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Abstract

We establish a connection between the algebraic geom-
etry of the type B permutohedral toric variety and the
combinatorics of delta-matroids. Using this connection,
we compute the volume and lattice point counts of type
B generalized permutohedra. Applying tropical Hodge
theory to a new framework of “tautological classes

2

of delta-matroids,” modeled after certain vector bun-
dles associated to realizable delta-matroids, we establish
the log-concavity of a Tutte-like invariant for a broad
family of delta-matroids that includes all realizable
delta-matroids. Our results include new log-concavity

statements for all (ordinary) matroids as special cases.
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1 | INTRODUCTION

For a nonnegative integer n, let [n] = {1, ..., n}. Forasubset S C [n],leteg = Y, €; € R" be the
sum of the standard basis vectors indexed by S. If n > 1, the A,,_; permutohedral fan = a,_, is the
complete fan in R” whose maximal cones are the chambers of the arrangement of hyperplanes

He e, = {Gep, s x,) ER™ 1 x; —x; =0} foralll<i<j<n

A polytope P C R" is an A,,_; generalized permutohedron if its normal fan coarsens the fan = Ay
The polyhedral properties of A,,_; generalized permutohedra and the algebraic geometry of the
toric variety X A,y associated to X A,y (asafanin R"/R(1,...,1)) have been well-studied as a way
to illuminate the structure of several combinatorial objects [2, 52], including graphs, posets, and,
notably in recent years, matroids.

Definition 1.1. A matroid M on [n] is a nonempty collection B of subsets of [1], called the bases
of M, such that the polytope

P(M) = the convex hull of{e; : B € B} C [0,1]"

has all edges parallel translates of e; — e; for various i, j € [n], or, equivalently, such that P(M) is
an A,_, generalized permutohedron with all vertices lying in {0, 1}".

Recently, an interpretation of matroids as elements in the Chow cohomology ring of X,
has led to fruitful developments in matroid theory [1, 10, 42, 47]. Conversely, this interpretation
allows matroid theory to inform the geometry of X, [34, 41]. Many of these developments have
recently been unified, recovered, and extended under the new framework of “tautological classes
of matroids” [9], modeled after certain torus-equivariant vector bundles on X Ay

Meanwhile, the fan ¥,  generalizes to the fan X, of the Coxeter arrangement of an arbitrary
crystallographic root system ®, the toric variety X,  generalizes to the toric variety Xq of g,
and the combinatorial objects such as graphs, posets, and matroids generalize appropriately to
their Coxeter analogues (see [5, section 4] and references therein). For instance, in the theory
of Coxeter matroids [14], matroids in the usual sense are exactly the type A minuscule Coxeter
matroids. Several works [31, 43, 53, 56] have studied the Chow cohomology ring of X4. Missing in
these previous works is an interaction between Coxeter matroids and the Chow cohomology ring
of X that generalizes the interaction between matroids and the Chow cohomology ringof X .

‘We establish here such an interaction when @ is a root system of type B, noting that the type
B minuscule Coxeter matroids are exactly delta-matroids (Definition 1.3). This interaction inter-
faces particularly well with the framework of “tautological classes of delta-matroids” we develop
in Section 7, which is modeled after toric vector bundles associated to maximal isotropic sub-
spaces that realize delta-matroids. Some barriers to establishing a uniform treatment for arbitrary
Coxeter types can be found in Remark 3.6.

1.1 | Main combinatorial consequences

Definition 1.2. Let n > 0. The B, permutohedral fan Xy is the complete fan in R" whose
maximal cones are the chambers of the arrangement of hyperplanes

Heiiej ={(x1,..,x,) ER" ! x; £ x; =0} foralli# j € [n], and

H, = {(x1,..,x,) ER" : x; =0} foralli € [n].
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SIGNED PERMUTOHEDRA, DELTA-MATROIDS, AND BEYOND | 3 of 54

The fan Zp is the normal fan of the type B, permutohedron IIp , also called the signed per-
mutohedron, Wthh is the convex hull of {w - (n LDER" :we @B} where @B is the signed
permutation group (see Subsection 2.1). A polytope P c R" is a B, generalized permutohedron if
its normal fan X, coarsens Zp ,0r, equivalently, if each edge of P is parallel to e; + e i, € —ej,or
e; for various i, j € [n]. B, generalized permutohedra are also known as bisubmodular polytopes,
see [37, Theorem 1].

A celebrated result of Postnikov [52] gives a formula for the volumes and lattice point enumer-
ators of A, _; generalized permutohedra in terms of transversals of subsets Sy, ..., S; of [n], that s,
subsets 7 C [n] such that there exist a bijection j : {1,...,k} — v with j(i) € S; foralli € {1, ..., k}.
We give a formula for the volumes and lattice point enumerators of B,, generalized permutohedra
as follows.

__Let [n] = {1,...,7n}, and let [n, 7] = [n] U 1], which is endowed with the obvious involution
(). For S C [n,n], we denote eg = ) ;- €;, Where e;i=—e; for j € [n]. Define the set AdS of

admissible subsets of [n, n] to be
AdS = {S C [n, 7] such that {i,i} ¢ S for alli € [n]}, and define AdS, = {S € AdS : |S| = n}

to be the set of maximal admissible subsets. A signed transversal of Sy, ..., S,, is an admissible subset
7 € AdS,, such that there exists a bijection j: {1,...,n} - 7 with j@i) € S; for alli = 1, ..., n. For
an admissible subset S € AdS, let

A} = the simplex that is the convex hull of {e; : i € S}U {0} in R".

Theorem A. Let P be a lattice B, generalized permutohedron (i.e., P has vertices in Z").

(a) There exists a unique set of integers {cg € Z : S € AdS \ {@}} such that the signed Minkowski
SUM ¥ sends\ (o) csA) equals P. Hence, we may write P = P({cg}).
(b) Forany sequence (S, ..., S,,) of nonempty admissible subsets of [n, n], one has that

mixed volume of {AO1 s Agn} = |{signed transversals of Sy, ..., S, }|.

In particular, normalizing the volume of the standard simplex A?n] to be 1, one has

Vol (P({cg})) = 2 |{signed transversals of Sy, ..., S, }| " €Cg,Cg, ** Cs,

where the sum is over all sequences (S, ..., S,) of nonempty admissible subsets.

; ; . ood dp -
(c) Let ¥ be the linear operator on polynomials that replaces each monomial x,* -+ x,,," in a poly-
. dyl--dy,! . .
nomial f(xy, ..., Xx,,) by m (2) (Z:) Let[] = [0, 1]" be the standard unit cube in R".
Then, we have

# lattice points of (P({cs}) — [1) = Y(Vol (P({cs]))),

where P({cs}) — [ denotes the polytope P({c;}) with c; = cg — 1 if S = {i} C [n] and c{ = ¢g
otherwise. Here, the volume and lattice point counts are considered as polynomials in the {cg}.

d ‘€ "vT0T “XPrToorT

sdny wosy

:SdNY) SUONIPUOD) PuT SuLa, oY) 99§ “[$Z0T/L0/ST] U0 ATEIQET AUUQ AT “AUISIOATUN) PIPAIRH AQ 76571 SWIA/ZT 1 1:01/10p/wO Kot

- Kol Axeqouy

25UADFT SUOWIIOD) AATIFAI) A[qEIIdE A1 £q PAUIANGS A1 SAPIIT VO 195N JO SAINI 10] ATRIGIT AUIUO) A9TEA UO (i
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The statements (a), (b), and (c) generalize to type B the classical type A results [4, Proposition
2.4], [52, Theorem 9.3], and [52, Theorem 11.3], respectively. Hence, Theorem A fully answers [5,
Question 9.3] for type B. The statement (a) was also shown in [8] via a study of Tits algebras,
and a different set of polytopes satisfying the property in (a) was obtained in [50] via a study of
shard polytopes. Neither work gives a formula for the volume or lattice point enumerator. We will
deduce Theorem A via our study of delta-matroids.

Definition 1.3. A delta-matroid D on ground set [n,n] is a nonempty collection 7 C AdS,, of
admissible subsets of [, 1] of cardinality n, called the feasible sets of D, such that the polytope

P(D) = the convex hull of {eg,| : B € F} C [0,1]"

has all edges parallel translates of e; + e j.€ —ejore; for various i, j € [n], or, equivalently, such
that P(D) is a B,, generalized permutohedron with all vertices lying in {0, 1}"*. For i € [n], we say
that i is a loop, respectively, coloop, of D if no, respectively, every, feasible set contains i.

We often identify a delta-matroid D with its polytope P(D).

Delta-matroids were introduced in [15] by weakening the basis exchange axiom for matroids,
to allow cases where not all bases have the same cardinality. (A basis of D is the intersection of a
feasible set with [n].) Several combinatorial settings that give rise to matroids have generalizations
to delta-matroids. As one example, a bipartite graph yields a transversal matroid whose bases come
from maximal matchings, as the incident vertices in one part. Given an arbitrary graph, the sets
of vertices incident to matchings of any size are the bases of a delta-matroid [16]. As another,
a connected graph yields a graphic matroid whose bases are the spanning trees. Given a graph
embedded on a surface, the set of spanning “quasi-trees” are the bases of a delta-matroid [25,
26]: see Example 6.5. There is a theory of linear representability for delta-matroids as well: see
Subsection 6.2. For the equivalence of the definition of delta-matroids in the works cited above
and the one given here, see [14, chapter 4].

A matroid M on [n] with set of bases BB defines a delta-matroid D in two different ways: first,
by its base polytope P(M), and, second, by its independence polytope

IP(M) = the convex hull of (e; : I C [r] such thatI C B for some B € B) C [0,1]",

whose edges are all of the form e; or e; — e - We will frequently use P(M) and IP(M) to refer to
the delta-matroids obtained from M as above.

