [HW17], and their intersection cohomologies are the main objects of

study in the proof of the general case [BHM+20]. Matroid Schubert varieties satisfy several features

analogous to those of classical Schubert varieties in flag varieties; see [BHM+20]. Two such features

are as follows:

• The map ÿ1ý : ÿý → (P
1)ý restricts to a resolution of singularities ÿÿ → ýÿ for any ÿ ⊆ Cý . The

boundary ÿÿÿ = ÿÿ \ ÿ is a simple normal crossings divisor on ÿÿ .

• The standard affine paving of (P1)ý restricts to an affine paving of a matroid Schubert variety ýÿ ,

whose k-dimensional cells are

ýý
= {ý ∈ ý | ýÿ = ∞ if and only if ÿ ∉ ý},

one for each rank k flat F of M. Writing ÿý for the homology class of the closure of ýý , which is

another matroid Schubert variety, we have

ÿ•(ýÿ ,Z) �
⊕

ý ∈ℒ (M)

Z ÿý ,

where ℒ(M) is the lattice of flats of M.

As mentioned before, the restriction of Sÿ to the augmented wonderful variety ÿÿ is isomorphic to the

log-tangent bundle Tÿÿ
(− log ÿÿÿ). This allows us to deduce the following remarkably simple formula

for the CSM classes of matroid Schubert cells in their varieties. See Section 9.2 for a brief review of

CSM classes.

Theorem 1.15. The CSM class of 1ÿ in ýÿ is the sum over all flats

ýÿý (1ÿ) =
∑

ý ∈ℒ (M)

ÿý ∈ ÿ•(ýÿ ,Z).

In particular, the CSM class of L in ýÿ is effective. The analogous effectivity of CSM classes of

classical Schubert cells in their varieties was established in [AMSS].

We include an appendix that discusses notions of valuativity and polytope algebras. We mostly collect

statements from the literature, but we also give an isomorphism between a certain polytope algebra and

the K-ring of a smooth projective toric variety.

Notation

Let k be an algebraically closed field of arbitrary characteristic. A variety is an irreducible and reduced

scheme of finite type separated over k. When k = C, the singular homology groups in even degrees and

the Chow homology groups coincide for smooth projective toric varieties and augmented wonderful

varieties, so we will use the two groups interchangeably in such cases, and similarly for the singular

cohomology ring and the Chow cohomology ring. We denote by 〈·, ·〉 the standard pairing on ký or Zý .
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2. Torus-equivariant geometry preliminaries

We collect some facts about the torus-equivariant K-ring and torus-equivariant Chow ring of a smooth

projective toric variety. The reader may skip this section and refer back as needed.

Let ÿΣ be the smooth projective toric variety with fan Σ, and let ÿ = Gýÿ be the torus with character

lattice Char(ÿ) = Zý . Suppose that T acts on ÿΣ via a surjective map of tori with connected kernel to

the dense open torus of ÿΣ so that the corresponding map of cocharacter lattices is Zý → Zý/(lin∩Zý )

for some linear subspace lin ⊂ Zý ⊗ R. These data are encoded by the n-dimensional complete fan Σ in

Rý with lineality space lin such that Σ/lin = Σ.

2.1. Localization theorems

Let ÿÿ (ÿΣ) be the T-equivariant K-ring of ÿΣ, the Grothendieck ring of T-equivariant vector bundles

on ÿΣ. Let ÿ (ÿΣ) denote the K-ring of ÿΣ. By forgetting the equivariant structure, one has a surjective

map ÿÿ (ÿΣ) → ÿ (ÿΣ). By taking the T-equivariant sheaf Euler characteristic, one has a ÿÿ (pt)-

module homomorphism ÿÿ : ÿÿ (ÿΣ) → ÿÿ (pt). We identify ÿÿ (pt) = Z[Char(ÿ)] with the Laurent

polynomial ring Z[ÿ±1
1

, . . . , ÿ±1
ÿ ], where ÿÿ is the standard character of ÿ ∈ ý under the identification

Char(ÿ) = Zý .

Let ý•
ÿ
(ÿΣ) denote the equivariant Chow ring of ÿΣ, as defined in [EG98], and let ý•(ÿΣ) denote

the Chow ring of ÿΣ. Similar to the K-rings, one has a surjective map ý•
ÿ
(ÿΣ) → ý•(ÿΣ) and a

ý•
ÿ
(pt)-module homomorphism

∫ ÿ
: ý•

ÿ
(ÿΣ) → ý•

ÿ
(pt). We identify ý•

ÿ
(pt) with the polynomial ring

Z[ý1, . . . , ýÿ]. Let
∫

: ý•(ÿΣ) → Z be the (nonequivariant) degree map.

Let Σ(ý) denote the set of cones of dimension k of Σ. For each maximal cone ÿ of Σ, we have a map

ÿÿ (ÿΣ) → ÿÿ (ptÿ) = Z[ÿ
±1
1

, . . . , ÿ±1
ÿ ] given by pulling back to or localizing at the corresponding

fixed point ptÿ . Similarly, we have a map ý•
ÿ
(ÿΣ) → ý•

ÿ
(ptÿ) = Z[ý1, . . . , ýÿ]. These maps can be com-

bined into maps ÿÿ (ÿΣ) → ÿÿ (ÿ
ÿ
Σ
) =

∏
ÿ∈Σ (ÿ) ÿÿ (pt) and ý•

ÿ
(ÿΣ) → ý•

ÿ
(ÿÿ

Σ
) =

∏
ÿ∈Σ (ÿ) ý

•
ÿ
(pt),

where ÿÿ
Σ

denotes the set of T-fixed points of ÿΣ. For a character ÿ = (ÿ1, . . . , ÿÿ) ∈ Z
ý , we denote

ÿ ÿ = ÿ
ÿ1

1
· · ·ÿ

ÿÿ
ÿ and ýÿ = ÿ1ý1 + · · · + ÿÿýÿ. Then we have the following localization theorem.

Theorem 2.1. Let ÿΣ as above. Then

(1) [VV03, Corollary 5.11] The restriction map ÿÿ (ÿΣ) → ÿÿ (ÿ
ÿ
Σ
) is injective, and its image is the

subring of
∏

ÿ∈Σ (ÿ) ÿÿ (pt) given by

⎧⎪⎪«
⎪⎪¬
ÿ ∈

∏

ÿ∈Σ (ÿ)

ÿÿ (pt)

������
ÿÿ − ÿÿ′ ≡ 0 mod 1 − ÿ ÿ

whenever dim ÿ ∩ ÿ′ = ý − 1 with R(ÿ ∩ ÿ′) = ker ÿ

«⎪⎪¬
⎪⎪­
.

Moreover, the map ÿÿ (ÿΣ) → ÿ (ÿΣ) forgetting the equivariant structure is surjective, with kernel

ýÿ equal to the ideal generated by ÿ − ÿ (1, . . . , 1), where f is a global Laurent polynomial, that is,

ÿÿ for all ÿ ∈ Σ(ÿ) equals a common Laurent polynomial.

(2) [Pay06] The restriction map ý•
ÿ
(ÿΣ) → ý•

ÿ
(ÿÿ

Σ
) is injective, and its image is the subring of∏

ÿ∈Σ (ÿ) ý
•
ÿ
(pt) given by

⎧⎪⎪«
⎪⎪¬
ÿ ∈

∏

ÿ∈Σ (ÿ)

ý•ÿ (pt)

������
ÿÿ − ÿÿ′ ≡ 0 mod ýÿ

whenever dim ÿ ∩ ÿ′ = ý − 1 with R(ÿ ∩ ÿ′) = ker ÿ

«⎪⎪¬
⎪⎪­
.

Moreover, the map ý•
ÿ
(ÿΣ) → ý•(ÿΣ) forgetting the equivariant structure is surjective, with kernel

ýý equal to the ideal generated by ÿ − ÿ (0, . . . , 0), where f is a global polynomial, that is, ÿÿ for

all ÿ ∈ Σ(ÿ) equals a common polynomial.
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2.2. Duality, rank, symmetric powers, exterior powers, Chern classes and Segre classes

We now recall the description of several operations on the equivariant K-ring of a toric variety in

terms of localization at fixed points. Let [E] ∈ ÿÿ (ÿΣ) be an equivariant K-class, localizing to

[E]ÿ =
∑ýÿ
ÿ=1

ÿÿ,ÿÿ
ÿÿ,ÿ at a torus-fixed point corresponding to a maximal cone ÿ ∈ Σ(ÿ).

There is a ring involution ÿÿ on ÿÿ (ÿΣ) defined by sending the class of an equivariant vector

bundle to the class of the dual vector bundle. The dual class ÿÿ ([E]) := [E]∨ has

ÿÿ ([E])ÿ =

ýÿ∑

ÿ=1

ÿÿ,ÿÿ
−ÿÿ,ÿ .

There is a corresponding ring involution, denoted ÿý, on ý•
ÿ
(ÿΣ), defined by ÿý(ýÿ) ↦→ −ýÿ at each

torus-fixed point. This multiplies by (−1)ý on ýý
ÿ
(ÿΣ). These involutions descend to ÿ (ÿΣ) and ý• (ÿΣ).

As toric varieties are integral, every coherent sheaf on a toric variety has a rank. As the rank is

additive in short exact sequences, this defines a ring homomorphism rk : ÿÿ (ÿΣ) → Z, which descends

to ÿ (ÿΣ) → Z. The rank of [E] is
∑ýÿ
ÿ=1

ÿÿ,ÿ , which is independent of the choice of ÿ.

The operation that assigns to each equivariant vector bundle its j-th symmetric or exterior power

extends naturally to ÿ (ÿΣ) and ÿÿ (ÿΣ). Explicitly, with u a formal variable, we have that

∞∑

ÿ=0

∧ ÿ [E]ÿÿ ÿ
=

ýÿ∏

ÿ=1

(1 + ÿÿÿ,ÿÿ)ÿÿ,ÿ , and

∞∑

ÿ=0

Sym ÿ [E]ÿÿ ÿ
=

ýÿ∏

ÿ=1

(
1

1 − ÿÿÿ,ÿÿ

)ÿÿ,ÿ

.

The function that sends a vector bundle to its equivariant total Chern class extends to a function

ýÿ : ÿÿ (ÿΣ) → ý•
ÿ
(ÿΣ), which is multiplicative in the sense that ýÿ (E + F) = ýÿ (E) · ýÿ (F). The

equivariant Chern polynomial ýÿ (E , ÿ) is the polynomial ýÿ
0
(E) + ýÿ

1
(E)ÿ + ýÿ

2
(E)ÿ2 + · · · , where u is

a formal variable. Define similarly the Chern polynomial ý(E , ÿ) ∈ ý•(ÿΣ) [ÿ]. The equivariant total

Chern class localizes to

ýÿ (E , ÿ)ÿ =

∞∑

ÿ=0

ýÿÿ (E)ÿÿ ÿ
=

ýÿ∏

ÿ=1

(1 + ÿýÿÿ,ÿ
)ÿÿ,ÿ ,

where u is a formal variable.

If E is a vector bundle on ÿΣ, then E has a Segre class in ý•(ÿΣ), characterized by the property that

ý(E)ý(E) = 1. We define the equivariant Segre class to be the inverse of ýÿ (E) in ý•
ÿ
(ÿΣ) [ý

ÿ (E)−1].

Because ý(E) is a unit in ý•(ÿΣ), there is a natural map ý•
ÿ
(ÿΣ) [ý

ÿ (E)−1] → ý•(ÿΣ), and the image

of ýÿ (E) is ý(E). Define the (equivariant) Segre polynomial in the same way as the (equivariant) Chern

polynomial.

3. Stellahedral varieties

We describe the stellahedral fan Σý and its variety ÿý in several different ways, and we record several

useful properties of ÿý we will need. The closely related permutohedral fan Σý and its variety ÿý will

often appear and aid the discussion.

3.1. The stellahedral fan via compatible pairs

We describe the stellahedral fan in terms of its cones. We start by describing the closely related

permutohedral fan, which both serves as a motivation for and appears as a substructure in the stellahedral

fan.
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Definition 3.1. The permutohedral fan Σý is a fan in Rý/Reý that consists of cones ÿ
ℱ

for each chain

ℱ : ý1 � · · · � ýý of nonempty proper subsets of E, where

ÿ
ℱ

= cone{eý1
, . . . , eýý

}.

Here, we denoted ÿ for the image of ÿ ∈ Rý in Rý/Reý .

That this definition of Σý is equivalent to its description as the normal fan of the permutohedron

Πý = conv{ý · (1, 2, . . . , ÿ) | ý is a permutation of ý} ⊆ Rý is a standard fact about Coxeter reflection

groups; see for instance [BB05]. We now give a similar description of the stellahedral fan Σý in terms

of ‘compatible pairs’ as given in [BHM+22, §2].

Definition 3.2. A pair (ý,ℱ) consisting of a subset ý ⊆ ý and a chainℱ : ý1 � ý2 � · · · � ýý of proper

subsets of E is said to be compatible if I is a subset of every element of ℱ. We write ý ≤ ℱ in this case.

Both the subset I and the chain ℱ are allowed to be empty. In contrast to the permutohedral case, the

empty set is allowed to be an element in the chain ℱ. Make the following a definition.

Proposition 3.3. [BHM+22, Proposition 2.6] The stellahedral fan Σý is a simplicial fan that consists

of cones ÿý ≤ℱ for each compatible pair ý ≤ ℱ, where

ÿý ≤ℱ = cone{eÿ | ÿ ∈ ý} + cone{−eý\ý | ý ∈ ℱ}.

We denote the rays of the fan Σý by

ÿÿ = ÿ{ÿ }≤∅ = cone(eÿ) for each ÿ ∈ ý and ÿÿ = ÿ∅≤{ÿ } = cone(−eý\ÿ) for each ÿ � ý.

The proposition gives the following corollary concerning the stars of the stellahedral fan. Recall that

for a fan Σ in Rý , the star of a cone ÿ ∈ Σ is a fan, denoted starÿ Σ, in Rý/Rÿ whose cones are the

images of the cones in Σ containing ÿ.

Corollary 3.4. [BHM+22, Proposition 2.7] Let ý = {ÿ1, . . . , ÿ ÿ } ≤ ℱ : ý1 � · · · � ýý be a compatible

pair, and by convention set ýý+1 = ý (so ý1 = ý if ℱ is an empty chain). Then, the isomorphism

Rý/Rÿý ≤ℱ = Rý/R{eÿ1 , . . . , eÿ ÿ ,−eý\ý1
, . . . ,−eý\ýý

} � Rý1\ý ×

ý∏

ÿ=1

Rýÿ+1\ýÿ/Reýÿ+1\ýÿ

induces an isomorphism of fans

starÿý≤ℱ
Σý � Σý1\ý ×

ý∏

ÿ=1

Σýÿ+1\ýÿ
.

Example 3.5. When (ý,ℱ) = (∅, {∅}) corresponding to the ray ÿ∅ = cone(−eý ), we have that

starÿ∅ Σý � Σý . In particular, we recover that the permutohedral variety ÿý arise as the T-invariant

divisor of ÿý corresponding to the ray ÿ∅, as noted in the introduction. From the map Zý → Zý/Zÿ∅ =

Zý/Zeý , we have that the open dense torus of ÿý is the projectivization Pÿ = (k∗)ý/k∗ of T.

We will often use Example 3.5 to recover or relate the ‘augmented’ structures on stellahedral varieties

to the ‘nonaugmented’ versions on permutohedral varieties. We will use the more general star structures

of the stellahedral fan in §4.2, where we study the restriction of augmented tautological bundles to

various torus-invariant subvarieties of the stellahedral variety.
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3.2. Refinements and coarsenings

We record how the stellahedral fan Σý arises as either a refinement or a coarsening of certain fans.

First, we note that Σý is an iterated stellar subdivision of coarser fans in two distinguished ways. Both

statements can be verified via Proposition 3.3.

Proposition 3.6. Let Σý be the stellahedral fan of E. The following hold.

(a) Let Σÿ be the fan in Rý whose maximal cones are the cones generated by the cardinality-n subsets

of {e1, e2, . . . , eÿ,−eý }. Then Σý is obtained from Σÿ by performing the stellar subdivision of all

maximal cones of Σÿ that contain the vector −eý , then performing the stellar subdivision of the

inverse images of codimension 1 cones that contain −eý and so on.

(b) Let (Σ1)
ý be the fan in Rý whose maximal cones are the 2ÿ orthants of Rý . Then Σý is obtained

from (Σ1)
ý by performing the stellar subdivision of the negative orthant, then performing the stellar

subdivision of the codimension-1 faces of the negative orthant and so on.

Since the toric varieties of Σý and (Σ1)
ý are Pý and (P1)ý , respectively, the above two descriptions

of Σý can be rephrased to say that the stellahedral variety ÿý is an iterated blow-up along smooth

centers from Pý and from (P1)ý . The two maps ÿý : ÿý → P
ý and ÿ1ý : ÿý → (P

1)ý are the blow-

down maps. For ÿ ∈ ý , let ÿÿ : ÿý → P
1 be the composition of ÿ1ý with the projection to the i-th P1.

These maps from ÿý to projective spaces give the following distinguished divisor classes on ÿý .

Definition 3.7. With notations as above, we denote

ÿ = ÿ∗ý (hyperplane class of Pý ) and ÿÿ = ÿ∗ÿ (hyperplane class of P1).

We now describe the stellahedral fan Σý as a coarsening of a permutohedral fan. This description of

Σý will be useful for our discussion of the tropical geometry of augmented wonderful varieties in §5.3

and for producing a basis for Σý in §7.2.

Denote by ý̃ = ý � {0}. Let p be the isomorphism of lattices

ý : Zý̃/Ze
ý̃
→ Zý given by (ÿ0, ÿ1, . . . , ÿÿ) ↦→ (ÿ1 − ÿ0, . . . , ÿÿ − ÿ0).

That is, for ÿ ⊆ ý̃ we have eÿ ↦→ eÿ if 0 ∉ ÿ and eÿ ↦→ −eý\ÿ if 0 ∈ ÿ. To show that the stellahedral fan

Σý of E is the image under p of a coarsening of the permutohedral fan Σ
ý̃

of ý̃ , we use the following

notions from [DCP95; FY04] in an equivalent formulation given in [Pos09, §7]. A building set is a

collection G of subsets of ý̃ such that {ÿ} ∈ G for any ÿ ∈ ý̃ , and if S and ÿ′ are in G with ÿ∩ÿ′ ≠ ∅, then

so is ÿ∪ ÿ′. The nested complex N of a building set G is a simplicial complex on vertices G whose faces

are collections {ÿ1, . . . , ÿý } ⊆ G such that for every subcollection {ÿÿ1 , . . . , ÿÿℓ } with ℓ ≥ 2 consisting

only of pairwise incomparable elements, one has
⋃ℓ

ÿ=1 ÿÿ ÿ ∉ G. When ý̃ ∈ G, the set of cones

{
cone{eÿ1

, . . . , eÿý
} ⊆ Rý̃/Re

ý̃
| {ÿ1, . . . , ÿý } ⊆ G \ {∅, ý̃} a face of N

}

is a smooth fan in Rý̃/Re
ý̃

that coarsens the permutohedral fan Σ
ý̃

.

Proposition 3.8. The collection G = {ÿ ∪ 0 | ÿ ⊆ ý} ∪ ý is a building set whose fan projects

isomorphically onto the stellahedral fan Σý under p.

Proof. Both the facts that G is a building set and that the faces of N are {ÿ1 ∪ 0, . . . , ÿý ∪ 0} ∪ ý, where

∅ ⊆ ÿ1 � · · · � ÿý ⊆ ý and ∅ ⊆ ý ⊆ ÿ1, are straightforward to check. The rest of the proposition

follows from Proposition 3.3. �
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3.3. Polymatroids

A standard correspondence between polyhedra and divisors on toric varieties [CLS11, §6.2] (see also

[ACEP20, §2.4]) states the following: For a lattice polytope Q and the toric variety ÿý defined by its

normal fan Σý, the base-point-free torus-invariant divisors on ÿý are in bijection with deformations

of Q, which are lattice polytopes whose normal fans coarsen Σý. We show that specializing this to the

stellahedral variety ÿý gives a correspondence between the set of base-point-free divisor classes on ÿý

and a family of polytopes called ‘polymatroids’ introduced in [Edm70].

