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Abstract

We use the geometry of the stellahedral toric variety to study matroids. We identify the valuative group of matroids
with the cohomology ring of the stellahedral toric variety and show that valuative, homological and numerical
equivalence relations for matroids coincide. We establish a new log-concavity result for the Tutte polynomial
of a matroid, answering a question of Wagner and Shapiro—Smirnov—Vaintrob on Postnikov—Shapiro algebras,
and calculate the Chern—Schwartz—MacPherson classes of matroid Schubert cells. The central construction is the
‘augmented tautological classes of matroids’, modeled after certain toric vector bundles on the stellahedral toric

variety.
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1. Introduction

Let E = {1,...,n}. For § C E, we write eg for the sum of the standard basis vectors ;s €; in the
vector space RE. A matroid M on E is a collection & of subsets of E, called the bases of M, such that
every edge of the convex hull

P(M) = conv{eg | B € B} C RE

is parallel to e; — e; for some i and j in E. By definition, the coordinate sum of any point in the base
polytope P(M) is a constant integer rk(M), called the rank of M, which is equal to |B| for any B € Z.
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Figure 1. An element of Mat, ([4]) that is valuatively equivalent to zero.

The condition on the edges of the base polytope is equivalent to the basis exchange property appearing
in the work of Whitney [Whi35] that introduced matroids.

For any By, B; € 9% and any i € By \ By, thereis j € B, \ B such that (B; \ i) U j € &.

The above definition of matroids via base polytopes arose from the study of moment map images of
torus orbit closures in Grassmannians by Gelfand, Goresky, MacPherson and Serganova in [GGMS&7].
See [Kun86, Chapter 1] for an excellent historical overview of early contributions and [Ard22] and [Eur]
for snapshots of recent advances in the theory of matroids. For a general introduction to matroids, and
for any undefined matroid terms, we refer to [OxI11].

For a nonnegative integer r < n, we consider the free abelian group generated by the set of matroids
of rank r on E:

Mat, (E) := {Z eiM;

i

c; is an integer and M; is a rank rmatroid on E }

We study three equivalence relations on Mat, (E) — valuative, homological and numerical.

Definition 1.1. Let 1p(\) be the indicator function of the base polytope of M, which is the function
RE — Z defined by 1pm) (x) = 1 if x € P(M) and 1p()(x) = 0 otherwise. An element Y; ¢;M; is
said to be valuatively equivalent to zero if the function 3; ¢;1p(v,) is zero.

Figure 1 illustrates an element of Mat, ([4]) that is valuatively equivalent to zero. The valuative
group of rank r matroids on E, denoted Val,. (E), is the group Mat, (E) modulo the subgroup of elements
valuatively equivalent to zero. A homomorphism of abelian groups Mat, (E) — G is said to be valuative
if it factors through the valuative group. Many matroid invariants, including the Tutte polynomial,
the Kazhdan-Lusztig polynomial, the motivic zeta function, the Chern—Schwartz—MacPherson (CSM)
cycle and the volume polynomial of the Chow ring, turn out to be valuative. See [AFR10; AS23; Ard22]
for extensive lists and history of the study of valuative matroid invariants.

For the homological equivalence relation, we use the augmented Bergman fan Xy of M, which is an
r-dimensional simplicial fan in RF obtained by gluing together the order complex of the lattice of flats
and the independence complex of M. For an explicit description, see Definition 5.10. The augmented
Bergman fan, introduced in [BHM*22], is a central object in the proof of the Dowling—Wilson top-heavy
conjecture and the nonnegativity of the matroid Kazhdan—Lusztig polynomial [BHM*20]. The constant
weight 1 is balanced on the augmented Bergman fan, defining a Minkowski weight [Zy] in the sense of
[FS97]. We review the definition of Minkowski weights and their identification with homology classes
on toric varieties in Section 5.2.

Definition 1.2. An element }}; ¢;M; is said to be homologically equivalent to zero if the Minkowski
weight 3; ¢;[Zw, ] is zero.

For the numerical equivalence, we use the bilinear intersection pairing

Mat, (E) X Mat,_,(E) — Z, (M,M’) — deg(M A M’),
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where the integer deg(M A M’), for a rank r matroid M and a rank n — r matroid M’ on E, is

1 if there are bases B of M and B’ of M’ such that BN B’ = 0,

deg(M AM) =
el ) {0 if otherwise.

We will identify this intersection pairing with an instance of the intersection product on the homology
of a certain n-dimensional smooth projective variety; see Theorem 1.6 and Section 7.

Definition 1.3. An element }}; ¢;M; is said to be numerically equivalent to zero if it is in the kernel of
the intersection pairing.

Our first main result states that these three equivalence relations coincide.
Theorem 1.4. The following conditions are equivalent for any n € Mat,. (E).

(1) n is valuatively equivalent to zero.
(2) n is homologically equivalent to zero.
(3) n is numerically equivalent to zero.

We establish this equivalence via the combinatorics and algebraic geometry of the stellahedron I1g
of E, which is an n-dimensional simple polytope in RF with the following equivalent descriptions.

e The permutohedron of E is the convex hull of the permutations
O, =conv{w-(1,2,...,n) | wis a permutation of £} C RE.
Writing Rgo for the nonnegative orthant, the stellahedron of E is

g = {u € R§0| there exists v € I such thatv —u € Rgo}.

This description shows that the permutohedron Il is the facet of IIg on which the standard inner
product with eg is maximized.
e The independence polytope of a matroid M is the convex hull

I(M) = conv{e; | I C B for some basis B of M} C RE.

Writing U, g for the uniform matroid of rank r on E, whose bases are all size r subsets of E, the
stellahedron of E is the Minkowski sum

n
g = Z I(U, E).
r=0

This description shows that the standard n-dimensional simplex I(Uj g) and the standard
n-dimensional cube (U, g) are Minkowski summands of the n-dimensional stellahedron Ilg.
Figure 2 illustrates the case E = [3].

We remark that the stellahedron I1g is a realization of the graph associahedron of the star graph with the
set of endpoints E; see, for example, [PRW08, §10.4]. We refer to [CD06] and [Dev09] for discussions
of graph associahedra and their realizations.!

The stellahedral fan X is the normal fan of the stellahedron Ilg. It is a simplicial fan that is
unimodular with respect to the lattice Z¥ € RE. The stellahedral variety of E is the associated smooth
projective toric variety Xg . In this introduction, all varieties will be over the complex numbers. We follow

1In [FS05; PRW08; Pos09], an n-dimensional graph associahedron is realized as a generalized permutohedron in R”*!. For the
star graph with the set of endpoints E, the stellahedron ITg and the projection of that graph associahedron to RE have the same
normal fan.
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Figure 2. The stellahedron of [3] as the sum of three independence polytopes.

the conventions of [Ful93] and [CLS11] for toric varieties. The compact complex manifold Xg is the
central geometric object behind Theorem 1.4.

Let T be the open torus (C*)¥ of the stellahedral variety Xg. The two descriptions of the stellahedron
have the following geometric consequences:

e The permutohedral variety X, the toric variety of the permutohedron Il ., admits a T-equivariant
embedding

LEZXE —>XE,

corresponding to the permutohedral facet Il . of Ilg.
e There is a birational toric morphism to the n-dimensional projective space

e XE — PE,

corresponding to the Minkowski summand /(U g) of I1g.
e There is a birational toric morphism to the n-dimensional product of projective lines

me: Xg — (PHE,
corresponding to the Minkowski summand (U, g) of I1g.

Summarizing, we have T-equivariant maps

PE (PHE.

The image of X in PE is the hyperplane at infinity P(CF), and the image of X in (PY)E is the point
oo Note that PZ and (P')¥ are equivariant compactifications of the additive group CF. In Section 3,
we observe that the stellahedral variety X is also a CF-equivariant compactification of C¥, and that
both maps to P¥ and (P')¥ are equivariant with respect to CF.

Theorem 1.5. For every integer r, the assignment M v [Zy] defines an isomorphism
Val, (E) = Hy (Xg.Z)

from the valuative group of matroids on E to the homology of the stellahedral variety of E.

Theorem 1.5 explains the coincidence of the valuative and the homological equivalence relations in
Theorem [.4. In Corollary 7.9, we use Theorem 1.5 to give a geometric interpretation of a result of
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Derksen and Fink on a combinatorial basis of the valuative group [DF10]. The restriction of [Xp] to
the permutohedral variety X is given by the Minkowski weight [Z,,], which is the constant balanced
weight 1 on the Bergman fan X, if the matroid is loopless and the constant balanced weight 0 if
otherwise. Thus, Theorem 1.5 also recovers a result of Hampe that identifies the homology of X . with
the valuative group of loopless matroids [Ham17].

Poincaré duality for Xg endows the homology of Xg with the intersection product that is dual to the
cup product on the cohomology of Xr. We identify this intersection product with matroid intersection.
Recall that the matroid intersection of matroids M and M’ on E is a matroid M A M’ on E whose bases
are the minimal members of the family

{BN B’|Bis abasis of M and B’ is a basis of M"}.

In particular, M A M’ has rank zero if and only if M and M’ have bases B and B’ that are disjoint. Let
us denote by crk(M) = n — r the corank of a rank r matroid M on E.

Theorem 1.6. The intersection product on Xg satisfies

[Zvamr]  if crk(M) + crk(M’) = ctk(M A M),
[Zm] - [Zw] = . .
0 if otherwise.

Theorem 1.6, together with Poincaré duality for Xg, explains the coincidence of the homological and
the numerical equivalence relations in Theorem 1.4. By restricting to the permutohedral variety X .,
we recover the following description of the intersection product on the homology of X ., previously
established by Speyer in [Spe(08, Proposition 4.4].

Corollary 1.7. The intersection product on X, satisfies

(2] - [Z0] = [Zyar]  iFMAM is loopless,
MM 0 if otherwise.

Recall that a realization of M over C is an r-dimensional linear subspace L € CF such that
B = {B CE | the projection CE — CP restricts to an isomorphism L — C5 }

The augmented wonderful variety Wi, is the closure of L in Xg. We show in Corollary 5.11 that the
homology class of the augmented wonderful variety in the stellahedral variety is given by

[WL] = [Zm] € Hy (XE, Z).

The intersection of W, and X, is the wonderful variety W, of de Concini and Procesi [DCP95],
which is the closure of the projective hyperplane arrangement complement P(L) N (C*)% /C* in X .
The main geometric objects behind the displayed identity and the proofs of Theorems 1.5 and 1.6 are
certain T-equivariant vector bundles on Xg which we call ‘augmented tautological bundles’. For a linear
subspace L C CE, these are T-equivariant vector bundles Q; and Sy on Xg that have the following
properties:

e The augmented wonderful variety W, is the vanishing locus of a distinguished global section of Q.
(Theorem 5.2). Consequently, the normal bundle Ny, /X is isomorphic to the restriction of Q; to
Wi, (Corollary 5.4).

e The logarithmic tangent bundle 7w, (—log dWr) of Wi, viewed as a compactification of L = Wy, \
0Wyp, is isomorphic to the restriction of Sy to Wy, (Theorem 9.2).

See Definition 4.2 for the construction of the augmented tautological bundles. By restricting these
bundles Q. and Sy, to the permutohedral variety X, one recovers the ‘tautological bundles’ Q. and
i (Definition 4.5) introduced in [BEST23].
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In general, for an arbitrary matroid M with possibly no realization over C, instead of vector bundles on
Xg we have T-equivariant K-classes [Qu] and [Sym] on Xg. These classes, which we call ‘augmented
tautological classes’, satisfy the following properties:

e If L C CF is a realization of M, then [Qy] = [QL] and [Sm] = [SL] as T-equivariant K-classes
(Proposition 4.4).

e The assignments M — [Qym] and M +— [Sv] are both valuative maps from Mat, (E) to the
Grothendieck ring of T-equivariant vector bundles on Xg (Proposition 4.7).

e By restricting [ Qy] and [Sv] to the permutohedral variety X ., one recovers the ‘tautological classes
of matroids’ [Q,] and [S);] introduced in [BEST23].

The Chern classes of augmented tautological classes relate well to independence polytopes and aug-
mented Bergman classes of matroids:

e Under the correspondence between base-point-free divisor classes on toric varieties and polytopes
[CLS11, Section 6.2], the first Chern class ¢ (Qw) of [ Qm] corresponds to the independence polytope
I(M*1) of the dual M+ of M.

e The top Chern class ¢,,—-(Qm) N [Xg] of [Qm] is the augmented Bergman class [Zy].

The augmented tautological classes behave particularly well with respect to the following exceptional
isomorphisms between the Grothendieck ring of vector bundles K(Xg) and the cohomology ring
H*(XE,Z). For any K-class [£], we write ¢(E) for its total Chern class and [det £] for the K-class of
its determinant line bundle.

Theorem 1.8.

(1) There is a unique ring isomorphism
¢: K(Xp) > H*(Xp,2)

that satisfies ¢([det Q1 ]) = c(Qy) for any linear subspace L € CE.
(2) There is a unique ring isomorphism

{:K(Xp) — H*(Xg,Z)

that satisfies {([Ow, ]) = [WL] for any linear subspace L C CE.

Recall that the classical Hirzebruch—Riemann—Roch formula requires the use of rational coefficients.
We show that the isomorphisms ¢ and ¢ satisfy the following Hirzebruch—Riemann—Roch-type formula
with integer coeflicients. We write the sheaf Euler characteristic map and the degree map by

x: K(Xg) > Z and / :H*(Xg,Z) - Z.
XE

For each i in E, let m; : Xg — P! be the i-th factor of the map 7,z : Xg — (P)E.

Theorem 1.9. For any ¢ € K(Xg), the exceptional isomorphisms ¢ and { satisfy

1) = [ 0le) (P mioa ) = [ ) elrp0me (-1).

ieE

Despite apparent similarities, these identities are not consequences of the classical Hirzebruch—
Riemann—Roch theorem since ¢ and ¢ differ from the Chern character map. The integral classes
c(Pjep i Opi (1)) and ¢ (7}, Ope (—1))_1 play the role of the Todd class for ¢ and £. The isomorphisms
¢ and ¢ are closely related to the isomorphism K(X ) — H*'(X g»>2) in [BEST23, Theorem D] in two
different ways; see Remark 6.7.
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We prove the existence of the isomorphisms in Theorem 1.8 in Section 6 and use it to prove Theorems
1.5 and 1.6 in Section 7.1. The uniqueness of the isomorphisms in Theorem 1.8 is then derived from
Theorem 1.5 in Section 7.1. We prove Theorem 1.9 in Section 8.1.

Theorem 1.9 reveals remarkable numerical properties of the augmented tautological classes. Recall
that the Tutte polynomial of a matroid M on E, introduced by Tutte [Tut67] for graphs and by Crapo
[Cra69] for matroids, is the bivariate polynomial

TM(x,y) = Z (X _ 1)rkM(E)—rkM(S) (y _ 1)|S|—rkM(S)’
SCE

where rky: 28 — Z here denotes the rank function of M. We give the following geometric interpre-
tations of the Tutte polynomial as intersection numbers of the Chern and Segre classes of augmented
tautological classes. For a K-class [£] and a formal variable u, we set

c(&,u) = Z ci(&)u' and s(E,u) = Z s (),

4 4

where c;(€) is the i-th Chern class of [£] and s;(€) is the i-th Segre class of [£].

Theorem 1.10. For any rank r matroid M on E, we have

Tmu+1,v+1) = / c(Sm,u) V' e(Om, v -c(@ﬂ';‘OPl(l)).

XE icE

Eliminating S using Q", we get the following identity for the homogeneous polynomial

xX+y x+y+z+w)

t(x,y,z,w) = (y+2) (x +w)" Ty ( ,
y+z xX+w

Theorem 1.11. For any rank r matroid M on E, we have
— * * \V4
t(x,y, 2, w) = f $(15Ope (=1),%) - c(EP 7 Op1 (1), 3) - (4 2) - <(Qu, w).
X icE
The second formula implies the following analytic property of the Tutte polynomial.

Theorem 1.12. For any rank r matroid M on E, the polynomial ty(x,y,z,w) is a denormalized
Lorentzian polynomial in the sense of [BH20; BLP23].

See Section 8.3 for a short review of Lorentzian polynomials, and see Remark 8.9 for a strengthening
of Theorem 1.12. If M has a realization L C CE, Theorem 1.12 follows from Theorem 1.11 and the fact
that the vector bundle Q. is globally generated. For an arbitrary, not necessarily realizable, matroid M,
we establish Theorem 1.12 by constructing tropical models of augmented tautological classes and then
by applying tools from tropical Hodge theory as developed in [ADH?23, Section 5].

Remark 1.13. Consider the homogeneous polynomial

x+y x+y)

-1 r n-r
t ARG = + + + T N
(Y z,w) = (x+y) T (v +2)" (x+w) M(y+z T

In [BEST23, Theorems A and B], the authors show the identity

(X, y,zw) = /X S(]T*EOP(C}E)(—l),X) -c(gUl’E,y) . s(gl\(d,z) e(Qyp W)

ZE
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8 C. Eur, J. Huh and M. Larson

and show that this polynomial is a denormalized Lorentzian polynomial. The authors do not know
whether this result can be deduced directly from Theorem 1.11 and 1.12, or vice versa.