We introduce a new invariant of delta-matroids defined by a recursive relation similar to the
one satisfied by Tutte polynomials of matroids. See Definition 5.1 for the deletion D \ i, contraction
D/i, and projection D(i) of a delta-matroid D.

Definition 1.4. For a delta-matroid D on [n, n] with feasible sets F, the U-polynomial U (u, v)
is the unique bivariate polynomial satisfying the following properties.

* (Base case) If n = 0, then Up(u,v) = 1.
* (Recursive relation) If n > 1 and i € [n], then

U (.0) Up\i(4,0) + Up;(u,v) + uUp;y(u,v) if i is neither a loop nor a coloop
u,v) =
P (u+v+1)- UD\,-(u, V) if i is a loop or a coloop.
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Proposition 5.2 verifies that this recursive definition is well-defined. Specializing Up,(u, v) at
u = 0, one obtains the interlace polynomial Int(v), introduced in [7] for graphs and generalized
to delta-matroids in [23]. See [49] for a survey on interlace polynomials.” The invariant Uy, also
gives rise to two invariants of (ordinary) matroids. Let T); denote the Tutte polynomial of M. One
computes, as done in Examples 5.5 and 5.6, that

UP(M)(M’ U) — 2 uIS—TlUcorankM(S)+nu11ityM(T)’
TCSC[n]

so in particular, Intpp(v) = Ty (v + 1,v + 1), and
- +uv+1
U u,v) = (u + 1)rrankM) 1 <u+2,u—).
pan) (U, 0) = ( ) M w1l

We establish a log-concavity property for U-polynomials of delta-matroids that have an envelop-
ing matroid (Definition 6.6), a condition necessary for applying tools from the tropical Hodge
theory developed in [6]. Such delta-matroids include P(M) and IP(M) when M is a matroid (Propo-
sition 6.11), and include realizable delta-matroids (Proposition 6.9), in particular the adjacency
delta-matroids of graphs (Example 6.4) and delta-matroids from graphs embedded on surfaces
(Example 6.5). We say that the coefficients of a homogeneous polynomial f of degree d form a
log-concave unbroken array if for any 1 < i < j < n and any monomial x™ of degree d’ < d, the
coefficients of {xlf‘x}i_d/_kxm} form a nonnegative log-concave sequence with no internal zeros.

Theorem B. Let D be a delta-matroid that has an enveloping matroid. Then the polynomials

(y+q)nUD<yiq’;_;g> and (1.1)
2z4+x Y—2Z

U s 1.2

y+w) D<y+w y+w> (12)

have a log-concave unbroken array of coefficients. In fact, they are denormalized Lorentzian
polynomials in the sense of [20, 21].

In fact, we obtain that (1.1) is denormalized Lorentzian by showing that a specialization of
a multivariable version of the U-polynomial is Lorentzian, which gives stronger log-concavity
results. See Theorem 8.1. Setting x = 0 and g = 1 in (1.1) implies that the transformation (y +
" IntD(}y%) of the interlace polynomial has nonnegative log-concave coefficients with no inter-
nal zeros, and hence has unimodal coefficients. We note that the interlace polynomial of a
realizable delta-matroid can have nonunimodal coefficients (Example 8.5); see Remark 8.4 for
a history of conjectures about unimodality for the interlace polynomial. Theorems B and 8.1 also
yield new log-concavity results for (ordinary) matroids. For instance, Theorem 8.1 implies that
the coefficients of Up(u,0) are log-concave after multiplying the coefficient of u* by k!, and in
particular are strictly log-concave. Taking D = P(M) for a matroid M, this implies that if we set

ap = {T €S C [n]: T independent in M and S spanning in M, |S| — |T| = k}|,

In our terms, the “interlace polynomial” defined in [7] equals Intp (v — 1). Our definition agrees with [49, Definition 28]
and the polynomial denoted g; in [23].
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then ai > %ak_lak +1- See Corollary 8.2 for more implications of Theorem B. See Theorems 7.15
and 7.14 for the algebro-geometric results underlying the formulae (1.1) and (1.2), respectively,
and see Subsection 8 for the derivation of log-concavity from these formulae using tropical Hodge

theory.
Conjecture 1.5. The hypothesis that D has an enveloping matroid can be removed in Theorem B.

We do not know an easy way to check if a given delta-matroid has an enveloping matroid, so it
is difficult to test Conjecture 1.5. We have checked Conjecture 1.5 for all delta-matroids on at most
5 elements, which includes some delta-matroids that lack enveloping matroids: see Example 6.12.

1.2 | Underlying geometry

We obtain Theorems A and B by establishing a new connection between the algebraic geometry
of the B,, permutohedral fan £z and the combinatorics of delta-matroids. The fan X , as a ratio-
nal fan over 7", defines a smooth projective toric variety Xp that we call the B, -permutohedral
variety. We follow the conventions in [28, 39] for toric varieties and polyhedra, and we work over
an algebraically closed field k. The toric variety Xp is equipped with two well-studied rings, the
Chow cohomology ring A*(X Bn) and the Grothendieck ring of vector bundles K(X Bn)'

We construct an isomorphism between the rings K(X Bn) and A" (X Bn)’ different from the clas-
sical Hirzebruch-Riemann-Roch theorem. Recall that the Hirzebruch-Riemann-Roch theorem
states that for an arbitrary smooth projective variety X, the Chern character mapch : K(X) ® Q —
A*(X) ® Qis an isomorphism such that

x([€D = /Xch([é']) -Td(X) forall [€] € K(X),

where y : K(X) — Z is the sheaf Euler characteristic map, fX is the degree map, and Td(X) €
A*(X) ® Qis the Todd class of X.

To state our exceptional Hirzebruch-Riemann-Roch-type theorem, we need the following
definitions. Note that the product fan (Zz )", which is the fan induced by the arrangement of
coordinate hyperplanes in R", is a coarsening of X . Hence, as the toric variety of Zp is P!, we
have a birational toric morphism X B, = (PHY". Let FHO(1) be the vector bundle on X B, obtained
as the direct sum of the pullbacks of Op1(1) from each P! factor in the product (P!)".

Theorem C. There exists a ring isomorphism ¢® : K(X B,) = A'(Xp ) such that
x([€D) = / ¢"([€]D) - c(@O))  forall [€] € K(Xp,),
Xp,

where c(FHO(1)) = c¢,(FHO(1)) + --- + ¢, (HHO(1)) denotes total Chern class of FHO(1).

We define the map ¢? and prove Theorem C in Subsection 3. We note that the map ¢? in The-
orem C differs from ch and is an isomorphism integrally, and the class c(EHO(1)) differs from
the Todd class of Xp . The isomorphism ¢® here is closely related to the type A exceptional
Hirzebruch-Riemann-Roch isomorphisms that appeared in [9] and [34] (see Subsection 3.3).
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SIGNED PERMUTOHEDRA, DELTA-MATROIDS, AND BEYOND | 7 of 54

The combinatorial utility of Theorem C is mediated by our Theorem D that describes a basis
of the ring K(X Bn) in terms of Schubert delta-matroids (Proposition-Definition 2.7), which corre-
spond to the Bruhat cells of a type B generalized flag variety (Example 6.3). Recall that there is
a standard correspondence between polytopes and base-point-free line bundles on toric varieties
[28, section 6.2].

Theorem D. The classes of line bundles on X B, corresponding to the polytopes of Schubert delta-
matroids without coloops form a basis for K(Xp ).

Theorem D is proved in Section 2. By combining Theorem C with Theorem D, we construct
in Corollary 4.5 a graded basis for A*(Xp ) indexed by coloop-free Schubert delta-matroids. By
considering the basis elements in A'(X Bn)’ we deduce statement (a) of Theorem A. The rest of
Theorem A is deduced from Theorem C in Subsection 4.2. Theorem B is proved by constructing
torus-equivariant nef vector bundles on Xy that are related to delta-matroids; see Subsections
7.2 and 7.3. The proof of Theorem B invokes Theorem C in Subsection 7.4 to compute certain
intersection numbers. Their log-concavity properties are established using tropical Hodge theory
in Section 8.

2 | POLYTOPE ALGEBRAS OF DELTA-MATROIDS

In this section, we prove Theorem D, which describes K(X Bn) in terms of delta-matroids. Subsec-
tion 2.1sets up preliminaries on the fan ¥z and signed permutation group @f . The first step of the
proof of Theorem D is that K(X Bn) is isomorphic to a combinatorially defined ring, the polytope

algebra ﬁ(ZBn) of indicator functions of lattice B,, generalized permutohedra modulo translation,
introduced in Subsection 2.2. This is a special case of the folklore statement that K(Xy) is iso-
morphic to a polytope algebra for an arbitrary smooth projective fan %, proven precisely in [34,
appendix A]. The isomorphism sends the class [1(P)] of the indicator function of a B,, generalized
permutohedron P to the K-class of the corresponding line bundle.

Subsection 2.3 introduces Schubert delta-matroids. Subsection 2.4 contains the bulk of the proof
of Theorem D, and Subsection 2.5 assembles it. The proof proceeds in three main steps. Using
polyhedral properties special to the unit cube [0, 1]", we show that the intersection of a lattice
B, generalized permutohedron with the cube is a delta-matroid polytope (Proposition 2.12); tiling
by translates of this cube, we conclude that I(Z B,) is generated by classes of delta-matroid poly-
topes. Intersecting the cube with the dual of a cone of £ gives a Schubert delta-matroid polytope
(Corollary 2.16), which up to translation may be taken to be coloop-free; using the Brianchon-
Gram theorem, these intersections by themselves generate Iz Bn) (Theorem 2.17). The last step is
to show that Schubert delta-matroid polytopes satisfy no linear relations (Proposition 2.19 and the
sequel).

. . B
2.1 | ThefanX; and the signed permutation group &
Let n be a nonnegative integer. Recall that the B, permutohedral fan Xz was defined to be

the complete fan in R"” whose maximal cones are the chambers of the type B arrangement of
hyperplanes, the union of all hyperplanes of the form {x; + x; = 0} and {x; = 0}.
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8of 54 | EUR ET AL.