Definition 3.9. For vectors ÿ, ÿ ∈ Rý , let us denote ÿ ≥ ÿ if ÿ − ÿ ∈ Rý
≥0

. A polymatroid on E is a

nonempty polytope P in the nonnegative orthant Rý
≥0

satisfying the following two properties:

(1) If ÿ ∈ Rý
≥0

such that ÿ ≥ ÿ for some ÿ ∈ ÿ, then ÿ ∈ ÿ.

(2) For any ÿ ∈ Rý
≥0

, every maximal ÿ ∈ ÿ such that ÿ ≤ ÿ has the same coordinate sum 〈ÿ, eý 〉.

An integral polymatroid is a polymatroid whose vertices lie in Zý .

We will use the following ‘strong normality’ of integral polymatroids in the proof of Proposition 3.16.

Proposition 3.10. [Wel76, Chapter 18.6, Theorem 3] Let ÿ1, . . . , ÿý be integral polymatroids on E.

Then any lattice point ÿ ∈ Zý in the Minkowski sum ÿ1 + · · · +ÿý is a sum ý1 + · · · + ýý of lattice points

ýÿ ∈ ÿÿ ∩ Z
ý . In particular, an integral polymatroid P is a normal polytope.

This property of polymatroids implies that the closure of the image of the map

ÿ → P |ÿ1∩Z
ý |−1 × · · · × P |ÿý∩Z

ý |−1 defined by ý ↦→ ([ýÿ]ÿ∈ÿ1∩Zý , . . . , [ýÿ]ÿ∈ÿý∩Zý )

is isomorphic to the toric variety of the normal fan of ÿ1 + · · · + ÿý . For a general discussion of normal

polytopes in toric geometry, see [CLS11, Chapter 2].

To relate polymatroids to base-point-free divisor classes on ÿý , we will need the following equivalent

description of (integral) polymatroids. A function ÿ : 2ý → Rwith ÿ (∅) = 0 is said to be nondecreasing

and submodular if

(nondecreasing) ÿ (ÿ) ≤ ÿ (ÿ′) whenever ÿ ⊆ ÿ′ ⊆ ý , and

(submodular) ÿ (ÿ ∪ ÿ′) + ÿ (ÿ ∩ ÿ′) ≤ ÿ (ÿ) + ÿ (ÿ′) for all ÿ, ÿ′ ⊆ ý .

Theorem 3.11. [Edm70, (8)] Polymatroids on E are in bijection with nondecreasing and submodular

functions ÿ : 2ý → R with ÿ (∅) = 0. The bijection is given by

a polytope ÿ ↦→ ÿ : 2ý → R where ÿÿ (ÿ) = max{〈ÿ, eÿ〉 | ÿ ∈ ÿ} for ÿ ⊆ ý

a function ÿ : 2ý → R ↦→ ÿ = {ÿ ∈ Rý≥0 | 〈eÿ , ÿ〉 ≤ ÿ (ÿ) for all ÿ ⊆ ý}.

A polymatroid P is integral if and only if the function f is Z-valued.2

Example 3.12. The independence polytope ý (M) of a matroid M is an integral polymatroid where the

function f is the rank function rkM. It follows that rkM is a nondecreasing and submodular function.

Conversely, the rank function characterization of matroids implies that an integral polymatroid contained

in the Boolean cube [0, 1]ý is the independence polytope of a matroid. See [Edm70] for details.

The following proposition implies that, up to translation, polymatroids are exactly the deformations

of the stellahedron.

2In some previous works [DF10; CDMeS22], the terminology ‘polymatroid’ refers to associating the polytope ÿ = {ÿ ∈ Rý
≥0
|

〈eÿ , ÿ〉 ≤ ÿ (ÿ) for all proper ÿ � ýand 〈eý , ÿ〉 = ÿ (ý) } to a nondecreasing and submodular function f with ÿ ( ∅) = 0. Our
polytope P is equal to {ÿ ∈ Rý

≥0
| there exists ÿ ∈ ÿ such that ÿ − ÿ ∈ Rý

≥0
}, and hence contains ÿ as a face.
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Proposition 3.13. For a proper subset ∅ ⊆ ÿ � ý , let ÿÿ be the torus-invariant divisor on ÿý

corresponding to the ray ÿ∅≤{ÿ } = cone(−eý\ÿ) of Σý . Let [ÿÿ] be its divisor class in ý1(ÿý ). Then

the map defined by

(integral polymatroid ÿ defined by ÿ : 2ý → Z) ↦→
∑

∅⊆ÿ�ý

ÿ (ý \ ÿ) [ÿÿ] ∈ ý1(ÿý )

is a bijection between the set of integral polymatroids on E and the set of base-point-free divisor classes

on ÿý .

For the proof, we will need the following consequence of Proposition 3.3, which follows from

[CLS11, Theorem 6.1.7].

Corollary 3.14. (cf. [BHM+22, Proposition 2.10]) A collection of rays in Σý is a minimal collection of

rays that do not form a cone in Σý if and only if the collection is either

{ÿÿ , ÿÿ} for ÿ ∉ ÿ � ý or {ÿÿ , ÿÿ′} for incomparable ÿ, ÿ′ � ý.

Proof of Proposition 3.13. We begin by noting that the primitive vectors in the rays of Σý are {eÿ |

ÿ ∈ ý} ∪ {−eý\ÿ | ÿ � ý}. Because the cone spanned by {eÿ | ÿ ∈ ý} is a maximal cone in Σý , the

presentation of the class group ý1(ÿý ) in terms of torus-invariant divisors, as given in [CLS11, Theorem

4.1.3], implies that any divisor class [ÿ] ∈ ý1(ÿý ) can be written uniquely as [ÿ] =
∑
ÿ�ý ýÿ [ÿÿ]

with ýÿ ∈ Z. Let us set ýý = 0 by convention, and let ÿ =
∑
ÿ�ý ýÿÿÿ be a divisor. We now need

check that the line bundle Oÿý
(ÿ) of the divisor D on ÿý is base-point-free if and only if the function

ÿ : 2ý → Z given by ÿ ↦→ ýý\ÿ defines a polymatroid on E.

For this end, we will use a criterion for base-point-freeness on toric varieties in terms of piecewise

linear functions. Following the conventions of [CLS11], the divisor ÿ =
∑
ÿ�ý ýÿÿÿ corresponds to

the piecewise linear function ÿÿ on Rý defined by assigning the value 0 to eÿ for ÿ ∈ ý and the value

−ýÿ to −eý\ÿ for ÿ � ý . Applying a criterion for base-point-freeness [CLS11, Theorem 6.4.9] to the

stellahedral fan along with Corollary 3.14, one has that Oÿý
(ÿ) is base-point-free if and only if the

following two conditions are satisfied:

(1) For ÿ ∈ ý and a subset ÿ � ý not containing i, one has

ÿÿ (eÿ − eý\ÿ) ≥ ÿÿ (eÿ) + ÿÿ (−eý\ÿ).

Equivalently, since ÿ ∉ ÿ implies that eÿ − eý\ÿ = −eý\(ÿ∪ÿ) , noting that ÿÿ (eÿ) = 0 and

−ÿÿ (−eý\ÿ) = ýÿ gives

ýÿ∪ÿ ≤ ýÿ .

(2) For incomparable proper subsets S and ÿ′ of E, one has

ÿÿ (−eý\ÿ − eý\ÿ′) ≥ ÿÿ (−eý\ÿ) + ÿÿ (−eý\ÿ′).

Equivalently, since −eý\ÿ − eý\ÿ′ = −eý\(ÿ∩ÿ′) − eý\(ÿ∪ÿ′) , and because ÿÿ is linear on

cone{−eý\(ÿ∩ÿ′) ,−eý\(ÿ∪ÿ′) }, noting that −ÿÿ (−eý\ÿ) = ýÿ gives

ýÿ∩ÿ′ + ýÿ∪ÿ′ ≤ ýÿ + ýÿ′ .

Here, note that when ÿ∪ ÿ′ = ý , our convention that ýý = 0 is consistent because ÿÿ (−ÿý\ý ) =

ÿÿ (0) = 0.

In terms of the function ÿ : ÿ ↦→ ýý\ÿ , the first condition is equivalent to ÿ (ÿ) ≤ ÿ (ÿ ∪ ÿ), and the

second condition is equivalent to ÿ (ÿ ∪ ÿ′) + ÿ (ÿ ∩ ÿ′) ≤ ÿ (ÿ) + ÿ (ÿ′). �

https://doi.org/10.1017/fmp.2023.24 Published online by Cambridge University Press



Forum of Mathematics, Pi 15

For an integral polymatroid P, let ÿÿ =
∑
ÿ�ý ÿ (ý \ ÿ)ÿÿ be the corresponding divisor on ÿý . Let

ÿÿ be the toric variety of the normal fan of P, considered as a fan in Rý so that ÿÿ is considered as a

T-variety. Note that ÿÿ may have dimension less than n, so the action of T on ÿÿ may have a nontrivial

kernel.

Example 3.15. For any matroid M, we have that the divisor ÿ ý (M) induces a toric morphism ÿý →

ÿý (M) . In particular, we recover the two distinguished maps from ÿý in the introduction: When P is the

simplex ý (U1,ý ), whose normal fan is Σÿ, we obtain the map ÿý : ÿý → P
ý . When P is the Boolean

cube ý (Uÿ,ý ), whose normal fan is (Σ1)
ý , we obtain the map ÿ1ý : ÿý → (P

1)ý .

3.4. Orbit-closure in a flag variety and additive-equivariance

We have so far described the structure of ÿý as a toric variety, that is, in terms of the T-action. Here,

we show that ÿý admits an action by a larger group that contains the additive group Gýÿ . Let us begin

with the one-dimensional case.

The multiplicative group Gÿ acts on the additive group Gÿ via ý · ÿ = ýÿ for ý ∈ Gÿ and ÿ ∈ Gÿ. Let

G = Gÿ �Gÿ be semidirect product. Concretely, the groups Gÿ, Gÿ, and G embed into ÿÿ2 as follows.

Gÿ,Gÿ,G ↩→ ÿÿ2 via ý ↦→

(
ý 0

0 1

)
, ÿ ↦→

(
1 ÿ

0 1

)
, (ý, ÿ) ↦→

(
ý ÿ

0 1

)
.

We denote by ý = k2 the resulting G-representation. The group G thus acts on P(ý) = P1 by

(ý, ÿ) · [ý : ÿ] = [ýý + ÿÿ : ÿ]

with two orbits {[ý : 1] | ÿ ∈ k} � A1 and {[1 : 0]}, denoted {∞}. When we treat P1 as the

toric variety of the fan in R1 consisting of the three cones {R≥0,R≤0, {0}}, the orbit A1
ý is identified

with the toric affine chart of P1 corresponding to R≥0. In particular, letting ÿ [0,1] be the toric divisor

on P1 corresponding to the interval [0, 1] ⊂ R1, we may identify ý = ÿ0 (P1,OP1 (1))∨ by giving

T-linearization of OP1 (1) as OP1 (∞) = OP1 (ÿ [0,1]).

Let us now show that the stellahedral variety ÿý admits a Gý -action. We do this by realizing ÿý

as a Gý -orbit closure in a flag variety. While there are several alternate ways to exhibit the Gý -action

on ÿý , as listed in Remark 3.18, the orbit closure description will be useful for defining the augmented

tautological bundles in the next section.

From the G-action on ý = k
2, we endow ýý � ký ⊕ ký with the Gý -action given by (t, b) ↦→(

diag(t) diag(b)

0 ý

)
. Let Δ : ký → ýý be the diagonal embedding.

Proposition 3.16. Let ℒ = {ÿ1 ⊆ · · · ⊆ ÿℓ } be a flag of linear subspaces of ký realizing matroids

M1, . . . , Mℓ , and let P be the polymatroid ý (M1) + · · · + ý (Mℓ). Then the Gý -orbit closure of [Δ (ℒ)]

in ýý (dim(ÿ1), . . . , dim(ÿℓ);ý
ý ) is identified with ÿÿ .

Proof. We first consider the case when ℓ = 1, so we are taking the Gý -orbit closure of [Δ (ÿ1)] in

ÿÿ (dim(ÿ1);ý
ý ). Let A be a matrix whose rows form a basis for ÿ1, so the rows of

(
ý ý

)
form a basis

for Δ (ÿ1). Then the Gý -action on ÿÿ (dim(ÿ1);ý
ý ) is given by

(t, b) ·
[ (

ý ý
) ]

=

[ (
ý ý

) (
diag(t) diag(b)

0 ý

) ý ]
=

[ (
(t + b)ý ý

) ]
.

This implies that the T-orbit closure coincides with the Gý -orbit closure.

The normalization of ÿ · [Δ (ÿ1)] is a toric variety, so it is defined over SpecZ. We may therefore

consider the moment polytope of its complexification, which is given a polarization via the Plücker

embedding of the Grassmannian. The vertices of the moment polytope are given by the T-weights of the
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nonzero maximal minors of
(
ý ý

)
, where T acts by scaling the first n columns. Every nonzero maximal

minor of
(
ý ý

)
is given by a subset ÿ1 of the first n rows and a subset ÿ2 of the second n rows such that

ÿ1 � ÿ2 is a basis for M1. The T-weight of this minor is eÿ1
, so the moment polytope is ý (M1).

Let S be the set of nonloops of M1. The vertices of ý (M1) generate the lattice Zÿ , which implies that

the character lattice of the embedded torus in the normalization of ÿ · [Δ (ÿ1)] is Z
ÿ . Every lattice point

in ý (M1) is a vertex, so the restriction map ÿ0(ÿÿ (dim(ÿ1);ý
ý );O(1)) → ÿ0 (ÿ · [Δ (ÿ1)],O(1)) is

surjective. By Proposition 3.10,ÿ · [Δ (ÿ1)] is projectively normal and therefore normal, soÿ · [Δ (ÿ1)]

is isomorphic to ÿý (M1) .

We now treat the general case. There is an embedding ýý (dim(ÿ1), . . . , dim(ÿℓ);ý
ý ) ↩→∏ℓ

ÿ=1 ÿÿ (dim(ÿÿ);ý
ý ) and the computation above implies that the T-orbit closure of [Δ (ℒ)] is also

the Gý -orbit closure. By Proposition 3.10, the Segre embedding of ÿ · [Δ (L)] corresponds to the

Minkowski sum of polytopes (with the complete linear series), which implies that the moment polytope

of ÿ · [Δ (ℒ)] is P. Using that P is a normal polytope, we get that ÿ · [Δ (ℒ)] is isomorphic to ÿÿ . �

The flag of matroids realized by a general full flag ℒ = {ÿ1 � ÿ2 � · · · � ÿÿ = ký } over an infinite

field k are exactly the uniform matroids U1,ý , . . . , Uÿ,ý . Since the stellahedron Πý is the Minkowski

sum ý (U1,ý ) + · · · + ý (Uÿ,ý ), we have the following corollary.

Corollary 3.17. The Gý -orbit closure of a general full flag of linear subspaces ℒ, viewed as a point in

ýý (1, . . . , ÿ;ýý ) via Δ , is identified with ÿý . In particular, ÿý has the structure of a Gý -variety.

Remark 3.18. With P1 as a G-variety described above, Gý acts on (P1)ý with 2ÿ orbits. In §3.2,

we described ÿý as the iterated blow-up of the strict transforms of the proper Gý -orbit closures in

increasing order of dimension. The functoriality of the blow-up then gives ÿý a Gý -action, and the

blow-down map ÿý → (P
1)ý is Gý -equivariant.

Alternatively, one notes that Pý , viewed as the projective completion P(ký ⊕ k) of ký , is a Gý -

equivariant compactification of ký with the obvious action of Gý . The proper Gý -orbit closures in Pý

are then exactly the coordinate subspaces of Pý contained in the hyperplane at infinity P(ký ) ⊆ Pý . In

§3.2, we described ÿý as the iterated blow-up of the strict transforms of these proper Gý -orbit closures

in the increasing order of dimension. Again, the functoriality of the blow-up gives ÿý a Gý -action with

an equivariant blow-down map ÿý → P
ý .

Lastly, one may also appeal to [AR17, Theorem 3.4 & 4.1] to show that any toric variety ÿÿ of the

normal fan Σÿ of a polymatroid P on E admits aGýÿ -action that is compatible with the torus-action: One

verifies that {−eÿ | ÿ ∈ ý} form a ‘complete collection of Demazure roots’ of Σÿ as defined in (loc. cit.).

4. Augmented tautological bundles and classes

4.1. Well-definedness

We now construct the augmented tautological bundles and augmented tautological classes. Recall the

notation ýý = k
ý ⊕ ký . Recall that for any polymatroid P (such as an independence polytope), one

has a T-equivariant map ÿý → ÿÿ because the normal fan Σÿ coarsens Σý . Let us prepare with the

following trivial case.

Lemma 4.1. Consider the map ÿý → ÿÿ (ÿ;ýý ) obtained as the composition of ÿý → ÿý (Uÿ,ý ) with

the map ÿý (ýÿ,ý ) → ÿÿ (ÿ;ýý ) given by setting ℓ = 1 and ÿ1 = ký in Proposition 3.16. The pullback

to ÿý of the tautological subbundle S on ÿÿ (ÿ;ýý ) is isomorphic to
⊕

ÿ∈ý ÿ∗ÿOP1 (−1), equipped with

the unique T-linearization that is trivial on the Gý -orbit Aý ⊆ ÿý .

Proof. By construction, the pullback of S to ÿý is a subbundle of O⊕2ÿ
ÿý

, and
⊕

ÿ∈ý ÿ∗ÿOP1 (−1) (with

the unique T-linearization that is trivial on Aý ) is a subbundle of O⊕2ÿ
ÿý

whose fiber over any point

in Aý is the diagonal Δ (ký ). It follows from the construction of the map ÿý → ÿÿ (ÿ;ýý ) that the
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pullback of S has the fiber over any point of Aý equal to Δ (ký ); the result follows because we may

check whether two subbundles of O⊕2ÿ
ÿý

are equal on a dense open subset.

Alternatively, we had given OP1 (1) the T-linearization as the line bundle OP1 (ÿ [0,1]), which is

trivial on the G-orbit A1 of P(ý). This resulted in the identification of V with ÿ0(P1,OP1 (1))∨. Since

ý (Uÿ,ý ) = [0, 1]
ý , we find that (P1)ý � ÿý (Uÿ,ý ) → ÿÿ (ÿ;ýý ) is the map induced by the E-fold

product of the injection of vector bundles OP1 (−1) → OP1 ⊗ ý . �

Given a linear subspace ÿ ⊆ ký , we now construct vector bundles fitting into a short exact sequence

that is modeled after 0 → ÿ → k
ý → k

ý/ÿ → 0. Because we would like at least one of the vector

bundles to be globally generated, the vector bundles Sÿ and Qÿ will be defined so that they fit into the

short exact sequence 0 → Sÿ →
⊕

ÿ∈ý ÿ∗ÿOP1 (1) → Qÿ → 0 with
⊕

ÿ∈ý ÿ∗ÿOP1 (1) in the middle

instead of
⊕

ÿ∈ý ÿ∗ÿOP1 (−1). As a result, when we define the dual bundle Q∨
ÿ
, we are led to consider

the orthogonal dual ÿ⊥ = (ký/ÿ)∨ ⊆ ký of the realization ÿ ⊆ ký of a matroid M, which realizes the

dual matroid M⊥.

Definition 4.2. Let ÿ ⊆ ký be a realization of a rank r matroid M on E. Setting ℓ = 2 and ÿ1 = ÿ⊥ ⊆

ÿ2 = ký in Proposition 3.16 supplies us with a map

ÿý → ÿý (M⊥)+ý (Uÿ,ý ) → ýý (ÿ − ÿ, ÿ;ýý ).

Define the augmented tautological bundles Sÿ and Qÿ by

Qÿ = the dual of the pullback to ÿý of the tautological rank ÿ − ÿ subbundle of ýý (ÿ − ÿ, ÿ;ýý )

Sÿ = the dual of the quotient bundle
⊕

ÿ∈ý

ÿ∗ÿO(−1)/Q∨ÿ .