Specializing Theorem 1.12 by settingx = 1, y =0, z = ¢, w = 0, we obtain the following corollary,
which appeared in [Wag98, Problem 6.10] and [SSV22, Conjecture 2] in the context of Postnikov—
Shapiro algebras of graphs [PS04].

Corollary 1.14. For any rank r matroid M, the coefficients of the polynomial q" Tsi(g™", 1 + q) form a
log-concave sequence with no internal zeroes.

We conclude with the study of the geometry of matroid Schubert varieties via augmented tautological
bundles. For a realization L C CE of a matroid M, its matroid Schubert variety Yy is the closure of L
in (P')E. Matroid Schubert varieties play a central role in the proof of the Dowling—Wilson top-heavy
conjecture in the realizable case [HW17], and their intersection cohomologies are the main objects of
study in the proof of the general case [BHM*20]. Matroid Schubert varieties satisfy several features
analogous to those of classical Schubert varieties in flag varieties; see [BHM*20]. Two such features
are as follows:

e The map e : Xg — (P')F restricts to a resolution of singularities W, — Y, for any L C CF. The
boundary Wy, = Wi, \ L is a simple normal crossings divisor on Wy.

e The standard affine paving of (P')¥ restricts to an affine paving of a matroid Schubert variety Y7,
whose k-dimensional cells are

UF={p€Y|pi=001fand0nlyifi¢F},

one for each rank k flat F of M. Writing y for the homology class of the closure of U, which is
another matroid Schubert variety, we have

H.(Y,2) ~ & Zyr,

FeZ(M)

where £ (M) is the lattice of flats of M.

As mentioned before, the restriction of Sy, to the augmented wonderful variety Wy, is isomorphic to the
log-tangent bundle 7w, (—1og dWy,). This allows us to deduce the following remarkably simple formula
for the CSM classes of matroid Schubert cells in their varieties. See Section 9.2 for a brief review of
CSM classes.

Theorem 1.15. The CSM class of 11, in Yy, is the sum over all flats

csm(1p) = Z yr € Ho(Y,Z).
FeZ (M)

In particular, the CSM class of L in Yy, is effective. The analogous effectivity of CSM classes of
classical Schubert cells in their varieties was established in [AMSS].

We include an appendix that discusses notions of valuativity and polytope algebras. We mostly collect
statements from the literature, but we also give an isomorphism between a certain polytope algebra and
the K-ring of a smooth projective toric variety.

Notation

Let k be an algebraically closed field of arbitrary characteristic. A variety is an irreducible and reduced
scheme of finite type separated over k. When k = C, the singular homology groups in even degrees and
the Chow homology groups coincide for smooth projective toric varieties and augmented wonderful
varieties, so we will use the two groups interchangeably in such cases, and similarly for the singular
cohomology ring and the Chow cohomology ring. We denote by (-, -) the standard pairing on k% or ZE.
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2. Torus-equivariant geometry preliminaries

We collect some facts about the torus-equivariant K-ring and torus-equivariant Chow ring of a smooth
projective toric variety. The reader may skip this section and refer back as needed.

Let X5 be the smooth projective toric variety with fan , and let T = GE be the torus with character
lattice Char(T) = ZE. Suppose that T acts on Xs via a surjective map of tori with connected kernel to
the dense open torus of Xs so that the corresponding map of cocharacter lattices is ZF — ZF /(lin NZF)
for some linear subspace lin ¢ ZF ® R. These data are encoded by the n-dimensional complete fan X in
RE with lineality space lin such that X /lin = X.

2.1. Localization theorems

Let K7 (Xx) be the T-equivariant K-ring of Xs, the Grothendieck ring of T-equivariant vector bundles
on Xz. Let K(Xyz) denote the K-ring of X5. By forgetting the equivariant structure, one has a surjective
map K7 (Xz) — K(Xy). By taking the T-equivariant sheaf Euler characteristic, one has a K7 (pt)-
module homomorphism y” : K7 (Xs) — K7 (pt). We identify K7 (pt) = Z[Char(T)] with the Laurent
polynomial ring Z[T*!, ..., T!], where T; is the standard character of i € E under the identification
Char(T) = ZF.

Let A7 (Xx) denote the equivariant Chow ring of Xs, as defined in [EG98], and let A*(Xx) denote
the Chow ring of Xy. Similar to the K-rings, one has a surjective map A7.(Xs) — A®(Xx) and a

A (pt)-module homomorphism / T A% (Xz) — A7 (pt). We identify AJ. (pt) with the polynomial ring
Z[t,...,t,]. Let f: A*(Xy) — Z be the (nonequivariant) degree map.

Let (k) denote the set of cones of dimension k of . For each maximal cone ¢ of X, we have a map
Kr(Xs) — Kr(pt,) = Z[Tlil, ..., T*1] given by pulling back to or localizing at the corresponding

fixed point pt,,. Similarly, we have amap A% (Xxz) — A7.(pt,.) = Z[t1, . .., t,]. These maps can be com-
bined into maps K7 (Xz) — K7 (XL) = [1yes(n Kr (pt) and A3 (Xz) — A3 (XL) = [1yesm) AF (PV),
where XZT denotes the set of T-fixed points of Xx. For a character v = (vy,...,v,) € ZE . we denote

TV =T, ---T," and t, = vit| + - - - + V,ut,,. Then we have the following localization theorem.
Theorem 2.1. Let X5 as above. Then

(1) [VVO03, Corollary 5.11] The restriction map Ky (Xs) — Kr (XET ) is injective, and its image is the
subring of [ 1 5 ex (ny Kr (pt) given by

fo—fo=0mod 1 =TV
whenever dimo No’ =d — 1 withR(o N o’) =kerv

fe [] &y

oe€X(n)

Moreover, the map K1 (Xs) — K(Xy) forgetting the equivariant structure is surjective, with kernel
Ik equal to the ideal generated by f — f(1,...,1), where fis a global Laurent polynomial, that is,
fo for all o € (n) equals a common Laurent polynomial.

(2) [Pay06] The restriction map A% (Xs) — A} (Xg ) is injective, and its image is the subring of
H(TEZ(n) A;‘ (pt) glven by

fo — for =0 mod 1,
whenever dimo No’ =d — 1 withR(o- N o’) =kerv

fe [] Arm

oeX(n)
Moreover, the map A}.(Xs) — A®(Xx) forgetting the equivariant structure is surjective, with kernel

1A equal to the ideal generated by f — f(0,...,0), where f is a global polynomial, that is, f, for
all o € X(n) equals a common polynomial.
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10 C. Eur, J. Huh and M. Larson

2.2. Duality, rank, symmetric powers, exterior powers, Chern classes and Segre classes

We now recall the description of several operations on the equivariant K-ring of a toric variety in
terms of localization at fixed points. Let [£] € Ky (Xsz) be an equivariant K-class, localizing to
ke —_— ) . )
[€le = 2,7 agiT™ at a torus-fixed point corresponding to a maximal cone o € Z(n).
There is a ring involution Dg on K7 (Xy) defined by sending the class of an equivariant vector
bundle to the class of the dual vector bundle. The dual class Dk ([£]) := [€]Y has

ko

Di([EDg = ) ae T4,

i=1

There is a corresponding ring involution, denoted D 4, on A%, (Xy), defined by D 4(t;) +— —t; at each
torus-fixed point. This multiplies by (—1)* on A% (Xx). These involutions descend to K (Xx) and A® (Xy).
As toric varieties are integral, every coherent sheaf on a toric variety has a rank. As the rank is
additive in short exact sequences, this defines a ring homomorphism rk: K7 (Xs) — Z, which descends
to K(Xz) — Z. The rank of [£] is Zlk:”l ao.i, which is independent of the choice of o.
The operation that assigns to each equivariant vector bundle its j-th symmetric or exterior power
extends naturally to K (Xx) and K7 (Xyx). Explicitly, with u a formal variable, we have that

oo k oo k Ao i
. . s ) . s 1 o
j J— Mo i \doi j J—

;:0 N [E]ou! = |i:1|(1 + TMoiy)%oi and JE:O Sym/ [E],u’! = ,|-=1| (1 _Tmmu) .

The function that sends a vector bundle to its equivariant total Chern class extends to a function
¢’ Kr(Xz) — A%(Xz), which is multiplicative in the sense that ¢’ (€ + F) = ¢’ (€) - ¢" (F). The
equivariant Chern polynomial ¢’ (£, u) is the polynomial [ (£) + ¢ (E)u + ¢l (E)u? +- - -, where u is
a formal variable. Define similarly the Chern polynomial ¢(&,u) € A®*(Xy)[u]. The equivariant total
Chern class localizes to

0 ke
CT (g’ M)O' = Z CJT (((:)a'u/ = 1_[(1 + utmmi)a‘“i,
J=0 i=1

where u is a formal variable.

If £ is a vector bundle on X5, then &£ has a Segre class in A®(Xsx), characterized by the property that
c(€)s(€) = 1. We define the equivariant Segre class to be the inverse of ¢’ (€) in A3 (Xs)[cT (€)7'].
Because ¢(€) is a unit in A®(Xy), there is a natural map A3 (Xz)[c” ()'] — A®*(Xx), and the image
of sT (&) is s(€). Define the (equivariant) Segre polynomial in the same way as the (equivariant) Chern
polynomial.

3. Stellahedral varieties

We describe the stellahedral fan Xg and its variety Xg in several different ways, and we record several
useful properties of Xz we will need. The closely related permutohedral fan X, and its variety X ;. will
often appear and aid the discussion.

3.1. The stellahedral fan via compatible pairs

We describe the stellahedral fan in terms of its cones. We start by describing the closely related
permutohedral fan, which both serves as a motivation for and appears as a substructure in the stellahedral
fan.
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Definition 3.1. The permutohedral fan £, is a fan in R¥ /Re that consists of cones o & for each chain
F : F| € --- C Fy of nonempty proper subsets of E, where

O g =cone{er,,...,ex,}.

Here, we denoted u for the image of u € RE in RE /Reg.

That this definition of X, is equivalent to its description as the normal fan of the permutohedron
I, =conv{w-(1,2,...,n) | wis a permutation of £} C RE is a standard fact about Coxeter reflection
groups; see for instance [BB0O5]. We now give a similar description of the stellahedral fan X in terms
of ‘compatible pairs’ as given in [BHM*22, §2].

Definition 3.2. A pair (I, F) consisting of asubset/ C E andachain & : F| C F» G --- ¢ Fy of proper
subsets of E is said to be compatible if I is a subset of every element of . We write I < & in this case.

Both the subset / and the chain # are allowed to be empty. In contrast to the permutohedral case, the
empty set is allowed to be an element in the chain &. Make the following a definition.

Proposition 3.3. [BHM*22, Proposition 2.6] The stellahedral fan X is a simplicial fan that consists
of cones o <z for each compatible pair I < &, where

o1<g =conefe; | i € I} +cone{-ep\r | F € F}.
We denote the rays of the fan Zg by
pi = 0(iy<p = cone(e;) foreachi € E and pg = op<(s) = cone(—eg\s) foreach S ¢ E.

The proposition gives the following corollary concerning the stars of the stellahedral fan. Recall that
for a fan ¥ in RE, the star of a cone o € X is a fan, denoted star, X, in RE /Ro whose cones are the
images of the cones in X containing o .

Corollary 3.4. [BHM*22, Proposition 2.7] Let I = {iy,...,i;} < F : F| € --- C Fy be a compatible
pair, and by convention set Fyy) = E (so F| = E if F is an empty chain). Then, the isomorphism

k
RE /Roy < = RE/R{er,,. ... —epypys ..o —epyp b = ROV [ [RFV Rep,,

i=1
induces an isomorphism of fans

k

starg; 5 XE = Xp\1 X HEFM\F,»‘
i=1

Example 3.5. When (I,%) = (0,{0}) corresponding to the ray pp = cone(—eg), we have that
stary, Zg =~ X . In particular, we recover that the permutohedral variety X . arise as the T-invariant
divisor of X corresponding to the ray pg, as noted in the introduction. From the map Z¥ — ZF /Zp =
ZF |Zeg, we have that the open dense torus of X . is the projectivization PT = (k*) /k* of T.

We will often use Example 3.5 to recover or relate the ‘augmented’ structures on stellahedral varieties
to the ‘nonaugmented’ versions on permutohedral varieties. We will use the more general star structures
of the stellahedral fan in §4.2, where we study the restriction of augmented tautological bundles to
various torus-invariant subvarieties of the stellahedral variety.
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3.2. Refinements and coarsenings

We record how the stellahedral fan Xg arises as either a refinement or a coarsening of certain fans.
First, we note that X is an iterated stellar subdivision of coarser fans in two distinguished ways. Both
statements can be verified via Proposition 3.3.

Proposition 3.6. Let X be the stellahedral fan of E. The following hold.

(a) Let X, be the fan in RE whose maximal cones are the cones generated by the cardinality-n subsets
of {e1,es,...,e,,—eg}. Then Zg is obtained from %, by performing the stellar subdivision of all
maximal cones of X, that contain the vector —eg, then performing the stellar subdivision of the
inverse images of codimension 1 cones that contain —eg and so on.

(b) Let (£1)F be the fan in RE whose maximal cones are the 2" orthants of RE. Then X is obtained
from (21)F by performing the stellar subdivision of the negative orthant, then performing the stellar
subdivision of the codimension-1 faces of the negative orthant and so on.

Since the toric varieties of 2 and (X)¥ are PF and (P')¥, respectively, the above two descriptions
of X can be rephrased to say that the stellahedral variety Xg is an iterated blow-up along smooth
centers from PZ and from (P')®. The two maps 7z : Xg — PF and 712 : Xg — (P')F are the blow-
down maps. Fori € E, let 7;: Xg — P! be the composition of 7,z with the projection to the i-th P!.
These maps from Xg to projective spaces give the following distinguished divisor classes on Xg.

Definition 3.7. With notations as above, we denote
« = g (hyperplane class of PE) and y; = x} (hyperplane class of Ph).

We now describe the stellahedral fan g as a coarsening of a permutohedral fan. This description of
g will be useful for our discussion of the tropical geometry of augmented wonderful varieties in §5.3
and for producing a basis for Xg in §7.2.

Denote by E = E L {0}. Let p be the isomorphism of lattices

p: ZE/ZeEﬁZE given by (ag,ay,...,a,) — (a; —ao,...,a, — aop).

That is, for § C E we have es — egif 0 ¢ S and eg — —eg\s if 0 € S. To show that the stellahedral fan
Y of E is the image under p of a coarsening of the permutohedral fan X5 of E, we use the following
notions from [DCP95; FY04] in an equivalent formulation given in [Pos09, §7]. A building set is a
collection G of subsets of E such that {i} e Gforanyi € E, and if Sand S’ are in G with SN S’ # 0, then
s0is SUS’. The nested complex N of a building set G is a simplicial complex on vertices G whose faces
are collections {Xj, ..., X} C G such that for every subcollection {Xj,, ..., X;,} with £ > 2 consisting
only of pairwise incomparable elements, one has Uf.: 1 Xi; ¢ G. When E € G, the set of cones

{cone{éxl,...,éxk} QRE/ReE | {X1,..., Xk} C Q\{Q,E}afaceof./\f}

is a smooth fan in RE /Reg that coarsens the permutohedral fan X .

Proposition 3.8. The collection G = {SUO0 | S C E} U E is a building set whose fan projects
isomorphically onto the stellahedral fan Xg under p.

Proof. Both the facts that G is a building set and that the faces of A are {S; U0, ..., S, U0} U I, where
0CS C---CSxy CEand 0 C I C Sy, are straightforward to check. The rest of the proposition
follows from Proposition 3.3. O
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3.3. Polymatroids

A standard correspondence between polyhedra and divisors on toric varieties [CLS11, §6.2] (see also
[ACEP20, §2.4]) states the following: For a lattice polytope Q and the toric variety Xo defined by its
normal fan X¢, the base-point-free torus-invariant divisors on X¢ are in bijection with deformations
of O, which are lattice polytopes whose normal fans coarsen £p. We show that specializing this to the
stellahedral variety Xg gives a correspondence between the set of base-point-free divisor classes on Xg
and a family of polytopes called ‘polymatroids’ introduced in [Edm70].

Definition 3.9. For vectors u,v € RE letus denote u > vifu—v € Rgo. A polymatroid on E is a
nonempty polytope P in the nonnegative orthant Rgo satisfying the following two properties:

(D) Ifv e Rgo such that u > v for some u € P, thenv € P.

(2) Forany v € REO, every maximal u € P such that u < v has the same coordinate sum (u, eg).

An integral polymatroid is a polymatroid whose vertices lie in ZF.
We will use the following ‘strong normality’ of integral polymatroids in the proof of Proposition 3.16.

Proposition 3.10. [Wel76, Chapter 18.6, Theorem 3] Let Py, ..., Px be integral polymatroids on E.
Then any lattice point q € ZF in the Minkowski sum Py +- - -+ Py is a sum py +- - - + px of lattice points
pi € P; NZE. In particular, an integral polymatroid P is a normal polytope.