Definition 2.1. The Weyl reflection group corresponding to the real hyperplane arrangement
defining Zp, is the signed permutation group @’3 , which is the subgroup

&F = {w € &,z : w(i) = w(i) foralli € [n,7]} C S}, 5,

where ©,, ;;; denotes the symmetric group on [n, n].

A permutation o of [n] can be extended to a signed permutation of [n, ] by setting o(i) = @.
In this way, the permutation group ©,, is naturally a parabolic subgroup of @f , viewed as the
stabilizer of [n] C [n,n]. Then @]j is a semidirect product

eF =@, X {£1}",

where {+1}" < & is the sign group such that the ith copy of {1} is the subgroup generated by
the transposition (i, 1). We denote the map to the set of left cosets of & . by

(e1s s €)1 &8 > {21},

which can also be described by

1 iew(n))
&(w) =
{—1 i ¢ w((n)).

Recall that we have defined e; = —e; € R" for i € [n]. We next fix notation for cones of Z .

Proposition 2.2. The maximal cones of 2 are given by
Cy, = conefey, gy, s €1y + - + €0}

foreachw € @E. The cone C,, is the unique maximal cone containing w - (n, ..., 1). The dual cones
are given by

Cy = conefe,, ), €,2) = €y(1)s - » €y(n) — Cu(n1)}-

We describe here the various (left) actions of @5 we will consider.

+ &P actson R" by w - e; = e,,(;). This is the geometric definition of the Weyl group as the set of
isometries preserving the type B hyperplane arrangement.

« &7 acts on the set of maximal cones of Zp, throughits actionon R" by w - Cy = C

* &7 acts on the set of delta-matroids D through the action on the ground set [n, 7].

. @’fl acts on the set of delta-matroid polytopes P(D) through its action on the set of delta-
matroids. This is not induced by the above @f -action on R" (which does not preserve the cube
[0,1]" containing all delta-matroid polytopes), but rather the @E -action on R” conjugated by

ww’*

translation by (— %, s —%). Hence, ©,, acts in the usual way by permuting coordinates, but the
ith copy of {+1} in the sign group acts by reflection in the x; = % hyperplane.

Remark 2.3. The orbit of a delta-matroid under &, < & consists of all isomorphic delta-matroids
in the sense usual in the delta-matroid literature. Its orbit under {+1}" < @]rf are called its partial
duals [24]. So, its @g-orbit consists of all partial duals of isomorphic delta-matroids.
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2.2 | The polytope algebra

We collect some facts about McMullen’s polytope algebra; see [34, appendix A] for a survey and
references. For a polyhedron P C R”, possibly unbounded, let 1(P) : R" — Z be its indicator func-
tion, defined so that 1(P)(x) equals 1 if x € P and 0 if not. Let & be a collection of polyhedra in
R",

Definition 2.4. The indicator group 1(9) is the group of functions from R" to Z generated by the
indicator functions 1(P) for P € &. A function f : & — G valued in an abelian group G is called
strongly valuative if it factors through the map1: & — ().

LetZ"+ P ={m+ P : m € Z", P € &} be the set of lattice translates of polyhedra in .

Definition 2.5. The translation-invariant indicator group 1(2) is the quotient

(P) = (Z" + P)/A(m +P)—1(P) : m € Z",P € P).

We write [ f] for the class of a function f € I(Z" + &) in this quotient. For a polyhedron P € %,
we often write [P] for the class [1(P)].

Suppose now that & is the set &, ; of lattice deformations of a smooth projective fan Z in R",
that is, %,y = {P C R" alattice polytope whose normal fan coarsens Z}. In this case, the group
ﬁ(@z’z) is isomorphic to the subalgebra of McMullen’s polytope algebra spanned by polytopes in
Py 5 [34, Proposition A.6] (see also [46]). In particular, ﬁ(@z,z) acquires the structure of a unital
commutative ring [45, Lemma 6], with the product induced by [P] - [Q] = [P + Q].

The polytope algebra ﬁ(g’z,z) relates to the geometry of the smooth projective toric variety X5
of the fan X as follows. The standard correspondence between polyhedra and divisors on toric
varieties [28, section 6.2] (see also [5, section 2.4]) gives a bijection between polytopes P € %, 5
and base-point-free torus-invariant divisors Dp on Xy. Let Oy, (Dp) denote the corresponding line
bundle. We then have the following folklore isomorphism.

Theorem 2.6 ([34, Theorem A.10] (cf. [48, Theorem 8])). The assignment [P] — [(DXZ (Dp)] defines
an isomorphism of rings ﬁ(g’z,z) SK X5).

We now specialize to the B,, permutohedral fan. Let
GPZ,B” = g’z,zgn
be the set of B,, generalized permutohedra that are lattice polytopes. Then
DMat,, = the set of all delta-matroids on [n, 1]

is identified with the subset of GPzp, consisting of polytopes with vertices in {0, 1}".
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2.3 | Schubert delta-matroids

We now describe a special family of delta-matroids that we will use to provide bases for I(GP, 5 )
and I(G P2 p,)- Byidentifyingw € &8 /@, withw - [n] € AdS,,, the Bruhat order provides a partial
order on AdS,,, namely, the (hyperoctahedral) Gale order of [14, section 3.1.2], given as follows.
Endow [n, n] with the total order

A< <l<l<--<n. 1)
Then, the Gale order on AdS,, is the corresponding dominance order, which is described in two
equivalent ways.

* Given S, S’ € AdS,,, we have S < S’ ifand only if |S n U| < |S” n U] for every upper segment U
of the order (2.1).

* In terms of elementwise inequalities, if S = {i, ...,i,} and S’ = {jy, ..., j,} with i; < --- < i, and
j1 <+ <jn thenS < S ifand only if ij < j, for all k.

Proposition-Definition 2.7 ([14, section 6.1.1]). Each lower interval [[n], S] in the Gale order is
the set of feasible sets of a delta-matroid Qg. We call the Qg for S € AdS,, the standard Schubert
delta-matroids. A Schubert delta-matroid is a @55 -image of a standard Schubert delta-matroid.

Example 2.8. For n = 3, the admissible sets dominated by {5, 1,3} are
{2,1,34,{3,1,2},{2,1,3},{3,1,2},{3,2,1},{3,2, 1},

so the standard Schubert delta-matroid Q
hull of

313} is the delta-matroid whose polytope is the convex
{€11,3}> 11,21 €13)> €12} €11)- €1y
One may also recognize this polytope as the independence polytope of the matroid on [3] whose

bases are {1, 2} and {1, 3}.

For S € AdS,,, the standard Schubert delta-matroid polytope P(Qy) is the independence poly-
tope of a type A Schubert matroid in the following way. The standard Schubert matroid Q‘{} ofa
subset T C [n] is the matroid on [n] whose set of bases is

Q? ={B C[n] : |B| = |T| and B < T in the dominance order},
where the dominance order is taken with respect to the ground set ordering 1 < --- < n.

Lemma 2.9. ForS,S’ € AdS,, then the following are equivalent.

(1) S < S in the Gale order.

2) ISn{i,...,n}| <|S'n{i,..,n} foralll <i < n

(3) Thereexists B C [n]with |B| = |S' N [n]| such that S N [n] C B < S’ N [n], where the inequality
is taken in the dominance order.

Proof. All equivalences are easy to verify directly, so we omit the proof. O
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A Schubert matroid is a &, -image of a standard Schubert matroid. From the equivalence of the
first and third parts of Lemma 2.9, we see that P(Qg) = IP(Q?n[n]), and so the subset

SchDMat,, = the set of all Schubert delta-matroids on [n, n]

of DMat,, is identified with the set of @E-images of independence polytopes of Schubert matroids
on [n]. The name “Schubert (delta-)matroid” reflects a relationship with Schubert cells explained
in Example 6.3.

2.4 | Intersecting with unit cubes

We record here some key properties concerning how lattice B, generalized permutohedra inter-
sect with unit cubes. We will use them to prove Theorem D and some related isomorphisms in
the next subsection.

The natural level of generality of our first proposition, Proposition 2.12, is not only lattice B,
generalized permutohedra but also their unbounded analogues. A polyhedron P C R" is lattice
(over Zz") if the affine span aff(F) of any face F of P contains a coset of a subgroup of Z" of rank
dim F. If P is bounded, that is, P is a polytope, this is equivalent to the vertices of P being lattice
points, because the differences between vertices of F generate the subgroup sought for any face F.

Lemma 2.10. Let P C R" be a (closed convex) polyhedron and u : R" — R a linear functional. If
Pt =Pn{x € R" : x; > 0} is nonempty, then u is bounded below on P* if and only if there exists
r = 0 such that u — rx, is bounded below on P.

Proof. Suppose u is bounded below on P*. If u attains its minimum over points x € P* at a point
with x; > 0, then r = 0 suffices. Otherwise take

r = lim sup l(min{u(x) i x €P, x; =0} —minfu(x) : X' € P, x| = y}).
y—0*t

The limit superior exists because finitely many faces on the boundary of P* contain a minimizer
x', and for each either y is bounded away from 0 or the face also contains a minimizer x and the
quantity inside is constant. The converse is clear because u > u — rx; on P*. O

Lemma2.11. Let o bea cone of = B, and let u lie in the relative interior of o. Then both the set of cones
of Zp, that meet cone{u, e,} and the order in which u + Ae, meets these cones as A > 0 increases are
functions of g, independent of u.

In lieu of a proof of Lemma 2.11, we describe the cones arising. This is easier in the language of
total preorders. Arbitrary cones of Zp are in bijection with total preorders < on [n, 7] such that

fori, j € [n,n],i < jif (and only if) j <1, via the map

<P Cc= cone{ZeJ- ti€[n,nl}.