That Q∨
ÿ

is a subbundle of
⊕

ÿ∈ý ÿ∗ÿO(−1) follows from Lemma 4.1 and the fact that Proposition

3.16 supplies us with a commuting diagram

ÿý (Uÿ,ý ) ÿÿ (ÿ;ýý )

ÿý ÿý (Uÿ,ý )+ý (M⊥) ýý (ÿ − ÿ, ÿ;ýý )

ÿý (M⊥) ÿÿ (ÿ − ÿ;ýý ).

Remark 4.3. By construction, we have a short exact sequence of Gý -equivariant vector bundles

0→ Sÿ →
⊕

ÿ∈ý

ÿ∗ÿOP1 (1) → Qÿ → 0,

which, when restricted to the Gý -orbit Aý , is canonically identified with

0→ OAý ⊗ ÿ → OAý ⊗ ký → OAý ⊗ ký/ÿ → 0.

For arbitrary matroids M, we construct (T-equivariant) K-classes [SM] and [QM] on ÿý . By

Theorem 2.1.(1), the T-equivariant K-ring of ÿý is identified with a subring of the product ring∏
Σý (ÿ) Z[ÿ

±1
1

, . . . , ÿ±1
ÿ ]. So we will specify these classes by specifying their localization values at each

torus-fixed point indexed by a maximal cone of Σý .

By Proposition 3.3, the maximal cones of Σý are in bijection with compatible pairs ý ≤ ℱ, where

∅ ⊆ ý ⊆ ý and ℱ is a (possibly empty) maximal chain of proper subsets of E containing I. For a

chain ℱ containing I, write ℱ/ý for the new chain of subsets of ý \ ý obtained by removing I from
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each subset in the original chain. A maximal chain ℱ : ∅ � ý1 � · · · � ýÿ−1 orders the ground set by

ý1 < ý2 \ ý1 < · · · < ý \ ýÿ−1, and for each matroid M on E we denote:

• ýℱ (M) the minimal basis of M under the lexicographic ordering, and

• ýý
ℱ
(M) the complement of ýℱ (M) in the ground set of M.

Proposition 4.4. For a matroid M on E, the augmented tautological classes defined as

[SM]ý ≤ℱ = rkM (ý) +
∑

ÿ∈ýℱ/ý (M/ý )

ÿ−1
ÿ and

[QM]ý ≤ℱ = |ý | − rkM (ý) +
∑

ÿ∈ýý
ℱ/ý
(M/ý )

ÿ−1
ÿ

are well-defined T-equivariant K-classes on ÿý . Moreover, if L is a realization of M, then [Sÿ] = [SM]

and [Qÿ] = [QM].

Proof. First, we check that [Qÿ] = [QM]. Then taking the case ÿ = {0} gives that

[
⊕

ÿ∈ý

ÿ∗ÿOP1 (1)]ý ≤ℱ = |ý | +
∑

ÿ∈ý\ý

ÿ−1
ÿ .

As [Sÿ] + [Qÿ] = [
⊕

ÿ∈ý ÿ∗ÿOP1 (1)], this implies that [Sÿ] = [SM].

Let ÿ ⊆ k
ý be a subspace of dimension r. Note that the rank ÿ − ÿ tautological subbundle S on

ýý (ÿ − ÿ, ÿ;ýý ) is pulled back from the forgetful map ýý (ÿ − ÿ, ÿ;ýý ) → ÿÿ (ÿ − ÿ;ýý ). The image

of the T-fixed point on ÿý corresponding to a maximal compatible pair ý ≤ ℱ is a T-fixed point p of

ÿÿ (ÿ − ÿ;ýý ) such that every nonzero Plücker has weight equal to the vertex of ý (M⊥) on which any

functional in the interior of ÿý ≤ℱ attains its minimum, which is eýý
ℱ/ý
(M/ý ) . Then

[S]p = |ý | − rkM (ý) +
∑

ÿ∈ýý
ℱ/ý
(M/ý )

ÿÿ ∈ ÿÿ (p).

As pullbacks commute with each other, this implies that [Q∨
ÿ
]ý ≤ℱ = [S]p = |ý | − rkM (ý) +∑

ÿ∈ýý
ℱ/ý
(M) ÿÿ , so applying ÿÿ gives that [Qÿ] = [QM]. In particular, it gives the claimed formula for

[
⊕

ÿ∈ý ÿ∗ÿOP1 (1)] = [Q{0}].

Now, we check well-definedness. As [SM] + [QM] = [
⊕

ÿ∈ý ÿ∗ÿOP1 (1)], it suffices to check that

[SM] is well-defined. There are two types of codimension 1 cones in Σý . The first type is given by

a compatible pair ý ≤ ℱ where ý = ý1 and there is some ℓ such that ýℓ+1 \ ýℓ = {ÿ, ÿ}. This cone

is contained in the kernel of the functional eÿ − e ÿ . Let ÿý ≤ℱ1
and ÿý ≤ℱ2

be the two maximal cones

containing ÿý ≤ℱ; they are obtained by inserting either ýℓ ∪ ÿ or ýℓ ∪ ÿ into ℱ. Because the normal fan

of ý (M⊥) coarsens Σý , the vertices of ý (M⊥) that functionals in the interiors of ÿý ≤ℱ1
and ÿý ≤ℱ2

attain

their minimum on are either identical or differ by an edge. Because ÿý ≤ℱ1
and ÿý ≤ℱ2

have the same ‘I’,

this edge must be parallel to eÿ − e ÿ , and so the symmetric difference of ýℱ1/ý (M/ý) and ýℱ2/ý (M/ý)

is either {ÿ, ÿ} or ∅. This implies that, along ÿý ≤ℱ , [SM] satisfies the condition of Theorem 2.1.

The second type of codimension 1 cone is given by a compatible pair ý ≤ ℱ when ý ∪ ÿ = ý1, which

is contained in the kernel of e ÿ . Then the maximal cones containing ÿý ≤ℱ are ÿý∪ ÿ≤ℱ and ÿý ≤ℱ̃ , where

ℱ̃ is obtained by adding I to ℱ. Then a similar argument to the first case shows that ýℱ/ý∪ ÿ (M/ý ∪ ÿ)

and ý
ℱ̃/ý (M/ý) either coincide or differ by { ÿ}. �

These augmented tautological bundles and classes are related to the nonaugmented tautological

bundles and classes introduced in [BEST23] as follows. Endow O⊕ý
ÿý

with the inverse T-equivariant

structure, that is, (ý1, . . . , ýÿ) · (ý1, . . . , ýÿ) = (ý
−1
1

ý1, . . . , ý
−1
ÿ ýÿ).
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Definition 4.5. Let ÿ ⊆ k
ý be a realization of a matroid M. Then the (nonaugmented) tautological

bundlesSÿ andQ
ÿ

are the unique T-equivariant vector bundles on ÿý that fit into a short exact sequence

0→ Sÿ → O⊕ýÿý
→ Q

ÿ
→ 0,

where the fiber over the identity is identified with

0→ ÿ → k
ý → k

ý/ÿ → 0.

One can show that the short exact sequence in the above definition is the restriction to ÿý of the

short exact sequence 0→ Sÿ →
⊕

ÿ∈ý ÿ∗ÿOP1 (1) → Qÿ → 0.

For each matroid M, the authors of [BEST23] define classes [SM] and [Q
M
] in ÿÿ (ÿý ). The

T-fixed points on ÿý are in bijection with complete flags ℱ of subsets of E. The tautological classes

are described by

[SM]ℱ =

∑

ÿ∈ýℱ (M)

ÿ−1
ÿ and [Q

M
]ℱ =

∑

ÿ∈ýý
ℱ
(M)

ÿ−1
ÿ .

In particular, these are restrictions to ÿý of the augmented tautological classes [SM] and [QM].

4.2. Basic properties

We now develop some basic properties of augmented tautological classes. These properties and their

proofs are similar to those considered in [BEST23, Section 5].

Proposition 4.6. For a matroid M, we have that [detQM] equals the K-class of the line bundle

corresponding under Proposition 3.13 to the polymatroid ý (M⊥).

Proof. As a T-equivariant K-class, we have from Proposition 4.4 that

[detQM]ý ≤ℱ =

∏

ÿ∈ýý
ℱ/ý
(M/ý )

ÿ−1
ÿ

for a maximal cone ÿý ≤ℱ of Σý . Since the vertex of ý (M⊥) that minimizes the pairing with a vector in

the interior of ÿý ≤ℱ is eýý
ℱ/ý
(M/ý ) , the result follows.

Alternatively, by appealing to Proposition 4.7 one can reduce to the case where M admits a realization

L, in which case the diagram above Remark 4.3 implies that detQÿ defines the map ÿý → ÿý (M⊥)

given by the line bundle Oÿý
(ÿ ý (M⊥) ). �

Proposition 4.7. Any function that maps a matroid M to a fixed polynomial expression involving

symmetric powers, exterior powers, tensor products and direct sums of [SM], [QM], [SM]
∨ and [QM]

∨

is valuative and similarly for a fixed polynomial expression in the Chern classes of the augmented

tautological classes.

For instance, the proposition implies that the assignments M ↦→ ý(QM) and M ↦→ ý(Q∨
M
) are

valuative.

Proof. Let Z2ý be the free abelian group with the standard basis indexed by the subsets of E. Consider

the function

Mat(ý) →
⊕

Σý (ÿ)

Z2ý given by M ↦→
∑

ÿý≤ℱ ∈Σý (ÿ)

eýℱ/ý (M/ý ) .

By Proposition A.4, this function is valuative; see also [AFR10, Theorem 5.4]. Any fixed polynomial

expression in the augmented tautological classes or their Chern classes factors through this map and is

therefore valuative. �
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We now consider how augmented tautological classes restrict to T-invariant subvarieties of ÿý . By

Corollary 3.4, for a (not necessarily maximal) compatible pair ý ≤ ℱ : ý1 � · · · � ýý , the corresponding

T-invariant subvariety ýý ≤ℱ ⊆ ÿý corresponding to the cone ÿý ≤ℱ is naturally identified with

ýý ≤ℱ � ÿý1\ý ×

ý∏

ÿ=1

ÿýÿ+1\ýÿ
.

This identification then induces isomorphisms

ÿÿ (ýý ≤ℱ)
∼
→ ÿÿ (ÿý1\ý ) ⊗

ý⊗

ÿ=1

ÿÿ (ÿýÿ+1\ýÿ
) and ý•ÿ (ýý ≤ℱ)

∼
→ ý•ÿ (ÿý1\ý ) ⊗

ý⊗

ÿ=1

ý•ÿ (ÿýÿ+1\ýÿ
).

Proposition 4.8. Under the above identification, we have that

[SM] |ýý≤ℱ
= rkM(ý) [Oýý≤ℱ

] + [SM |ý1/ý ] ⊗ 1⊗ý +

ý∑

ÿ=1

1⊗(ÿ−1) ⊗ [SM |ýÿ+1/ýÿ
] ⊗ 1⊗(ý−ÿ) , and

[QM] |ýý≤ℱ
= (|ý | − rkM(ý)) [Oýý≤ℱ

] + [QM |ý1/ý ] ⊗ 1⊗ý +

ý∑

ÿ=1

1⊗(ÿ−1) ⊗ [Q
M |ýÿ+1/ýÿ

] ⊗ 1⊗(ý−ÿ) .

In particular, when F = ∅, we have that ý(SM) |ýý
� ý(SM/ý ) as a class in ý•(ýý ) � ý•(ÿý\ý ), and

similarly for QM.

Proof. The fan of ýý ≤ℱ is the star of ÿý ≤ℱ , and the localization of an augmented tautological class to

a T-fixed point of ýý ≤ℱ is the same as the localization to the T-fixed point of ÿý at the corresponding

maximal cone ofΣý . The face of ý (M⊥) on which functionals in the (relative) interior of ÿý ≤ℱ attain their

minimum is naturally identified with ý ((M|ý1/ý)
⊥) ×

∏ý
ÿ=1 ÿ((M|ýÿ+1/ýÿ)

⊥), and this identification is

compatible with the corresponding identification for Πý . As the localizations of augmented tautological

classes to a fixed point corresponding to a maximal cone of Σý depend only on vertex of ý (M⊥) on which

any functional in the interior of that maximal cone attains its minimum, this product decomposition

gives the result. �

5. Augmented wonderful varieties and Bergman classes

5.1. Augmented wonderful varieties

Definition 5.1. Let ÿ ⊆ ký be a linear subspace. With ký identified with the toric affine chart of ÿý

corresponding to the cone ÿý≤∅ = R
ý
≥0

of Σý , the augmented wonderful variety ÿÿ of L is defined as

the closure of L in ÿý .

We note an equivalent description of the augmented wonderful variety, which can be deduced from

Proposition 3.6. For a flat ý ⊆ ý of M, let ÿý = ÿ ∩ (ký\ý ⊕ 0ý ). The projective completion P(ÿ ⊕ k)

of L contains a copy of P(ÿ) as the hyperplane at infinity, and so it contains a subspace identified with

P(ÿý ) for every flat F of M. Under the iterated blow-up ÿý : ÿý → P
ý , the augmented wonderful

variety ÿÿ is the strict transform of P(ÿ ⊕ k) ⊆ P(ký ⊕ k) = Pý , fitting into the diagram

ÿÿ ÿý

P(ÿ ⊕ k) Pý .
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This makes ÿÿ equal to the variety obtained by blowing up P(ÿ ⊕ ý) at the linear spaces P(ÿý ) corre-

sponding to corank 1 flats of M, then blowing up at the strict transforms of linear spaces corresponding

to corank 2 flats of M and so on.

We relate augmented wonderful varieties to augmented tautological bundles as follows.

Theorem 5.2. For a linear subspace ÿ ⊆ ký , the augmented wonderful variety ÿÿ is the vanishing

locus of a distinguished global section of Qÿ .

We prepare to prove Theorem 5.2 with the following lemma.

Lemma 5.3. Let Q be a vector bundle of rank k on a smooth variety X, and let ÿ ⊆ ÿ0 (ÿ,Q) be a

subspace which generates Q. Suppose there exists a nonempty open ý ⊆ ÿ such that for a general

ý ∈ ÿ, the vanishing locus ý (ý) is nonempty and the intersection ý (ý) ∩ý is integral of codimension

k. Then ý (ý) is integral for a general ý ∈ ÿ.

Proof. Once we show that ý (ý) is irreducible, the unmixedness theorem [Eis95, Corollary 18.14]

implies that ý (ý), which is of codimension k, has no embedded points, and hence is integral. To show

that ý (ý) is irreducible, let S be the kernel of Oÿ ⊗ ÿ � Q, and let A(S) be the total space of S ,

which is irreducible. We consider the map ÿ : A(S) → ÿ × ÿ → ÿ. For ý ∈ ÿ, the fiber ÿ−1 (ý) is

isomorphic to the vanishing locus ý (ý). Since ý (ý) is nonempty for a general s, the map ÿ is a dominant

map between varieties, and hence a general fiber of ÿ is pure-dimensional. Now, let Z be the total space

of the restriction of S to the closed subvariety ÿ \ý. Since dim ý < dimA(S), we see that Z cannot

contain a component of a general fiber of ÿ. Hence, a general fiber of ÿ is irreducible, as desired. �

Proof of Theorem 5.2. Take the vector ÿ = (1, . . . , 1, 0, . . . , 0) ∈ ký ⊕ ký . Let us identify ký ⊕ ký =

ÿ0 (ÿý ,
⊕

ÿ∈ý ÿ∗ÿO(1)) = (ý
ý )∨. The vector v then defines a global section of

⊕
ÿ∈ý ÿ∗ÿO(1), and

hence a global section of Qÿ via the surjection
⊕

ÿ∈ý ÿ∗ÿO(1) � Qÿ . On the Gý -orbit Aý of ÿý ,

Remark 4.3 identifies the restriction of v with the section

(ý1, . . . , ýÿ) ∈
(
k[ý1, . . . , ýÿ]

)ý
= ÿ0(Aý ,OAý ⊗ ký ).

So the image of v in ÿ0 (Aý ,OAý ⊗ký/ÿ) vanishes exactly on L. TheGý -orbit of v is dense inký ⊕ký .

Hence, by Gý -equivariance, the Gý -orbit of the image of v in ÿ0 (ÿý ,Qÿ) is dense in a subspace of

ÿ0 (ÿý ,Qÿ) that globally generates Qÿ . In other words, the section v is a sufficiently general section

satisfying the conclusion of the above lemma, from which the theorem now follows. �

Corollary 5.4. Let ÿ ⊆ ký be a linear subspace of dimension r.

(1) The normal bundle Nÿÿ/ÿý
is identified with the restriction Qÿ |ÿÿ

.

(2) The K-class of the structure sheaf [Oÿÿ
] ∈ ÿ (ÿý ) equals

∑ÿ−ÿ
ÿ=0 (−1)ÿ [

∧ÿQ∨
ÿ
].

Proof. As ÿÿ is a smooth subvariety of ÿý of dimension r, that ÿÿ is the vanishing locus of a global

section of Qÿ implies that the Koszul complex

0→
∧ÿ−ÿ Q∨

ÿ
→ · · · →

∧2 Q∨
ÿ
→ Q∨

ÿ
→ Oÿý

is a resolution of Oÿÿ
. Both statements now follow. �

5.2. Augmented Bergman classes

We describe the Chern classes of augmented tautological classes and recover the augmented Bergman

class as the top Chern class. We use the language of Minkowski weights, defined as follows.

Definition 5.5. A d-dimensional Minkowski weight on a unimodular fan Σ is a function ý : Σ(ý) → Z

such that the following balancing condition is satisfied: for every cone ÿ′ ∈ Σ(ý − 1)

∑

ÿ�ÿ′

ý(ÿ)ÿÿ′\ÿ ∈ span(ÿ′),
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where the summation is over all cones ÿ ∈ Σ(ý) containing ÿ′, and ÿÿ′\ÿ denotes the primitive generator

of the unique ray of ÿ that is not in ÿ′. Write MWý (Σ) for the set of d-dimensional Minkowski weights

on Σ.

Minkowski weights play the role of homology classes on smooth complete toric varieties in the

following sense.

Theorem 5.6. [FS97, Theorem 3.1] Let Σ be a complete unimodular fan of dimension m, and let ÿΣ be

its toric variety. Then, for every 0 ≤ ý ≤ ÿ, one has an isomorphism

ýÿ−ý (ÿΣ)
∼
→ MWý (Σ) defined by ÿ ↦→

(
ÿ ↦→

∫

ÿ

ÿ · [ýÿ]

)
.

For a smooth complete toric variety ÿΣ, when a Chow class ÿ ∈ ý•(ÿΣ) maps to a Minkowski

weight ý ∈ MW•(Σ) by the isomorphism in Theorem 5.6, we say that w and ÿ are Poincaré duals of

each other, which is notated by writing

ÿ ∩ [ÿΣ] = ý.

We compute the Chern classes of the augmented tautological classes in terms of Minkowski weights

on Σý . By Theorem 5.6, this amounts to computing how they intersect with the various torus-invariant

strata of ÿý , for which we use Proposition 4.8 to reduce to understanding the Chern classes in the top

degrees. We hence begin by computing what happens in the top degrees.

Lemma 5.7. We have that

∫

ÿý

ý(QM) =

{
1 M = U0,ý

0 otherwise,
and

∫

ÿý

ý(SM) =

{
1 M = Uÿ,ý

0 otherwise.

Proof. We do the case of SM. The case of QM is similar. If M ≠ Uÿ,ý , then SM has rank less than n, so

ýÿ (SM) = 0. If M = Uÿ,ý , then SM =
⊕

ÿ∈ý ÿ∗ÿOP1 (1), so we have that deg ýÿ (SM) = 1. �

We will also need the analogous statement for tautological bundles.

Lemma 5.8. [BEST23, Lemma 7.3] We have that

∫

ÿý

ý(Q
M
) =

{
1 M = U1,ý or M = U0,1

0 otherwise,
and

∫

ÿý

ý(SM) =

{
(−1)ÿ−1 M = Uÿ−1,ý or M = U1,1

0 otherwise.

We now compute the intersection numbers of the Chern classes of [SM] and [QM] with the boundary

stata. When the minimal element of ℱ is the empty set, we recover [BEST23, Proposition 7.4].