This property of polymatroids implies that the closure of the image of the map
T — PIPNZE =t o PIPEOZEIT Gefined by £ ([ mep,nzts - - - [ Imeponze)

is isomorphic to the toric variety of the normal fan of P + - - - + P. For a general discussion of normal
polytopes in toric geometry, see [CLS11, Chapter 2].

To relate polymatroids to base-point-free divisor classes on Xg, we will need the following equivalent
description of (integral) polymatroids. A function f: 2F — R with £(0) = Ois said to be nondecreasing
and submodular if

(nondecreasing) f(S) < f(S’) whenever S C §’ C E, and
(submodular) f(SUS") + f(SNS") < f(S)+ f(S") forall S,S’ C E.

Theorem 3.11. [Edm70, (8)] Polymatroids on E are in bijection with nondecreasing and submodular
functions f: 2E — R with f(0) = 0. The bijection is given by
apolytope P +—  f:2F — R where fp(S) = max{(u,es) | u € P} for S CE
afunction f:2F 5 R +— P={uce Rgo | (es,u) < f(S) forall S C E}.

A polymatroid P is integral if and only if the function f is Z-valued. >

Example 3.12. The independence polytope (M) of a matroid M is an integral polymatroid where the
function f is the rank function rky. It follows that rky; is a nondecreasing and submodular function.
Conversely, the rank function characterization of matroids implies that an integral polymatroid contained
in the Boolean cube [0, 1] is the independence polytope of a matroid. See [Edm70] for details.

The following proposition implies that, up to translation, polymatroids are exactly the deformations
of the stellahedron.

2In some previous works [DF10; CDMeS22], the terminology ‘polymatroid’ refers to associating the polytope P = {u € Rfo |
(es,u) < f(S) for all proper S ¢ Eand (eg,u) = f (E)} to a nondecreasing and submodular function f with f (0) = 0. Our
polytope P is equal to {u € Rfo | there exists v € P suchthat v —u € Rfo }, and hence contains P as a face.
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Proposition 3.13. For a proper subset 0 C S C E, let Dg be the torus-invariant divisor on Xg
corresponding to the ray op<(sy = cone(—eg\s) of . Let [Dg] be its divisor class in AY(Xg). Then
the map defined by

(integral polymatroid P defined by f: 2 — Z) Z F(E\ S)[Ds] € A'(XEg)
0CSCE

is a bijection between the set of integral polymatroids on E and the set of base-point-free divisor classes
on XE.

For the proof, we will need the following consequence of Proposition 3.3, which follows from
[CLS11, Theorem 6.1.7].

Corollary 3.14. (cf. [BHM" 22, Proposition 2.10]) A collection of rays in g is a minimal collection of
rays that do not form a cone in X if and only if the collection is either

{pi,pstfori¢ S CE or {ps, ps'} for incomparable S,S’ C E.

Proof of Proposition 3.13. We begin by noting that the primitive vectors in the rays of g are {e; |
i € E}U{-eg\s | S ¢ E}. Because the cone spanned by {e; | i € E} is a maximal cone in Xg, the
presentation of the class group A' (Xg) in terms of torus-invariant divisors, as given in [CLS 11, Theorem
4.1.3], implies that any divisor class [D] € A!(Xg) can be written uniquely as [D] = Y2sce cs[Ds]
with cg € Z. Let us set cg = 0 by convention, and let D = } g csDs be a divisor. We now need
check that the line bundle Ox,, (D) of the divisor D on X[ is base-point-free if and only if the function
f:2E — Z given by S - cg\s defines a polymatroid on E.

For this end, we will use a criterion for base-point-freeness on toric varieties in terms of piecewise
linear functions. Following the conventions of [CLS11], the divisor D = 3 gcg csDs corresponds to
the piecewise linear function ¢ on RE defined by assigning the value 0 to e; for i € E and the value
—cs to —eg\s for § C E. Applying a criterion for base-point-freeness [CLS11, Theorem 6.4.9] to the
stellahedral fan along with Corollary 3.14, one has that Oy, (D) is base-point-free if and only if the
following two conditions are satisfied:

(1) Fori € E and a subset S C E not containing i, one has
vp(e; —er\s) > ¢p(€) +¢p(-er\s).

Equivalently, since i ¢ S implies that e; — eg\s = —eg\(su;), noting that ¢p(e;) = 0 and
—¢p(—egp\s) = cs gives

Csui < Cs.
(2) For incomparable proper subsets S and S’ of E, one has
¢p(—ep\s —ep\s) > ¢p(—ep\s) + op(—ep\s).

Equivalently, since —eg\s — eg\s' = —€g\(sns’) — €E\(sus’), and because ¢p is linear on
cone{—eg\(sns’), —€E\(sus’) }, noting that —pp (—eg\s) = cs gives

csns’ +Csus < cs +Csr.

Here, note that when SU S’ = E, our convention that cg = 0 is consistent because ¢p (—eg\g) =

YD (0) =0.
In terms of the function f: § +— cg\s, the first condition is equivalent to f(S) < f(S U i), and the
second condition is equivalent to f(SUS’) + f(SNS’) < f(S) + f(S). m|
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For an integral polymatroid P,let Dp = 3 g f(E \ S)Dg be the corresponding divisor on Xg. Let
Xp be the toric variety of the normal fan of P, considered as a fan in RE so that Xp is considered as a
T-variety. Note that Xp may have dimension less than n, so the action of 7 on Xp may have a nontrivial
kernel.

Example 3.15. For any matroid M, we have that the divisor D) induces a toric morphism Xg —
X7 (m)- In particular, we recover the two distinguished maps from Xg in the introduction: When P is the
simplex /(U; g), whose normal fan is %,, we obtain the map 7g: Xgp — PE. When P is the Boolean
cube 1(U,,.g), whose normal fan is (Z;)Z, we obtain the map 7= : Xg — (P')E.

3.4. Orbit-closure in a flag variety and additive-equivariance

We have so far described the structure of Xg as a toric variety, that is, in terms of the T-action. Here,
we show that Xz admits an action by a larger group that contains the additive group GE. Let us begin
with the one-dimensional case.

The multiplicative group G,, acts on the additive group G, viat-b =tb fort € G,, and b € G,. Let
G = G, < G, be semidirect product. Concretely, the groups G,,, G,, and G embed into G L, as follows.

. t 0 1b t b
G, Gy, G — GL, via tr—)(o 1), br—)(o 1), (t,b)r—>(0 1).

We denote by V = k? the resulting G-representation. The group G thus acts on P(V) = P! by
(t,0) - [x : y] = [tx + by : y]

with two orbits {[x : 1] | » € k} ~ A' and {[1 : 0]}, denoted {co}. When we treat P' as the
toric variety of the fan in R! consisting of the three cones {Rxo, R<o, {0}}, the orbit A} is identified
with the toric affine chart of P! corresponding to Rs. In particular, letting D [0,1] be the toric divisor
on P! corresponding to the interval [0,1] ¢ R!, we may identify V = H°(P', Oz (1))" by giving
T-linearization of Opi (1) as Opi(e0) = Op1 (Do 17)-

Let us now show that the stellahedral variety Xp admits a GF-action. We do this by realizing Xg
as a GF-orbit closure in a flag variety. While there are several alternate ways to exhibit the GF-action
on Xg, as listed in Remark 3.18, the orbit closure description will be useful for defining the augmented
tautological bundles in the next section.

From the G-action on V = k?, we endow VF ~ Kk @ kF with the GF-action given by (t,b)
(dlag(t) dlagI(b))' Let A: k¥ — VE be the diagonal embedding.

Proposition 3.16. Let & = {L| C --- C L;} be a flag of linear subspaces of kF realizing matroids
My, ..., My, and let P be the polymatroid I(My) + - - - + I(M¢). Then the GF -orbit closure of [A(Z)]
in FI(dim(Ly), ..., dim(L¢); VE) is identified with Xp.

Proof. We first consider the case when £ = 1, so we are taking the G -orbit closure of [A(L;)] in
Gr(dim(L); VE). Let A be a matrix whose rows form a basis for Ly, so the rows of (A A) form a basis
for A(Ly). Then the G¥-action on Gr(dim(L1); V) is given by

b [(4 A)]z[(A A) (diag(t) dia%(b))t]z[((t_'_b)A ).

This implies that the T-orbit closure coincides with the GE-orbit closure.

The normalization of T - [A(L;)] is a toric variety, so it is defined over Spec Z. We may therefore
consider the moment polytope of its complexification, which is given a polarization via the Pliicker
embedding of the Grassmannian. The vertices of the moment polytope are given by the T-weights of the
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nonzero maximal minors of (A A), where T acts by scaling the first n columns. Every nonzero maximal
minor of (A A) is given by a subset S of the first # rows and a subset S, of the second n rows such that
S1 U S, is a basis for M. The T-weight of this minor is eg,, so the moment polytope is /(My).

Let S be the set of nonloops of M. The vertices of /(M) generate the lattice ZS, which implies that
the character lattice of the embedded torus in the normalization of T - [A(L1)] is Z5. Every lattice point
in (M) is a vertex, so the restriction map H°(Gr(dim(L,); VF); O(1)) — H(T - [A(L})], O(1)) is
surjective. By Proposition 3.10, T - [A(L1)] is projectively normal and therefore normal, so T - [A(L})]
is isomorphic to Xj ;).

We now treat the general case. There is an embedding FI(dim(L;),...,dim(L;);VE)
I—[f;l Gr(dim(L;); VF) and the computation above implies that the 7-orbit closure of [A(Z)] is also
the GF-orbit closure. By Proposition 3.10, the Segre embedding of 7 - [A(L)] corresponds to the
Minkowski sum of polytopes (with the complete linear series), which implies that the moment polytope
of T - [A(Z)] is P. Using that P is a normal polytope, we get that T - [A(&Z)] is isomorphic to Xp. O

The flag of matroids realized by a general full flag & = {L; € L, € --- € L,, = kE} over an infinite
field k are exactly the uniform matroids Uy g, ..., U, g. Since the stellahedron Il is the Minkowski
sum [ (U g) +-- -+ I(Uy g), we have the following corollary.

Corollary 3.17. The GE -orbit closure of a general full flag of linear subspaces Z, viewed as a point in
Fi(1,...,n; VE) via A, is identified with Xg. In particular, X has the structure of a GE-variezy.

Remark 3.18. With P! as a G-variety described above, G acts on (P')F with 2" orbits. In §3.2,
we described X as the iterated blow-up of the strict transforms of the proper G -orbit closures in
increasing order of dimension. The functoriality of the blow-up then gives Xz a GF-action, and the
blow-down map Xz — (P')¥ is GF-equivariant.

Alternatively, one notes that PZ, viewed as the projective completion P(k* @ k) of k%, is a GF-
equivariant compactification of k with the obvious action of G¥. The proper G -orbit closures in P¥
are then exactly the coordinate subspaces of P¥ contained in the hyperplane at infinity P(k*) € PZ. In
§3.2, we described X as the iterated blow-up of the strict transforms of these proper GZ-orbit closures
in the increasing order of dimension. Again, the functoriality of the blow-up gives Xz a GF -action with
an equivariant blow-down map Xz — PE.

Lastly, one may also appeal to [AR17, Theorem 3.4 & 4.1] to show that any toric variety Xp of the
normal fan X p of a polymatroid P on E admits a GE -action that is compatible with the torus-action: One
verifies that {—e; | i € E'} form a ‘complete collection of Demazure roots’ of X p as defined in (loc. cit.).

4. Augmented tautological bundles and classes
4.1. Well-definedness

We now construct the augmented tautological bundles and augmented tautological classes. Recall the
notation V& = kF @ kE. Recall that for any polymatroid P (such as an independence polytope), one
has a T-equivariant map Xg — Xp because the normal fan Xp coarsens Xg. Let us prepare with the
following trivial case.

Lemma 4.1. Consider the map Xg — Gr(n; V) obtained as the composition of X — X1 (Up.pp) With
the map Xy, ) — Gr(n; VE) given by setting £ = 1 and Ly = kF in Proposition 3.16. The pullback
to Xg of the tautological subbundle S on Gr(n; VF) is isomorphic to Pk 7; Opi (=1), equipped with
the unique T-linearization that is trivial on the GF -orbit AF C Xg.

Proof. By construction, the pullback of S to X is a subbundle of (’);‘;ﬁ_”, and P, . 7} Opi (—1) (with
the unique T-linearization that is trivial on A¥) is a subbundle of (9;‘3‘22" whose fiber over any point
in A is the diagonal A (kF). It follows from the construction of the map Xz — Gr(n;VF) that the
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pullback of S has the fiber over any point of AF equal to A (kF); the result follows because we may
check whether two subbundles of (’)@2" are equal on a dense open subset.

Alternatively, we had given Op: (l) the T-linearization as the line bundle Opi (D19, 17), which is
trivial on the G-orbit A of P(V). This resulted in the identification of V with H°(P!, Opi(1))V. Since
1(Uyg) = [0,1]1%, we find that (P')E =~ X;u, .,y — Gr(n;VE) is the map induced by the E-fold
product of the injection of vector bundles Opi (-1) — Op1 ® V. O

Given a linear subspace L C k£, we now construct vector bundles fitting into a short exact sequence
that is modeled after 0 — L — k¥ — kE/L — 0. Because we would like at least one of the vector
bundles to be globally generated, the vector bundles Sy, and Qj, will be defined so that they fit into the
short exact sequence 0 — S — @, 170z (1) = Qp — 0 with @, 77 Opi (1) in the middle
instead of @ie g T Op1(—1). As a result, when we define the dual bundle QZ, we are led to consider
the orthogonal dual L* = (kf /L)Y C k¥ of the realization L C k¥ of a matroid M, which realizes the
dual matroid M*.

Definition 4.2. Let L C k% be a realization of a rank  matroid M on E. Setting £ =2 and L; = L+ C
L, = kE in Proposition 3.16 supplies us with a map

XE — XI(ML)+I(U",E) — Fl(}’l —r,n; VE)
Define the augmented tautological bundles Sy, and Qj by

Q) = the dual of the pullback to Xg of the tautological rank n — r subbundle of Fi(n — r,n; vE )

St = the dual of the quotient bundle @ nO(-1)/9j.
ieE
That Q) is a subbundle of @), 77 O(-1) follows from Lemma 4.1 and the fact that Proposition

3.16 supplies us with a commuting diagram

X[ (Upp) > Gr(m;VE)

1 f

Xg — X1, p)+1me) — Fl(n—r,n;VE)

l l

Xrmey —— Gr(n—r;VE).
Remark 4.3. By construction, we have a short exact sequence of G -equivariant vector bundles
0—S8L— @ﬂfopl(l) — Q1 — 0,
ieE
which, when restricted to the GF-orbit AZ, is canonically identified with
0> 0L - O @kE - 0, @ KE/L — 0.

For arbitrary matroids M, we construct (T-equivariant) K-classes [Syv] and [Om] on Xg. By
Theorem 2.1.(1), the T-equivariant K-ring of X is identified with a subring of the product ring
[z ) Z[T*, ..., TF']. So we will specify these classes by specifying their localization values at each
torus-fixed point indexed by a maximal cone of Zg.

By Proposition 3.3, the maximal cones of Xg are in bijection with compatible pairs I < &, where
0 Cc I C E and & is a (possibly empty) maximal chain of proper subsets of E containing /. For a
chain & containing I, write % /I for the new chain of subsets of E \ I obtained by removing I from
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each subset in the original chain. A maximal chain # : 0 € F; C --- C F,_; orders the ground set by
Fi <F,\F| <--- < E\ F,_1, and for each matroid M on E we denote:

e Bg (M) the minimal basis of M under the lexicographic ordering, and
e B¢ (M) the complement of Bz (M) in the ground set of M.

Proposition 4.4. For a matroid M on E, the augmented tautological classes defined as

[Smlr<# =1km (1) + Z 7' and

L
lEB(;/](M/I)

[Qulics = Il —tku(+ > T
ieBS , (M/I)

are well-defined T-equivariant K-classes on Xg. Moreover, if L is a realization of M, then [S1] = [Sm]

and [QL] = [Qm].
Proof. First, we check that [Qy] = [Qm]. Then taking the case L = {0} gives that

[@”?Opl(l)hg% = |I]+ Z 7.

icE ieE\I

As [Sp]+ QL] = [P g i Opi (1)], this implies that [Sz] = [Sm].