J<i
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In Lemma 2.11, if 0 = C_, then the cones whose relative interiors meet cone{u, e, } are the C for
all < such that < and < have the same restriction to [n, n] \{1,1}, and for alli € [n,n],if1 <
then 1 <.

Proposition 2.12. Let P be a lattice polyhedron, possibly unbounded, whose normal fan coarsens a
subfan of Zg . Ifm € Z" and P n (m + [0,1]") is nonempty, then PN (m + [0,1]") € GP2p, -

The above result is also proved in [37, 38], at least when P is a lattice polytope, using the theory
of bisubmodular functions. We include a direct proof. The counterpart for type A generalized per-
mutohedra follows from [54, (44.70)] on intersections with coordinate half-spaces, which implies
that Theorem 2.17 also holds for type A.

Proof. By translating we may assume that m = 0. The cube [] = [0, 1]" is an intersection of coor-
dinate half-spaces. So, we reduce to considering the intersection of P with a coordinate half-space
Ht, say {(xy,...,x,) € R" : x; > 0}, and showing that if PN H* is nonempty, then it is a lattice
polyhedron and has normal fan coarsening a subfan of X5 . Together with the observation that
P n[is bounded because [] s, this proves the proposition.

First, we show that P n H* is lattice. Note that for any face G of P n H™, there is a face F of P
such that either

(1) G=FnH"anddimG = dimF, or
(2) G=FnHanddimG =dimF — 1.

In the former case, aff(G) = aff(F). In the latter case, fix a cone of Zp, maximal among those
normal to F. This cone has the form

conefe, ;) + €y + -+ e k=1,..,m}

w(iy) -
for some w € @E and {i, ..., i,} C [n] by Proposition 2.2. Thus,

aff(F) = {x € R" © xyqy + - + Xy, = @ forallk =1,...,m},

={xeRr": Xw()+1 T Xuiy) = G — @

. forallk =1,...,m}, (2.2)

where the a; are integers because P is lattice. The lattice points in aff(G) = aff(F) N H are those
with x; = 0, which form a coset of a subgroup of corank 1 among the lattice points in aff(F)
because x; appears in at most one equation in (2.2). We have thus shown that P n H is lattice.

Now we prove that the normal fan of P N H" coarsens a subfan of £ . Write face, Q for the face
of a polytope Q on which a linear functional u : R” — R attains its minimum; set face,, Q = @ by
convention if no minimum is attained. The assumption on P is that for each cone o of Xz with
relative interior ¢°, it holds that face, P = face, P for all u,v € o°. Our claim is that the same is
trueof PNH™.

FixaconeoofZ; andu,v € o°. By Lemma 2.10, face, (PN H") = @ ifand only if u — rx; lies
outside the normal fan of P for all r > 0, where X is the first coordinate functional, and likewise
for v. By Lemma 2.11, whether this happens depends only on o, not on u or v. So, it remains to
handle the case face,(P N H') # @.Ifface, P is not disjoint from H*, we are done, as in this case

face,(PNH") = (face, P)NH*' = (face, P) N H* = face, (PN H™).
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If they are disjoint, let r € R be minimal such that F := face,_,, P intersects H*, where x;
is the first coordinate functional; some such r exists by our earlier invocation of Lemma 2.10.
Note that r > 0, so u is a positive combination of x; and u — rx;. As face, (PNH") = PN H and
face,_,, (PNH") =F nH" intersect in their common face F N H, this implies face,(PNH™) =
F N H. Again by Lemma 2.11, the faces of the form face, ., P, and their order they appear in as
r varies, depend only on o, so we have face,(PNH") = F n H also. O

Let
n
C =—C;| = cone{—e;,e; —e,,...,e,_; —€,} ={x ER" : Z x; <0fork € [n]}.
i=k

This is the type B,, negative root cone for the choice of positive roots corresponding to our Gale
order [14, section 3.2.2].

Lemma 2.13. Let m € {0,1}" and let S € AdS,, be the size n admissible set such that m is the
indicator vector of S N [n]. Then P(Qg) = (m + C) N [0, 1]".

Proof. The half-space description of m + C is

n n
m+C={xeR": ) x;< ) mfork € [n]}. (2.3)
i=k i=k

By the equivalence of the first and second parts of Lemma 2.9, we see that x € (m + C) n {0, 1}"
if and only if, for the admissible set S’ € AdS,, such that x is the indicator vector of S’ N [n], we
have S’ < S in the Gale order. Therefore, (m + C) N [0, 1]" and Qg contain the same set of lattice
points. As C is the dual of a cone of £ , Proposition 2.12 applies and shows that (m + C) N [0,1]"
is a lattice polytope. But Qg is also a lattice polytope, so they are equal. O

Proposition 2.14. Let m € Z". If the intersection (m + C)N [0,1]" is nonempty, then it is a
standard Schubert delta-matroid polytope.

Proof. Assume that (m + C) N [0,1]" is nonempty. We construct a sequence m® = m, m',... of
integer vectors so that

(m/ +C)n[0,1]" = (m+ C)n[0,1]". (2.4)

One of the m/ will lie in {0, 1}"*, whereupon the proposition follows from Lemma 2.13.
Denote the generators of C, the negative simple roots, by a; = —e; and a; = e;_; —e; fori =
2, ..., n. An arbitrary lattice point of m/ + C has the form x = m/ + Y.\ | a;a; for nonnegative inte-

gers q;. If ml.j > 1 then we let m/*! = m/ + (ml.j — 1)a;. In this case x; < 1 only if q; > m{ —1,s0
mJ + Candm/ + (mij — 1)a; + C have the same intersection with [0, 1]" and (2.4) holds. Similarly,
if m! <0, then we let m/*! = m/ + (—m))a;,,, and (2.4) holds because x; > O only if a;,, > —m,
(note that i < n in this case, which follows from (m + C) N [0, 1]" being nonempty).

The sequence (Z?zl iml.] )j0 is decreasing by construction, and bounded below by 0, because if

h im{ < 0 the functional )| ix; takes negative values on m/ + C and nonnegative values on
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[0,1]", implying (m’/ + C) N [0,1]" = @. So, it is finite, that is, the case m’/ € {0, 1} happens after
finitely many steps. O

Corollary 2.15. The set SchDMat,, is closed under nonempty intersections with faces of [0, 1]".

Proof. By the @ﬁ symmetry and iteration, it is enough to prove that if P = P(D) for D a standard
Schubert delta-matroid and F is a facet of [0,1]", then P N F € SchDMat,,. Write P = (m + C) N
[0,1]" as in Proposition 2.14, and F = H N [0, 1]" for a hyperplane H = {x € R" : x; = s} where
i€[n]land s €{0,1}. Then PNF = (m+C)NHN[0,1]". Let 7 : H — R"~! be the map omit-
ting the ith coordinate. Using (2.3) and its counterpart for B,,_;, one can check that (m + C) n H is
identified by 7z with a translate of the cone —Ci\é which is dual to a cone in EBH . Therefore, 7 takes
P N F toatype B,_; standard Schubert delta-matroid polytope. This implies that P N F is a Schu-
bert delta-matroid polytope, as follows. In the case H = {x € R" : x,, = 0}, if 7(P N F) = P(Qg)
for S a maximal admissible subset of [n — 1], then P N F = P(Qg,5;) by Lemma 2.13. The other
possible choices of H are @f images of this one, soin general P N Fisa @5 image of P(Qg 7). [

Corollary 2.16. Let [1' be a face of [0,1]", and o be a cone of Zp, . Form € 7", if the intersection
(m + oY) n [ is nonempty, then it is in SchDMat,,.

Proof. If o is a maximal cone of 2 , then oV is a Weyl image of the cone C = —Cifi above, and the
result follows from Proposition 2.14 and Corollary 2.15.

For an arbitrary cone o, we reduce to the preceding case. The cone o is a face of a maximal
cone 7 of Zp , 80 oV is a tangent cone of 7V, that is, c¥V = —F + ¢V for a face F C tV. Now for
m’ € —F n Z", we have

" 2(-Fnm +F)+1t"=m +1".
If m’ is chosen deep enough in the interior of —F, the defining half-spaces of m + m’ + 7V will all
contain [1', so m + ¢¥ and m + m’ + 7V will have the same intersection with [7'. O
2.5 | Bases from Schubert delta-matroids
We are now ready to prove the following intermediate step for the proof of Theorem D.
Theorem 2.17. One has
(" + SchDMat,,) = I(Z" + DMat,,) = I(GP, 3 ).

Proof. Let P C R" be a lattice B,, generalized permutohedron. We will write 1(P) as a sum of
indicator functions of lattice translates of Schubert delta-matroid polytopes. This will prove that
I(GP, 5 ) C I(Z" + SchDMat,,), and the left-to-right inclusions in the theorem are clear.

Recall the signed permutohedron Iy . By the Brianchon-Gram theorem applied to P + eIl

in the pointwise limit ¢ — 0%, we have

1(P) = Z (=1)cdimo 3(p 4 gV),

anBn
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Note that P + ¢V is a lattice translate of oV.
Tile R" by lattice translates of Boolean cubes [0, 1]". Let C be the set of all such cubes that meet
P, together with their common internal faces, so that we have an inclusion-exclusion relation

1( U F) = Z (_1)codim(F) 1(F).

Fec FeC
Then
1(P) = Z(_l)codim(F) 1PNF) = Z Z (—1)codim(F)+eodim(@) 1((p 4 gV)  F).
FeC FeCo€zy,
By Corollary 2.16, the right-hand side is in I(Z" + SchDMat,,). O

We remark that the second equality of the theorem could have been proved using the tiling by
Boolean cubes and Proposition 2.12 without invoking the Brianchon-Gram theorem.

Corollary 2.18. One has
1(SchDMat,,) = I(DMat,,) = I(GP ).