Proposition 5.9. Let ý ≤ ℱ : ý1 � ý2 � . . . � ýý be a compatible pair, and set ℓ = codim ýý ≤ℱ . As

before, we set ýý+1 = ý , and when ℱ is empty we interpret ý1 as E. Let [ýý ≤F ] ∈ ý•(ÿΣ) be the Chow

class of the T-invariant subvariety ýý ≤F . Then

∫

ÿý

ýÿ−ℓ (QM) · [ýý ≤ℱ] =

⎧⎪⎪⎪⎪«
⎪⎪⎪⎪¬

1
ý1 ⊆ clM (ý), and for ÿ = 1, . . . , ý, exactly ý + rkM (ý) − rkM (M) of

the minors M|ýÿ+1/ýÿ are loops, and the rest are ý1,ýÿ+1\ýÿ
,

0 otherwise, and
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∫

ÿý

ýÿ−ℓ (SM) · [ýý ≤ℱ] =

⎧⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪¬

(−1) ÿ
rkM (ý1) − rkM (ý) = |ý1 | − |ý |, and for ÿ = 1, . . . , ý, exactly

ý + rkM (M) − rkM (ý) − ÿ of the minors M|ýÿ+1/ýÿ are coloops,

and the rest are ý |ýÿ+1\ýÿ |−1,ýÿ+1\ýÿ
,

0 otherwise,

where ÿ = ÿ − ý − |ý1 |.

Proof. We do the case of SM, the case of QM is similar. By Proposition 4.8, we have that

ý(SM, ÿ) |ýý≤ℱ
= ý(SM |ý1/ý , ÿ) ⊗

ý⊗

ÿ=1

ý(SM |ýÿ+1/ýÿ
, ÿ) ∈ ý•(ÿý1\ý ) ⊗

ý⊗

ÿ=1

ý•(ÿýÿ+1\ýÿ
).

Then Lemma 5.7 implies that the intersection number vanishes unless M|ý1/ý is Boolean, and each

M|ýÿ+1/ýÿ is either a coloop or is a corank 1 uniform matroid. Note that M|ý1/ý is Boolean if and only if

rkM (ý1)−rkM (ý) = |ý1 |−|ý |, and the fact that rkM (M) = rkM (ý)+rkM(M|ý1/ý)+· · ·+
∑

rkM (M|ýÿ+1/ýÿ)

implies that, if the intersection number is nonzero, then exactly ý + rkM (M) − rkM (ý) − ÿ of the minors

M|ýÿ+1/ýÿ are coloops. In this case, the intersection number is (−1) ÿ , where

ÿ =

∑
(|ýÿ+1/ýÿ | − 1) ,

where the sum is over the minors such that M|ýÿ+1/ýÿ is not a coloop. The set E decomposes into a

disjoint union of elements where the corresponding minor is a coloop, is in I, is in a noncoloop minor,

or is in ý1 \ ý, so

ÿ = (ý + rkM (M) − rkM (ý) − ÿ) + |ý | + (
∑
|ýÿ+1/ýÿ |) + (|ý1 | − |ý |).

We also have that the number of noncoloops is ÿ + rkM (ý) − rkM (M). Substituting, we see that ÿ =

ÿ − ý − |ý1 |. �

We now define and derive certain properties of augmented Bergman fans and augmented Bergman

classes.

Definition 5.10. For a matroid M of rank r on E, the augmented Bergman fan, denoted ΣM, is the subfan

of Σý consisting of cones ÿý ≤ℱ , where the subset ý ⊆ ý is independent in M and the flag ℱ consists

of proper flats of M. The augmented Bergman class [ΣM] of M is the weight

[ΣM] : Σý (ÿ) → Z defined by ÿ ↦→

{
1 if ÿ ∈ ΣM

0 otherwise.

[BHM+22, Proposition 2.8] states that, up to scaling, the augmented Bergman class is the unique

way to assign weights to the cones of the augmented Bergman fan that results in a Minkowski weight.

Corollary 5.11. Let M be a matroid of rank r on E.

(1) We have that ýÿ−ÿ (QM) = [ΣM]. In particular, the augmented Bergman class [ΣM] is a well-defined

Minkowski weight.

(2) The assignment M ↦→ [ΣM] is valuative.

(3) If ÿ ⊆ ký is a realization of M, then [ΣM] = [ÿÿ].

Proof. The first statement follows from Proposition 5.9. The second statement follows from the first by

Proposition 4.7. The third statement follows from the first by Theorem 5.2. �
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By restricting to the permutohedral variety, we recover properties of ‘nonaugmented’ Bergman fans

and classes as follows. Note that for a loopless matroid M, the augmented Bergman fan ΣM contains the

ray ÿ∅.

Definition 5.12. The (nonaugmented) Bergman fan of a loopless matroid M on E is ΣM = starÿ∅ ΣM.

Equivalently, it is the subfan of Σý consisting of cones ÿ
ℱ

where the flag ℱ consists of nonempty

proper flats of M. The (nonaugmented) Bergman class [ΣM] is the Minkowski weight on Σý defined

by assigning weight 1 to the cones of ΣM.

The Bergman class of a matroid with a loop is defined to be zero. Since [QM] restricts to [Q
M
] on

ÿý and [ΣM] restricts to [ΣM], Corollary 5.11 recovers the properties of Bergman classes stated in

[BEST23, Corollary 7.11].

5.3. Tropical geometry of augmented Bergman fans

The contents of this subsection are not logically necessary for the rest of the paper but will be useful

elsewhere. We explain how augmented Bergman fans are related to tropicalizations. We point to [MS15]

for a background in tropical geometry.

Proposition 5.13. Let ÿ ⊆ ký be a realization of a matroid M of rank r. For a general ÿ ∈ Gýÿ , the

tropicalization of the very affine variety ÿ̊ÿ = (ÿ + ÿ) ∩ÿ equals the support of the augmented Bergman

fan ΣM.

Proof. Let ý̃ = ý � {0}, and let ý : Zý̃/Ze
ý̃
→ Zý be the isomorphism described in §3.2. Under the

isomorphism p, we may identify T with the projectivization Pÿ̃ of the torus ÿ̃ = (k∗)ý̃ . We show that

the tropicalization of ÿ̊ÿ ⊆ Pÿ̃ is the support of a subfan in Σ
ý̃

that maps isomorphically under p onto

the augmented Bergman fan ΣM.

Let ÿ = {x ∈ ký | ý⊥x = 0} for an (ÿ − ÿ) × ÿ matrix ý⊥. For an element ÿ ∈ Gýÿ , let ÿ′ ∈ Gýÿ be

such that ÿ + ÿ = {x ∈ ký | ý⊥x = ÿ′}. In other words, the closure of ÿ + ÿ in the projective completion

P(ký ⊕ k) = P(ký̃ ) is the projectivization of the linear subspace {(x, ý0) ∈ k
ý̃ | ý⊥x − ÿ′ý0 = 0}.

Since ÿ′ is general because b was, this linear subspace is a realization of the matroid M̃ = M × 0 on ý̃

called the free coextension of M, whose set of bases is defined as

{ý ∪ 0 | ý a basis of M} ∪ {ÿ ⊆ ý | ÿ contains a basis of M and |ÿ | = ÿ + 1}.

It is a classical statement [Stu02; AK06] that the tropicalization of a linear subspace is the support of the

Bergman fan of the corresponding matroid. Thus, it suffices now to show that the support of the Bergman

fan of the free coextension is equal to that of the augmented Bergman fan under the isomorphism p.

This follows from the lemma below, which is a restatement of the discussion in [MM, §5.1]. �

Lemma 5.14. Let M be a matroid on E, and M̃ its free coextension matroid on ý̃ . The collection

G = {ý ∪ 0 | ý ⊆ ý a flat of M} ∪ {ÿ ∈ ý | ÿ not a loop in M}

is a building set on the lattice of flats of M̃ that induces the fan structure on the support |Σ
M̃
| ⊆ Rý̃/Re

ý̃

of the Bergman fan of M̃ consisting of cones

cone{eÿ | ÿ ∈ ý} + cone{eý∪0 | ý ∈ ℱ}

for each compatible pair ý ≤ ℱ with ý ⊆ ý independent in M and ℱ a flag of nonempty proper flats

of M.

We remark that the tropicalization of (ÿ+ÿ) ∩ÿ for a nongeneral b can differ from the support of ΣM.

Nonetheless, by Gý -equivariance, the homology class of the closure ÿÿ+ÿ of ÿ + ÿ in the stellahedral
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variety ÿý is independent of ÿ ∈ ký . Taking b to be general, Proposition 5.13 gives an alternate proof

that [ÿÿ] = [ΣM], for instance by [Kat09, Proposition 9.4].

6. Exceptional isomorphisms

We construct the pair of isomorphisms between ÿ (ÿý ) and ý•(ÿý ) that were stated in Theorem 1.8.

The two isomorphisms will be related via the two involutions ÿÿ and ÿý described in §2.2.

We begin by recalling Theorem 2.1, which identifies the T-equivariant K-ring ÿÿ (ÿý ) with a

subring of the product ring
∏

ÿ∈Σý (ÿ) Z[ÿ
±1
1

, . . . , ÿ±1
ÿ ] of Laurent polynomial rings, and identifies

the T-equivariant Chow ring ý•
ÿ
(ÿý ) with a subring of the product ring

∏
ÿ∈Σý (ÿ) Z[ý1, . . . , ýÿ] of

polynomial rings. Let ý•
ÿ
(ÿý ) [

∏
ÿ∈ý (1 + ýÿ)

−1] be the ring obtained by adjoining the inverse of the

polynomial
∏

ÿ∈ý (1 + ýÿ) to the ring ý•
ÿ
(ÿý ). For an element f in such product rings, denote by ÿÿ the

(Laurent) polynomial corresponding to ÿ ∈ Σý (ÿ).

Theorem 6.1. The map ÿÿ : ÿÿ (ÿý ) → ý•
ÿ
(ÿý ) [

∏
ÿ∈ý (1 + ýÿ)

−1] defined by sending

ÿÿ (ÿ1, . . . , ÿÿ) ↦→ ÿÿ (1 + ý1, . . . , 1 + ýÿ) for any ÿ ∈ Σý (ÿ)

is a ring isomorphism, which descends to a ring isomorphism ÿ : ÿ (ÿý ) → ý•(ÿý ).

Proof. Every edge of the stellahedron Πý is parallel to either eÿ for some ÿ ∈ ý or to eÿ − e ÿ for

some ÿ ≠ ÿ ∈ ý . Thus, the conditions ÿÿ (ÿ1, . . . , ÿÿ) − ÿÿ′ (ÿ1, . . . , ÿÿ) ≡ 0 mod 1 − ÿ ÿ appearing in

Theorem 2.1.(1), in the case of ÿÿ (ÿý ), state that either ÿÿ − ÿÿ′ ≡ 0 mod 1 − ÿÿ or ÿÿ − ÿÿ′ ≡

0 mod 1− ÿÿ
ÿÿ

. The latter is equivalent to stating that ÿÿ− ÿÿ′ ≡ 0 mod ÿÿ −ÿÿ . Under the transformation

ÿÿ ↦→ 1 + ýÿ defining ÿÿ , these two conditions become ÿÿ (1 + ý1, . . . , 1 + ýÿ) − ÿÿ′ (1 + ý1, . . . , 1 + ýÿ) ≡

0 mod ýÿ and ÿÿ (1 + ý1, . . . , 1 + ýÿ) − ÿÿ′ (1 + ý1, . . . , 1 + ýÿ) ≡ 0 mod ý ÿ − ýÿ , which are exactly the

conditions appearing in Theorem 2.1.(2) in the case of ý•
ÿ
(ÿý ). Hence, the map ÿÿ is well-defined and

is clearly an isomorphism.

We now check that the isomorphism ÿÿ descends to a ring isomorphism on the nonequivariant rings.

We recall from Theorem 2.1 that the kernel ýÿ of the quotient map ÿÿ (ÿý ) → ÿ (ÿý ) is the ideal

in ÿÿ (ÿý ) generated by ÿ − ÿ (1, . . . , 1) for f a global Laurent polynomial, and that the kernel ýý
of the quotient map ý•

ÿ
(ÿý ) → ý•(ÿý ) is the ideal in ý•

ÿ
(ÿý ) generated by ÿ − ÿ (0, . . . , 0) for f

a global polynomial. Note that the polynomial
∏

ÿ∈ý (1 + ýÿ) whose inverse was adjoined to ý•
ÿ
(ÿý )

maps to 1 under this quotient map. It thus remains only to show that ÿÿ maps ýÿ isomorphically onto

ý ′
ý
= ýý[

∏
ÿ∈ý (1 + ýÿ)

−1]. But both ÿÿ (ýÿ ) ⊆ ý ′
ý

and ÿÿ (ýÿ ) ⊇ ý ′
ý

are straightforward to verify by

considering their generators. �

By conjugating ÿ by the two involutions ÿÿ and ÿý, we have the ‘dual’ isomorphism.

Definition 6.2. Let ÿ : ÿ (ÿý ) → ý•(ÿý ) be the isomorphism defined by ÿ = ÿý ◦ ÿ ◦ ÿÿ .

We remark that, similarly to Theorem 6.1, one can show that the map ÿÿ : ÿÿ (ÿý ) →

ý•
ÿ
(ÿý ) [

∏
ÿ∈ý (1 − ýÿ)

−1] defined by sending

ÿ (ÿ1, . . . , ÿÿ) ↦→ ÿ ((1 − ý1)
−1, . . . , (1 − ýÿ)

−1) for a Laurent polynomial ÿ ∈ Z[ÿ±1
1 , . . . , ÿ±1

ÿ ]

is an isomorphism, which descends to the nonequivariant isomorphism ÿ.

We now show that ÿ and ÿ behave particularly well with respect to K-classes with ‘simple Chern

roots’, a notion introduced in [BEST23].

Definition 6.3. A T-equivariant K-class [E] ∈ ÿÿ (ÿý ) has simple Chern roots if for each maximal

ÿ ∈ Σý , there is a sequence (ÿÿ,0, ÿÿ,1, . . . , ÿÿ,ÿ) such that [E]ÿ = ÿÿ,0 +
∑ÿ
ÿ=1 ÿÿ,ÿÿÿ .

Note that [QM]
∨ and [SM]

∨ have simple Chern roots.
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Proposition 6.4. Let [E] ∈ ÿÿ (ÿý ) have simple Chern roots. With u a formal variable, we have

∑

ÿ≥0

ÿÿ (
∧ ÿ [E])ÿ ÿ = (ÿ + 1)rkM (E)ýÿ

(
E ,

ÿ

ÿ + 1

)
,

∑

ÿ≥0

ÿÿ (
∧ ÿ [E])ÿ ÿ = (ÿ + 1)rkM (E) ýÿ (E∨)ýÿ

(
E∨,

1

ÿ + 1

)
,

∑

ÿ≥0

ÿÿ (Sym ÿ [E])ÿ ÿ
=

1

(1 − ÿ)rkM (E)
ýÿ

(
E ,

ÿ

ÿ − 1

)
, and

∑

ÿ≥0

ÿÿ (Sym ÿ [E])ÿ ÿ
=

ýÿ (E∨)

(1 − ÿ)rkM (E)
ýÿ

(
E∨,

1

1 − ÿ

)
.

Proof. We prove the formulas involving ÿ. The formulas involving ÿ are similar (and the first formula

follows from [BEST23, Proposition 10.5]). Since [E] has simple Chern roots, we have that [E]ÿ =

ÿÿ,0 +
∑
ÿ∈ýÿ ÿÿ for some multiset ýÿ . We then compute

∑

ÿ≥0

ÿÿ (
∧ ÿ [E])ÿÿ ÿ

= (ÿ + 1)ÿÿ,0+|ýÿ |
∏

ÿ∈ýÿ

(1/(1 − ýÿ)) (1 − ýÿ/(ÿ + 1))

= (ÿ + 1)rkM (E) ýÿ (E∨)ÿýÿ
(
E∨,

1

ÿ + 1

)

ÿ

, and

∑

ÿ≥0

ÿÿ (Sym ÿ [E])ÿÿ ÿ
=

1

(1 − ÿ)ÿÿ,0+|ýÿ |

∏

ÿ∈ýÿ

1 − ýÿ

1 − ýÿ/(1 − ÿ)
=

ýÿ (E∨)ÿ

(1 − ÿ)rkM (E)
ýÿ

(
E∨,

1

1 − ÿ

)

ÿ

,

as desired. �

We note in particular the following consequence of Proposition 6.4.

Corollary 6.5. Let M be a matroid of rank r on E. Let ÿ ý (M⊥) be the T-invariant divisor associated to

ý (M⊥) as discussed above Example 3.15.

(1) One has ÿ([Oÿý
(ÿ ý (M⊥) )]) = ý(QM) and ÿ ([Oÿý

(ÿ ý (M⊥) )]) = ý(Q∨
M
).

(2) If ÿ ⊆ ký realizes M, then ÿ ([Oÿÿ
]) = [ÿÿ].

Proof. Applying ÿ = ÿý ◦ ÿ ◦ ÿÿ to the first formula in the proposition gives

∑

ÿ≥0

ÿ(
∧ ÿ [E]∨)ÿ ÿ = (ÿ + 1)rkM (E)ý(E ,− ÿ

ÿ+1
)

for [E] ∈ ÿ (ÿý ) with simple Chern roots. Since [QM]
∨ has simple Chern roots with rk(QM) = ÿ − ÿ ,

and since [
∧ÿ−ÿ QM] = [detQM] = [Oÿý

(ÿ ý (M⊥) )] by Proposition 4.6, the first statement now follows

by setting [E] = [QM]
∨ and noting that ý(E ,−ÿ) = ý(E∨, ÿ). The second statement follows from the

first formula in the proposition and Corollary 5.4. �

Example 6.6. Note that [detQUÿ−1,ý
] = [Oÿý

(ÿ ý (U1,ý ) )] and [detQU0,ý
] = [Oÿý

(ÿ ý (Uÿ,ý ) )]. Be-

cause the line bundles Oÿý
(ÿ ý (U1,ý ) ) and Oÿý

(ÿ ý (Uÿ,ý ) ) induce the maps ÿý : ÿý → Pý and

ÿ1ý : ÿý → (P
1)ý , respectively, we have

ÿ([Oÿý
(ÿ ý (U1,ý ) )]) = 1 + ÿ and ÿ([Oÿý

(ÿ ý (Uÿ,ý ) )]) =
∏

ÿ∈ý

(1 + ÿÿ) = ý
( ⊕

ÿ∈ý

ÿ∗ÿOP1 (1)
)
.

Here, recall the notation that ÿ = ý1 (ÿ
∗
ý
OPý (1)) and ÿÿ = ý1 (ÿ

∗
ÿOP1 (1)).
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Remark 6.7. Let us remark on how the maps ÿ and ÿ here are related to the exceptional isomorphism

for permutohedral varieties given in [BEST23, Theorem D]. Just as for augmented tautological bundles,

classes and Bergman classes, the first relation comes from considering ÿý as a T-fixed divisor on

ÿý : The restriction of ÿ to ÿý recovers the isomorphism ÿ between ÿ (ÿý ) and ý•(ÿý ) in [BEST23,

Theorem D]. Let us now sketch a different relation. Let ý̃ = ý � {0} as in §3.2, where we noted that the

stellahedral fan Σý can be considered as a coarsening of the permutohedral fan Σ
ý̃

. In other words, we

have a T-equivariant birational map ý : ÿ
ý̃
→ ÿý . One can show that there is a commuting diagram

ÿ (ÿý ) ý•(ÿý )

ÿ (ÿ
ý̃
) ý•(ÿ

ý̃
),

ÿ

ÿ

where the two vertical maps are the respective pullback maps, and one has similar commuting diagrams

for ÿ and the T-equivariant versions of ÿ and ÿ. Both Theorem 1.8 and Theorem 1.9 can then be deduced

from the commutativity of the diagrams and [BEST23, Theorem D].

7. Valuative group, homology and the intersection pairing

7.1. The polytope algebra and the proof of Theorem 1.4

For the proof of Theorem 1.4, the last remaining ingredient is the polytope algebra introduced in

[McM89]. For a polytope ý ⊆ Rý , define the function 1ý : Rý → Z by 1ý (ÿ) = 1 if ÿ ∈ ÿ and 0

otherwise. Recall that a (lattice) polytope P is said to be a (lattice) deformation of Q if its normal fan

Σÿ coarsens that of Q.