Let L C kF be a subspace of dimension r. Note that the rank n — r tautological subbundle S on
Fl(n - r,n;VE) is pulled back from the forgetful map Fi(n —r,n;VF) — Gr(n — r; VE). The image
of the T-fixed point on Xg corresponding to a maximal compatible pair I < & is a T-fixed point p of
Gr(n —r; VF) such that every nonzero Pliicker has weight equal to the vertex of I(M+*) on which any
functional in the interior of o< attains its minimum, which is e BS,, (M/I)- Then

[Slp =1l -tkm(D)+ > Tie Kr(p).
ieBg  (M/I)

As pullbacks commute with each other, this implies that [Q]];<z = [S], = [I| - tkm(J) +
ZiEB;H o) Ti» so applying D gives that [Qy] = [Qwm]. In particular, it gives the claimed formula for
[(Diee 71 Op (D] = [Q03]-

Now, we check well-definedness. As [Sm] + [Om] = [@i cg T Op1 (1)], it suffices to check that
[Sm] is well-defined. There are two types of codimension 1 cones in Xg. The first type is given by
a compatible pair I < & where I = F) and there is some ¢ such that Fy.1 \ Fy = {i, j}. This cone
is contained in the kernel of the functional e; — e;. Let 07<g and o7<g, be the two maximal cones
containing o7 <&; they are obtained by inserting either Fp Ui or Fy U j into % . Because the normal fan
of I(M™) coarsens X, the vertices of /(M) that functionals in the interiors of o <z, and oy <g, attain
their minimum on are either identical or differ by an edge. Because o7<%, and o7<g, have the same ‘I,
this edge must be parallel to e; — e;, and so the symmetric difference of Bg ;;(M/I) and Bg,;; (M/I)
is either {7, j} or 0. This implies that, along oy <, [Sm] satisfies the condition of Theorem 2.1.

The second type of codimension 1 cone is given by a compatible pair I < F when I U j = Fj, which
is contained in the kernel of e;. Then the maximal cones containing o <& are o7y < and 0 &, Where
F is obtained by adding I to % . Then a similar argument to the first case shows that B /1uj(M/1TU )
and Bg ; (M/1) either coincide or differ by {j}. O

These augmented tautological bundles and classes are related to the nonaugmented tautological
bundles and classes introduced in [BEST23] as follows. Endow (’);‘?5 with the inverse T-equivariant

structure, that is, (1, ...,t,) - (x1,...,X,) = (tl_lxl, e t;lxn).
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Definition 4.5. Let L C k” be a realization of a matroid M. Then the (nonaugmented) tautological
bundles S; and Q, are the unique 7-equivariant vector bundles on X ;. that fit into a short exact sequence

0-8, =058 -9, —0,
where the fiber over the identity is identified with
0> L->kfF S KE/L 0.

One can show that the short exact sequence in the above definition is the restriction to X of the
short exact sequence 0 — Sp — P, 7Oz (1) = Qp — 0.

For each matroid M, the authors of [BEST23] define classes [S,,] and [QM] in K7(Xy). The
T-fixed points on X are in bijection with complete flags & of subsets of E. The tautological classes
are described by

[Sulz= ), T' and [Quls= ) T

i€Bg (M) ieBE (M)

In particular, these are restrictions to X, of the augmented tautological classes [Sm] and [Qm].

4.2. Basic properties

We now develop some basic properties of augmented tautological classes. These properties and their
proofs are similar to those considered in [BEST23, Section 5].

Proposition 4.6. For a matroid M, we have that [det Om| equals the K-class of the line bundle
corresponding under Proposition 3.13 to the polymatroid I(M™*).

Proof. As a T-equivariant K-class, we have from Proposition 4.4 that

[det Omlr<s = ]—[ 7!

ieBS , (M/I)

for a maximal cone o <z of . Since the vertex of /(M%) that minimizes the pairing with a vector in
the interior of o7 <& is e BS,, (M/I) the result follows.

Alternatively, by appealing to Proposition 4.7 one can reduce to the case where M admits a realization
L, in which case the diagram above Remark 4.3 implies that det Q; defines the map Xz — X;mv)
given by the line bundle Ox, (Dymv)). O

Proposition 4.7. Any function that maps a matroid M to a fixed polynomial expression involving
symmetric powers, exterior powers, tensor products and direct sums of [Sm], [Qm], [Sm]"” and [ Qm]"
is valuative and similarly for a fixed polynomial expression in the Chern classes of the augmented
tautological classes.

For instance, the proposition implies that the assignments M — ¢(Qum) and M = s(Qy,) are
valuative.

Proof. Let 72" be the free abelian group with the standard basis indexed by the subsets of E. Consider
the function

E .
Mat(E) — @ 72 given by M — Z €B,,, (M/I)-
Zg(n) or1<F €L (n)

By Proposition A.4, this function is valuative; see also [AFR 10, Theorem 5.4]. Any fixed polynomial
expression in the augmented tautological classes or their Chern classes factors through this map and is
therefore valuative. O

https://doi.org/10.1017/fmp.2023.24 Published online by Cambridge University Press



20 C. Eur, J. Huh and M. Larson

We now consider how augmented tautological classes restrict to 7T-invariant subvarieties of Xg. By
Corollary 3.4, for a (not necessarily maximal) compatible pair/ < & : F| € --- € Fy, the corresponding
T-invariant subvariety Z; < C Xg corresponding to the cone o <& is naturally identified with

k
Zi<g = Xp\1 X l_[XFiH\Fi'
i=1

This identification then induces isomorphisms

k k
Kr(Zi <) = Kr (Xpn1) ® Q) Kr (Xp,, \ ) and A3 (Zi <) = Ay (Xrn1) @ (R) Ay (Xp, 1)

i=1 i=1

Proposition 4.8. Under the above identification, we have that

k
[Smllz.s = thkm(D[Oz,_. 1 + [Smir, 1] ® 195 + Z 1267 g [SmiFs, r] ® 1°95=D " and

i=1
k

[Qumllzs = (1] = k(D) [Oz,_, ] + [Quipyi] @ 1%+ Y 120V 9 [Q @196,
i=1

In particular, when F = 0, we have that c(Sm)|z, = c(Smyr) as a class in A*(Z;) =~ A*(Xg\1), and
similarly for Om.

Proof. The fan of Zj <& is the star of o7<%, and the localization of an augmented tautological class to
a T-fixed point of Z; <& is the same as the localization to the T-fixed point of Xg at the corresponding
maximal cone of Xz . The face of I(M+*) on which functionals in the (relative) interior of o < & attain their
minimum is naturally identified with I((M|F;/I)*1) x ]—L’.‘:l P((M|F;41/F;)?b), and this identification is
compatible with the corresponding identification for I1g. As the localizations of augmented tautological
classes to a fixed point corresponding to a maximal cone of g depend only on vertex of /(M=) on which
any functional in the interior of that maximal cone attains its minimum, this product decomposition
gives the result. O

5. Augmented wonderful varieties and Bergman classes
5.1. Augmented wonderful varieties

Definition 5.1. Let L C kF be a linear subspace. With k¥ identified with the toric affine chart of Xg
corresponding to the cone og<g = Rgo of Xk, the augmented wonderful variety Wy, of L is defined as
the closure of L in Xg.

We note an equivalent description of the augmented wonderful variety, which can be deduced from
Proposition 3.6. For a flat F C E of M, let Ly = L N (k\F @ 0F). The projective completion P(L & k)
of L contains a copy of P(L) as the hyperplane at infinity, and so it contains a subspace identified with
P(Lr) for every flat F of M. Under the iterated blow-up 7z : Xz — PE, the augmented wonderful
variety W is the strict transform of P(L & k) € P(kF @ k) = P, fitting into the diagram

W ——— Xe

l |

P(L&k) — PE.
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This makes W, equal to the variety obtained by blowing up P(L @ k) at the linear spaces P(Lf) corre-
sponding to corank 1 flats of M, then blowing up at the strict transforms of linear spaces corresponding
to corank 2 flats of M and so on.

We relate augmented wonderful varieties to augmented tautological bundles as follows.

Theorem 5.2. For a linear subspace L C kE, the augmented wonderful variety Wy is the vanishing
locus of a distinguished global section of Q.

We prepare to prove Theorem 5.2 with the following lemma.

Lemma 5.3. Let Q be a vector bundle of rank k on a smooth variety X, and let L C HO(X ,Q) bea
subspace which generates Q. Suppose there exists a nonempty open U C X such that for a general
s € L, the vanishing locus V (s) is nonempty and the intersection V(s) N U is integral of codimension
k. Then V (s) is integral for a general s € L.

Proof. Once we show that V(s) is irreducible, the unmixedness theorem [Eis95, Corollary 18.14]
implies that V(is), which is of codimension k, has no embedded points, and hence is integral. To show
that V(s) is irreducible, let S be the kernel of Ox ® L —-» Q, and let A(S) be the total space of S,
which is irreducible. We consider the map 7 : A(S) — X x L — L. For s € L, the fiber 77! (s) is
isomorphic to the vanishing locus V(s). Since V() is nonempty for a general s, the map x is a dominant
map between varieties, and hence a general fiber of 7 is pure-dimensional. Now, let Z be the total space
of the restriction of S to the closed subvariety X \ U. Since dim Z < dim A(S), we see that Z cannot
contain a component of a general fiber of 7. Hence, a general fiber of r is irreducible, as desired. =~ O

Proof of Theorem 5.2. Take the vector v = (1,...,1,0,...,0) € kf @ k¥. Let us identify kE @ kE =
HY(Xg, P, m;O(1)) = (VE)V. The vector v then defines a global section of €D, 77O(1), and
hence a global section of Q;. via the surjection €, 77O(1) » Q. On the GF-orbit A* of X,
Remark 4.3 identifies the restriction of v with the section

(X1s. .o xn) € (K[x1, .. .oxa])" = HOAE, 04 @ KP).

So the image of vin H*(AF, O, ® kE /L) vanishes exactly on L. The G¥ -orbit of v is dense in k @ kE.
Hence, by GF -equivariance, the GF -orbit of the image of v in H*(Xg, Qy ) is dense in a subspace of
H%(Xg, Q) that globally generates Qy . In other words, the section v is a sufficiently general section
satisfying the conclusion of the above lemma, from which the theorem now follows. O

Corollary 5.4. Let L C kF be a linear subspace of dimension r.

(1) The normal bundle N, /x,. is identified with the restriction Qp |w, . _
(2) The K-class of the structure sheaf [Ow, | € K(Xg) equals Y15 (=1)'[\' o/l

Proof. As Wy, is a smooth subvariety of Xg of dimension r, that Wi, is the vanishing locus of a global
section of Q; implies that the Koszul complex

0> A""QY - > A?Q) — Q) — Ox,

is a resolution of Ow, . Both statements now follow. O

5.2. Augmented Bergman classes

We describe the Chern classes of augmented tautological classes and recover the augmented Bergman
class as the top Chern class. We use the language of Minkowski weights, defined as follows.

Definition 5.5. A d-dimensional Minkowski weight on a unimodular fan ¥ is a function w: X(d) — Z
such that the following balancing condition is satisfied: for every cone 7/ € Z(d — 1)

> W@ - € span(t),

T>7'
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where the summation is over all cones 7 € X(d) containing 7/, and 1\ » denotes the primitive generator
of the unique ray of 7 that is not in 7’. Write MW 4(X) for the set of d-dimensional Minkowski weights
on X.

Minkowski weights play the role of homology classes on smooth complete toric varieties in the
following sense.

Theorem 5.6. [FS97, Theorem 3.1] Let X be a complete unimodular fan of dimension m, and let Xs be
its toric variety. Then, for every 0 < d < m, one has an isomorphism

A" (Xs) 5 MW4(Z)  defined by gH(TH / g.[zT]).
X

For a smooth complete toric variety Xy, when a Chow class & € A®*(Xy) maps to a Minkowski
weight w € MW, (X) by the isomorphism in Theorem 5.6, we say that w and ¢ are Poincaré duals of
each other, which is notated by writing

EN[Xs] =w.

We compute the Chern classes of the augmented tautological classes in terms of Minkowski weights
on Xg. By Theorem 5.6, this amounts to computing how they intersect with the various torus-invariant
strata of Xg, for which we use Proposition 4.8 to reduce to understanding the Chern classes in the top
degrees. We hence begin by computing what happens in the top degrees.

Lemma 5.7. We have that

0 otherwise,

/ (Sw) 1 M=U,g
c =
Xi M 0 otherwise.

Proof. We do the case of Sy The case of Qy is similar. If M # U, g, then Sy has rank less than n, so
cn(Sm) = 0. If M = Uy, g, then Sy = P, 7 Opi (1), so we have that deg ¢, (Sm) = 1. O

/ c(Om) = {1 M =Uo.e and
XE

We will also need the analogous statement for tautological bundles.

Lemma 5.8. [BEST23, Lemma 7.3] We have that

1 M=U M=
/ c(gM):{ Le oM=L g

X, 0 otherwise,

—1)rn-1 = =
/ C(§M)={( D" M=UpigorM=Uy,

X, 0 otherwise.

We now compute the intersection numbers of the Chern classes of [Sy] and [ Qpm] with the boundary
stata. When the minimal element of & is the empty set, we recover [BEST23, Proposition 7.4].

Proposition 5.9. Let I < & : F| C F> C ... C Fr be a compatible pair, and set { = codim Z; <. As
before, we set Fyy1 = E, and when & is empty we interpret Fy as E. Let [Z; <] € A®*(Xx) be the Chow
class of the T-invariant subvariety Zj <r. Then

F1 Ccly(D), andfori=1,...,k, exactly k + rky (1) — rkpp (M) of
the minors M|F;.1 [ F; are loops, and the rest are U} f,, \F,,

/ cn-c(@m) * [Z1<7] =
XE

0 otherwise, and
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tkm(Fy) —tkm (D) = |Fi| = 1|, and fori =1,...,k, exactly
(-D€  k+rky(M) —rkp (1) — n of the minors M|Fiy1 [ F; are coloops,
/ Cnit(Sm) - [Z1<#] = and the rest are U\, \F;|-1,F;,1\F;i»

XE

0 otherwise,

where €e = n —k — |Fy|.

Proof. We do the case of Sy, the case of Qy is similar. By Proposition 4.8, we have that

k k
(S, 12125 = (Swiri1,10) ® Q) (S, o 0) € A" (K1) ® QA (X 1)

i i=1

Then Lemma 5.7 implies that the intersection number vanishes unless M|F} /I is Boolean, and each
M| F;,1/F; is either a coloop or is a corank 1 uniform matroid. Note that M|F} /I is Boolean if and only if
rkv (Fr)—tkv (1) = |Fi|—]I], and the fact that tkyg (M) = rky (1) +rkp (M| Fy /1D +- - -+ tkyvi (M| Fiyr / F)
implies that, if the intersection number is nonzero, then exactly k + rkyi (M) — rky (1) — n of the minors
M| F;,1/F; are coloops. In this case, the intersection number is (—1)€, where

e= > (IFui/Fil-1),

where the sum is over the minors such that M|F;,/F; is not a coloop. The set E decomposes into a
disjoint union of elements where the corresponding minor is a coloop, is in /, is in a noncoloop minor,
orisin Fy \ I, so

n = (k+rky(M) - rkm (1) —n) + 1] + (Z |Fivt/Fil) + (|F1] = [1]).

We also have that the number of noncoloops is n + rky (1) — rky(M). Substituting, we see that € =
n—k-— |F1 | O

We now define and derive certain properties of augmented Bergman fans and augmented Bergman
classes.

Definition 5.10. For a matroid M of rank r on E, the augmented Bergman fan, denoted Zy, is the subfan
of X consisting of cones o7 <%, where the subset / C E is independent in M and the flag & consists
of proper flats of M. The augmented Bergman class [Zp] of M is the weight

1 ifoeX
[Zm]: Zg(r) > Z  definedby o +— na ] M
0 otherwise.

[BHM"22, Proposition 2.8] states that, up to scaling, the augmented Bergman class is the unique
way to assign weights to the cones of the augmented Bergman fan that results in a Minkowski weight.

Corollary 5.11. Let M be a matroid of rank r on E.

(1) We have that c;,—(Qm) = [ZMm]. In particular, the augmented Bergman class [Zy] is a well-defined
Minkowski weight.

(2) The assignment M +— [X\] is valuative.

(3) If L C k¥ is a realization of M, then [Zym] = [WL].

Proof. The first statement follows from Proposition 5.9. The second statement follows from the first by
Proposition 4.7. The third statement follows from the first by Theorem 5.2. m}
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By restricting to the permutohedral variety, we recover properties of ‘nonaugmented’ Bergman fans
and classes as follows. Note that for a loopless matroid M, the augmented Bergman fan Xj; contains the

ray po.

Definition 5.12. The (nonaugmented) Bergman fan of a loopless matroid M on E is X,; = star,, Zy.
Equivalently, it is the subfan of X, consisting of cones o, where the flag & consists of nonempty
proper flats of M. The (nonaugmented) Bergman class [X,,] is the Minkowski weight on X, defined
by assigning weight 1 to the cones of X,.

The Bergman class of a matroid with a loop is defined to be zero. Since [Qwm] restricts to [Q, ] on

X and [Zy] restricts to [Z),], Corollary 5.11 recovers the properties of Bergman classes stated in
[BEST23, Corollary 7.11].

5.3. Tropical geometry of augmented Bergman fans

The contents of this subsection are not logically necessary for the rest of the paper but will be useful
elsewhere. We explain how augmented Bergman fans are related to tropicalizations. We point to [MS15]
for a background in tropical geometry.

Proposition 5.13. Let L C k% be a realization of a matroid M of rank r. For a general b € GE, the
tropicalization of the very affine variety Ly, = (L +b) NT equals the support of the augmented Bergman
fan Zy1.

Proof. Let E = E U {0}, and let p: ZE [Zeg — ZF be the isomorphism described in §3.2. Under the

isomorphism p, we may identify 7 with the projectivization PT of the torus T = (k*)£. We show that
the tropicalization of L;, C PT is the support of a subfan in X that maps isomorphically under p onto
the augmented Bergman fan X;.