Proof. What is left to prove after Theorem 2.17 is that the three groups of relations are equal.
These are generated by 1(m + P) — 1(P) where m € Z" and P € SchDMat,;, DMat,,, and GP, p ,
respectively. If P € GP p , then another use of Theorem 2.17 gives us a finite expression

1(m +P)—1(P) = D ag, A(m+v+Q) = 1(v + Q))
QeSchDMat,, ,vezZ"

N D ag, (A(m +v + Q) —1(Q) — (A + Q) — 1(Q))).

Qe&SchDMat,, ,vez"

So, the relations for ﬁ(GPZ,Bn) are also relations for ﬁ(SchDMatn), and the other containments are
obvious. O

We prepare for the proof of Theorem D by proving the analogous fact for [(DMat,,).
Proposition 2.19. The set {1(P) : P € SchDMat,} is a basis for I(DMat,,).

Proof. The first equality in Theorem 2.17 implies that every 1(P) for P a delta-matroid polytope can
be expressed as a linear combination of indicator functions of Schubert delta-matroid polytopes.
Here we note that a lattice translate of a Schubert delta-matroid polytope P(D), provided it is
contained in the unit cube, is again a Schubert delta-matroid polytope because it is a @ff -image
of P(D).

For linear independence, suppose we have a nontrivial relation

k
Y al(P)=0  withk>1landa,,..,a #0,
i=1
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where Py, ..., P, are Schubert delta-matroids. By Proposition 2.14, there exists w € @55 andm € 7"
such that P, =[0,1]" n (m + w - C). Without loss of generality, we may assume that P; does not
contain P; for all i > 1. In particular, no P; for i > 1 is contained in m + w - C. Now, [35, Theorem
2.3] implies that the assignment

p 1 fPCcm+w-CandPnm#Q
-
0 otherwise

defines a strongly valuative function on GP,. p . Applying this function to both sides of the
relation Zi;l a;1(P;) = 0 then yields a; = 0, a contradiction. O

We are ready to prove Theorem D. Converted to a statement about polyhedra by using
Theorem 2.6, the theorem asserts that a basis of I(GP, p ) is

SchDMathIf :={D € SchDMat,, : D has no coloops}.

The superscript ©f stands for “coloop-free”. We verify that, among the polytopes of the delta-
matroids in SchDMat;'f, there is exactly one translate of any Schubert delta-matroid polytope. For
any D € SchDMat, changing any coloops D may have to loops gives a translate in SchDMatfl'f. If for
two delta-matroids D and D’ we have P(D’) = m + P(D) for some m € 7", then m € {-—1,0,1}";
if for some i we have m; = 1, then P(D’) C {x € R" : x; = 1} and P(D) C {x € R" : x; = 0}, and
if m; = —1 then these containments hold vice versa, so not both D and D’ are coloop-free.

Our method for proving Theorem D can also be used to deduce the counterpart of the theorem
in type A, that is, that coloop-free Schubert matroids are a basis for the translation-invariant poly-
tope algebra of lattice type A generalized permutohedra. Another proof of the type A theorem can
be assembled from [9, Theorem D] and the analogous theorem for the cohomology ring in type A
appearing in [41].

Proof of Theorem D. Theorem 2.17 shows that {{[P] : P € SchDMatfl'f} generates I(SchDMat,,). So,
we must prove linear independence.

We first show translates of coloop-free Schubert delta-matroids are linearly independent in
I(Z" + SchDMat,,). Suppose we are given a finite relation

Z ap, 1(m +P) = 0.
PeSchDMatfl'f,meZ”

Let V' C 7" be the set of vectors v such that, for some (P, m) with ap ,, # 0, m + P intersects the
translate [0, 1)" + v of the half-open cube. Our objective is to prove V empty. Suppose otherwise,
andletv € V be lexicographically minimum. Restricting our relation to the closed cube v + [0, 1]"
gives

> apm 1(m +P)n (v +[0,1]") = 0.

PeSchDMat;'f,meZ”

If (m + P)n (v + [0,1]") is nonempty, then it has the form v + Q for some Q € SchDMat,, by
Corollary 2.15. Letting

JQ) ={P,m): (m+P)n+[0,1]") =v+Q},
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we collect identical translates:

> ( D ap,m>1<v+o>=0-
Q&SchDMat,, \ (P,m)eJ(Q)

By Proposition 2.19, every inner sum is zero. For any Q € SchDMatfl'f, minimality of v implies that
the only possibly nonzero summand in this inner sum is the one indexed by (P, m) = (Q, v), so
ag,, = 0. But this contradicts v € V.

Now, a linear dependence in I(G P25, )

Y, al®)]=o,

PeSchDMatSf

lifts to I(GP, p ) as a relation

Y @wlP)+ Y by, A(m+Q)-1Q) =0

PeSchDMatdf QmezZ"\{0}

over some family of lattice B, generalized permutohedra Q, where finitely many b, ,,, are nonzero.
Applying Theorem 2.17 to these Q, this can be rewritten

Y ap1P)+ D Cpm A(m +P) = 1(P)) = 0.
PESchDMatfl'f PeSchDMat,,,m#0

Every P € SchDMat,, has a lattice translate P’ € SchDMatfl'f, and we can use the relation 1(m +

Q) -1Q) =1(m+ Q) —1(Q")) — 1(Q) — 1(Q")) for any polytopes Q, Q" to rewrite the second
sum:

Y @1+ Y dp,m+P)-10P) =0

PeschDMat P’'eSchDMatSf m#£0

The earlier lifted linear independence statement implies that each polytope in the above sum has
a zero coefficient, that is, dp ,, = 0 for all m # 0 and ap — ¥, ., dp ,, = 0. Therefore, ap = 0 for
all P € SchDMat®", O

3 | THE EXCEPTIONAL HIRZEBRUCH-RIEMANN-ROCH-TYPE
THEOREM

We prove Theorem C, relating the Grothendieck ring of vector bundles K(X| B”) to the Chow coho-
mology A*(X Bn)’ in two parts. In Subsection 3.2, we establish the isomorphism ¢? : K(X Bn) -
A'(X Bn) via localization methods in torus-equivariant geometry. Then, in Subsection 3.3, we
establish the formula involving the sheaf Euler characteristic by relating the isomorphism ¢ to
a similar isomorphism for stellahedral varieties established in [34].

d ‘€ "vT0T “XPrToorT

sdny wosy

:SdNY) SUONIPUOD) PuT SuLa, oY) 99§ “[$Z0T/L0/ST] U0 ATEIQET AUUQ AT “AUISIOATUN) PIPAIRH AQ 76571 SWIA/ZT 1 1:01/10p/wO Kot

- Kol Axeqouy

25UADFT SUOWIIOD) AATIFAI) A[qEIIdE A1 £q PAUIANGS A1 SAPIIT VO 195N JO SAINI 10] ATRIGIT AUIUO) A9TEA UO (i



18 of 54 | EUR ET AL.

3.1 | K-rings and Chow rings of X

Let T =G, be the torus embedded in Xp , and let K;(Xp ) be the T-equivariant K-ring
of X B,> which is the Grothendieck ring of T-equivariant vector bundles on X B> and let
AL(X Bn) be the T-equivariant Chow ring in the sense of [33]. We describe the equivariant and
nonequivariant K and Chow rings of X . We will make use of descriptions of K;(Xp ) and
AL(X Bn) coming from equivariant localization. See [34, section 2] for a review of equivariant
localization.

We first set up some notation. To describe the adjacent maximal cones in X , we use the
following special involutions in &5:

* T =@ i+1G,i+1)forl<i<n-—1,and

* 7, =(n,n).

Then C,, is adjacent to C,, exactly if w = w'r;;,, for some i, in which case the common

facet normal is +(ey,;) — €,i4+1)) OF W = w't,, in which case the common facet normal is
+e,,,)- Recall that K1 (pt) = [TI—"I, ., TE ] and An(pt) = Z[ty, ... ,t,]. LetT; = T/ and t; = —t;

forl € [n].

Theorem 3.1 51, 59]. The following hold.

(1) The injective localization map K(X Bn) - KT(XIEH) = @we@ﬁ K (pt) identifies Kp(X Bn) with
the set of collections ofelements (fw)wG@B S ®we@3 Z[Til . Til] such that
* ifwr; =w forl<i<n-—1,then f, = f, mod1— and
* ifwr, =w then f, = fw/ mod 1 —T ).
The diagonal embedding of Z[T*', ..., T£!] into Duees Kr(pt) identifies Z[TH, .., T with
a subring of K1(Xp ), and the K-ring K(Xp ) is given by

w(l)Tw( +1y @

K(Xp ) =Kr(Xp )/(Ty = 1,...,T, = 1).

(2) The injective localization map A'T(XBn) - A'T(Xg )= @we@ﬁ A7 (pt) identifies A'T(XBn) with
the set of collections ofelements (fw) weet € @wen@B Z[ty, ... ,t,] such that
s ifwr; =w forl<i<n-—1,then fw = fur mod tw@i) — Lw(i+1) and
* ifwr, =w then f, = fw/ mod ().
The diagonal embedding of Z[t,,... ,t,] into @we@ﬁ AZ(pt) identifies Z[ty,... ,t,] with a
subring of A7(Xp ), and the Chow ring A*(Xp ) is given by

A'(Xp ) = Ar(Xp )/(ty, ..., 1)

There is an action of @E by automorphisms on Xy , so we functorially obtain an action of @f
on K(X Bn) and A*(X Bn)' We now describe @ﬁ-actions on K;(X Bn) and A7.(X Bn)’ the latter being
the type B,, case of Tymoczko’s dot action [58]. To do so, we prepare with some generalities on
maps between torus-equivariant K-rings for actions of potentially different tori. Fori = 1,2, let T;
be a torus and X; a smooth projective T;-variety. Suppose we have a map of tori ¢ : T; — T, and
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amap ¢ : X; - X, with the commuting diagram

Ty XX, 425 T, x X,

l 1

?
Xy, —— X,

where the two vertical maps are the torus actions. Then, by treating X, as a T,-variety via ¢, we
have the induced maps

Ky, (X)) = Kp, (%,) 5 Ky (X)) 31)

where the first map is the “forgetful map” and the second map is the pullback map. We similarly
have induced maps of equivariant Chow rings.