Definition 7.1. Let Σ be the normal fan of a smooth polytope ý ⊆ Rý . Let I(Σ) be the subgroup of ZR
ý

generated by {1ÿ | ÿ a lattice deformation of ý}, and let transl(Σ) to be the subgroup of I(Σ) generated

by {1ÿ − 1ÿ+ÿ | ÿ ∈ Z
ý }. We define the polytope algebra to be the quotient

I(Σ) = I(Σ)/transl(Σ).

For a lattice deformation P, let us denote by [ÿ] its class in the polytope algebra I(Σ). The polytope

algebra, as the terminology suggests, is a ring with multiplication induced by Minkowski sum, that is, by

[ÿ] · [ÿ′] = [ÿ + ÿ′]. It was well-known among experts that the polytope algebra is naturally identified

with ÿ (ÿΣ); this is realized in Theorem A.10. When we apply the theorem to the stellahedral variety,

noting that deformations of the stellahedron are exactly polymatroids (Proposition 3.13), we deduce the

following.

Theorem 7.2. The map sending an integral polymatroid P on E to [Oÿý
(ÿÿ)] defines an isomorphism

I(Σý ) � ÿ (ÿý ).

We now prove Theorem 1.5 by showing that we have a sequence of isomorphisms

ÿ⊕

ÿ=0

Valÿ (ý) � I(Σý ) � ÿ (ÿý ) � ý•(ÿý ).

We prepare for the first isomorphism in the sequence with the following lemma.

Lemma 7.3. The intersection of an integral polymatroid with an integral translate of the Boolean cube

[0, 1]ý , if nonempty, is a translate of the independence polytope of a matroid.

Proof. For ÿ ∈ ý and ÿ ∈ Z, let us define the hyperplane ÿÿ,ÿ = {ÿ ∈ Rý | 〈eÿ , ÿ〉 = ÿ} and its half-

spaces ÿ±ÿ,ÿ = {ÿ ∈ Rý | 〈±eÿ , ÿ〉 ≥ ±ÿ}. It follows from Definition 3.9 that a polymatroid intersected
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with any half-space ÿ+ÿ,ÿ or ÿ−ÿ,ÿ is a translate of a polymatroid if it isn’t empty. So, the intersection of

an integral polymatroid with an integer translate of the Boolean cube is a translate of a polymatroid if

nonempty. By Example 3.12, it now suffices to verify that this polymatroid is integral.

By [Edm70, (35)], the intersection of two integral polymatroids is a polytope whose vertices lie in

Zý . By intersecting an integral polymatroid P with integral polymatroids of the form
∏ÿ

ÿ=1 [0, ÿÿ], for

ÿÿ ∈ Z≥0, we see that all vertices of the intersection of P with an integral translate of the Boolean cube

are in Zý . �

Proposition 7.4. The map
⊕ÿ

ÿ=0 Valÿ (ý) → I(Σý ) defined by M ↦→ [ý (M⊥)] is an isomorphism.

Proof. To see that the given map is well-defined, note that the base polytope of the dual ÿ(M⊥) is

−(ÿ(M) − eý ), and that the independence polytope ý (M⊥) is the intersection with [0, 1]ý of the

Minkowski sum ÿ(M⊥) + [−1, 0]ý . Each of these operations—translation, negation, Minkowski sum,

and intersection—preserves valuative relations. Surjectivity of the map is immediate from Lemma 7.3,

since given an integral polymatroid P, by tiling Rý with integer translates of the Boolean cube, we can

express [ÿ] ∈ I(Σý ) as a linear combination of the classes of independence polytopes of matroids.

For injectivity, first we show that the only relations between indicator functions of translates of

independence polytopes come from valuativity. Suppose we have
∑ý
ÿ=1 ÿÿ1ý (Mÿ)+ÿÿ = 0 for ÿÿ ∈ Z, ÿÿ ∈

Zÿ, and Mÿ a matroid on E. We show that then
∑ý
ÿ=1 ÿÿ1ý (Mÿ ) = 0 as an element in ZR

ý

. By Proposition

A.4, this implies that
∑ý
ÿ=1 ÿÿ1ÿ (Mÿ) = 0 because each ý (Mÿ) has ÿ(Mÿ) as the face maximizing the

pairing with eý . For a subset ÿ ⊆ ý , let ℓÿ be the subset of {M1, . . . , Mý } consisting of matroids whose

set of loops is equal to S, or equivalently, the smallest coordinate subspace containing the independence

polytope of the matroid is Rÿ ⊆ Rý . Let us pick a linear ordering (ÿ0 = ∅, ÿ1, ÿ2, . . . , ÿ2ÿ = ý) of the

subsets of E that refines the partial order by inclusion. We claim by induction that
∑

M ÿ ∈ℓÿÿ
ÿ ÿ1ý (M ÿ ) = 0.

In the base case ÿ0 = ∅, the polytopes ý (M ÿ ) for all M ÿ ∈ ℓÿ0
nontrivially intersect the interior of the

Boolean cube [0, 1]ý , whereas none of those of M ÿ′ ∈ ℓÿÿ for ÿ > 0 do. Hence that
∑ý
ÿ=1 ÿÿ1ý (Mÿ )+ÿÿ = 0

implies that
∑

M ÿ ∈ℓÿ0
ÿ ÿ1ý (M ÿ ) = 0. For the induction step at ÿÿ , we may assume that ℓÿ0

, . . . , ℓÿÿ−1
are

empty. Then, we repeat the argument with ‘the interior of the Boolean cube’ replaced by ‘the relative

interior of the cube [0, 1]ÿÿ×{0}ý\ÿÿ ’. That is, the polytopes ý (M ÿ ) for all M ÿ ∈ ℓÿÿ nontrivially intersect

the relative interior of the cube [0, 1]ÿÿ × {0}ý\ÿÿ , whereas none of those of M ÿ′ ∈ ℓÿÿ′ for ÿ′ > ÿ do.

Hence, again we conclude
∑

M ÿ ∈ℓÿÿ
ÿ ÿ1ý (M ÿ ) = 0 from

∑ý
ÿ=1 ÿÿ1ý (Mÿ )+ÿÿ = 0, completing the induction.

Now suppose that
∑ý
ÿ=1 ÿÿ [ý (Mÿ)] = 0 for ÿÿ ∈ Z and Mÿ a matroid on E. This means that

ý∑

ÿ=1

ÿÿ1ý (Mÿ ) +
∑

ÿ,ÿ

ÿÿ,ÿ(1ÿ+ÿ − 1ÿ) = 0

for some collection of polymatroids P, vectors ÿ ∈ Zÿ, and integers ÿÿ,ÿ. Using Lemma 7.3, we can

rewrite this as

ý∑

ÿ=1

ÿÿ1ý (Mÿ ) +

ℓ∑

ÿ=1

ý ÿ (1ý (M′
ÿ
)+ÿ ÿ
− 1ý (M′

ÿ
) ) = 0

for some collection of matroids M′ÿ and vectors ÿ ÿ ∈ Z
ÿ. Then the previous discussion implies that

equality still holds when we remove the second sum, as desired. �

Proof of Theorem 1.5. In Proposition 7.4, we have constructed an isomorphism
⊕ÿ

ÿ=0 Valÿ (ý) →

I(Σý ) defined by M ↦→ [ý (M⊥)]. Now, composing the isomorphism I(Σý ) � ÿ (ÿý ) in Theorem 7.2

with the isomorphism ÿ : ÿ (ÿý ) → ý•(ÿý ) in §6, we obtain an isomorphism I(Σý ) → ý•(ÿý ), which

by Corollary 6.5 maps [ý (M⊥)] to ý(QM) for a matroid M. By Corollary 5.11, the top nonvanishing

degree part ýÿ−rk(M) (QM) of ý(QM) is the augmented Bergman class [ΣM], so we conclude from the

graded structure of ý•(ÿý ) that
⊕ÿ

ÿ=0 Valÿ (ý) → ý•(ÿý ) defined by M ↦→ [ΣM] is an isomorphism

of abelian groups. �
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With Theorem 1.5, we can now complete the proof of Theorem 1.8.

Proof of Theorem 1.8. That ÿ and ÿ are ring isomorphisms was proved in Section 6, and that they satisfy

the stated properties is Corollary 6.5. To verify that the stated properties characterize the maps, note

first that ý1 (ÿý ) generates ý•(ÿý ) as a ring, and that the augmented Bergman classes of matroids of

rank ÿ−1 span ý1 (ÿý ) because Valÿ−1 (ý) � ý1 (ÿý ) by Theorem 1.5. The result now follows because

every matroid of rank ÿ − 1 is realizable over any field, and if ÿ ⊂ ký realizes a matroid M of rank

ÿ − 1 then [ÿÿ] = [ΣM] and ý(Qÿ) = 1 + ý1 (Qÿ) = 1 + [ΣM] by Corollary 5.11. �

We now prove Theorem 1.6 by using Lemma 7.3 with Corollary 6.5 and Corollary 5.11.

Proof of Theorem 1.6. If crk(M) + crk(M′) > ÿ ≥ crk(M∧M′), then the result vacuously holds, so we

may assume that crk(M) + crk(M′) ≤ ÿ. Note that, by Corollary 5.11, the degree crk(M) + crk(M′) part

of ý(QM)ý(QM′) is [ΣM] · [ΣM′], so by Corollary 6.5 it suffices to compute the degree crk(M) +crk(M′)

part of ÿ([ý (M⊥)] · [ý (M′⊥)]). By Lemma 7.3, we may write [ý (M⊥)] · [ý (M′⊥)] = [ý (M⊥) + ý (M′⊥)]

as a sum of the classes of independence polytopes of matroids by intersecting it with the tiling of Rý

by translates of the Boolean cube and using inclusion-exclusion on the faces. This gives an expression

for nonequivariant K-class [ý (M⊥)] · [ý (M′⊥)] as a sum of the K-classes of independence polytopes

of matroids.

The intersection of ý (M⊥) + ý (M′⊥) with the Boolean cube is ý ((M∧M′)⊥). The image of [ý ((M∧

M′)⊥)] under ÿ is [ΣM∧M′] in degree crk(M ∧ M′). Therefore, it suffices to show that the images

under ÿ of all of the other terms in the expression of [ý (M⊥) + ý (M′⊥)] as a sum of the classes of

independence polytopes of matroids are zero in degrees at least crk(M) +crk(M′). Every other polytope

appearing requires a nontrivial translation towards the origin to realize it as an independence polytope

since an independence polytope always contains the origin. As the lattice distance from the origin of

any vertex of ý (M⊥) + ý (M′⊥) is bounded by crk(M) + crk(M′), this means that, after translating one

of these polytopes so that it is the independence polytope of a matroid, that matroid has rank at most

crk(M) + crk(M′) − 1. Then the result follows from Proposition 5.9. �

We showed in the discussion following Corollary 5.11 that [ΣM] restricts to [ΣM] on ÿý . Hence, by

restricting to ÿý ⊆ ÿý , we obtain Corollary 1.7 from Theorem 1.6. We also deduce that if M, M′ and

M ∧M′ are loopless, then crk(M) + crk(M′) = crk(M ∧M′).

7.2. A Schubert basis

For a total order < on E and two subsets ý = {ÿ1 < · · · < ÿÿ } and ý = { ÿ1 < · · · < ÿÿ } of E with same

cardinality, let us say that ý ≤ ý if ÿý ≤ ÿý for all ý = 1, . . . , ÿ .

Definition 7.5. A Schubert matroid on E of rank r is a matroid whose set of bases is

{ý ⊆ ý | |ý | = ÿ and ý ≤ ý}

for some total order < on E and a subset ý ⊆ ý with |ý | = ÿ .

Because ý ≤ ý if and only if (ý \ ý) ≥ (ý \ ý), the dual of a Schubert matroid is a Schubert matroid.

We note the following equivalent description of the bases of a Schubert matroid.

Remark 7.6. Let < be a total order on E, and ý = {ÿ1 < · · · < ÿÿ }. Define

ýjumps = {ÿ ÿ ∈ ý | ÿ = ÿ or there exists ÿ ∈ ý such that ÿ ÿ < ÿ < ÿ ÿ+1}.

Writing ýjumps = {ℓ1 < · · · < ℓý }, define a chain ý1, . . . , ýý of subsets of E and positive integers

ý1, . . . , ýý by

ýÿ = {ÿ ∈ ý | ÿ ≤ ℓ ÿ } and ý1 + · · · + ý ÿ = |ýÿ ∩ ý | for ÿ = 1, . . . , ý .
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Note that by construction, we have ý1 ≤ |ý1 | and ý ÿ < |ýÿ \ ýÿ−1 | for all ÿ = 2, . . . , ý . The set

{ý ⊆ ý | |ý | = ÿ and ý ≤ ý} of the bases of the Schubert matroid associated to < and I then can be

described equivalently as the set

{ý = {ÿ1 < · · · < ÿÿ } ⊆ ý | {ÿ1, . . . , ÿý1+···+ý ÿ
} ⊆ ýÿ for all ÿ = 1, . . . , ý}.

Schubert matroids appear in the literature under various other guises such as nested matroids [Ham17],

Bruhat interval polytopes [TW15], generalized Catalan matroids [BdM06] and shifted matroids [Ard03].

Theorem 7.7. The augmented Bergman classes of Schubert matroids on E form a basis for ý•(ÿý ).

We prepare the proof with the following lemma.

Lemma 7.8. For ∅ � ý ⊆ ý , denote by ℎý the divisor ÿ ý (U1,ý ⊕U0,ý\ý ) corresponding to ý (U1,ý ⊕

U0,ý\ý ) under Proposition 3.13. Then, the set of monomials

{
ℎ
ý1

ý1
· · · ℎ

ýý
ýý

��� ∅ � ý1 � · · · � ýý ⊆ ý, ý1 ≤ |ý1 |, ýÿ < |ýÿ \ ýÿ−1 | ∀ÿ = 2, . . . , ý
}

form a basis for the Chow cohomology ring ý•(ÿý ).

Proof. Let G = {ÿ ∪ 0 | ÿ ⊆ ý} ∪ ý be the building set on ý̃ = ý � {0} in Proposition 3.8, and let ΣG

denote the corresponding fan. Then, [FY04, Corollary 2] states that the Chow cohomology ring of ΣG

has a presentation

ý•(ΣG) =
Z[ÿÿ | ÿ ∈ G]

〈
ÿÿ1
· · · ÿÿý

| {ÿ1, . . . , ÿý } not a face of N
〉
+

〈∑
ÿ �ÿ ÿÿ | ÿ ∈ ý̃

〉 ,

and moreover, [FY04, Corollary 1] states that the set of monomials

{
ÿ
ý1

ý1∪0
· · · ÿ

ýý
ýý∪0

��� ∅ � ý1 � · · · � ýý ⊆ ý, ý1 ≤ |ý1 |, ýÿ < |ýÿ \ ýÿ−1 | ∀ÿ = 2, . . . , ý
}

form a basis for ý•(ΣG). We modify this basis by performing an upper triangular linear change of

variables as follows. For ∅ � ý ⊆ ý , let

ℎ̃ý =

∑

ý ⊆ÿ⊆ý

−ÿÿ∪0.

When G is given any total order that refines the partial order by inclusion, replacing ÿý∪0 by ℎ̃ý is an

upper triangular linear change of variables. Hence, we have that

{
ℎ̃
ý1

ý1
· · · ℎ̃

ýý
ýý

��� ∅ � ý1 � · · · � ýý ⊆ ý, ý1 ≤ |ý1 |, ýÿ < |ýÿ \ ýÿ−1 | ∀ÿ = 2, . . . , ý
}

is a basis of ý•(ΣG). It remains only to verify that, for any ∅ � ý ⊆ ý , the element ℎ̃ý ∈ ý1(ΣG)

corresponds to ℎý ∈ ý•(ÿý ) under the isomorphism ý : ΣG → Σý of Proposition 3.8.

In the presentation of ý1(ΣG) above, for ∅ ⊆ ÿ � ý , the variable ÿÿ∪0 represents the torus-

invariant divisor associated to the ray cone(eÿ∪0) of ΣG , which under the isomorphism ý : ΣG → Σý in

Proposition 3.8 maps to the ray ÿÿ of Σý . Moreover, it follows from the linear relation
∑
ÿ �0 ÿÿ = 0 in

ý•(ΣG) that the expression
∑
ý ⊆ÿ⊆ý −ÿÿ∪0 for ℎ̃ý can be rewritten as

ℎ̃ý =

∑

∅⊆ÿ�ý
ý�ÿ

ÿÿ∪0.
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Hence, the isomorphism ý : ΣG → Σý maps ℎ̃ý to the element

∑

∅⊆ÿ�ý
ý�ÿ

[ÿÿ] ∈ ý1(ÿý ),

which by Proposition 3.13 corresponds to ý (U1,ý ⊕U0,ý\ý ) because the rank function rk of the matroid

U1,ý ⊕ U0,ý\ý is given by rk(ý \ ÿ) = 1 if ý � ÿ and 0 otherwise. �

For matroids M and M′ on E, there is a dual notion to matroid intersection, matroid union, defined

by M ∨M′ := (M⊥ ∧M′⊥)⊥. The bases of M ∨M′ are the maximal elements among the unions of the

basis of M and M′.

Proof of Theorem 7.7. For ∅ � ý ⊆ ý , let Hý be the corank 1 matroid whose unique circuit is F.

Equivalently, its dual matroid H⊥
ý

is the matroid U1,ý ⊕ U0,ý\ý . We note from Proposition 4.6 and

Corollary 5.11 that

ℎý = [ÿ ý (H⊥
ý
) ] = ý1 (QHý

) = [ΣHý
] .

Now, applying Theorem 1.6 to Lemma 7.8 yields the theorem once we show the following: For an

element ℎ
ý1

ý1
· · · ℎ

ýý
ýý

in the monomial basis of ý•(ÿý ) given in Lemma 7.8, the matroid intersection

H
∧ý1

ý1
∧ · · · ∧ H

∧ýý
ýý

= Hý1
∧ · · · ∧ Hý1︸��������������︷︷��������������︸
ý1 times

∧ · · · ∧ Hýý
∧ · · · ∧ Hýý︸���������������︷︷���������������︸
ýý times

is a Schubert matroid of corank ý1 + · · · + ýý , and every Schubert matroid arises in this way. Since

the dual of a Schubert matroid is a Schubert matroid, we may instead prove the dual statement that the

matroid union

H⊥ý1
∨ · · · ∨ H⊥ý1︸��������������︷︷��������������︸
ý1 times

∨ · · · ∨ H⊥ýý
∨ · · · ∨ H⊥ýý︸���������������︷︷���������������︸
ýý times

is a Schubert matroid and that every Schubert matroid of rank ý1 + · · · + ýý arises in this way. Since

every matroid in the above matroid union is of rank 1, a basis of the matroid union is obtained by

selecting ýÿ elements of ýÿ for each ÿ = 1, . . . , ý such that the union of all the selected elements has as

large cardinality as possible. By Remark 7.6, we see that such matroid union are exactly the Schubert

matroids of rank ý1 + · · · + ýý . �

Combining Theorem 1.5 with Theorem 7.7 recovers the following result of Derksen and Fink [DF10,

Theorem 5.4].

Corollary 7.9. Schubert matroids on E of rank r form a basis for Valÿ (ý).

Because Schubert matroids are realizable over any infinite field, combining Corollary 5.11 and

Corollary 6.5 with Theorem 7.7 also yields the following.

Corollary 7.10. The K-classes [Oÿÿ
] of augmented wonderful varieties span ÿ (ÿý ) as an abelian

group.