Let L = {x € kf | A*x =0} for an (n — r) x n matrix A*. For an element b € GE, let b’ € GE be
such that L+b = {x € k¥ | A*x = b’}. In other words, the closure of L + b in the projective completion
P(kF @ k) = P(kF) is the projectivization of the linear subspace {(x,xo) € k¥ | Atx — b'xg = 0}.
Since b’ is general because b was, this linear subspace is a realization of the matroid M=Mx0onE
called the free coextension of M, whose set of bases is defined as

{BUO | Babasis of M} U {S C E | S contains a basis of M and |S| =r + 1}.

It is a classical statement [Stu02; AKO06] that the tropicalization of a linear subspace is the support of the
Bergman fan of the corresponding matroid. Thus, it suffices now to show that the support of the Bergman
fan of the free coextension is equal to that of the augmented Bergman fan under the isomorphism p.
This follows from the lemma below, which is a restatement of the discussion in [MM, §5.1]. O

Lemma 5.14. Let M be a matroid on E, and M its [free coextension matroid on E. The collection

G={FUO|F CEaflatof M} U {i € E | i not aloop in M}

is a building set on the lattice of flats of M that induces the Jfan structure on the support |Zg| € RE /Rez
of the Bergman fan of M consisting of cones

cone{e; | i € I} +cone{eryg | F € F}

for each compatible pair I < F with I C E independent in M and & a flag of nonempty proper flats
of M.

We remark that the tropicalization of (L +5) NT for a nongeneral b can differ from the support of Xy;.
Nonetheless, by G¥ -equivariance, the homology class of the closure Wy, of L + b in the stellahedral
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variety X is independent of b € k¥ . Taking b to be general, Proposition 5.13 gives an alternate proof
that [Wy ] = [Zm], for instance by [Kat09, Proposition 9.4].

6. Exceptional isomorphisms

We construct the pair of isomorphisms between K(Xg) and A®*(Xg) that were stated in Theorem 1.8.
The two isomorphisms will be related via the two involutions Dk and D 4 described in §2.2.

We begin by recalling Theorem 2.1, which identifies the T-equivariant K-ring Ky (Xg) with a
subring of the product ring [] ez, (n) Z[T#',...,T#'] of Laurent polynomial rings, and identifies
the T-equivariant Chow ring A}.(Xg) with a subring of the product ring [], ez, (n) Z[?15- .., tn] of
polynomial rings. Let A% (Xg)[[T;eg(1 + t;)"!] be the ring obtained by adjoining the inverse of the
polynomial [];c (1 +¢;) to the ring A}.(Xg). For an element f in such product rings, denote by f,- the
(Laurent) polynomial corresponding to o~ € Xg (n).

Theorem 6.1. The map {r: K7 (Xg) — AL (Xg)[[1;ee(1+ 1;,)"'] defined by sending

fo(Ti,....Ty) = fo(1+t1,...,1+1,) forany o € Zg(n)
is a ring isomorphism, which descends to a ring isomorphism ¢ : K(Xg) — A*(Xg).

Proof. Every edge of the stellahedron Ilg is parallel to either e; for some i € E or to e; — e; for
some i # j € E. Thus, the conditions f,(T1,...,T,) — for(T1,...,T,,) =0 mod 1 —T" appearing in
Theorem 2.1.(1), in the case of K7 (Xg), state that either f — for = 0 mod 1 —T; or f — for =
0 mod 1- % The latter is equivalent to stating that f — fov = 0 mod T; —7;. Under the transformation
T; — 1 +1t; defining {r, these two conditions become f-(1+1,...,1+1;) — for(1+11,..., 1 +1,) =
0 mod #; and fo(1+1t1,...,1+1,) = for(1 +11,...,1+1,) =0 mod ¢; — ¢t;, which are exactly the
conditions appearing in Theorem 2.1.(2) in the case of A} (Xg). Hence, the map {r is well-defined and
is clearly an isomorphism.

We now check that the isomorphism {7 descends to a ring isomorphism on the nonequivariant rings.
We recall from Theorem 2.1 that the kernel /x of the quotient map Ky (Xg) — K(Xg) is the ideal
in K7 (Xg) generated by f — f(1,...,1) for f a global Laurent polynomial, and that the kernel 14
of the quotient map A% (Xg) — A®(Xg) is the ideal in A7.(Xg) generated by f — f(0,...,0) for f
a global polynomial. Note that the polynomial [];cx (1 +¢#;) whose inverse was adjoined to A7 (XE)
maps to 1 under this quotient map. It thus remains only to show that {r maps Ix isomorphically onto
I = 1alllieg (1 + t)"']. But both &7 (Ix) C I, and {7 (Ix) 2 I, are straightforward to verify by
considering their generators. O

By conjugating £ by the two involutions Dk and D 4, we have the ‘dual’ isomorphism.
Definition 6.2. Let ¢: K(Xg) — A®(Xg) be the isomorphism defined by ¢ = D4 0 { o Dg.
We remark that, similarly to Theorem 6.1, one can show that the map ¢r: Ky (Xg) —

A3 (XE)[[Tieg (1 = 1;)"] defined by sending

F(T, ..., Ty) - f(1—1)7", ..., (1 —1,)7") for a Laurent polynomial f € Z[T*!, ..., T*]

n

is an isomorphism, which descends to the nonequivariant isomorphism ¢.
We now show that ¢ and ¢ behave particularly well with respect to K-classes with ‘simple Chern
roots’, a notion introduced in [BEST23].

Definition 6.3. A T-equivariant K-class [£] € Ky (Xg) has simple Chern roots if for each maximal
o € X, there is a sequence (d¢ 0, Ao 15 - - -, Aor,n) SUCh that [E]o = ag o+ X1, ag,iT;.

Note that [ Qym]Y and [Sm]Y have simple Chern roots.
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Proposition 6.4. Let [£] € K1 (Xg) have simple Chern roots. With u a formal variable, we have

D (NIED = (e M ET (£, ),

Jj20 n+ 1
DT or(NEDW = (u+ 1y ET (£Y)cT (EV, ulﬁ) :
720
. . | ) .
JZZ:‘){T(SYm/ £ = e (£ ) and
e = (€D 1
;}‘f’T(SYmJ [EDu! = mST (gV’ 1_u).

Proof. We prove the formulas involving ¢. The formulas involving ¢ are similar (and the first formula
follows from [BEST23, Proposition 10.5]). Since [£] has simple Chern roots, we have that [E], =
a0+ Xier, Ti for some multiset /.. We then compute

D or (N EDgw! = (u+ 1)t [T/ =) (1 = 10/ (u+ 1))

Jj=0 icl,

= (u+1)™ET(EY) g (EV,—I ) . and

u+1
. . 1 1= ti CT (gV)o_ - v 1
b1 (Sym [E])gu’ = - o (e, ,
jZO o (1 _ u)azr,0+|1(r| ile_l(l,. 1- [l/(l —_ u) (1 — u)rkM(E) 1—u -
as desired. O

We note in particular the following consequence of Proposition 6.4.

Corollary 6.5. Let M be a matroid of rank r on E. Let D vy be the T-invariant divisor associated to
I(M*1) as discussed above Example 3.15.

(1) One has ¢([Ox, (D1m+))]) = ¢(Qm) and {([Ox, (D1ms))]) = s(Qyp).
(2) If L € KE realizes M, then ¢ ([Ow, ]) = [WL].

Proof. Applying { = D4 o ¢ o Dk to the first formula in the proposition gives
D AN EM ) = (u+ ) Ee (€, -2t
70

for [£] € K(Xg) with simple Chern roots. Since [ Qn]" has simple Chern roots with tk(Qy) = n -7,
and since [ \"™" Om] = [det Om] = [Ox, (Drmv))] by Proposition 4.6, the first statement now follows
by setting [£] = [@m]” and noting that ¢(&, —u) = ¢(EY, u). The second statement follows from the
first formula in the proposition and Corollary 5.4. O

Example 6.6. Note that [det Qu,_, .| = [Ox; (Dr, )] and [det Qu, ] = [Ox; (D1, x))]- Be-
cause the line bundles Ox, (D, )) and Ox. (D, ,)) induce the maps ng: Xg — PE and
me: Xg — (PY)E, respectively, we have

$([Ox; (D1, ) = 1+a and  ¢([Ox (D1, ))) = [ [(1+30) = (D 71 0n (1)).

i€E i€E

Here, recall the notation that @ = ¢ (7}, Ope (1)) and y; = ¢1 (77 Opi (1)).
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Remark 6.7. Let us remark on how the maps ¢ and ¢ here are related to the exceptional isomorphism
for permutohedral varieties given in [BEST23, Theorem D]. Just as for augmented tautological bundles,
classes and Bergman classes, the first relation comes from considering X, as a T-fixed divisor on
XE: The restriction of £ to X recovers the isomorphism { between K (X ) and A®(X ) in [BEST23,

Theorem D]. Let us now sketch a different relation. Let E = E LI {0} as in §3.2, where we noted that the
stellahedral fan X g can be considered as a coarsening of the permutohedral fan X . In other words, we
have a T-equivariant birational map p: Xz — Xg. One can show that there is a commuting diagram

K(Xg) L) A*(XE)

Lol

K(Xgp) — A*(Xp),

where the two vertical maps are the respective pullback maps, and one has similar commuting diagrams
for ¢ and the T-equivariant versions of { and ¢. Both Theorem 1.8 and Theorem 1.9 can then be deduced
from the commutativity of the diagrams and [BEST23, Theorem D].

7. Valuative group, homology and the intersection pairing
7.1. The polytope algebra and the proof of Theorem 1.4

For the proof of Theorem 1.4, the last remaining ingredient is the polytope algebra introduced in
[McM89]. For a polytope Q € RE, define the function 1o: RE — Z by 19(u) = 1 ifu € P and 0
otherwise. Recall that a (lattice) polytope P is said to be a (lattice) deformation of Q if its normal fan
X p coarsens that of Q.

Definition 7.1. Let X be the normal fan of a smooth polytope Q C RE. Let I(X) be the subgroup of ZR"
generated by {1p | P a lattice deformation of Q}, and let transl(X) to be the subgroup of I(X) generated
by {1p — 1p,, | u € ZF}. We define the polytope algebra to be the quotient

I(2) = I(2) /transl(Z).

For a lattice deformation P, let us denote by [P] its class in the polytope algebra I(Z). The polytope
algebra, as the terminology suggests, is a ring with multiplication induced by Minkowski sum, that is, by
[P]-[P’] = [P+ P’]. It was well-known among experts that the polytope algebra is naturally identified
with K (Xx); this is realized in Theorem A.10. When we apply the theorem to the stellahedral variety,
noting that deformations of the stellahedron are exactly polymatroids (Proposition 3.13), we deduce the
following.

Theorem 7.2. The map sending an integral polymatroid P on E to [Ox,. (D p)] defines an isomorphism
I(Zg) =~ K(XE).

We now prove Theorem 1.5 by showing that we have a sequence of isomorphisms

D Val (E) = 1(2p) = K(Xg) = A*(XE).
r=0

We prepare for the first isomorphism in the sequence with the following lemma.

Lemma 7.3. The intersection of an integral polymatroid with an integral translate of the Boolean cube
[0, 11E, if nonempty, is a translate of the independence polytope of a matroid.

Proof. Fori € E and a € Z, let us define the hyperplane H; , = {u € RE | (e;,u) = a} and its half-
spaces H;f =lue RE | (+e;,u) > +a}. It follows from Definition 3.9 that a polymatroid intersected
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with any half-space H; , or H; , is a translate of a polymatroid if it isn’t empty. So, the intersection of
an integral polymatr01d with an 1nteger translate of the Boolean cube is a translate of a polymatroid if
nonempty. By Example 3.12, it now suffices to verify that this polymatroid is integral.

By [Edm70, (35)], the intersection of two integral polymatroids is a polytope whose vertices lie in
ZF . By intersecting an integral polymatroid P with integral polymatroids of the form [1%,10,a;], for
a; € Zxo, we see that all vertices of the intersection of P with an integral translate of the Boolean cube
are in ZF . O

Proposition 7.4. The map @’:zo Val, (E) — I(2g) defined by M — [I(M*)] is an isomorphism.

Proof. To see that the given map is well-defined, note that the base polytope of the dual P(M*1) is
—(P(M) — eg), and that the independence polytope I(M%') is the intersection with [0, 1]% of the
Minkowski sum P(M*) + [—1,0]F. Each of these operations—translation, negation, Minkowski sum,
and intersection—preserves valuative relations. Surjectivity of the map is immediate from Lemma 7.3,
since given an integral polymatroid P, by tiling RF with integer translates of the Boolean cube, we can
express [P] € I(Zg) as a linear combination of the classes of independence polytopes of matroids.
For injectivity, first we show that the only relations between indicator functions of translates of
independence polytopes come from valuativity. Suppose we have Zf:l ailyvy)+y; = 0fora; € Z,u; €
Z", and M; a matroid on E. We show that then 2{'{:1 a;il;ov,) = 0 as an element in i By Proposition
A4, this implies that Zf;l a;lpav,) = 0 because each /(M;) has P(M;) as the face maximizing the
pairing with eg. For a subset S C E, let {5 be the subset of {My, ..., My} consisting of matroids whose
set of loops is equal to S, or equivalently, the smallest coordinate subspace containing the independence
polytope of the matroid is RS C R . Let us pick a linear ordering (S = 0, 51, S, ..., Son = E) of the
subsets of £ that refines the partial order by inclusion. We claim by induction that >, ts, 4j 1;m;) =0.
In the base case Sy = 0, the polytopes I(M;) for all M; € {s, nontrivially intersect the interior of the
Boolean cube [0, 1]¥, whereas none of those of M;, € {s, fori > 0 do. Hence that Zle ailym)sy =0
implies that ZMj ets, 4J 1;(m;) = 0. For the induction step at S;, we may assume that {s,, . .., {s,, are
empty. Then, we repeat the argument with ‘the interior of the Boolean cube’ replaced by ‘the relative
interior of the cube [0, 1] x{0}F\5*, That is, the polytopes /(M ;) forallM; € s, nontrivially intersect
the relative interior of the cube [0, 1]5 x {0}£\Si, whereas none of those of M j» € Ls, fori’ > i do.
Hence, again we conclude Yy, ez, @11 (m;) = 0 from 3% @il = 0, completing the induction.

Now suppose that Zle a;[I(M;)] = 0 for a; € Z and M; a matroid on E. This means that

k

Z ailyo,) + Z bpm(pym —1p) =0

i=1 P.m

for some collection of polymatroids P, vectors m € Z", and integers bp_,,. Using Lemma 7.3, we can
rewrite this as

k l

Z ailyong) + Z ¢j(rovy)4m; = 1rowy) =0
im1 =

for some collection of matroids M} and vectors m; € Z". Then the previous discussion implies that
equality still holds when we remove the second sum, as desired. O

Proof of Theorem 1.5. In Proposition 7.4, we have constructed an isomorphism EB?:() Val, (E) —
I(Zg) defined by M — [I(M™*)]. Now, composing the isomorphism I(Xg) ~ K(Xg) in Theorem 7.2
with the isomorphism ¢ : K(Xg) — A®(Xg) in §6, we obtain an isomorphism I(Zg) — A*(Xg), which
by Corollary 6.5 maps [I(M*)] to ¢(Qp) for a matroid M. By Corollary 5.11, the top nonvanishing
degree part ¢, m) (@m) of c(Qwm) is the augmented Bergman class [Zy], so we conclude from the
graded structure of A®(Xg) that @LO Val, (E) — A®*(Xg) defined by M +— [Xy] is an isomorphism
of abelian groups. O
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With Theorem 1.5, we can now complete the proof of Theorem 1.8.

Proof of Theorem 1.8. That { and ¢ are ring isomorphisms was proved in Section 6, and that they satisfy
the stated properties is Corollary 6.5. To verify that the stated properties characterize the maps, note
first that A'(Xg) generates A®(Xf) as a ring, and that the augmented Bergman classes of matroids of
rank n— 1 span A' (Xg) because Val,,_; (E) ~ A'(Xg) by Theorem 1.5. The result now follows because
every matroid of rank n — 1 is realizable over any field, and if L c k¥ realizes a matroid M of rank
n—1then [Wr] =[2ym] and ¢(Qr) =1+ ¢1(Qr) = 1+ [Eym] by Corollary 5.11. O

We now prove Theorem 1.6 by using Lemma 7.3 with Corollary 6.5 and Corollary 5.11.

Proof of Theorem 1.6. If ctk(M) +crk(M’) > n > crk(M A M’), then the result vacuously holds, so we
may assume that crk(M) +crk(M’) < n. Note that, by Corollary 5.11, the degree crk(M) + crk(M”) part
of c(Qm)c(Qwm) is [Zm] - [Zmr], so by Corollary 6.5 it suffices to compute the degree crk(M) +crk(M”)
partof ¢([I(M*)]-[I(M’L1)]). By Lemma 7.3, we may write [/(M*)]-[I(M'L)] = [I(M*Y)+1(M’L1)]
as a sum of the classes of independence polytopes of matroids by intersecting it with the tiling of RF
by translates of the Boolean cube and using inclusion-exclusion on the faces. This gives an expression
for nonequivariant K-class [/(M*)] - [I(M’L)] as a sum of the K-classes of independence polytopes
of matroids.