Inoursituation, wewillhave T, =T, = Tand X, = X, = Xp_in the following way. An element
w € &5 acts on R" by e; —~ e,()- We consider R" as the real vector space Cochar(T) ® R that
contains the fan Xy . This &B-action defines an automorphism ¢, : T — T givenby T; = Tj,-1.
As the @5 -action maps Zp isomorphically onto itself, the map ¢, extends to an automorphism
P X B, — Xp,- The map @, is not a T-equivariant map, but it fits into the commuting diagram

TxXp, 220 Tx Xy

L,

Xy ——% Xp .

Hence, we have the maps

Yot Kr(Xp ) = Kp(Xp ) i Kr(Xp, )

asin (3.1), and similarly for A7.(X Bn)' The assignments w +— 3,1 give a @f—action descending to
the usual @f -action on K(X Bn) and A°(X Bn)' In terms of the localization description of K (X Bn)
and A7.(X Bn) in Theorem 3.1, the action has the following explicit description.

(1) Anelementw € &P actson f € Kr(Xp )by W fw = fu1w/ Tway - » Twm)-
(2) Anelementw € @5 actson f € ArXp )by W+ P = futw Eways s Lwm)-
3.2 | The exceptional isomorphism

Recall the map ¢ : @5 — {+1}" from Subsection 2.1.

Theorem 3.2. There is an injective ring map
¢ Kp(Xp ) = A7 (X )[1/A £ 1)] 1= A'T(XBn)[{l%,i, ﬁ}lsign]
obtained by

(¢?(f))w(t1’ s bpg) = fw(hel (w)(tl)a e hen(w)(tn))7
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where
h(t)=QQ+et) := { 1
-t

This equivariant map ¢? descends to a nonequivariant isomorphism ¢®: K(X Bn) 5N A (X Bn)'
Finally, ¢® and ¢ are @8 -equivariant in the sense that they intertwine the above &% -actions:

¢r(w- f)=w- (), and ¢°(w - f) = w- $°(f).

Proof. We first check that ¢7 is @”-equivariant. For f € Kr(Xj ), we have that
(¢?(w . f))w/ = fw‘lw’(hel(w’)(Tw(l))’ e hen(w’)(Tw(n)))’ and

W - BNy = Frorwr (@ + €@ @, e (1 + €, (W)t ) ),

which are equal. We now check the congruence conditions. First, we check for w’ = wr; ;,, that

(¢?(f))w = (¢?(f))w/ mod £,y — Ly(it1)-
By @Sﬁ-equivariance, this is equivalent to
@GP g = (@Pw™ SNz, modt;—tiy,
which by definition of ¢Z, and the fact that ¢ j(id) = €;(7;;4,) = 1 for all j, is equivalent to
W™ gty + 1ty + D= @™y (G + Lt + 1) mod £ =ty

As wl-f € Kr(Xg, ), we have (W=t (T, ..., T,) = (Wt “Peypy (T1s,Ty)) mod 1—
Tl._lT i+1»and the result follows from replacing T; with ¢; + 1 for all j. Now, we check for w’ = wr,,
that

@F(Nw = @F(w  mod £y

Indeed, this similarly follows from the fact that w - f € K;(X B”) and the compatibility

W™ f)y(Ty,....T,) = (W™t ), (Ty,...,T,) mod T, —1.

As we now know that qb? is well-defined, from the defining formula it is trivial to check that it is
an injective ring map.
We now check that the map qb? descends nonequivariantly to a map ¢® : K(X B,) = A'(Xp ).

Note that under the map A;.(X Bn) - A'(X Bn) we have 1 +¢; — 1, so there is an induced map
ALX Bn)[L] - A (X Bn)' To obtain the map ¢”, we have to show that under the composite

1%

KT(XBn) — A‘T(XBn)[L] — A'(XBn), the ideal (T} —1,...,T, — 1) gets mapped to 0. Indeed,

1+

¢(T; —1) = t; - r; where (r;),, is 1 if ¢;(w) =1 and 1+tl if €;(w) = —1. Therefore, $2(T; — 1) is

zero under the map A}(XB,,)[ﬁ] — A’(XBn) because t; maps to 0.
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The &B-equivariance of ¢# follows immediately from the &2-equivariance of ¢%, so it
remains to check that ¢? is an isomorphism. For this, we identify the image of ¢?. Note that

PE (K (X p,)) lies in the subring R C A7.(X, Bn)[%] consisting of those g where g, lies in the ring

1t

1 1 )
Kr(pt)[ T T (w)t,,] for all w. Define

T-1 e=+1

-1 _ € __ -
hoN(T) = e(TF - 1) {1—T—1 L

-1

. (w)(t”)) € K;(pt) for all w, and, arguing

It is easy to see that for g € R we have gw(he‘l(w)(tl), s h
1
as before, we see that

R AN YN e AN ()

€1 (w)

gives a preimage of g under ¢¥. Hence, ¢>? : Kr(Xp ) — R is an isomorphism. Now, note that
the r; constructed above has the property thatr; € R*, so the ideal (T} — 1,...,T, — 1) C K1(Xp )
maps under qb? to the ideal (¢, ..., t,) C R. Hence, because

1
Ar(X CRCA(X _
H(X5) " m[liti]

and ﬁ gets sent to 1 after quotienting by (t,...,t,), we conclude that ¢® induces an
isomorphism

K(X,) 2 Rf(t1, s t) = Ap(X,) [ﬁ] [ty s t) = A

3.3 | Stellahedral geometry

We show that the isomorphism ¢? of Theorem 3.2 satisfies
xeD= [ ¢aeD- o@ow)
Xp,

for any [€£] € K(X Bn)’ thereby completing the proof of Theorem C. Although one can prove this
via the Atiyah-Bott localization formula, as in [9], we present a more geometric proof that explains
how our result relates to a previous exceptional Hirzebruch-Riemann-Roch-type theorem given
in [34] for stellahedral varieties. Note that (£ )" is a fan in R" whose cones are

Cone(e; : i € S) for S an admissible subset of [n, n].

Definition 3.3. The stellahedral fan Zg; is a fan in R" obtained from (Z )" by iteratively per-
forming stellar subdivisions on all faces of the nonpositive orthant Cone(e; : i € [ri]) starting with
the maximal face.

Note that the B, permutohedral fan 3 is obtained by performing such iterated stellar subdivi-
sions on all the orthants. In other words, the fan ZB” is the common refinement of the 2" different
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N
[ ]
y
A
[ ]
v

N
7N

“copies” of the stellahedral fan: For each admissible subset 7 € AdS,,, we have the “copy” of the
stellahedral fan obtained from (2 )" by performing the iterated stellar subdivision on the orthant
Cone(e; : i € 7). See Figure 1 for an illustration when n = 2.

The stellahedral variety X, is the toric variety associated to the fan X, . As the fans Zp , Zg, ,
and (Zp )" form a sequential coarsening, we have a natural sequence of maps Xp — X5, — PhHr
of toric varieties. The map X B, = Xg, 18 also considered in [27]. Recall that FHO(1) denotes the
vector bundle on X B, that is the direct sum of the pullbacks of Op:1 (1) from each P! factor in (P1)".
We reuse the notation FHO(1) for the similar vector bundle pulled back only to X, .

Stellahedral varieties play a central role in the proof the top-heavy conjecture and the nonnega-
tivity of Kazhdan-Lusztig polynomials of matroids [18, 19]. The connection between stellahedral
varieties and matroids was further developed in [34]. In our case, we will need the following
exceptional Hirzebruch-Riemann-Roch-type theorem for stellahedral varieties.

/

FIGURE 1 Thefans (231)2 (left), =g, (middle), and = (right).

N

Theorem 3.4 [34, Theorems 1.9 and 6.1]. There is an isomorphism ¢ : KT(XStn)—’
A;(Xg; )1/ = t;)] defined by

1 1
o T) & Fulms s 750

where f (T4, ...,T,) € Z[Tlil, ., TE!] is the localization value of a K-class f € Kr(Xg, ) at a T-
fixed point x of X, . It descends to an isomorphism ¢ : K(Xg, ) — A'(Xg, ) that satisfies

)(([8])=/X ¢([€]) - c(HOQ)) forany [€] € K(Xs; ).

The isomorphism ¢? of Theorem 3.2 is an extension of this isomorphism ¢ as follows.

Lemma 3.5. Let p: Xp — Xg, Dbe the toric morphism described above. The following diagram
commutes:

K(Xs,) — A"(Xg,)

\Lp* \L‘D*

K(Xp) —23 A'(X,).

Proof. For amatroid M on [n], its independence polytope IP(M) is a deformation of Zg,;, and hence
defines a class [I[P(M)] in the polytope algebra ﬁ(F/‘Z’ZSt ) [34, Example 3.15]. Moreover, the set

{{IP(M)] : M a matroid on [n]} spans ﬁ(‘@Z,Zs, ) as an abelian group [34, Proposition 7.4], which
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is isomorphic to K(X Stn) via Theorem 2.6. Hence, it suffices to show the commutativity of the
diagram on the spanning set {{IP(M)] : M a matroid on [n]}. Now, for i € [n] and any maximal
cone ¢ of £z containing e;, the T-equivariant localization value of [IP(M)] at ¢ is a Laurent
polynomial in the variables T; for j # i, because the vertex of IP(M) minimizing the standard
pairing with a vector in the interior of o has zero as its ith coordinate. By the descriptions of the
maps ¢ and ¢2, this implies that p*¢([IP(M)]) = ¢Z([IP(M)]) for any matroid Mon [n]. [

We caution that the torus-equivariant analogue of the above diagram does not commute. We
can now finish the proof of Theorem C.