8. Numerical properties

8.1. The Hirzebruch–Riemann–Roch-type formulas

We now prove Theorem 1.9 using Corollary 7.10. While one can prove Theorem 1.9 by mimicking the

proof of [BEST23, Theorem D], we present a proof that avoids the use of the Atiyah–Bott localization

formula. Recall the notation ÿ = ÿ∗
ý
ý1 (OPý (1)).
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Proof of Theorem 1.9. We first verify the formula involving the ÿ map, that is, that

ÿ
(
[E]

)
=

∫
ÿ
(
[E]

)
· (1 + ÿ + · · · + ÿÿ)

for any [E] ∈ ÿ (ÿý ). Corollary 7.10 implies that it suffices to show this for the case [E] = [Oÿÿ
] for

any linear subspace ÿ ⊆ ký . Now, we have ÿ([Oÿÿ
]) = 1 since ÿÿ is obtained from a projective space

by a sequence of blow-ups along smooth centers. On the other hand, using Corollary 6.5 and applying

the projection formula to ÿý gives that

∫

ÿý

[ÿÿ] · (1 + ÿ + · · · + ÿÿ) =

∫

Pý
ý1 (OPý (1))

dim ÿ · (1 + ý1 (OPý (1)) + · · · + ý1 (OPý (1))
ÿ) = 1.

Having established the formula involving ÿ , we now use Serre duality to derive the formula involving

ÿ, that is,

ÿ
(
[E]

)
=

∫
ÿ
(
[E]

)
· ý

( ⊕

ÿ∈ý

ÿ∗ÿOP1 (1)
)
.

First, by [CLS11, Theorem 8.1.6], the anticanonical divisor of ÿý is the
∑
ÿ�ý ÿÿ +

∑
ÿ∈ý ÿÿ , where

ÿÿ denotes the torus-invariant divisor of the ray ÿÿ , and ÿÿ that of the ray ÿÿ in Σý . By Proposition

3.13, one checks that
∑
ÿ�ý ÿÿ = ÿ ý (U1,ý ) and

∑
ÿ∈ý ÿÿ = ÿ ý (Uÿ,ý ) . In summary, we have that the

anticanonical bundle ÿ∨
ÿý

of ÿý is

ÿ∨ÿý
= Oÿý

(ÿ ý (U1,ý ) + ÿ ý (Uÿ,ý ) ).

Corollary 6.5, in the form of Example 6.6, thus gives ÿ([ÿ∨
ÿý
]) = (1 + ÿ) · ý

( ⊕
ÿ∈ý ÿ∗ÿOP1 (1)

)
.

Applying Serre duality, along with the definition that ÿ = ÿý ◦ ÿ ◦ ÿÿ , we conclude

ÿ([E]) = (−1)ÿÿ([E]∨ · [ÿÿý
])

= (−1)ÿ
∫

ÿý

ÿ
(
[E]∨ · [ÿÿý

]
)
· (1 + ÿ + · · · + ÿÿ)

= (−1)ÿ
∫

ÿý

ÿý

(
ÿ([E]) · ÿ([ÿ∨ÿý

])
)
· (1 + ÿ + · · · + ÿÿ)

= (−1)ÿ
∫

ÿý

ÿý

(
ÿ([E]) · (1 + ÿ) · ý

( ⊕

ÿ∈ý

ÿ∗ÿOP1 (1)
) )
· (1 + ÿ + · · · + ÿÿ)

= (−1)ÿ
∫

ÿý

ÿý

(
ÿ([E]) · ý

( ⊕

ÿ∈ý

ÿ∗ÿOP1 (1)
) )

=

∫

ÿý

ÿ([E]) · ý
( ⊕

ÿ∈ý

ÿ∗ÿOP1 (1)
)
,

as desired. �

8.2. Tutte polynomial formulas

We show that two specializations of the Tutte polynomial arise as volume polynomials of augmented

tautological classes. The first is the rank-generating function of a matroid, that is, ÿM (ÿ + 1, ÿ + 1). This

computation does not show that the rank-generating function has any log-concavity property because

it involves the Chern class of [SM], and Proposition 5.9 shows that ý(SM) is rarely nef or anti-nef.

We also compute the intersection numbers of a second set of classes, which gives a more complicated

specialization of the Tutte polynomial. This computation can be used to show that the result is Lorentzian
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and therefore has log-concavity properties. Recall the notation that ÿÿ = ÿ∗ÿ (ý1 (OP1 (1))) for ÿ ∈ ý , and

let ÿý =
∏

ÿ∈ý ÿÿ for ý ⊆ ý .

Theorem 8.1. Let M be a matroid on E of rank r. For ý ⊆ ý , we have

∫

ÿý

ý(SM, ÿ) · ýÿ−ÿ · ý(QM, ý−1) ·
∏

ÿ∈ý

ÿÿ = ÿÿ−rkM (ý )ý |ý |−rkM (ý ) .

In particular, summing over all ý ⊆ ý , we have that

∫

ÿý

ý(SM, ÿ) · ýÿ−ÿ · ý(QM, ý−1) ·

ÿ∏

ÿ=1

(1 + ÿÿÿÿ) =
∑

ý ⊆ý

ÿÿ−rkM (ý )ý |ý |−rkM (ý )ÿý .

Proof. By Proposition 4.8, the restriction of the Chern classes of augemented tautological classes to

ÿý\ý are the Chern classes of the augmented tautological classes of the contraction M/ý. Now, one

notes that
∫
ÿý

ý(SM, ÿ) · ý(QM, ý) =
∫
ÿý

ýÿ (SM) · ÿ
ÿ · ýÿ−ÿ (QM) ·ý

ÿ−ÿ = ÿÿýÿ−ÿ since [SM] + [QM] =

[
⊕

ÿ∈ý ÿ∗ÿOP1 (1)]. �

Theorem 1.10 is immediate from Theorem 8.1. We now prove Theorem 1.11. The proof uses the

Hirzebruch–Riemann–Roch-type formulas for both ÿ and ÿ to obtain the equality of certain intersection

numbers. We first state a combinatorial lemma that will be used twice in the proof of Theorem 1.11.

Lemma 8.2. Let M be a matroid of rank r on E. Then

∑

ý ⊆ý

ÿ |ý |ÿÿ−rkM (ý )ýÿ−|ý |−ÿ+rkM (ý )ÿM/ý

(
ý

ÿ
,
ÿ + ý

ý

)
= (ÿ + ÿ)ÿ ýÿ−ÿÿM

(
ÿ + ý

ÿ + ÿ
,
ÿ + ÿ + ý

ý

)
.

Proof. Using the rank generating function for the Tutte polynomial, we compute

∑

ý ⊆ý

ÿ |ý |ÿÿ−rkM (ý )ýÿ−|ý |−ÿ+rkM (ý )ÿM/ý

(
ý

ÿ
,
ÿ + ý

ý

)

=

∑

ý ⊆ý

ÿ |ý |ÿÿ−rkM (ý )ýÿ−|ý |−ÿ+rkM (ý )
∑

ý ⊇ý

(
ý − ÿ

ÿ

)ÿ−rkM (ý ) ( ÿ
ý

) |ý |− |ý |−rkM (ý )+rkM (ý )

=

∑

ý ⊆ý ⊆ý

ÿ |ý |ÿ |ý |− |ý |ýÿ−ÿ−|ý |+rkM (ý ) (ý − ÿ)ÿ−rkM (ý )

=

∑

ý ⊆ý

ÿ |ý |ýÿ−ÿ−|ý |+rkM (ý ) (ý − ÿ)ÿ−rkM (ý )
∑

ý ⊆ý

ÿ |ý |ÿ−|ý |

=

∑

ý ⊆ý

ÿ |ý |ýÿ−ÿ−|ý |+rkM (ý ) (ý − ÿ)ÿ−rkM (ý )

(
ÿ + ÿ

ÿ

) |ý |

= (ÿ + ÿ)ÿ ýÿ−ÿ
∑

ý ⊆ý

(
ý − ÿ

ÿ + ÿ

)ÿ−rkM (ý ) ( ÿ + ÿ

ý

) |ý |−rkM (ý )

= (ÿ + ÿ)ÿ ýÿ−ÿÿM

(
ÿ + ý

ÿ + ÿ
,
ÿ + ÿ + ý

ý

)
,

as desired. �

Proof of Theorem 1.11. Note that ý(ÿ∗
ý
OPý (−1), ý) = 1 + ÿý + ÿ2ý2 + · · · . We prove the result in three

steps.
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Step 1: We show that

∫

ÿý

ý(Q∨M, ÿ) · ý(QM, ý) = ÿÿýÿ−ÿÿM (0, 1 +
ÿ
ý
). (1)

As [SM] + [QM] = [
⊕

ÿ∈ý ÿ∗ÿOP1 (1)], we have ý(Q∨
M
, ÿ) = ý(

⊕
ÿ∈ý ÿ∗ÿO(−1), ÿ)−1 · ý(S∨

M
, ÿ) =

ý(
⊕

ÿ∈ý ÿ∗ÿOP1 (1), ÿ) · ý(S∨M, ÿ). We compute

∫

ÿý

ý(Q∨M, ÿ) · ý(QM, ý) =

∫

ÿý

ý(
⊕

ÿ∈ý

ÿ∗ÿOP1 (1), ÿ) · ý(S∨M, ÿ) · ý(QM, ý)

=

∫

ÿý

∑

ý ⊆ý

(
∏

ÿ∈ý

ÿÿ) · ÿ
|ý | · ý(SM,−ÿ) · ý(QM, ý)

=

∑

ý ⊆ý

ÿ |ý |
∫

ÿý\ý

ý(SM/ý ,−ÿ) · ý(QM/ý , ý)

=

∑

ý ⊆ý

ÿ |ý | (−ÿ)ÿ−rkM (ý )ýÿ−|ý |−(ÿ−rkM (ý ))

= ÿÿýÿ−ÿ
∑

ý ⊆ý

(−1)ÿ−rkM (ý ) (ÿ/ý) |ý |−rkM (ý ) = ÿÿýÿ−ÿÿM (0, 1 +
ÿ
ý
).

Step 2: We show that

∫

ÿý

(1 + ÿý + ÿ2ý2 + · · · ) · ý(Q∨M, ÿ) · ý(QM, ý) = ÿÿ (ý + ý)ÿ−ÿÿM

( ý
ÿ
,
ý + ÿ + ý

ý + ý

)
. (2)

As the result is homogeneous, it suffices to prove the claimed formula after evaluating ý = 1. We

compute ÿ((
∑
ÿ≥0 ∧

ÿ [QM]
∨ýÿ) (

∑
ÿ≥0 Sym ÿ [QM]

∨ÿ ÿ )) in two different ways, using Proposition 6.4

and the Hirzebruch–Riemann–Roch-type formulas for both ÿ and ÿ. We then get that

∫

ÿý

(1 + ÿ + ÿ2 + · · · ) · (ý + 1)ÿ−ÿ · ý
(
Q∨M,

ý

ý + 1

)
· (1 − ÿ)ÿ−ÿ · ý

(
Q∨M,

ÿ

ÿ − 1

)

=

∫

ÿý

ý(
⊕

ÿ∈ý

ÿ∗ÿOP1 (1)) · (ý + 1)ÿ−ÿ · ý

(
QM,

1

ý + 1

)
· (1 − ÿ)ÿ−ÿ · ý

(
QM,

1

1 − ÿ

)
.

Replacing w by −ý/(ý + 1) and z by ÿ/(ÿ − 1) and cancelling common terms, we obtain that

∫

ÿý

(1 + ÿ + · · · ) · ý(QM, ý) · ý(Q∨M, ÿ) =

∫

ÿý

ý(
⊕

ÿ∈ý

ÿ∗ÿOP1 (1)) · ý(QM, ý + 1) · ý(QM, 1 − ÿ).

Now we apply equation (1], noting ý(QM, 1 − ÿ) = ý(Q∨
M
, ÿ − 1), to obtain that

∫

ÿý

ý(QM, ý + 1) · ý(Q∨M, ÿ − 1) = (ÿ − 1)ÿ (ý + 1)ÿ−ÿÿM

(
0,

ÿ + ý

ý + 1

)
.

Arguing as in Step 1 and using Proposition 4.8, the above equation implies that

∫

ÿý

∏

ÿ∈ý

(1 + ÿÿÿÿ) · ý(QM, ý + 1) · ý(Q∨M, ÿ − 1)

=

∑

ý ⊆ý

ÿý (ÿ − 1)ÿ−rkM (ý ) (ý + 1)ÿ−|ý |−ÿ+rkM (ý )ÿM/ý

(
0,

ÿ + ý

ý + 1

)
.
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Setting each ÿÿ to 1 and using that
∏
(1 + ÿÿ) = ý(

⊕
ÿ∗ÿOP1 (1)), we get that

∫

ÿý

ý(
⊕

ÿ∈ý

ÿ∗ÿOP1 (1)) · ý(QM, ý + 1) · ý(Q∨M, ÿ − 1)

=

∑

ý ⊆ý

(ÿ − 1)ÿ−rkM (ý ) (ý + 1)ÿ−|ý |−ÿ+rkM (ý )ÿM/ý

(
0,

ÿ + ý

ý + 1

)
.

Applying Lemma 8.2 with ÿ = 1, ÿ = ÿ − 1, ý = ý + 1, and ý = 0, we obtain (2].

Step 3: We finish the computation. We have that

∫

ÿý

(1 + ÿý + ÿ2ý2 + · · · ) · ý(
⊕

ÿ∈ý

ÿ∗ÿOP1 (1), ÿ) · ý(Q∨M, ÿ) · ý(QM, ý)

=

∑

ý ⊆ý

ÿ |ý |
∫

ÿý\ý

(1 + ÿý + ÿ2ý2 + · · · ) · ý(Q∨M/ý , ÿ) · ý(QM/ý , ý)

=

∑

ý ⊆ý

ÿ |ý |ÿÿ−rkM (ý ) (ý + ý)ÿ−|ý |−ÿ+rkM (ý )ÿM/ý

( ý
ÿ
,
ý + ÿ + ý

ý + ý

)
.

Then the result follows from Lemma 8.2 with ÿ = ÿ, ÿ = ÿ, ý = ý + ý, and ý = ý. �

8.3. Positivity properties

We now use Theorem 1.11 to prove Theorem 1.12, which states that the four-variable transformation

of the Tutte polynomial in Theorem 1.11 is a denormalized Lorentzian polynomial. Let us begin by

reviewing the language of Lorentzian polynomials developed in [BH20].

For a homogeneous degree d polynomial ÿ =
∑
ÿ∈Zÿ

≥0
ÿÿý

ÿ ∈ R[ý1, . . . , ýÿ], its normalization is

ý ( ÿ ) =
∑
ÿ∈Zÿ

≥0
ÿÿ

ýÿ

ÿ!
where ÿ! = ÿ1! · · · ÿÿ!. The polynomial f is said to be the denormalization

of ý ( ÿ ). The polynomial f is a strictly Lorentzian polynomial if every monomial of degree d has

a positive coefficient and every (ý − 2)-th coordinate partial derivative of f is a quadric form with

signature (+,−,−, . . . ,−). It is a Lorentzian polynomial if f is a limit of strictly Lorentzian polynomials.

Lorentzian polynomials satisfy a strong log-concavity property [BH20, Example 2.26] and are preserved

under nonnegative linear change of variables [BH20, Theorem 2.10]. Polynomials whose normalization

is Lorentzian, called denormalized Lorentzian polynomials, share similar properties [BLP23, §4.3].

We now place the strategy used in the proof of [BEST23, Theorem 9.13] into an axiomatic framework

and use the framework to deduce the theorem. The key tool will be the theory of Lefschetz fans, a notion

introduced in [ADH23, Definition 1.5]. Lefschetz fans are certain (possibly noncomplete) simplicial

quasi-projective balanced fans whose Chow ring satisfies an analogue of the Kähler package. We

summarize their fundamental properties.

Theorem 8.3. The following hold.

(1) [ADH23, Theorem 1.6] If Σ is a Lefschetz fan, then any quasi-projective simplicial fan with the

same support as Σ is Lefschetz.

(2) [ADH23, Lemma 5.27] A product of Lefschetz fans is Lefschetz.

(3) [AHK18, Theorem 8.9] The Bergman fan of a loopless matroid is Lefschetz.

(4) [BH20, Theorem 4.6], [ADH23, Theorem 5.20], see also [BEST23, Lemma 9.12] Let Σ be an

ℓ-dimensional smooth projective fan, and let Σ′ be a d-dimensional subfan that is Lefschetz and

defines the Minkowski weight [Σ′] ∈ ýℓ−ý (ÿΣ) as a balanced fan. Then, for any base-point-free

divisors ÿ1, . . . , ÿÿ ∈ ý1(ÿΣ), the polynomial
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∑

ÿ1+···+ÿÿ=ý

(∫

ÿΣ

ÿ
ÿ1
1
· · · · · ÿÿÿ

ÿ · [Σ
′]

)
ý
ÿ1
1
· · · ýÿÿÿ

is denormalized Lorentzian.

Let us now set up the axiomatic framework. For a finite set S, denote

Mat
◦
ÿ = the set of loopless and coloopless matroids with ground set ÿ.

We say that a map ÿ : Mat
◦
ÿ
→ ÿ taking values in an abelian group G is valuative if it is a restriction to

Mat
◦
ÿ

of a valuative map on the set of all matroids on S. Let N be a nonnegative integer that depends on

n (e.g., ý = 2ÿ), and let [ý] = {1, . . . , ý}. Our framework consists of three objects (ý,ÿ, ÿ):

• a map ý( ·) : Mat
◦
ý → Mat

◦
[ý ]

,

• a torus T with an action on ký via a map ÿ : ÿ → Gýÿ , and

• a smooth projective T-variety X with a dense open T-orbit ÿ (which is a quotient torus of T) such

that ÿ naturally descends to ÿ : ÿ → Gýÿ /Gÿ.

We require that these objects satisfy the following properties:

(i) The assignment M ↦→ [ΣýM
], sending a matroid M on E to the Bergman class of the matroid ýM

on [ý], is valuative.

(ii) There is a map

ýk

( ·) :

ÿ∐

ÿ=0

ÿÿ (ÿ; ý) (k) →

ý∐

ý=0

ÿÿ (ý; [ý]) (k)

such that for any realization ÿ ⊆ k
ý of M ∈ Mat

◦
ý , the matroid ýM equals the matroid on [ý]

realized by ýk

ÿ
. We often abuse notation and write F for ýk also.

(iii) For any ÿ ⊆ k
ý , specifying the fibers over ý ∈ ÿ to be ÿ(ý−1)ýÿ defines a T-equivariant vector

subbundle Fÿ of O⊕ý
ÿ

on X.

(iv) The Segre class ý(Fÿ) ∈ ý•(ÿ) depends only on the matroid that L realizes.

(v) The assignment M ↦→ ý(F(ÿ realizing M) ) from the set of k-realizable matroids in Mat
◦
ý to ý•(ÿ) is

valuative.

Because every matroid in Mat
◦
ý is valuatively equivalent to a linear combination ofk-realizable matroids

in Mat
◦
ý [BEST23, Lemma 5.9], the conditions (iv) and (v) imply that we have a unique valuative

extension M ↦→ ý(FM) ∈ ý•(ÿ) such that ý(FM) = ý(Fÿ) whenever L realizes M. Thus, we may define

the following.

Definition 8.4. With F, T, and X satisfying the conditions above, for a matroid M ∈ Mat
◦
ý we define

[P(FM)] ∈ ý•(ÿ × Pý−1) by

[P(FM)] =

ý−ý∑

ÿ=0

ýÿ (FM)ÿ
ý−ý−ÿ ,

where R is the rank of ýM and ÿ = ý1 (O(1)) is the hyperplane class of Pý−1 pulled back to ÿ × Pý−1.

When M is realized by ÿ ⊆ ký , then [P(FM)] = [P(Fÿ)] by [EH16, Proposition 9.13].

Example 8.5. In the setting of [BEST23], we let ÿ = ý with ÿ = Gýÿ acting on ÿ = ÿý naturally via

ÿ → Pÿ , and acting on ký by the inverse standard action. If we set F to be the identity map, which

satisfies the conditions listed above, we then have Fÿ = Sÿ . If we set F to be the matroid duality map

(i.e., M ↦→ M⊥ and ÿ ↦→ ÿ⊥), which also satisfies the conditions listed above, we then have Fÿ = Q∨
ÿ
.
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Example 8.6. Let ý = 2ÿ, and let ÿ = Gýÿ act on ký ×ký by ý · (ý, ÿ) = (ý−1ý, ÿ), and act on ÿý as its

open dense torus. Let ýÿÿ′ý be the map that adds parallel element to each element in a matroid M on E

to get a matroid ýÿÿ′ýM on ý � ý . Note that M ↦→ [Σýÿÿ′ýM
] is valuative since [Σýÿÿ′ýM

] is the image

of [ΣM] under the diagonal embedding ý ↦→ (ý, ý). In fact, the map M ↦→ ýÿÿ′ýM itself is valuative. If

we set F to be ýÿÿ′ý precomposed with matroid duality map, we then have Fÿ = Q∨
ÿ
. If we set F to

be ýÿÿ′ý precomposed and then postcomposed with matroid duality maps (note that one duality takes

place on E and the other on ý � ý), we get Fÿ = Kÿ , where Kÿ is defined by the exact sequence

0→ Kÿ → O⊕ýÿý
⊕ O⊕ýÿý

→ Qÿ → 0.