The intersection of 7(M*) +1(M’_L) with the Boolean cube is I((M A M’)*). The image of [I((M A
M’)1)] under ¢ is [Emanr] in degree crk(M A M’). Therefore, it suffices to show that the images
under ¢ of all of the other terms in the expression of [I(M*) + I(M’L)] as a sum of the classes of
independence polytopes of matroids are zero in degrees at least crk(M) +crk(M’). Every other polytope
appearing requires a nontrivial translation towards the origin to realize it as an independence polytope
since an independence polytope always contains the origin. As the lattice distance from the origin of
any vertex of I(M*) + I(M’L) is bounded by crk(M) + crk(M’), this means that, after translating one
of these polytopes so that it is the independence polytope of a matroid, that matroid has rank at most
crk(M) + crk(M’) — 1. Then the result follows from Proposition 5.9. O

We showed in the discussion following Corollary 5.11 that [Zy] restricts to [X,,] on X . Hence, by
restricting to X € Xg, we obtain Corollary 1.7 from Theorem 1.6. We also deduce that if M, M’ and
M A M’ are loopless, then crk(M) + crk(M’) = crk(M A M’).

7.2. A Schubert basis

For a total order < on E and two subsets [ = {i; < --- < i,}and J = {j; < --- < J,} of E with same
cardinality, let us say that I < J if iy < ji forallk=1,...,r.

Definition 7.5. A Schubert matroid on £ of rank r is a matroid whose set of bases is
{BCE||B|=rand B < I}

for some total order < on E and a subset I C E with |I| = r.

Because I < Jif and only if (E \ I) > (E \ J), the dual of a Schubert matroid is a Schubert matroid.
We note the following equivalent description of the bases of a Schubert matroid.

Remark 7.6. Let < be a total order on E, and I = {i; < --- < i, }. Define
Tiumps = {ij € I'| j = r or there exists e € E such thati; < e <ij.}.

Writing fjumps = {61 < -+ < {4}, define a chain Fy,..., Fy of subsets of E and positive integers
di,...,d; by

Fi={ecE|e<{;} and di+---+d;=|F;nl| forj=1,...,k.
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Note that by construction, we have d; < |Fi| and d; < |F; \ F;_{| for all j = 2,...,k. The set
{B C E | |B| =rand B < I} of the bases of the Schubert matroid associated to < and I then can be
described equivalently as the set

{B={by <+ <b;} CE|{b1,...,bg+4a;} C Fjforall j=1,... k}.

Schubert matroids appear in the literature under various other guises such as nested matroids [Ham 17],
Bruhat interval polytopes [TW 15], generalized Catalan matroids [BAM06] and shifted matroids [Ard03].

Theorem 7.7. The augmented Bergman classes of Schubert matroids on E form a basis for A®(Xg).
We prepare the proof with the following lemma.
Lemma 7.8. For 0 € F C E, denote by hr the divisor Dy, ®Uo.£\r) corresponding to I(U; g ®

Uy, e\r) under Proposition 3.13. Then, the set of monomials

d dr
{hFll"'hFi

0CF C - CFCE, d <|F, di<|Fl-\F,-_1|W=2,...,k}

form a basis for the Chow cohomology ring A®*(Xg).

Proof. LetG={SUO0| S C E} U E be the building set on E = E U {0} in Proposition 3.8, and let Xg
denote the corresponding fan. Then, [FY04, Corollary 2] states that the Chow cohomology ring of Xg
has a presentation

Zlzx | X € G]
<zX1 cezxg | {Xl,...,Xk}notafaceofN>+<ZX3iZX |i€E>

A®(Zg) =

and moreover, [FY04, Corollary 1] states that the set of monomials

d P dk
ZF]UO ZFkUO

OCF C---CF CE, dy <|F|, d; < |Fi\F,-_1|\7’i=2,...,k}
form a basis for A®*(Zg). We modify this basis by performing an upper triangular linear change of
variables as follows. For 0 ¢ F C E, let
EF = Z —ZGU0-
FCGCE

When G is given any total order that refines the partial order by inclusion, replacing zgg by hp is an
upper triangular linear change of variables. Hence, we have that

Tdi Tk
{hFll R

0CF C- CRCE, di <IRl, di <|F\FialVi=2,... .k}

is a basis of A®*(Zg). It remains only to verify that, for any @ ¢ F C E, the element hp € Al(Zg)
corresponds to ir € A®(Xg) under the isomorphism p: g — X of Proposition 3.8.

In the presentation of Al (Xg) above, for 0 C S C E, the variable zgyo represents the torus-
invariant divisor associated to the ray cone(€syg) of g, which under the isomorphism p: £g — X in
Proposition 3.8 maps to the ray ps of . Moreover, it follows from the linear relation % x 59 zx = 0 in
A®(Zg) that the expression ),z cgcr —zGuo for Ap can be rewritten as
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Hence, the isomorphism p: 5 — g maps hp to the element

> [Ds] € A'(Xg),
O0CSCE
F¢s

which by Proposition 3.13 corresponds to (U, r @ Up g\ r) because the rank function rk of the matroid
Uir ® Up p\r is given by tk(E \ §) = 1 if F € S and O otherwise. O

For matroids M and M’ on E, there is a dual notion to matroid intersection, matroid union, defined
by MV M’ := (Mt A M’1)*. The bases of M vV M’ are the maximal elements among the unions of the
basis of M and M.

Proof of Theorem 7.7. For 0 ¢ F C E, let Hr be the corank 1 matroid whose unique circuit is F.
Equivalently, its dual matroid H; is the matroid Uy r ® Ug,g\r. We note from Proposition 4.6 and
Corollary 5.11 that

he = Dyl = c1(Qup) = [Zne ]

Now, applying Theorem 1.6 to Lemma 7.8 yields the theorem once we show the following: For an
element hdF‘l e hi’; in the monomial basis of A®(Xg) given in Lemma 7.8, the matroid intersection

Ad) Adi _
HFl /\"'/\HFk —HFI/\"'/\HFI/\"'/\HFk/\"'/\HFk
—_— — ———
d times dj. times

is a Schubert matroid of corank d;j + - -- + di, and every Schubert matroid arises in this way. Since
the dual of a Schubert matroid is a Schubert matroid, we may instead prove the dual statement that the
matroid union

1 1 1 1
HFIV~~~VHF1V-"VHFkV'-'VHFk
——— —_————

d; times dj times

is a Schubert matroid and that every Schubert matroid of rank d; + - - - + d arises in this way. Since
every matroid in the above matroid union is of rank 1, a basis of the matroid union is obtained by

selecting d; elements of F; for eachi = 1,.. ., k such that the union of all the selected elements has as
large cardinality as possible. By Remark 7.6, we see that such matroid union are exactly the Schubert
matroids of rank dy + - - - + d. m|

Combining Theorem 1.5 with Theorem 7.7 recovers the following result of Derksen and Fink [DF10,
Theorem 5.4].

Corollary 7.9. Schubert matroids on E of rank r form a basis for Val, (E).

Because Schubert matroids are realizable over any infinite field, combining Corollary 5.11 and
Corollary 6.5 with Theorem 7.7 also yields the following.

Corollary 7.10. The K-classes [Ow, | of augmented wonderful varieties span K(Xg) as an abelian
group.

8. Numerical properties
8.1. The Hirzebruch—Riemann—Roch-type formulas

We now prove Theorem 1.9 using Corollary 7.10. While one can prove Theorem 1.9 by mimicking the
proof of [BEST23, Theorem D], we present a proof that avoids the use of the Atiyah—Bott localization
formula. Recall the notation @ = n7,¢1(Ope (1)).
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Proof of Theorem 1.9. We first verify the formula involving the { map, that is, that

x([€]) :/g([é’])-(l+a+~~~+a/")

for any [£] € K(Xg). Corollary 7.10 implies that it suffices to show this for the case [£] = [Ow, ] for
any linear subspace L C k. Now, we have y ([Ow, ]) = 1 since W, is obtained from a projective space
by a sequence of blow-ups along smooth centers. On the other hand, using Corollary 6.5 and applying
the projection formula to g gives that

/X We]l-(1+a+---+a") = /PE c1(Oze (1)L (14 ¢ (Ope (1) + - + ¢ (Ope (1)) = 1.

Having established the formula involving £, we now use Serre duality to derive the formula involving
¢, that is,

wig) = [ o(1eD) (P mioa).

ieE

First, by [CLS11, Theorem 8.1.6], the anticanonical divisor of Xg is the },gcp Ds + 2\;cg Di, Where
Dy denotes the torus-invariant divisor of the ray pg, and D; that of the ray p; in Zg. By Proposition
3.13, one checks that Y gcp Ds = Dy, ) and 2;cp Di = Dy(u, ). In summary, we have that the
anticanonical bundle w)V(E of Xg is

wx, = Oxp (D1, ) + D1U,,.1))-

Corollary 6.5, in the form of Example 6.6, thus gives ¢([wy 1) = (1 +a) c(P;ep T O0pi (1)).
Applying Serre duality, along with the definition that { = D 4 o ¢ o Dk, we conclude

X([ED) = (=D)"x([€]" - [wx,])
=0 [ el fom ) (ras e
XE

=(—1)"/X DAB(ED - o([w}, 1) - (L4 at - +a”)

:(_l)n/ DA(¢([5])'(1+CV)‘C(@7T?OP1(1)))-(l+a+---+Q")
Xe icE

= 1" [ Dafote]

= | oUED (D0 (),

i€E

&N - (@D ni0a (1))

ieE

as desired. O

8.2. Tutte polynomial formulas

We show that two specializations of the Tutte polynomial arise as volume polynomials of augmented
tautological classes. The first is the rank-generating function of a matroid, that is, Ty (u + 1, v + 1). This
computation does not show that the rank-generating function has any log-concavity property because
it involves the Chern class of [Sy], and Proposition 5.9 shows that ¢(Syy) is rarely nef or anti-nef.
We also compute the intersection numbers of a second set of classes, which gives a more complicated
specialization of the Tutte polynomial. This computation can be used to show that the result is Lorentzian
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and therefore has log-concavity properties. Recall the notation that y; = 77 (¢1(Opi(1))) fori € E, and
let u! = [];c; u; forI C E.

Theorem 8.1. Let M be a matroid on E of rank r. For I C E, we have
[ ety wre(@uow ) [ s =2 D,
XE iel

In particular, summing over all I C E, we have that

n
/ c(Su2) W' - e(Quw ™) [ [+ ya) = Y Dyl iDL
Xe i=1

ICE

Proof. By Proposition 4.8, the restriction of the Chern classes of augemented tautological classes to
Xg\1 are the Chern classes of the augmented tautological classes of the contraction M/I. Now, one
notes that /XE c(Sm, 2) - c(Om,w) = fXE cr(Sm) 7" cneyr (Om) - W' = 27w since [Sy] +[Om] =

[P,ep 7 Op (1)]. o

Theorem .10 is immediate from Theorem 8.1. We now prove Theorem 1.11. The proof uses the
Hirzebruch—Riemann—Roch-type formulas for both { and ¢ to obtain the equality of certain intersection
numbers. We first state a combinatorial lemma that will be used twice in the proof of Theorem 1.11.

Lemma 8.2. Let M be a matroid of rank r on E. Then

Z alllpr=sion (D) gn=lt -k (D, (g b +c) (@t by Ty (a +d’ a+b +c) _
= b ¢ a+b c

Proof. Using the rank generating function for the Tutte polynomial, we compute

Z a\l|br—rkM(l)Cn—\l|—r+rkM(l)TM/l (d b+c)
C

ICE b
= Z alllbr—rkm(l)cn—ll\—r+rkm(1) Z (d — b)r_rkM(J) (é)lll_lll_rkMu)HkM(”
ICE J2I b ¢
— Z a|1|b|J|—\1|Cn—r—|J|+rkM(J)(d_ b)r—rkM(J)
ICJCE
— Z lelcnfrflJHrkM(J)(d_b)rfrkM(J) Z a|1|b7|1|
JCE I1cJ
[
_ Z M enr=Vhkn (D) (g _ pyr=tim (/) (#)
JCE
( +b)r . Z d—b r—rkm (J) a+bh |J |—rknm ()
=(a c
= a+b c
a+d a+b+c
=(a+b) " T ,—,
(a+b)" ™ T (a+b c )
as desired. O

Proof of Theorem 1.11. Note that s(n}Ope (=1),x) = 1+ ax +a?x? +- - - . We prove the result in three
steps.
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Step 1: We show that
/ s(Qu-2) - c(Qmw) = 2w Ty (0, 1+ £). (1)
XE

As [Sm] + [Qm] = [@IEE” Opi ()], we have 5(QY,2) = (P 71O(=1),2)7" - (S 2) =
(g 7 Opi(1),2) - c¢(Syy» z). We compute

l{ s(QK,[,z) cc(Om,w) = / c(@ 7 Opi(1),2) - c(Syp, 2) - ¢(Om, W)

X i€E

/XZ(H%) e (8w, =2) - c(Qm, w)

ICE i€l

! / c(Smyr>—2) - c(Qmyr.w)
ICE XE\1

= 3 Mgy =)
ICE

— ernfr Z (_])rfrkM(I) (Z/W)|I|7rkM(I) — ernirTM(O, 1+ é)
ICE

Step 2: We show that

(I+ax+a’x®+-) - 5(Qyp2) - c(Quw) = 2" (x +w)" Ty ()zc’x:j--:vw)

@

XE

As the result is homogeneous, it suffices to prove the claimed formula after evaluating x = 1. We
compute x ((X;50 A'[Qum]YW) (X 50 Sym’ [Qm]"z/)) in two different ways, using Proposition 6.4
and the Hirzebruch—-Riemann—Roch-type formulas for both  and ¢. We then get that

(tata®s) (v )" e (Qf —2—) - (1 —z)r‘"~s(Q§4,Z%])

XE

= [ e@rioa -t e(ou ) a- 07w ).

ieE

Replacing w by —w/(w + 1) and z by z/(z — 1) and cancelling common terms, we obtain that

(14t c(Quon) 5(Qa) = [ c(@m0u(1) - e(@uuw+1) - 5(Qu1 =)

XE Xe  jeE
Now we apply equation (1], noting s(Qm, 1 — z) = s(QIYA, z — 1), to obtain that

/XE c(Quw+ 1)+ s(Qp 2= 1) = (= 1) (w+ 1" T (0,222

Arguing as in Step 1 and using Proposition 4.8, the above equation implies that

/ H(l + yiu;) - c(Qm,w+1) - S(Ql\\/,[,z -1
XE

i€E

= Z ul (Z _ 1)r—rkm(l)(w + 1)n—|l\—r+rkM(I)TM/I (0, Z +W)
w+1

ICE
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Setting each u; to 1 and using that [T(1 +y;) = ¢(€P 77 Opi (1)), we get that

l{ c(@ 71iO0p (1) - c(Omw+1) - 5(Qyz— 1)

icE

— Z (Z _ l)r—rkM(I) (W + l)n—|I|—r+rkM(I)TM/I (0
ICE

Z+W)
w41

Applying Lemma 8.2 witha=1,b=z—-1,c=w + 1, and d = 0, we obtain (2].
Step 3: We finish the computation. We have that

/(1+ax+azx2+---)-c(@ﬂfopl(l),y)'S(Ql\\//pZ)'C(QM,W)
XE ieE
= Zy‘”/ (1+ax+a? +--) - s(Qyy 1 2) - ¢(Quyr, w)
ICE Xe\
X x+z+w>

_ Z y\I|Zr—rkM(l)(x +W)n—\l|—r+rkM(l)TM/l(_,
I<E Z X+w

Then the result follows from Lemma 8.2 witha =y, b=z, c =x+w,and d = x. O

8.3. Positivity properties

We now use Theorem 1.11 to prove Theorem 1.12, which states that the four-variable transformation
of the Tutte polynomial in Theorem .11 is a denormalized Lorentzian polynomial. Let us begin by
reviewing the language of Lorentzian polynomials developed in [BH20].

For a homogeneous degree d polynomial f = Zuez';'o ayx" € Rlxy,...,xy], its normalization is
N(f) = Zuezmo aui—:‘ where u! = uy!---u,!. The polynomial f is said to be the denormalization

of N(f). The polynomial f is a strictly Lorentzian polynomial if every monomial of degree d has
a positive coefficient and every (d — 2)-th coordinate partial derivative of f is a quadric form with
signature (+, —, —, ..., —). It is a Lorentzian polynomial if f is a limit of strictly Lorentzian polynomials.
Lorentzian polynomials satisfy a strong log-concavity property [BH20, Example 2.26] and are preserved
under nonnegative linear change of variables [BH20, Theorem 2.10]. Polynomials whose normalization
is Lorentzian, called denormalized Lorentzian polynomials, share similar properties [BLP23, §4.3].