Proof of Theorem C. We have shown that ¢? is an isomorphism in Theorem 3.2. It remains to
show the Hirzebruch-Riemann-Roch-type formula

xle) = [ ¢eD-c@on) foranyle] € KOty

Theorem D implies that K(X Bn) is generated as an abelian group by Weyl images of indepen-
dence polytopes of matroids. Hence, it suffices to check the Hirzebruch-Riemann-Roch-type
formula for Weyl images of independence polytopes of matroids. Moreover, by Weyl-equivariance
of ¢B, it suffices to check this for independence polytopes of matroids. Then this follows from the
projection formula, Theorem 3.4, and Lemma 3.5. O

Remark 3.6. There are two obstructions to establishing analogues of Theorems C and D for arbi-
trary root systems. First, Propositions 2.12 and 2.14 about intersections with the unit cube, which
were essential to our proof of Theorem D, no longer hold when the unit cube is replaced by (minus-
cule) weight polytopes of types other than A and B, for instance, in type D. See [35, Remark 3.15].
Second, the useful feature of X5 in the construction of the map ¢? in Theorem 3.2 and in the
proof of Theorem C is that X can be viewed as a common refinement of 2" “copies” of the stel-
lahedral fan Zg, . For arbitrary crystallographic root systems ®, we do not know whether K Xs)
and A*(X) are integrally isomorphic.

In Subsection 7.4, we will make use of the following “dual” version of ¢5. For a vari-
ety X, define the ring involution Dy : K(X) — K(X) by [£] — [€Y] and the ring involution
D,: A*(X) - A'(X) by multiplication by (=14 in degree d. Define the “dual” isomorphism
¢F: K(Xp ) = A(Xp ) by Do¢PoDy. Similarly define (7. The isomorphism ¢# satisfies the
following Hirzebruch-Riemann-Roch-type formula. To state it, let y € A'(X p,) be the divisor
class on Xy corresponding to the n-dimensional cross polytope, which is the B, generalized
permutohedron () = Conv(e; : i € [n,n]) C R".

Proposition 3.7. Forany [€£] € K(X B, ), one has
dlE) = [ EED - @O - (ot 447",

Proof. A primitive vector in a ray of X is eg for some nonempty admissible subset S of [n, n].
We note that the minimum of the standard pairing (x, eg) for x € {) is —1. Under the standard
correspondence between polytopes and base-point-free divisors on toric varieties that we have

d ‘€ "vT0T “XPrToorT

sdny wosy

:SdNY) SUONIPUOD) PuT SuLa, oY) 99§ “[$Z0T/L0/ST] U0 ATEIQET AUUQ AT “AUISIOATUN) PIPAIRH AQ 76571 SWIA/ZT 1 1:01/10p/wO Kot

- Kol Axeqouy

25UADFT SUOWIIOD) AATIFAI) A[qEIIdE A1 £q PAUIANGS A1 SAPIIT VO 195N JO SAINI 10] ATRIGIT AUIUO) A9TEA UO (i



24 of 54 | EUR ET AL.

been using, this means that y is the sum of all boundary divisors on X B, In other words, by [28,
Theorem 8.1.6], the line bundle O(—y) is the canonical bundle of X B, Applying Serre duality along
with ¢ = D ,0¢BoDy to Theorem C, we have that

x([€]) = (1) x([O(=n)] - Dr([€]))

=(-1" ¢°([0(=p)] - D ([ED) - c(@O(1))

X3,

— (-1 / D, (%1001 - [€]) - «(EO(=1)))

n

- /X O - CP(ED - c(BO(=1)).

It suffices now to show that ¢([O(y)]) = 1 + y + --- + y". For this, we compute using torus-
equivariant localization. For w € @ such that face, () = —e; for any v € C2, we have that
[O(y)], = T;. For such w, we must have that i € w([n]), so this maps to 1/(1 — ¢;) under {?. If
face, O =e;, [O()], = Tl._l, and we must have i ¢ w([n]), so this maps to 1/(1 + ¢;) under {g.
We thus see that (B([O()]) = c(O(=y))! =14y + - + ¥", as desired. O

We now introduce a set of equivariant K-classes that is inspired by [9, Definition 10.4]. Say that
aclass [€] € K;(Xp ) has “nice Chern roots” if, on the maximal cone corresponding to w € &5,
we haVe [g]w = aw,o + Ziew([n]) aw,iTl._l - 21§‘:‘w([n]) aw,iTi.

We first define some notation. For [€] € Kr(Xp ), let c"([E],u) = [ ([E]) + ¢] ([EDu+ - €
AL(X Bn)[u] be the equivariant Chern polynomial. The equivariant Segre power series s” ([£], u) =
sSED +sT([EDu+ - € A7 (Xp N[ul] is defined by s"([£],u) :=c"([€],u)”". Recall that the
map that assigns a vector bundle £ to its rank extends to a map rk: K(Xp ) — Z. If we write

(€], = Zii”l a,,;T"wi, then, with u a formal variable, we have that

(<3 k © k
. X w . . w 1 iy
€] ! = 1+ TMwiy)®wi and ) Sym/[€],ul = <_ ) )

,;o/\[ ' =[] ) ]20 ymltelow’ = [ (T=my

Proposition 3.8. If[£] has nice Chern roots, then

X BN e = @+ DO T ([e], ),

>0 u+1
SENLEDU = (u+ 1RO (] e ([£]Y, ——),
u+1
=0
. . 1 u
;{?(Symf[é'])uf = m ST<[€], —] ), and
j j CT([S]V) vV 1
T #rsymlleDul = =25 (1€ 7= )

Jj=0
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Proof. We prove the formulae involving ¢?; the formulae involving ¢2 are similar. Consider a
maximal cone corresponding to w € @5, and write

[Ele=auot 2 au T = Y ay Ty
icew([n]) igw([n])

Then

D GRNTED U = @+ D)o [T Q+¢2@Hwr [ Q+¢RTu)e

i0 iew([n]) igw([n])
=@+ [T a+@+ w% [T Q+a -6 w)e
icw([n]) igw([n])
t; ¢
= 1)) 14¢) i1+ —— 1—t) %wif1——
@+ T a+p 1+ —=) [ a-w —
icw([n]) igw([n])

= @+ DO (), ¢ (€1, =)

Similarly, we compute

B(Symi[& J = S S 1 " 1 N
Zoicymitena’ = 11 (1—¢¥(T{ 1>u> l-gHm(l-ﬁ(TJ“)

j=0 iew([n])

1 1 1
= a- u)aw!() iel:[[n]) a-a+ ti)—lu)aw,i IEH”]) aQ-@a- ti)—lu)aW,i

_ 1 H 1+t 1—t
(1 — u)k©® icwnp 1 H /A=), cwny 1l /(1 —u)

(e (181, 1),

- 1- u)rk(é’) 1—u

4 | THE CHOW COHOMOLOGY RING OF X

In this section, we first combine Theorems C and D to obtain a basis for the Chow cohomology
ring A*(Xp ). We then prove Theorem A by using the Hirzebruch-Riemann-Roch-type formula
that ¢? satisfies.

4.1 | A Schubert basis

We now describe the structure of the Chow cohomology ring A*(X Bn) in terms of “augmented
Bergman classes” of matroids. Let M be a matroid of rank r on [n]. The augmented Bergman fan
of M is a subfan Xy of the stellahedral fan X5, obtained by gluing together the order complex
of lattice of flats and the independence complex of M; for a precise definition, see [19, Definition
2.4]. Assigning weight 1 to each of its maximal cones defines a Minkowski weight [2,], called the
augmented Bergman class of M, which can be considered as an element in A"~ (X st, ). Augmented

d ‘€ "vT0T “XPrToorT

sdny wosy

:SdNY) SUONIPUOD) PuT SuLa, oY) 99§ “[$Z0T/L0/ST] U0 ATEIQET AUUQ AT “AUISIOATUN) PIPAIRH AQ 76571 SWIA/ZT 1 1:01/10p/wO Kot

- Kol Axeqouy

25UADFT SUOWIIOD) AATIFAI) A[qEIIdE A1 £q PAUIANGS A1 SAPIIT VO 195N JO SAINI 10] ATRIGIT AUIUO) A9TEA UO (i



26 of 54 | EUR ET AL.

Bergman classes are nef Chow classes, and they span extremal rays of the cone of nef classes in
ATT(X St”) [19, Proposition 2.8].

We will consider the pullbacks of augmented Bergman classes to Xp under the morphism
p: Xp — X described in Subsection 3.3. These pullbacks continue to span extremal rays of
the cone of nef classes in A*(Xp ). We will also refer to these pulled back classes as augmented
Bergman classes. For a matroid M, let M+ be the dual matroid. Only two properties of augmented
Bergman classes will be used in the rest of the paper.

(1) For any matroid M, the class [X,] is nonzero.
(2) When M hasrank n — 1, the class [Zy,] is the first Chern class of the line bundle corresponding
to the simplex ITP(M™).

We now introduce some terminology. Say that a delta-matroid D with feasible sets " is standard
cornered if, whenever B € F and i € B N [n], then B\ {i} U {i} € F. For example, delta-matroids
of the form IP(M) are standard cornered. In fact, this is the only example.

Lemma 4.1. Any standard cornered delta-matroid is of the form IP(M) for a matroid M.