Note that the K-class [Kÿ] depends only on the matroid that L represents because [Kÿ] = [O
⊕ý
ÿý
⊕

O⊕ý
ÿý
] − [Qÿ]. Note also that ý(Kÿ) = ý(Qÿ).

Theorem 8.7. Under the conditions above, there exists a smooth projective (ÿ ×Gýÿ /Gÿ)-toric variety

ýΣ with a birational toric morphism ÿ : ýΣ → ÿ × Pý−1 such that for every matroid M ∈ Mat
◦
ý , there

exists a Lefschetz subfan Σÿ,ýM
of Σ such that ÿ∗ [Σÿ,ýM

] = [P(FM)], where [Σÿ,ýM
] denotes the Chow

cohomology class on ýΣ that is Poincaré dual to the Minkowski weight of constant weight 1 on the

Lefschetz fan Σÿ,ýM
.

Proof. First, we set the birational toric morphism ÿ restricted to the tori to be given by (ý, ý ′) ↦→

(ý, ÿ(ý)ý ′). Now, we can take Σ to be any unimodular projective fan inside Cochar(ÿ)R × (R
ý /R) such

that it refines (the fan of ÿ) × Σ [ý ] and makes ýΣ → ÿ × Pý−1 into a valid toric morphism. We take

Σÿ,ýM
to be the subfan of Σ with support Cochar(ÿ)R × ΣýM

. By Theorem 8.3.(3), the support of the

fan Σÿ,ýM
is equal to the support of a product of two Lefschetz fans, and hence by Theorem 8.3.(1)

and (2), Σÿ,ýM
is a Lefschetz fan. By the assumptions, the assignment M ↦→ [FM] and the assignment

M ↦→ [P(FM)] are valuative. On the other hand, the assumption that M ↦→ [ΣýM
] is valuative implies

that M ↦→ [Σÿ,ýM
] is also valuative. Thus, for the desired equality ÿ∗ [Σÿ,ýM

] = [P(FM)], it suffices to

show it when M has a k-realization L.

For a loopless matroid M′ on a set ý ′ realized by a linear subspace ÿ ′ ⊆ k
ý′ , the Minkowski

weight with constant weight 1 on the Bergman fan ΣM′ is the tropicalization of P(ÿ ′) ∩ Gý
′

ÿ /Gÿ
[Stu02; AK06]. Hence, the Minkowski weight with constant weight 1 on Σÿ,ýM

is the tropicalization of

ÿ×(P(ýÿ)∩G
ý
ÿ /Gÿ), so the Chow class [Σÿ,ýM

] equals the class of the closure ofÿ×(P(ýÿ)∩G
ý
ÿ /Gÿ)

inside ýΣ. On the other hand, by construction the map ÿ bijectively maps ÿ × (P(ýÿ) ∩ G
ý
ÿ /Gÿ) to an

open subset of P(Fÿ), an irreducible subvariety of ÿ × Pý−1. Then the result follows. �

Remark 8.8. If there are several maps ý (1) , . . . , ý (ý) from Mat
◦
ý to Mat

◦
[ý (ý) ]

, each satisfying the

conditions listed above with a common X and T fixed throughout, the theorem easily generalizes to the

multiprojectivization [P(F
(1)

M
) ×ÿ · · · ×ÿ P(F

(ý)

M
)].

Proof of Theorem 1.12. First, we assume that M is loopless and coloopless. Note the Q∨
ÿ

embeds into

O⊕ý�ý
ÿý

because
⊕

ÿ∈ý ÿ∗ÿO(−1) does, and we can apply Theorem 8.7 to this embedding. Therefore,

there is a smooth projective toric variety ýΣ with torus Gýÿ × G
ý�ý
ÿ /Gÿ × G

ý�ý
ÿ /Gÿ, a map ÿ : ý →

ÿý × P
2ÿ−1 × P2ÿ−1, and a Lefschetz subfan Σÿý ,M of Σ such that ÿ∗ [Σÿý ,M] = [P(KM) ×ÿý

P(Q∨
M
)].

Let ÿ and ÿ be the first Chern classes of the pullbacks of O(1) to ÿý × P
2ÿ−1 × P2ÿ−1 from the two

projective spaces. Then, with the shorthand 1
1−ÿ

= 1 + ÿ + ÿ2 + · · · + ÿÿ, we have
∫

ÿý

1

1 − ÿý
· ý(

⊕

ÿ∈ý

ÿ∗ÿOP1 (1), ÿ) · ý(Q∨M, ÿ) · ý(QM, ý)

=

∫

ÿý×P2ÿ−1×P2ÿ−1

1

1 − ÿý
· ý(

⊕

ÿ∈ý

ÿ∗ÿOP1 (1), ÿ) ·
ÿÿ+ÿ−1

1 − ÿÿ
·
ÿÿ−ÿ−1

1 − ÿý
· [P(KM) ×ÿý

P(Q∨M)]

=

∫

ýΣ

1

1 − ÿ∗ÿý
· ÿ∗ý(

⊕

ÿ∈ý

ÿ∗ÿOP1 (1), ÿ) ·
ÿ∗ÿÿ+ÿ−1

1 − ÿ∗ÿÿ
·
ÿ∗ÿÿ−ÿ−1

1 − ÿ∗ÿý
· [Σÿý ,M],
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where we have used ÿ and ý(
⊕

ÿ∈ý ÿ∗ÿOP1 (1)) to refer also to their pullbacks to ÿý × P
2ÿ−1 × P2ÿ−1.

Then the result follows from Theorem 8.3.(4), using that ý(
⊕

ÿ∈ý ÿ∗ÿO(1)) is the Chern class of a direct

sum of nef line bundles.

Any matroid M of rank r on E can be written as the direct sum of matroids U0, ÿ ⊕ Uℓ,ℓ ⊕M′, where

M′ is a loopless and coloopless of rank ÿ − ℓ on a ground set of size ÿ − ÿ − ℓ. Because the Tutte

polynomial is multiplicative for direct sums of matroids, we have that

(ÿ + ÿ)ÿ (ý + ý)ÿ−ÿÿM

(
ý + ÿ

ÿ + ÿ
,
ý + ÿ + ÿ + ý

ý + ý

)
=

(ý + ÿ + ÿ + ý) ÿ (ý + ÿ)ℓ (ÿ + ÿ)ÿ−ℓ (ý + ý)ÿ− ÿ−ÿÿM′

(
ý + ÿ

ÿ + ÿ
,
ý + ÿ + ÿ + ý

ý + ý

)
.

By [BH20, Corollary 3.8], products of denormalized Lorentzian polynomials are denormalized

Lorentzian, which implies the result. �

Remark 8.9. One can obtain stronger log-concavity results by replacing ý(
⊕

ÿ∈ý ÿ∗ÿOP1 (1), ÿ) with∏
ÿ∈ý (1 + ÿÿÿÿ) to obtain a Lorentzian polynomial in ÿ + 3 variables ý, ÿ, ý, ÿ1, . . . , ÿÿ. Using that

specializations of Lorentzian polynomials are Lorentzian [BH20, Theorem 2.10], we obtain that the

polynomial ýM(ý, ÿ, ÿ, ý) in Theorem 1.12 is Lorentzian after each ýÿÿÿÿýýý term is replaced by
ýÿÿÿÿýýý

ÿ!ý!ý!
. By setting ý = ÿ = 0, this gives a new proof of [HSW22, Corollary 9].

9. Chern–Schwartz–MacPherson classes

9.1. Log tangent bundles

There is a natural log structure on ÿý obtained by viewing it as a simple normal crossings (snc)

compactification ofAý ; let ÿÿý denote the boundary divisor. Note that this is not the usual log structure

on a toric variety. We obtain a log structure on ÿÿ for any linear space L by declaring the inclusion

ÿÿ ↩→ ÿý to be strict. Equivalently, we view ÿÿ as an snc compactification of L. Let ÿÿÿ be the

boundary divisor of ÿÿ ; note that ÿÿÿ = ÿÿý ∩ÿÿ . For an snc pair (ÿ, ÿ) (i.e., a smooth variety

X with an snc divisor D) over k, we use Ω1
ÿ
(log ÿ) to denote the log cotangent bundle of (ÿ, ÿ) over

k, and Tÿ (− log ÿ) := Ω1
ÿ
(log ÿ)∨ to denote the log tangent bundle. Recall that we identified Qÿ |ÿÿ

with ýÿÿ/ÿý
in Corollary 5.4.

Lemma 9.1. Let ÿ : ý ↩→ ÿ be an inclusion of smooth varieties over k, and let D be an snc divisor on

X such that (ý, ÿ ∩ ý ) is an snc pair. Then there is an exact sequence

0→ Tý (− log ÿ |ý ) → ÿ∗Tÿ (− log ÿ) → ýý /ÿ → 0,

where ýý /ÿ is the normal bundle of ý ↩→ ÿ . If a group scheme G acts on X preserving D and Y, then

this is an exact sequence of G-equivariant sheaves.

Proof. By [Ols05, 1.1(iii)], we have that ÿý /ÿ , ÿÿ/ÿ are Ω1
ý
(− log ÿ |ý ), Ω

1
ÿ
(− log ÿ). By [Ols05,

1.1(ii)], ÿý /ÿ can be identified with ý∨
ý /ÿ
[1]. Then the result follows from [Ols05, 1.1(v)] and dualizing.

The last statement follows from functoriality. Alternatively, one can deduce the lemma from the map of

short exact sequences

0 Ωÿ |ý Ωÿ (log ÿ) |ý
⊕

ÿ Oÿÿ
|ý 0

0 Ωý Ωý (log ÿ |ý )
⊕

ÿ Oÿÿ |ý 0

by applying the snake lemma. �
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Theorem 9.2. As an L-equivariant sheaf, Tÿÿ
(− log ÿÿÿ) can be identified with Sÿ |ÿÿ

, in such a

way that the exact sequence 0 → Sÿ →
⊕

ÿ∈ý ÿ∗ÿOP1 (1) → Qÿ → 0 restricts to the exact sequence

0→ Tÿÿ
(− log ÿÿÿ) → ÿ∗Tÿý

(− log ÿÿý ) → ýÿÿ/ÿý
→ 0.

Theorem 9.2 is closely related to [BEST23, Theorem 8.8]. The Gÿ-equivariant structure on ÿÿ |ÿÿ

is different from the Gÿ-equivariant structure on Tÿÿ
(− log ÿÿÿ) in general.

Proof. First, we do the case of ÿ = 1, in which case the stellahedron Π1 is the interval [0, 1]. In other

words, we have P1 with the log structure given by the divisor ÿP1 = ∞, where∞ is the point [1 : 0] ∈ P1.

The exact sequence

0→ O(−2) → Ω
1
P1 (log ÿP1) → O∞ → 0

implies that TP1 (− log ÿP1) is isomorphic to OP1 (1). By [HT99, Proposition 2.3], there is a unique Gÿ-

equivariant structure on OP1 (1), so TP1 (− log ÿP1) is isomorphic to OP1 (1) with the Gÿ-equivariant

structure described in §3.4. As the formation of the log tangent bundle behaves well with respect to

products, the log tangent bundle of (P1)ý (viewed as a compactification of Aý ) is �ÿ∈ýOP1 (1), with

the induced Gýÿ -equivariant structure. Now, since ÿý → (P
1)ý is a composition of blow-ups at the

boundary, the pullback
⊕

ÿ∈ý ÿ∗ÿOP1 (1) of �ÿ∈ýOP1 (1) is isomorphic to the log-tangent bundle of ÿý

as Gýÿ -equivariant sheaves (see, for example, the proof of [Bri09, Lemma 2.1]).

Now, we do the general case. By Lemma 9.1, it suffices to see that the following square commutes,

as that will identify Sÿ |ÿÿ
with the kernel of the map Tÿý

(− log ÿÿý ) |ÿÿ
→ ýÿÿ/ÿý

.

⊕
ÿ∈ý ÿ∗ÿOP1 (1) |ÿÿ

Qÿ |ÿÿ

Tÿý
(− log ÿÿý ) |ÿÿ

ýÿÿ/ÿý
.

It suffices to check that this diagram commutes after restricting to a dense open subset. As the top and

bottom maps are maps of L-equivariant sheaves, it suffices to note that this diagram commutes on the

fiber over 0 ∈ Aý . At the fiber over 0, both horizontal maps can be identified with the natural projection

k
ý → k

ý/ÿ, and the vertical maps with the identity. �

9.2. CSM classes of matroid Schubert varieties

First, we review the theory of CSM classes. As CSM classes are defined only for varieties over a field of

characteristic zero, we fixk = C and work with singular homology instead of Chow. Then, for any locally

closed subset Z of a proper variety X, there is a homology class ýÿý (1ý ) ∈ ÿ•(ÿ,Z). If X is smooth

and ý = ÿ , then the CSM class agrees with the Poincaré dual of the total Chern class of the tangent

bundle. Together with its functorial properties, this property completely determines the CSM class of

any variety. If ÿ : ÿ → ý is a morphism between proper varieties that restricts to an isomorphism over

Z, then ÿ∗(ýÿý (1ý )) = ýÿý (1 ÿ (ý ) ).

We now prove Theorem 1.15. Let ÿ ⊆ k
ý be a linear space of dimension r, and let ýÿ be the

closure of L in (P1)ý , the matroid Schubert variety of L. Recall from the introduction that the singular

homology ÿ2ý (ýÿ ,Z) has a basis labeled by the flats of rank k. For a flat F, set ÿý = ÿ/ÿý . The closure

of a cell labeled by F can be identified with the matroid Schubert variety of the linear space ÿý . For

a flat F, let ÿý ∈ ÿ2ý (ýÿ ,Z) denote the class of the closure of the cell corresponding to F. Because

(P1)ý is the Schubert variety for the Boolean matroid, in particular we obtain a basis for the singular

homology of (P1)ý , where each ý ⊆ ý defines the class ÿý ∈ ÿ2 |ý | ((P
1)ý ,Z). Note that the product∏

ÿ∈ý ÿÿ of the divisor classes in Definition 3.7 is Poincaré dual to ÿý in the sense that for ý ′ ⊆ ý , we

have (
∏

ÿ∈ý ′ ÿÿ) ∩ ÿý = 1 if ý = ý ′ and is 0 otherwise.
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Lemma 9.3. The pushforward ÿ•(ýÿ ,Z) → ÿ•((P
1)ý ,Z) sends ÿý to

∑
ý ÿý , where the sum is over

bases of M|ý.

Proof. In degree r, this follows from [AB16, Theorem 1.3c]. The general case then follows from the

identification of the closure of the cell indexed by F with the matroid Schubert variety of ÿý . �

Proof of Theorem 1.15. Because the ÿÿ is an snc compactification of L, the CSM class of L in

ÿÿ is ý(Tÿÿ
(− log ÿÿÿ)) ∩ [ÿÿ] by [Alu99, Theorem 1]. Let ÿ : ÿÿ → ÿý be the inclusion. As

Tÿÿ
(− log ÿÿÿ) = ÿ∗Sÿ and [ÿÿ] = ýÿ−ÿ (Qÿ), the projection formula implies that

ÿ∗(ý(Tÿÿ
(− log ÿÿÿ)) ∩ [ÿÿ]) = ý(Sÿ) ∪ ýÿ−ÿ (Qÿ) ∩ [ÿý ] .

Using Theorem 8.1 and Theorem 9.2, one can show that

∫

ÿý

ÿ∗ý(Tÿÿ
(− log ÿÿÿ)) ·

∏

ÿ∈ý

ÿÿ =

{
1, ý independent

0, otherwise.

Therefore, the pushforward of ýÿý (1ÿ) ∈ ÿ•(ÿÿ ,Z) to ÿ• ((P
1)ý ,Z) is

∑
ý independent ÿý . The functori-

ality of CSM classes implies that this is the pushforward of the CSM class of L inýÿ . From Lemma 9.3,

we note that the pushforward on homology from ýÿ to (P1)ý is injective, and
∑
ý ÿý pushes forward to

the claimed class. �

Remark 9.4. Using the stratification of ýÿ by cells which are identified with matroid Schubert varieties

for restrictions to flats of M, Theorem 1.15 implies that

ýÿý (1ýÿ ) =
∑

ý ∈ℒ (M)

|{ÿ ∈ ℒ(M) | ÿ ⊇ ý}| · ÿý .

Appendix A. Polytope algebras and K-rings of toric varieties

The notion of valuativity and the polytope algebra both have many variants, sometimes equivalent and

sometimes not. In this mostly expository appendix, we collect these together and record their relationship

to the K-ring of toric varieties.

A.1. Variants of valuativity

Valuative functions have been studied extensively as combinatorial generalizations of measures. We

point to [McM93b] and [Sch14, §6] as references and give a brief summary here.

For ÿ ⊆ Rÿ (or Qÿ), denote its indicator function by 1ÿ : Rÿ (or Qÿ) → Z defined as

1ÿ (ý) =

{
1 if ý ∈ ÿ

0 otherwise.

Let ÿ ⊆ 2R
ÿ

be a collection of nonempty3 subsets of Rÿ. We write

I(ÿ) := Z{1ÿ | ÿ ∈ ÿ}

for the Z-module generated by the indicator functions of elements of ÿ. For a hyperplane ÿ ⊆ Rÿ, let

ÿ+ and ÿ− denote the two closed half-spaces that it defines. The notion of valuative functions on ÿ has

many variants.

3Some authors allow ∅ ∈ ÿ and then impose by convention a triviality for ∅, such as ÿ ( ∅) = 0 for a function f on ÿ. See for
instance [Sal68; McM89]. Here, we prefer to begin with collections of nonempty subsets.
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Definition A.1. For an abelian group A, we say a function ÿ : ÿ∪{∅} → ý with ÿ (∅) = 0 is

(a) weakly valuative if ÿ (ÿ) = ÿ (ÿ ∩ ÿ+) + ÿ (ÿ ∩ ÿ−) − ÿ (ÿ ∩ ÿ) for any ÿ ∈ ÿ and hyperplane H

such that ÿ ∩ ÿ+, ÿ ∩ ÿ−, ÿ ∩ ÿ ∈ ÿ,

(b) (whenÿ consists of polyhedra) satisfies the weak inclusion-exclusion principle if for any polyhedral

subdivision ÿ =
⋃ý

ÿ=1 ÿÿ such that ÿ ∈ ÿ and
⋂

ÿ∈ý ÿ ÿ ∈ ÿ∪{∅} for every ý ⊆ {1, . . . , ý}, the

inclusion-exclusion relation ÿ (ÿ) =
∑

ý ⊆{1,...,ý } (−1) |ý |−1 ÿ (
⋂

ÿ∈ý ÿ ÿ ) holds,

(c) is additive (a.k.a. valuative) if ÿ (ÿ1 ∪ ÿ2) + ÿ (ÿ1 ∩ ÿ2) = ÿ (ÿ1) + ÿ (ÿ2) for any pair ÿ1, ÿ2 ∈ ÿ

such that ÿ1 ∪ ÿ2, ÿ1 ∩ ÿ2 ∈ ÿ∪{∅},

(d) satisfies the inclusion-exclusion principle if for any union ÿ =
⋃ý

ÿ=1 ÿÿ such that ÿ ∈ ÿ

and
⋂

ÿ∈ý ÿ ÿ ∈ ÿ∪{∅} for every ý ⊆ {1, . . . , ý}, the inclusion-exclusion relation ÿ (ÿ) =∑
ý ⊆{1,...,ý } (−1) |ý |−1 ÿ (

⋂
ÿ∈ý ÿ ÿ ) holds,

(e) is strongly valuative if there exists a (unique) map of Z-modules ÿ̂ : I(ÿ) → ý such that ÿ (ÿ) =

ÿ̂ (1ÿ) for all ÿ ∈ ÿ.