We now place the strategy used in the proof of [BEST23, Theorem 9.13] into an axiomatic framework
and use the framework to deduce the theorem. The key tool will be the theory of Lefschetz fans, a notion
introduced in [ADH23, Definition 1.5]. Lefschetz fans are certain (possibly noncomplete) simplicial
quasi-projective balanced fans whose Chow ring satisfies an analogue of the Kihler package. We
summarize their fundamental properties.

Theorem 8.3. The following hold.

(1) [ADH23, Theorem 1.6] If ¥ is a Lefschetz fan, then any quasi-projective simplicial fan with the
same support as X is Lefschetz.

(2) [ADH23, Lemma 5.27] A product of Lefschetz fans is Lefschetz.

(3) [AHKIS, Theorem 8.9] The Bergman fan of a loopless matroid is Lefschetz.

4) [BH20, Theorem 4.6], [ADH23, Theorem 5.20], see also [BEST23, Lemma 9.12] Let ¥ be an
{-dimensional smooth projective fan, and let ¥’ be a d-dimensional subfan that is Lefschetz and
defines the Minkowski weight [X'] € A4 (Xs) as a balanced fan. Then, for any base-point-free
divisors Dy, . ..,D,, € A'(Xz), the polynomial
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i1+ +im=d
is denormalized Lorentzian.

Let us now set up the axiomatic framework. For a finite set S, denote
Matg = the set of loopless and coloopless matroids with ground set S.

We say that a map ¢: Matg — G taking values in an abelian group G is valuative if it is a restriction to

Matj of a valuative map on the set of all matroids on S. Let N be a nonnegative integer that depends on

n(e.g., N =2n),and let [N] = {1, ..., N}. Our framework consists of three objects (F, T, X):

e amap F(,: Mat — Mat‘EN],

e atorus 7 with an action on k" via a map ¢: T — G,IZ ,and .

e a smooth projective T-variety X with a dense open T-orbit 7' (which is a quotient torus of T) such
that ¢ naturally descends to g: T — G /G,,,.

We require that these objects satisfy the following properties:

(i) The assignment M +— [;FM], sending a matroid M on E to the Bergman class of the matroid Fy
on [N], is valuative.
(ii) There is a map

n N
Ff): ]_[O Gr(r,E)(k) — ]_!)Gr(R; [N]) (k)
r= R=

such that for any realization L C k¥ of M € Mat},, the matroid Fy equals the matroid on [N]
realized by Flﬂf. We often abuse notation and write F for F¥ also.

(iii) For any L C k¥, specifying the fibers over 7 € T to be ¢(r~")F;, defines a T-equivariant vector
subbundle F;, of O;‘EN on X.

(iv) The Segre class s(Fr) € A*(X) depends only on the matroid that L realizes.

(v) The assignment M +— s(F(L realizing M)) from the set of k-realizable matroids in Matj, to A®(X) is
valuative.

Because every matroid in Maty; is valuatively equivalent to a linear combination of k-realizable matroids
in Maty, [BEST23, Lemma 5.9], the conditions (iv) and (v) imply that we have a unique valuative
extension M — s(Fy) € A®(X) such that s(Fyp) = s(Fr) whenever L realizes M. Thus, we may define
the following.

Definition 8.4. With F, T, and X satisfying the conditions above, for a matroid M € Matjy, we define
[P(Fum)] € A*(X x PN-1) by

N-R

[P(AW] = ) si(Fn)s™ *,
i=0

where R is the rank of Fy; and 6 = ¢1(O(1)) is the hyperplane class of PV ~! pulled back to X x PN -1,
When M is realized by L C kE, then [P(Fy)] = [P(F)] by [EH16, Proposition 9.13].

Example 8.5. In the setting of [BEST23], we let n = N with T = G% actingon X = X g naturally via
T — PT, and acting on k¥ by the inverse standard action. If we set F to be the identity map, which
satisfies the conditions listed above, we then have F; = S, . If we set F to be the matroid duality map
(i.e., M — M+ and L — L%1), which also satisfies the conditions listed above, we then have F; = gz
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Example 8.6. Let N = 27, and let T = GE act on k¥ x kF by ¢- (x,y) = (t"'x,y), and act on X as its
open dense torus. Let pre’F be the map that adds parallel element to each element in a matroid M on E
to get a matroid pre’Fyy on E LI E. Note that M — [Zpre,F ] is valuative since [Zpre,FM] is the image
of [Z),] under the diagonal embedding x + (x, x). In fact, the map M + pre’Fy itself is valuative. If
we set F to be pre’F precomposed with matroid duality map, we then have F; = Q] . If we set F to
be pre’F precomposed and then postcomposed with matroid duality maps (note that one duality takes
place on E and the other on E U E), we get 1 = K, where Ky, is defined by the exact sequence

Note that the K-class [/KCr] depends only on the matroid that L represents because [Kr] = [O;‘?f ®
(’);‘25] —[9L]. Note also that s(KX1) = c(Qy).

Theorem 8.7. Under the conditions above, there exists a smooth projective (T x GN /G,,)-toric variety
Ys with a birational toric morphism n: Ys — X X PN=! such that for every matroid M € Maty,, there
exists a Lefschetz subfan Xx g, of  such that n.[Zx ry] = [P(Fm)], where [Zx g, ] denotes the Chow
cohomology class on Yy, that is Poincaré dual to the Minkowski weight of constant weight 1 on the
Lefschetz fan Zx p,,.

Proof. First, we set the birational toric morphism r restricted to the tori to be given by (#,1')
(t, o(1)t"). Now, we can take ¥ to be any unimodular projective fan inside Cochar(7)z x (RY /R) such
that it refines (the fan of X) x Ziv and makes Ys — X x PV~!into a valid toric morphism. We take

Yx.Fy to be the subfan of ¥ with support Cochar(T)z X 2p,,- By Theorem 8.3.(3), the support of the
fan Xx f, is equal to the support of a product of two Lefschetz fans, and hence by Theorem 8.3.(1)
and (2), 2x F, is a Lefschetz fan. By the assumptions, the assignment M — [Fy] and the assignment
M — [P(Fm)] are valuative. On the other hand, the assumption that M — [X. ] is valuative implies
that M — [Zx g,] is also valuative. Thus, for the desired equality . [Zx r,] = [P(Fwm)], it suffices to
show it when M has a k-realization L.

For a loopless matroid M’ on a set E’ realized by a linear subspace L’ C k%', the Minkowski
weight with constant weight 1 on the Bergman fan Xy is the tropicalization of P(L") N Gﬁ/ /G
[Stu02; AKO6]. Hence, the Minkowski weight with constant weight 1 on Xx f,, is the tropicalization of
Tx(P(FL)NGY /G,,), so the Chow class [Zx, ] equals the class of the closure of Tx(P(Fr)NGY /G,,)
inside Ys. On the other hand, by construction the map 7 bijectively maps T x (P(FL) N GY /G,,) to an
open subset of P(F7), an irreducible subvariety of X x PV ~!. Then the result follows. O
Remark 8.8. If there are several maps F M .., F% from Matj’5 to Mat‘[’N w7 each satisfying the
conditions listed above with a common X and T fixed throughout, the theorem easily generalizes to the
multiprojectivization [IP’(}“IS)) Xx -+ Xx P(fl\(/lk))].

Proof of Theorem 1.12. First, we assume that M is loopless and coloopless. Note the QZ embeds into
Oi?f YE because (P ieg T O(=1) does, and we can apply Theorem 8.7 to this embedding. Therefore,
there is a smooth projective toric variety Ys with torus GE x GEVE /G, x GEYE /G, amap 7: ¥ —
Xg x P2~ x P21 and a Lefschetz subfan Xx, v of £ such that 7, [Zx, m] = [P(Km) Xx; P(Qy)].
Let 6 and € be the first Chern classes of the pullbacks of O(1) to Xg x P?*~! x P?*~! from the two
projective spaces. Then, with the shorthand ﬁ =l+a+ad’>+---+a", we have

L 1 _1ax ’ C(@ n;OPI(l)’y) ' S(Ql\\//lyz) . C(QM,W)

n+r—1 n—r—1
_ /X c(@n Opr(1),3) + T+ S [P(Kn) xx B(QY)]

xPp2n-1yp2n-1 1-ax

1 el Lt 1 e
= 1 ° 2
[ o e @moa - T —  [xel,

— * p—
1 —m*ax Py 6z 1 —n*ew
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where we have used @ and c(ED, . 7; Opi (1)) to refer also to their pullbacks to Xg x p2=l x p2n-l,
Then the result follows from Theorem 8.3.(4), using that ¢ (D, .z 77 O(1)) is the Chern class of a direct
sum of nef line bundles.

Any matroid M of rank r on E can be written as the direct sum of matroids Up ; ® Ug ¢ @ M’, where
M’ is a loopless and coloopless of rank r — £ on a ground set of size n — j — €. Because the Tutte
polynomial is multiplicative for direct sums of matroids, we have that

+ +y+z+
Y+ (x+w)""Tu Ty rryre W)

y+z x+w
X+y X+y+z+w

(X+y+z+W)f(x+y)f(y+Z)’"(x+W)”“TM/( ’

y+z x+w

By [BH20, Corollary 3.8], products of denormalized Lorentzian polynomials are denormalized
Lorentzian, which implies the result. O

Remark 8.9. One can obtain stronger log-concavity results by replacing ¢(€D, . 7;Opi (1), y) with
[T;ce(1 + y;u;) to obtain a Lorentzian polynomial in n + 3 variables x, z, w,uy, ..., u,. Using that
specializations of Lorentzian polynomials are Lorentzian [BH20, Theorem 2.10], we obtain that the

polynomial y(x,y,z,w) in Theorem 1.12 is Lorentzian after each x?y”z¢w? term is replaced by
a,b ¢
x4y’zw

alcld!

. By setting x = z = 0, this gives a new proof of [HSW22, Corollary 9].

9. Chern-Schwartz—MacPherson classes
9.1. Log tangent bundles

There is a natural log structure on X obtained by viewing it as a simple normal crossings (snc)
compactification of A ; let dXg denote the boundary divisor. Note that this is not the usual log structure
on a toric variety. We obtain a log structure on Wy, for any linear space L by declaring the inclusion
Wi — Xg to be strict. Equivalently, we view Wy as an snc compactification of L. Let dW, be the
boundary divisor of Wy ; note that Wy = dXg N Wy. For an snc pair (X, D) (i.e., a smooth variety
X with an snc divisor D) over k, we use Q;( (log D) to denote the log cotangent bundle of (X, D) over
k, and Tx (—log D) := Q;( (log D)"Y to denote the log tangent bundle. Recall that we identified Qp |w,
with Nw, /x,. in Corollary 5.4.

Lemma 9.1. Let ¢ Y — X be an inclusion of smooth varieties over k, and let D be an snc divisor on
X such that (Y, D NY) is an snc pair. Then there is an exact sequence

0— Ty(=logDly) — *Tx(~log D) — Ny;x — 0,
where Ny ;x is the normal bundle of Y — X. If a group scheme G acts on X preserving D and Y, then
this is an exact sequence of G-equivariant sheaves.

Proof. By [O1s05, 1.1(iii)], we have that Ly /s, Lx/s are Ql (—log Dly), QL (—log D). By [Ols05,
1.1(ii)], Ly /x canbe identified with N; /X [1]. Then the result follows from [O1s05, 1.1(v)] and dualizing.
The last statement follows from functoriality. Alternatively, one can deduce the lemma from the map of
short exact sequences

0 — Qxly — Qx(ogD)ly — B, Op,ly — 0

l l |

0 > QY > Qy(IOngy) — @i ODi|y — 0

by applying the snake lemma. O
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Theorem 9.2. As an L-equivariant sheaf, Tw, (—1log 0WL) can be identified with Sp|w,, in such a
way that the exact sequence 0 — Sp — P, . 7iOpi (1) = Qp — 0 restricts to the exact sequence
0 — Tw, (=logoWr) — "Tx, (-log 0Xg) — Nw, /x, — 0.

Theorem 9.2 is closely related to [BEST23, Theorem 8.8]. The G,,-equivariant structure on Sy |w,
is different from the G,,-equivariant structure on Ty, (—log 0Wr) in general.

Proof. First, we do the case of n = 1, in which case the stellahedron I1; is the interval [0, 1]. In other
words, we have P! with the log structure given by the divisor P! = co, where oo is the point [1 : 0] € P!.
The exact sequence

0 — O(-2) - Q, (log aP') - O — 0

implies that 751 (— log AP') is isomorphic to Op:i (1). By [HT99, Proposition 2.3], there is a unique G-
equivariant structure on Opi (1), so Tzi (—log dP') is isomorphic to Opi (1) with the G,-equivariant
structure described in §3.4. As the formation of the log tangent bundle behaves well with respect to
products, the log tangent bundle of (P')F (viewed as a compactification of AF) is @, Opi (1), with
the induced GZ-equivariant structure. Now, since Xg — (P')£ is a composition of blow-ups at the
boundary, the pullback P, 71; Oz1 (1) of Bjer Opi (1) is isomorphic to the log-tangent bundle of Xg
as Gg -equivariant sheaves (see, for example, the proof of [Bri09, Lemma 2.1]).

Now, we do the general case. By Lemma 9.1, it suffices to see that the following square commutes,
as that will identify Sz |w, with the kernel of the map Tx, (—log 0Xg)lw, — Nw, /x;-

Dice 7 O (Dlw, — QLlw,

l l

73(,;— (—log aXE)lWL — Nwi/xe-

It suffices to check that this diagram commutes after restricting to a dense open subset. As the top and
bottom maps are maps of L-equivariant sheaves, it suffices to note that this diagram commutes on the
fiber over 0 € AE . At the fiber over 0, both horizontal maps can be identified with the natural projection
kf — KkF /L, and the vertical maps with the identity. O

9.2. CSM classes of matroid Schubert varieties

First, we review the theory of CSM classes. As CSM classes are defined only for varieties over a field of
characteristic zero, we fix k = C and work with singular homology instead of Chow. Then, for any locally
closed subset Z of a proper variety X, there is a homology class csp (12) € Ho(X,Z). If X is smooth
and Z = X, then the CSM class agrees with the Poincaré dual of the total Chern class of the tangent
bundle. Together with its functorial properties, this property completely determines the CSM class of
any variety. If f: X — Y is a morphism between proper varieties that restricts to an isomorphism over
Z, then fi(csm(12)) = csm (15 (z))-

We now prove Theorem 1.15. Let L € Kk be a linear space of dimension r, and let Y7 be the
closure of L in (P')£, the matroid Schubert variety of L. Recall from the introduction that the singular
homology Hyy (Y7, Z) has a basis labeled by the flats of rank k. For a flat F, set LY = L/Ly. The closure
of a cell labeled by F can be identified with the matroid Schubert variety of the linear space L’ For
a flat F, let yp € H(Yr,Z) denote the class of the closure of the cell corresponding to F. Because
(PY)E is the Schubert variety for the Boolean matroid, in particular we obtain a basis for the singular
homology of (P')E, where each I C E defines the class y; € Hy 7 |((P')F,Z). Note that the product
[T;cs y:i of the divisor classes in Definition 3.7 is Poincaré dual to y; in the sense that for I’ C E, we
have ([ ;e yi) Nyr = 1if I = I’ and is O otherwise.
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Lemma 9.3. The pushforward H,(Yy,Z) — H,((P")E,Z) sends yr to ¥; y1, where the sum is over
bases of M|F.

Proof. In degree r, this follows from [AB 16, Theorem 1.3c]. The general case then follows from the
identification of the closure of the cell indexed by F with the matroid Schubert variety of LF . O

Proof of Theorem 1.15. Because the Wy, is an snc compactification of L, the CSM class of L in
Wi is ¢(Tw, (—logdWr)) N [Wr] by [Alu99, Theorem 1]. Let ¢:: W, — Xg be the inclusion. As
Tw, (—logdWr) = *St and [Wr] = ¢,,—(QL), the projection formula implies that

Lt (c(Tw, (=1og OWr)) N [WL]) = ¢(S1) U cnr (Qr) N [XE].

Using Theorem 8.1 and Theorem 9.2, one can show that

1, [ independent
0, otherwise.

[ e, =togawi [ i -

iel

Therefore, the pushforward of csp (1) € Ho (W, Z) to Ho((P1)%,Z) is 3 independent ¥1 - The functori-
ality of CSM classes implies that this is the pushforward of the CSM class of L in Y7,. From Lemma 9.3,
we note that the pushforward on homology from Y; to (P')¥ is injective, and Y yr pushes forward to
the claimed class. m]

Remark 9.4. Using the stratification of Y7, by cells which are identified with matroid Schubert varieties
for restrictions to flats of M, Theorem 1.15 implies that

csu(ly)= D HGeZM)|G2F} - yr.
FeZ (M)

Appendix A. Polytope algebras and K-rings of toric varieties

The notion of valuativity and the polytope algebra both have many variants, sometimes equivalent and
sometimes not. In this mostly expository appendix, we collect these together and record their relationship
to the K-ring of toric varieties.

A.1. Variants of valuativity

Valuative functions have been studied extensively as combinatorial generalizations of measures. We
point to [McM93b] and [Sch14, §6] as references and give a brief summary here.
For § € R” (or Q"), denote its indicator function by 1g: R” (or Q") — Z defined as

1 ifxeS
1 =
s() {0 otherwise.