The following implications between the various notions of valuativity are immediate.

(ý)

��

(ý)��

��

(ÿ)��

(ÿ) (ÿ)��

.

Whether some or all of the implications can be reversed in the diagram for a given collection ÿ is a

difficult problem in general. We collect some previous results here.

Theorem A.2. As before, let ÿ be a collection of nonempty subsets of Rÿ.

(1) [Gro78] If ÿ is intersection-closed, that is, ÿ1, ÿ2 ∈ ÿ =⇒ ÿ1 ∩ ÿ2 = ∅ or ÿ1 ∩ ÿ2 ∈ ÿ, then we

have (ý) ⇐⇒ (ý) ⇐⇒ (ÿ). For example, the family of all convex bodies in Rÿ is intersection

closed.

(2) [Sal68; Vol57] If ÿ = ÿ, the family of all polytopes in Rÿ (which is intersection-closed) then we

further have (ÿ) ⇐⇒ (ý) so all five notions are equivalent. A minor modification of the proof

also shows that the same holds for ý, the family of all polyhedra in Rÿ (see [McM09, §3.2] for an

explicit proof).

(3) [McM09] If ÿ = ýΛ or ÿΛ, where ýΛ is the family of all Λ-polyhedra in Rÿ for a rank n lattice

Λ ⊆ Rÿ (similarly ÿΛ is the family of all Λ-polytopes), then we have (ý) ⇐⇒ (ý) ⇐⇒ (ÿ).

Note that ýΛ and ÿΛ are not intersection-closed.

When ÿ is the family of extended generalized permutohedra, that is, lattice polyhedra in Rÿ whose

normal fans coarsen (possibly convex subfans of) the normal fan of the standard permutohedron of

dimension ÿ − 1 in Rÿ, Derksen and Fink showed that (ÿ) ⇐⇒ (ÿ) [DF10, Theorem 3.5]. We ask

whether the equivalence holds more generally:

Question A.3. How are the different variants of valuativity in Definition A.1 related to each other

when ÿ is the set of all (lattice) polytopes whose normal fans coarsen a fixed complete (smooth and/or

projective) rational fan?

We record here a useful consequence of Theorem A.2 that taking faces of polytopes is a strongly

valuative operation. For a vector ÿ ∈ Rÿ and a polytope ÿ ⊂ Rÿ, let face(ÿ, ÿ) be the face of P on which

the standard inner product with v is minimized.

Proposition A.4. Let ÿ1, . . . , ÿý be (lattice) polytopes in Rÿ, and suppose
∑ý
ÿ=1 ÿÿ1ÿÿ

= 0 for some

ÿ1, . . . , ÿý ∈ Z. Then, for any ÿ ∈ Rÿ, one has
∑ý
ÿ=1 ÿÿ1face(ÿÿ ,ÿ) = 0.
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Proof. In other words, we need show that the function on the set of all (lattice) polytopes sending P

to 1face(ÿ,ÿ) is strongly valuative. By Theorem A.2, it suffices to show that this function is additive in

the sense of Definition A.1(c), and this additivity is an immediate consequence of [McM09, Theorem

4.6). �

A.2. Variants of polytope algebras

Fix a positive integer n. For a family ÿ of nonempty subsets in Rÿ, let

ý (ÿ) :=
{ ∑

ÿ∈ÿ

ÿÿÿ | ÿÿ ∈ Z all but finitely many nonzero
}

be the free abelian group generated by the set ÿ. Define the following subgroups of ý (ÿ):

val(ÿ) = the subgroup generated by the additive (a.k.a. valuative) relations, that is,

ÿ +ý − ÿ ∪ý − ÿ ∩ý whenever ÿ,ý, ÿ ∩ý, ÿ ∪ý ∈ ÿ,

stVal(ÿ) = the kernel of the map ý ()↽→ I(ÿ) defined by ÿ ↦→ 1ÿ , and

transl(ÿ) = the subgroup generated by translation invariance relations, that is,

ÿ − (ÿ + ÿ) whenever ÿ and ÿ + ÿ ∈ ÿ for ÿ ∈ Rÿ.

We may consider the following four quotient groups

Π(ÿ) = ý (ÿ)/val(ÿ),

Π(ÿ) = ý (ÿ)/(val(ÿ) + transl(ÿ)),

I(ÿ) = ý (ÿ)/stVal(ÿ), and

I(ÿ) = ý (ÿ)/(stVal(ÿ) + transl(ÿ)).

In each these four cases, for an element ÿ ∈ ÿ we denote by [ÿ] its image in the quotient group. For a

commutative ring A, we write Πý = Π⊗ ý, and similarly for Π, I, and I. We now consider the case where

ÿ is a family of polytopes. In good cases, one may give these quotients groups a ring structure as in the

following lemma, which is a minor variation of [McM89, Lemma 6]. In this appendix, we use ! for the

Minkowski sum of polytopes when it is helpful to distinguish it notationally from the addition in ý (ÿ).

Lemma A.5. Suppose ÿ is a Minkowski-sum-closed family of polytopes in Rÿ. That is, if P and Q are

polytopes in ÿ, then so is their Minkowski sum ÿ ! ý. Then, for the quotient groups Π(ÿ) and Π(ÿ),

the multiplication given by

[ÿ] · [ý] = [ÿ !ý] for ÿ,ý ∈ ÿ, and extended linearly to the whole group,

is well-defined. In particular, if further ÿ contains the origin o of Rÿ, then the quotient groups are unital

commutative rings with [o] the unit.

Proof. [Had57, 1.2.2] shows that if ý1 and ý2 are polytopes such that ý1 ∪ý2 is a polytope, then

ÿ ! (ý1 ∪ý2) = (ÿ !ý1) ∪ (ÿ !ý2) and ÿ ! (ý1 ∩ý2) = (ÿ !ý1) ∩ (ÿ !ý2)

for any polytope ÿ ⊆ Rÿ. Hence, the multiplication via Minkowski sum is well-defined. �

For a subring R of R, let ÿý be the set of all nonempty R-polytopes in Rÿ, that is, the polytopes that

have vertices in ýÿ. Usually R will be either Z, Q, or R. When R is Q or R, Theorem A.2.(1) implies

that Π(ÿý) = I(ÿý), and hence Π(ÿý) = I(ÿý) also. The same conclusion holds when ý = Z by

Theorem A.2.(3). The ring ΠR(ÿR) is what is often called McMullen’s polytope algebra as defined in

[McM89; McM93a].
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For polytopes P and Q, one says that Q is a weak Minkowski summand of P if there is a polytope ý ′

and ÿ > 0 such that ÿý !ý ′ = ÿ. It is straightforward to show that this is equivalent to stating that the

normal fan of Q coarsens that of P.

Definition A.6. Given a complete fan Σ in Rÿ, we define the subfamily ÿý,Σ ⊆ ÿý to be the set of

R-polytopes whose normal fan coarsens Σ. Let us define

Π(ý, Σ) = the image of ý (ÿý,Σ) ⊆ ý (ÿý) in Π(ÿý),

and likewise for Π(ý, Σ), I(ý, Σ), and I(ý, Σ).

Note that, per Question A.3, it is unclear whether Π(ÿý,Σ) = Π(ý, Σ). It is clear, however, that

I(ý, Σ) = I(ÿý,Σ), and also that transl(ÿý,Σ) = ý (ÿý,Σ) ∩ transl(ÿý) so that I(ý, Σ) = I(ÿý,Σ).

Thus, when R is Z, Q, or R, the equivalence of additivity and strong valuativity, as noted in Theorem

A.2(3), yields the following.

Proposition A.7. When R is Z, Q, or R, one has

Π(ý, Σ) = I(ý, Σ) = I(ÿý,Σ) and Π(ý, Σ) = I(ý, Σ) = I(ÿý,Σ).

We conclude this section with another variant of the polytope algebra given in [Mor93]. Given a

complete rational fan Σ, Morelli defines rings ÿΣ (Z
ÿ) and ℒΣ (Z

ÿ) as follows. For a point ý ∈ Rÿ and

a polytope P, if ý ∈ ÿ then define ÿÿý (ÿ) = R≥0{ÿ − ý} to be the tangent cone of P at p, and if ý ∉ ÿ

define by convention ÿÿý (ÿ) = ∅. Let ÿ be the collection of cones (always centered at the origin) in

Rÿ, and let ÿΣ = {ÿ ⊆ Rÿ | ÿ∨ ∈ Σ} be the collection of cones which are duals of the cones in Σ.

Linearly extending the map ÿ ↦→ 1ÿÿý (ÿ) , we obtain a map ÿý : I(ÿZ) → I(ÿ) for any point ý ∈ Zÿ.

We then define

ÿΣ (Z
ÿ) = the subgroup generated by ÿ ∈ I(ÿZ) such that ÿý ( ÿ ) ∈ I(ÿΣ) for all ý ∈ Zÿ, and

ℒΣ (Z
ÿ) = the image of ÿΣ (Z

ÿ) in I(ÿZ).

In the paragraph preceding [BG09, Theorem 10.46], the wording is somewhat ambiguous so as to

assume implicitly that ℒΣ (Z
ÿ) is equal to I(ÿZ,Σ). We ask explicitly:

Question A.8. For which complete fans Σ is ÿΣ (Z
ÿ) = I(ÿZ,Σ) and/or ℒΣ (Z

ÿ) = I(ÿZ,Σ)?

In [FP05], the authors give examples of smooth proper toric varieties which admit no nontrivial

nef line bundles, so I(ÿZ,Σ) = Z, which gives examples of smooth fans for which both equalities in

the question fail. We will later prove Theorem A.10 which, when combined with a result of Morelli

(Theorem A.11 here), implies that for smooth projective fans Σ we have that ÿΣ (Z
ÿ) = I(ÿZ,Σ) and

ℒΣ (Z
ÿ) = I(ÿZ,Σ).

A.3. Relation to (operational) Chow rings

Let ý = Z or Q from this section onwards so that we may consider toric varieties and their (Q-)divisor

classes associated to polytopes. Let Σ be a complete rational fan and ÿΣ be its toric variety. We point

to [Ful93] for basic facts on toric varieties. Recall that a lattice polytope ý ∈ ÿZ,Σ defines a nef T-

equivariant line bundle OÿΣ
(ÿý) in ÿΣ, with the property that its divisor class [ÿý] ∈ Pic(ÿΣ) does

not change when we translate Q. See [CLS11, Chapter 6] for a discussion of polytopes and line bundles.

We collect some results of Fulton and Sturmfels.

Theorem A.9. Let Σ be a complete rational fan, and let ý•(ÿΣ) be the operational Chow cohomology

ring of the toric variety ÿΣ. Then, we have:

(1) [FS97, Theorem 3.1] The operational Chow ring is isomorphic (as a graded ring) to the ring of

Minkowski weights on the fan Σ with product structure coming from the fan displacement rule.
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(2) [FS97, Theorem 5.1] If Σ is projective, the exponential map, sending [ý] ↦→ exp([ÿý]), defines

an injection of rings IQ(ÿQ,Σ) → ý•(ÿΣ)Q whose image is the subring generated by ý1(ÿΣ)Q =

PicQ(ÿΣ). The exponential map is an isomorphism when Σ is further simplicial.

(3) [FS97, Theorem 5.2] The exponential map defines an isomorphism between IQ(ÿQ) and the direct

limit lim
−−→

ý•(ÿΣ)Q over all complete fans.

The image exp([ÿý]) of the exponential map applied to Q can be described in terms of Minkowski

weights as follows: The cone dual to a face F of Q gets weight equal to the lattice volume of F (in the

lattice of the affine span of F). For the case when ý = R, after a suitable modification of the definitions

for the ring of Minkowski weights and the exponential map above, one has a similar injective map

[McM89, Theorem 2] that is an isomorphism when Σ is further simplicial [McM93a, Theorem 5.1].

See also [Bri97].

A.4. Relation to K-rings

Let ÿ (ÿ) be the Grothendieck ring of vector bundles on a smooth complete variety X. For a smooth

complete C-variety X, the Hirzebruch–Riemann–Roch theorem gives that the Chern character map

ýℎ : ÿ (ÿ)Q → ý(ÿ)Q, defined on classes of line bundles by [L] ↦→ exp(ý1 (L)), is a ring isomorphism.

Comparing this to the second statement in Theorem A.9, one concludes that there is an isomorphism

IQ(ÿQ,Σ) � ÿ (ÿΣ)Q determined by [ý] ↦→ [OÿΣ
(ÿý)] when Σ is projective and smooth. Obtaining

this isomorphism not only over Q but over Z is the topic of this section. In particular, we prove the

following.

Theorem A.10. Let Σ be a smooth projective fan, and let ÿÿ (ÿΣ) be the Grothendieck ring of torus-

equivariant vector bundles on ÿΣ. Then, there is a ring isomorphism

ÿÿ : I(ÿZ,Σ)
∼
→ ÿÿ (ÿΣ)

determined by the property [ÿ] ↦→ [OÿΣ
(ÿÿ)] for any ÿ ∈ ÿZ,Σ. This descends to an isomorphism

ÿ : I(ÿZ,Σ)
∼
→ ÿ (ÿΣ).

Morelli proved a similar result for any smooth complete (not necessarily projective) fan; the following

theorem collects [Mor93, Theorems 5, 6, and 8]. For ý ∈ Z>0, let Ψý be the k-th Adams operation,

which is a ring endomorphism of ÿ (ÿ ) (ÿΣ) that satisfies Ψý [L] = [L⊗ý ] for L a (T-equivariant) line

bundle. For ÿ ∈ Zÿ and [E] ∈ ÿÿ (ÿΣ), let ÿ(ÿΣ, [E])ÿ be the weight m Euler characteristic.

Theorem A.11. Let Σ be a smooth complete fan.

(1) The map Iÿ : ÿÿ (ÿΣ)
∼
→ ÿΣ (Z

ÿ) ⊆ ZQ
ÿ

given by [E] ↦→
(
ÿ/ý ↦→ ÿ(ÿΣ;Ψý [E])ÿ

)
is a well-

defined ring isomorphism.

(2) The map Iÿ descends to an isomorphism I : ÿ (ÿΣ)
∼
→ LΣ (Z

ÿ).

However, in light of Question A.8, it is unclear whether this proves Theorem A.10. We conclude

with our proof of Theorem A.10 in the form of two lemmas. The proof of the second lemma uses ideas

of Morelli.

Lemma A.12. There is a surjective ring homomorphism ÿÿ : I(ÿZ,Σ) → ÿÿ (ÿΣ) determined by the

property [ÿ] ↦→ [OÿΣ
(ÿÿ)] for any ÿ ∈ ÿZ,Σ. It descends to a surjective ring homomorphism

ÿ : I(ÿZ,Σ) → ÿ (ÿΣ).

Proof. First, we show that ÿÿ is well-defined. We use the localization theorem for the torus-equivariant

K-theory of smooth complete toric varieties [Nie74, Theorem 3.2], which embeds ÿÿ (ÿΣ) as a subring

of
∏

pt∈ÿÿ
Σ

ÿÿ (pt). For each fixed maximal cone ÿ ∈ Σ, which corresponds to a point in ÿÿ
Σ

, the class

of [OÿΣ
(ÿÿ)] is sent to ÿ−ÿÿ , where ÿÿ is the vertex of P on which any functional in the interior of ÿ

achieves its minimum. That this is well-defined follows from Proposition A.4. To see that ÿÿ is a ring
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homomorphism, note that if P and Q are polytopes, then the vertex of ÿ ! ý on which any functional

in the interior of ÿ achieves its minimum is the sum of the corresponding vertices of P and Q.

For the surjectivity of ÿÿ , first note that for a complete smooth toric variety ÿΣ, the ring ÿÿ (ÿΣ) is

generated as a ring by the classes of T-equivariant line bundles [Kly84, Corollary 1] (see also [AP15,

Lemma 2.2]). If Σ is further projective, any T-equivariant line bundle is isomorphic to L∨ ⊗M for

some ample T-equivariant lines bundles L and M. Since ÿÿ surjects onto the classes of T-equivariant

ample line bundles, it suffices now to show that for a T-equivariant ample line bundle L, its inverse class

[L∨] is a sum of powers of [L] (possibly with different equivariant structures). Concretely, suppose we

have a lattice polytope ÿ ⊂ Rÿ whose normal fan Σÿ equals Σ. Let N be the number of lattice points in

P. Denoting ýÿ =
∑

ý∈ÿ ý for a subset ÿ ⊆ ÿ ∩ Zÿ, we claim that

[OÿΣ
(−ÿÿ)] =

ý∑

ý=1

(−1)ý−1
∑

ÿ⊆ÿ∩Zÿ

|ÿ |=ý

[OÿΣ
(ÿ (ý−1)ÿ−ýÿ )] as elements in ÿÿ (ÿΣ).

By multiplying [OÿΣ
(ÿÿ)], we equivalently check that

ý∑

ý=0

(−1)ý
∑

ÿ⊆ÿ∩Zÿ

|ÿ |=ý

[OÿΣ
(ÿýÿ−ýÿ )] = 0.

Here, the ý = 0 term should be interpreted as [OÿΣ
] with the trivial equivariant structure. At each

T-fixed point x of ÿΣ corresponding to a vertex v of P, the localization value of the left-hand side is zero

since [OÿΣ
(ÿ ( |ÿ |+1)ÿ−ýÿ∪ÿ )]ý = [OÿΣ

(ÿ |ÿ |ÿ−ýÿ )]ý for any ÿ ⊆ (ÿ ∩ Zÿ) \ ÿ. Finally, we note that for

ý ∈ ÿZ,Σ, the divisor class [ÿý] is invariant under translation of Q, so translation invariance is clear.

Therefore, ÿÿ descends to a map ÿ : I(ÿZ,Σ) → ÿ (ÿΣ), which is surjective because ÿÿ (ÿΣ) → ÿ (ÿΣ)

is surjective. �

Lemma A.13. The maps ÿÿ and ÿ given in the previous lemma are injective.

Proof. For [E] ∈ ÿÿ (ÿΣ), consider the function Qÿ → Z defined by

ÿ/ý ↦→ ÿ(ÿΣ;Ψý [E])ÿ for ÿ ∈ Zÿ and ý ∈ Z>0.

In order to see that this is a well-defined function, we need to check that

ÿ(ÿΣ;Ψý [E])ÿ = ÿ(ÿΣ;Ψÿý [E])ÿÿ for any ÿ ∈ Z>0.

By Lemma A.12 and because the classes of the polytopes ÿ ∈ ÿZ,Σ generate I(ÿZ,Σ), it suffices to

check that

ÿ(ÿΣ;Ψý [OÿΣ
(ÿÿ)])ÿ = ÿ(ÿΣ;Ψÿý [OÿΣ

(ÿÿ)])ÿÿ for any ÿ ∈ Z>0

for an arbitrary polytope ÿ ∈ ÿZ,Σ. This then follows from the fact that for any positive integer ℓ and

ÿ ∈ Zÿ, one has

ÿ(ÿΣ,Ψ
ℓ [OÿΣ

(ÿÿ)])ÿ =

{
1 if ÿ ∈ ℓÿ

0 otherwise.

Indeed, Ψℓ [OÿΣ
(ÿÿ)] = [OÿΣ

(ÿℓÿ)], we can identify ÿ0 (ÿΣ;OÿΣ
(ÿℓÿ)) with the vector space

spanned by lattice points in ℓÿ, and the higher cohomology of base-point-free line bundles on toric

varieties vanishes [Ful93, §3.4 & §3.5].

We now construct a map ÿÿ (ÿΣ) → I(ÿZ,Σ). By Lemma A.12, every class [E] ∈ ÿÿ (ÿΣ) is of

the form [E] =
∑
ÿ ÿÿ [OÿΣ

(ÿÿÿ
)] for some ÿÿ ∈ ÿZ,Σ. We send [E] to

∑
ÿ ÿÿ [ÿÿ] ∈ I(ÿZ,Σ). The
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construction above recovers the evaluations of
∑

ÿÿ [ÿÿ] at points in Qÿ. Because two finite sums of

indicator functions of lattice polytopes are equal if they agree on Qÿ, this map is well-defined. It is

clearly a left-inverse of ÿÿ which descends to a left-inverse of ÿ. �
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