Let & € 2" be a collection of nonempty? subsets of R”. We write
I(S):=Z{1s | S € &}

for the Z-module generated by the indicator functions of elements of &. For a hyperplane H C R", let
H* and H~ denote the two closed half-spaces that it defines. The notion of valuative functions on & has
many variants.

3Some authors allow @ € & and then impose by convention a triviality for @, such as f (0) = O for a function f on §. See for
instance [Sal68; McM89]. Here, we prefer to begin with collections of nonempty subsets.
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Definition A.1. For an abelian group A, we say a function f: SU{0} — A with f(0) =0is

(a) weakly valuative if f(S) = f(SNH")+ f(SNH™) — (SN H) for any S € & and hyperplane H
suchthat SN H*,SNH™,SNHEeS,

(b) (when & consists of polyhedra) satisfies the weak inclusion-exclusion principle if for any polyhedral
subdivision S = Ule S; such that § € & and (;¢; S; € SU{0} for every J C {1,...,k}, the
inclusion-exclusion relation f(S) = X ;. k}(—l)”'_lf(ﬂjej S ;) holds,

(c) is additive (a.k.a. valuative) if f(S; U S3) + f(S1 N S2) = f(S1) + f(S>) for any pair §1,82 € &
such that §1 U §», 51 NS, € SU{0},

(d) satisfies the inclusion-exclusion principle if for any union S = Ufle S; such that § € &
and (Njey S; € SU{0} for every J C {l,...,k}, the inclusion-exclusion relation f(S) =

Srci iy DY E(N s S;) holds,

(e) is strongly valuative if there exists a (unique) map of Z-modules f : I(8) — A such that f(S) =
f(1g) forall S € §.

The following implications between the various notions of valuativity are immediate.

() == (d) == (o).

|

(a) == (b)

Whether some or all of the implications can be reversed in the diagram for a given collection & is a
difficult problem in general. We collect some previous results here.

Theorem A.2. As before, let § be a collection of nonempty subsets of R™.

(1) [Gro78] If § is intersection-closed, that is, S1,S2 € & = S1 NSy =00rS1 NSy €8, then we
have (¢) & (d) < (e). For example, the family of all convex bodies in R" is intersection
closed.

) [Sal68; Vol57] If 8 = P, the family of all polytopes in R™ (which is intersection-closed) then we
further have (a) <= (c) so all five notions are equivalent. A minor modification of the proof
also shows that the same holds for Q, the family of all polyhedra in R" (see [McMO09, §3.2] for an
explicit proof).

(3) [McMO9] If 8§ = Qp or Pp, where @, is the family of all A-polyhedra in R" for a rank n lattice
A C R" (similarly Py is the family of all A-polytopes), then we have (¢) — (d) < (e).
Note that Qp and Py are not intersection-closed.

When & is the family of extended generalized permutohedra, that is, lattice polyhedra in R whose
normal fans coarsen (possibly convex subfans of) the normal fan of the standard permutohedron of
dimension n — 1 in R”, Derksen and Fink showed that (b)) <= (e) [DF10, Theorem 3.5]. We ask
whether the equivalence holds more generally:

Question A.3. How are the different variants of valuativity in Definition A.l related to each other
when & is the set of all (lattice) polytopes whose normal fans coarsen a fixed complete (smooth and/or
projective) rational fan?

We record here a useful consequence of Theorem A.2 that taking faces of polytopes is a strongly
valuative operation. For a vector v € R" and a polytope P c R", let face(P, v) be the face of P on which
the standard inner product with v is minimized.

Proposition A.4. Let Py, ..., Py be (lattice) polytopes in R", and suppose 2{;1 ailp, = 0 for some
ai,...,ag € Z. Then, for any v € R", one has Z{‘:l ailface(p;,v) = 0.
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Proof. In other words, we need show that the function on the set of all (lattice) polytopes sending P
t0 Iface(p,v) is strongly valuative. By Theorem A.2, it suffices to show that this function is additive in
the sense of Definition A.1(c), and this additivity is an immediate consequence of [McM09, Theorem
4.6). O

A.2. Variants of polytope algebras

Fix a positive integer n. For a family & of nonempty subsets in R", let

Z(§) = { Z asS | as € Z all but finitely many nonzero}
Ses

be the free abelian group generated by the set §. Define the following subgroups of Z(S):

val(&) = the subgroup generated by the additive (a.k.a. valuative) relations, that is,
P+Q-PUQ-PnQ whenever P,Q,PNQ,PUQ €S,
stVal(&) = the kernel of the map Z()— — I(&) defined by S — 1g, and
transl(&) = the subgroup generated by translation invariance relations, that is,
P — (P+v)whenever Pand P +v € & forv € R".

We may consider the following four quotient groups

I(8) = Z($)/val($),

II(S) = Z(S8)/ (val(S) + transl(S)),
I($) = Z(S§)/stVal(S), and
I(8) = Z(S8)/(stVal(S) + transl(S§)).

In each these four cases, for an element P € § we denote by [ P] its image in the quotient group. For a
commutative ring A, we write 14 = II® A, and similarly for 11, I, and I. We now consider the case where
& is a family of polytopes. In good cases, one may give these quotients groups a ring structure as in the
following lemma, which is a minor variation of [McM89, Lemma 6]. In this appendix, we use & for the
Minkowski sum of polytopes when it is helpful to distinguish it notationally from the addition in Z ().

Lemma A.S. Suppose § is a Minkowski-sum-closed family of polytopes in R". That is, if P and Q are
polytopes in §, then so is their Minkowski sum P W Q. Then, for the quotient groups I1(S) and T1(S),
the multiplication given by

[P]-[Q] =[PwQ]for P,Q €&, and extended linearly to the whole group,

is well-defined. In particular, if further 8 contains the origin 0 of R", then the quotient groups are unital
commutative rings with [0] the unit.

Proof. [Had57, 1.2.2] shows that if O and Q; are polytopes such that Q| U Q5 is a polytope, then
PY(Q1UQ2)=(PYQ)U(PWQy) and PW(Q1NQ2)=(PYQ;)N(PYQy)

for any polytope P C R”. Hence, the multiplication via Minkowski sum is well-defined. O

For a subring R of R, let &g be the set of all nonempty R-polytopes in R”, that is, the polytopes that
have vertices in R". Usually R will be either Z, Q, or R. When R is Q or R, Theorem A.2.(1) implies
that TT1(2g) = I(Pg), and hence T1(Pg) = I(Pr) also. The same conclusion holds when R = Z by
Theorem A.2.(3). The ring ITg (Pg) is what is often called McMullen’s polytope algebra as defined in
[McM89; McM93al.
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For polytopes P and Q, one says that Q is a weak Minkowski summand of P if there is a polytope Q’
and A > 0 such that AQ W Q’ = P. It is straightforward to show that this is equivalent to stating that the
normal fan of Q coarsens that of P.

Definition A.6. Given a complete fan X in R”, we define the subfamily Pg 5z C Pr to be the set of
R-polytopes whose normal fan coarsens X. Let us define

II(R, %) = the image of Z(Prx) € Z(Pr) in I1(Pr),

and likewise for II(R, X), (R, X), and I(R, 2.

Note that, per Question A.3, it is unclear whether I1(%g 5) = II(R, X). It is clear, however, that
I(R,X) = I(Pr.x), and also that transl(Pr.s) = Z(Pg.s) N transl(Pg) so that [(R,X) = [(Pgr.x).
Thus, when R is Z, Q, or R, the equivalence of additivity and strong valuativity, as noted in Theorem
A.2(3), yields the following.

Proposition A.7. When R is Z, Q, or R, one has
M(R,2) =1(R,%) =(Prx) and T(R,Z)=I(R,%)=1(Pry3).

We conclude this section with another variant of the polytope algebra given in [Mor93]. Given a
complete rational fan £, Morelli defines rings Ly (Z") and &5 (Z") as follows. For a point p € R" and
a polytope P, if p € P then define TC,,(P) = R5o{P — p} to be the tangent cone of P at p, and if p ¢ P
define by convention 7Cp, (P) = 0. Let € be the collection of cones (always centered at the origin) in
R", and let €x = {C € R" | CY € I} be the collection of cones which are duals of the cones in X.
Linearly extending the map P — 1rc, (p), we obtain a map 6, : 1(%z) — I(%) for any point p € Z".
We then define

Ls(Z") = the subgroup generated by f € I(9z) such that 8,,(f) € I(&x) forall p € Z", and
P5(Z") = the image of Ly (Z") in [(%7).

In the paragraph preceding [BG09, Theorem 10.46], the wording is somewhat ambiguous so as to
assume implicitly that & (Z") is equal to I( Pz 5). We ask explicitly:

Question A.8. For which complete fans X is Ly (Z") = I(%z.x) and/or Z5(Z") = [(Pzx)?

In [FPO5], the authors give examples of smooth proper toric varieties which admit no nontrivial
nef line bundles, so I(%z5) = Z, which gives examples of smooth fans for which both equalities in
the question fail. We will later prove Theorem A.10 which, when combined with a result of Morelli
(Theorem A.11 here), implies that for smooth projective fans X we have that Ly(Z") = I(%zx) and
Z5(2") =U(Pzy).

A.3. Relation to (operational) Chow rings

Let R = Z or Q from this section onwards so that we may consider toric varieties and their (Q-)divisor
classes associated to polytopes. Let £ be a complete rational fan and Xs be its toric variety. We point
to [Ful93] for basic facts on toric varieties. Recall that a lattice polytope Q € Pz s defines a nef T-
equivariant line bundle Ox, (Do) in X5, with the property that its divisor class [Dg] € Pic(Xs) does
not change when we translate Q. See [CLS11, Chapter 6] for a discussion of polytopes and line bundles.
We collect some results of Fulton and Sturmfels.

Theorem A.9. Let X be a complete rational fan, and let A*(Xx) be the operational Chow cohomology
ring of the toric variety Xs. Then, we have:

(1) [FS97, Theorem 3.1] The operational Chow ring is isomorphic (as a graded ring) to the ring of
Minkowski weights on the fan ¥ with product structure coming from the fan displacement rule.
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(2) [FS97, Theorem 5.1] If X is projective, the exponential map, sending [Q] — exp([Dg]), defines
an injection of rings EQ(@Q,Z) — A*(Xz)g whose image is the subring generated by Al(XZ)Q =
Picg(Xx). The exponential map is an isomorphism when X is further simplicial.

(3) [FS97, Theorem 5.2] The exponential map defines an isomorphism between EQ(Q’Q) and the direct
limit 11_1‘[)1 A*(Xsx)g over all complete fans.

The image exp([Dg]) of the exponential map applied to Q can be described in terms of Minkowski
weights as follows: The cone dual to a face F of Q gets weight equal to the lattice volume of F' (in the
lattice of the affine span of F). For the case when R = R, after a suitable modification of the definitions
for the ring of Minkowski weights and the exponential map above, one has a similar injective map
[McM89, Theorem 2] that is an isomorphism when X is further simplicial [McM93a, Theorem 5.1].
See also [Bri97].

A.4. Relation to K-rings

Let K(X) be the Grothendieck ring of vector bundles on a smooth complete variety X. For a smooth
complete C-variety X, the Hirzebruch-Riemann—Roch theorem gives that the Chern character map
ch: K(X)qg — A(X)q, defined on classes of line bundles by [L] + exp(c; (L)), is aring isomorphism.
Comparing this to the second statement in Theorem A.9, one concludes that there is an isomorphism
ﬁQ(.@Q,Z) =~ K(Xs)g determined by [Q] +— [Ox,(Dg)] when X is projective and smooth. Obtaining
this isomorphism not only over Q but over Z is the topic of this section. In particular, we prove the
following.

Theorem A.10. Let X be a smooth projective fan, and let Ky (Xs) be the Grothendieck ring of torus-
equivariant vector bundles on Xs. Then, there is a ring isomorphism

yr: I(Pzz) — Kr(Xx)

determined by the property [P] — [Ox, (Dp)] for any P € Py 5. This descends to an isomorphism
Y: [(Pzx) = K(Xz).

Morelli proved a similar result for any smooth complete (not necessarily projective) fan; the following
theorem collects [Mor93, Theorems 5, 6, and 8]. For k € Z., let ¥k be the k-th Adams operation,
which is a ring endomorphism of K(7(Xz) that satisfies Wk[L] = [LE8¥] for £ a (T-equivariant) line
bundle. For m € Z" and [£] € K7 (Xz), let x(Xz, [€])m be the weight m Euler characteristic.
Theorem A.11. Let ¥ be a smooth complete fan.

(1) The map I : Kr(Xs) — Ls(Z") € Z2" given by [E] — (m/k — X(Xg;‘Pk[E])m) is a well-
defined ring isomorphism.
(2) The map Iy descends to an isomorphism I: K(Xs) — Lx(Z").
However, in light of Question A.8, it is unclear whether this proves Theorem A.10. We conclude

with our proof of Theorem A.10 in the form of two lemmas. The proof of the second lemma uses ideas
of Morelli.

Lemma A.12. There is a surjective ring homomorphism Y : I(Pzs) — Kr(Xs) determined by the
property [P] = [Oxy(Dp)] for any P € Pzx. It descends to a surjective ring homomorphism
Y: (Pzz) = K(Xz).

Proof. First, we show that Y1 is well-defined. We use the localization theorem for the torus-equivariant
K-theory of smooth complete toric varieties [Nie74, Theorem 3.2], which embeds K7 (Xx) as a subring
of Hptexg K7 (pt). For each fixed maximal cone o € X, which corresponds to a point in XI , the class
of [Ox, (Dp)] is sent to T~V , where v, is the vertex of P on which any functional in the interior of o
achieves its minimum. That this is well-defined follows from Proposition A.4. To see that Y7 is a ring
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homomorphism, note that if P and Q are polytopes, then the vertex of P ¥ Q on which any functional
in the interior of o~ achieves its minimum is the sum of the corresponding vertices of P and Q.

For the surjectivity of ¥, first note that for a complete smooth toric variety Xy, the ring K7 (Xy) is
generated as a ring by the classes of T-equivariant line bundles [Kly84, Corollary 1] (see also [AP15,
Lemma 2.2]). If X is further projective, any T-equivariant line bundle is isomorphic to £Y ® M for
some ample T-equivariant lines bundles £ and M. Since yr surjects onto the classes of 7T-equivariant
ample line bundles, it suffices now to show that for a T-equivariant ample line bundle L, its inverse class
[£Y] is a sum of powers of [ L] (possibly with different equivariant structures). Concretely, suppose we
have a lattice polytope P C R whose normal fan Xp equals 2. Let N be the number of lattice points in
P. Denoting ps = ). ,eg p for asubset S € P NZ", we claim that

N
[Ox:(=Dp)] = z:(—l)k_1 Z [Oxs (D (k-1ypP-pg)] as elements in K7 (Xz).
=

scpnzt
IS|=k

By multiplying [Ox, (D p)], we equivalently check that

N
Z(_l)k Z [OXX(Dkaps)]ZO.
k=0

scpnzn
IS|=k

Here, the k = O term should be interpreted as [Ox,] with the trivial equivariant structure. At each
T-fixed point x of X5 corresponding to a vertex v of P, the localization value of the left-hand side is zero
since [Oxy (D (1s}+1) P-psuy M x = [Oxx (Ds|p-ps)]x forany S € (P NZ") \ v. Finally, we note that for
Q € Pz 5, the divisor class [D ] is invariant under translation of Q, so translation invariance is clear.
Therefore, 7 descends to amapy : 1(Pzx) — K(Xyx), which is surjective because K7 (Xs) — K (Xx)
is surjective. O

Lemma A.13. The maps ¥ and  given in the previous lemma are injective.
Proof. For [£] € K7 (Xyz), consider the function Q" — Z defined by

mlk = y(Xsz; Y*[E])m form € Z" and k € Zso.
In order to see that this is a well-defined function, we need to check that
X (X WH[ED)m = x (Xs; W [E])um  for any n € Zoo.

By Lemma A.12 and because the classes of the polytopes P € Pz 5 generate [(Pz x), it suffices to
check that

X (Xs; ¥¥[Oxy (Dp)Dim = x (X5 ¥ [Oxy (D p) ) for any n € Zog

for an arbitrary polytope P € 9z s. This then follows from the fact that for any positive integer £ and
m € Z", one has

1 ifmecP

x(Xs, ¥ [Oxy (Dp) ) = { .
0 otherwise.
Indeed, W/ [Ox, (Dp)] = [Oxy(D¢p)], we can identify H(Xs; Ox, (D¢p)) with the vector space
spanned by lattice points in £P, and the higher cohomology of base-point-free line bundles on toric
varieties vanishes [Ful93, §3.4 & §3.5].
We now construct a map Kr (Xz) — I(Pzx). By Lemma A.12, every class [£] € K7 (Xx) is of
the form [£] = }; a;[Ox, (Dp;)] for some P; € Pz 5. We send [£] to X, a;[Pi] € 1(Pz5). The
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construction above recovers the evaluations of } a;[P;] at points in Q™. Because two finite sums of
indicator functions of lattice polytopes are equal if they agree on Q", this map is well-defined. It is
clearly a left-inverse of ¥ which descends to a left-inverse of . O
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