Proof. We show the matroid independent set axioms for Z = {Bn [n] : B € F}. By assumption,
T is a nonempty family of sets closed under taking subsets, so we must prove the independent set
augmentation axiom. Let A, B € F with |A N [n]| < |B N [n]|. Let F be the smallest face of [0, 1]
containing a = €4, and b = ep,,;. We have that P(D) N F is a delta-matroid polytope. Let C be
the vertex cone of a in P(D) N F (with the apex of C at the origin). Then C contains b — a and is
generated by type B,, roots. Because b — a has strictly positive sum of coordinates, C must have a
generator with strictly positive sum of coordinates, either e; ore; + e; forsomei, j € [n]. So, either
a+e;ora+e; + e liesin P(D) N F; because D is standard cornered, the latter case implies the
former one. By the choice of F, the element i lies in B \ A, and hence (A n [n]) U {i} € T. O

Say that a delta-matroid C is cornered if there is w € @f such that w - C is standard cornered.
We now develop some properties of cornered delta-matroids.
Lemma 4.2. Let M be a matroid of rank r on [n]. Then the degree i part of $Z([IP(M)]) vanishes
fori>r,isequalto [Z\L] in degree r, and is 1 in degree O.
Proof. That ¢: K(X Stn) - A'(X Stn) has this property follows from [34, Lemma 5.9]. Then the

result follows from Lemma 3.5. O

Lemma 4.3. Let M;, M, be matroids on [n], and suppose that w, - [IP(M;)] = w, - [IP(M,)] for
some wy, w, € &85, Then the rank of M, is equal to the rank of M, and w; - [Ey;1] = w, - [Zy,1].
1 2

Proof. By the @f-equivariance of $5, we must have that w; - [Z\1] = w, - [Zy;1]. Lemma 4.2
1 2
identifies the rank of M as the degree of the top nonzero piece of ¢Z([IP(M)]). O

In particular, if C = w - IP(M) is a cornered delta-matroid, then we define the cornered rank
rk.,,(C) as the rank of M, which is independent of the choice of M and w, and we define

[Zc] i=w - [Zye]

Note that [Z/pp1y] = [Zy]- The following is an immediate consequence of Lemma 4.2.
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Lemma 4.4. Let C be a cornered delta-matroid. Then the degree i part of $B([C]) vanishes for
i > 1k, (C), isequal to [Z] in degree 1k, ,.(C), and is 1 in degree 0.

Now we construct our basis for A*(Xp ), noting that Schubert delta-matroids are cornered.
Corollary 4.5. Forany0<r <n,
. If
{[Zc] : C € SchDMat;" and 1k,(C) = r}
is a basis for A"(X B, ).

Proof. Endow K(X Bn) with a grading by declaring the rth graded piece to be generated by the
elements {{[P(C)]: C € SchDMatfl'f, rk...(C) = r}; this is well-defined by Theorem D. Combining
Theorem D with Theorem C, we have that {¢5([P(C)]) : C € SchDMat;'f} is a basis ofA'(XBn). By
Lemma 4.4, P is lower-triangular with respect to the gradings on K(X ,) and A*(Xp ) and the
degree r part of $5([C]) is [Z], so we conclude. O

Setting r = 1 in the corollary yields Theorem A(a) as follows.

Proof of Theorem A(a). The polytope of a delta-matroid in SchDMatflhc of cornered rank 1 is a
translate of a simplex Ag for S € AdS \ {@}, and vice versa. Namely, P(Q[ﬁ]\{i}u{i}) = A?l ., and

i = . - = . - i 0 = . 0
ifD=w Q[ﬁj\{i}u{i}’ then P(D) = w P(Qlﬁj\{i}u{i}) differs from Aw.{1 ,,,,, p=w A{1 _____ i only by the
translations that distinguish the @13 -action on delta-matroid polytopes from the @f-action on R"
in Subsection 2.1. No two simplices A(S’ are translations of each other except for the pairs of line

segments {A?i}, A?T}}. Hence, setting r = 1 in Corollary 4.5, we have that the set
13
{the divisor class associated to Ag :SeAdS\ {@}and S # {i}fori € [n]}

is a basis of A(X B,)- Thus, up to translation by a vector in Z", every B, generalized permuto-

0 _

{i}

reinserting the segments A?T} into the set accounts for the translations. O
1

hedron is a signed Minkowski sum of the simplices Ag in the displayed set. As A?.} =A e;,
L

Remark 4.6. The h-vector of the Coxeter complex X4 of a root system @, or, equivalently, the
sequence of dimensions of the graded pieces of A*(X¢), is equal to the vector of ®-Eulerian num-
bers [11, 22], which are defined in terms of the descents of elements in the Coxeter group associated
to ®. Concretely, in type B the set of descents of an element w € @E is

des(w) ={i € [n] : w(i —1) > w(i)},

where we define w(0) = 0 to fit into the total order as 77 < - <1 <0 < 1 < --- < n. The rth B,
Eulerian number is then

h.(B,) :=|{w e @5 : des(w) = r}.

In particular, Corollary 4.5 implies that the B,, Eulerian numbers count the coloop-free Schubert
delta-matroids of cornered rank r. An analogous statement for type A was shown in [41]. In neither
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type A nor type B do we know of a natural bijection between the set of Weyl group elements with
a fixed number of descents and the corresponding set of coloop-free Schubert (delta-)matroids.

4.2 | Volumes and lattice point enumerators

We now compute volumes and lattice point counts of B, generalized permutohedra by using The-
orem C. We will use the following observation throughout. For an admissible subset S € AdS, let
hg be the divisor class on X associated to the simplex Ag. Because simplices are Weyl images of
the independence polytopes of standard Schubert matroids of cornered rank 1, Lemma 4.4 implies
that $5([A2]) = 1 + hs.

Proof of Theorem A(b). For a sequence (S, ...,S,) of n admissible subsets, standard results in
toric geometry [39, section 5.4] imply that the mixed volume of the corresponding simplices is the
intersection product ‘/XB hg, -+ hg, , which is equal to

/X 1+ hsl) (14 hs”) — /X ¢B([Agl] [A(S)n]) = /X ¢B([Agl 4ot Agn]).

Let P be the Minkowski sum Agl + o+ Ag . By construction, the polytope P is “saturated toward

the origin” in the following sense: For any subset S C [n], let Orthg = RS X R[" Y IfuePn
Orthg, then any v € Orthg such that u — v € Orthg is also in P. We tile R" by lattlce translates of
the unit cube [] = [0, 1]", and express

[P]=(2[Pn(m+m)]>

mezn

+ a linear combination of {{[P N (m + F)] : m € Z", F a proper face of [1}

Every intersection P N (m + []) or P N (m + F) in the expression is a translate of a delta-matroid
polytope by Proposition 2.12. Because P is saturated toward the origin, these delta-matroid
polytopes are cornered by Lemma 4.1. For such a delta-matroid C, by Lemma 4.4 we have
fXBn #B([P(C)]) = 0 when P(C) # []. When P(C) = [] we have

/ (0 = / #P(180, 1 [A%, ] / L+ ) o (L hgy) = 1.

We have thus reduced to counting the number of m such that P n (m + [J) = m + []. This hap-
pens only when m + [] contains the origin, as each simplex is contained in the cross-polytope (),
so P C n{), and every integral translate of [] contained in n{) contains the origin. In other words,
we are counting the set of cardinality-n admissible subsets 7 € AdS,, such that e, € P. This set,
by the construction of P, is in bijection with the set of signed transversals of (S, ..., S,,). O

Proofof Theorem A(c). Denote by AdS%"! the subset {S € AdS : |S| > 1 or S = {i} C [n]} of admis-
sible subsets of [n, n]. Note that the divisor class on X B, corresponding to the cube [ = [0,1]™is
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hgy + +++ + hyy,;. By standard results in toric geometry [39, section 3.5], the quantity
(# lattice points of (P({cg}) — 1))
is computed by the Euler characteristic
X Z gAY + Z (¢; — I)Ag.}
SeAds#ln] ie[n]
Noting that c(FHO(1)) = Hie[n](l + hy,), we apply Theorem C to obtain

X 2 CSAO + Z(c 1)A{l}

SeAdsélnl i€[n]

= [T #Paagps- H $P(a% D" - (@O

Xbn seads#n]

= [T a+hros- JTa+hg:

XBy seadseinl i€[n]

n
- (26
X k) S
By SeAdS\{@} \k=0
=‘P(Vol( > cSAg)>,
SEAdS\{z}

as desired. [l

Finally, we note that the mixed volume computation above can be generalized to arbitrary
cornered delta-matroids as follows.

Theorem 4.7. Let Cy, ..., C;, be cornered delta-matroids with Y rk.,.(C;) = n, and write C; = w; -
IP(M;). Then we have

/ [Zc, 1+ [Z¢, ]
Xp,

= {‘( € AdS,,

Proof. The argument is similar to the proof of Theorem A(b), so we sketch only the main steps.
By Theorem C and Lemma 4.4, we have

where B, is a basis of M; and w; - B; is repeated rk . (C;) times

T a signed transversal of (w; - By, ..., Wy * By, .., Wy - By, oo, Wy - By) }‘

/X [Zc ] [Ec ]l=lmez" : Ci + - +C 2(m+ [},

n
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where []=[0,1]". Write w;IP(M;) for the image of the polytope IP(M;) under the isome-
try associated to w; for the standard geometric action of @lrf on R". Then P(C;) + --- + P(Cy)
is an integral translate of P = w;IP(M;) + --- + w; JP(M;), so we may equivalently compute
[{fm € z" : P 2 (m + [)}|. Because w;IP(M;) C rk,.(C;){) for the cross-polytope <), we have
P C (3 1k, (C)) = nd). Hence, for P 2 (m + [), we must have that n{) > m + [] so m +[]
contains the origin. Hence, we are counting the number of 7 € AdS,, such thate, € P. The desired
formula follows. O

Corollary 4.8. For a matroid M of rank r and admissible subsets S, ..., S, € AdS, we have

{T € AdS,,

5 | TUTTE-LIKE INVARIANTS OF DELTA-MATROIDS

7T a signed transversal of (Sy, ..., S;, B, ..., B)
for some basis B of M+ ’

/ [ZM] . hSl cee hsr =
XBn

We first recall some combinatorial operations on delta-matroids. In the context of multi-matroids,
these operations can be found in [17].

Definition 5.1. Let D be a delta-matroid on [n, 7i], and let i € [n]. We define three delta-matroids
on [n,7] \ {i, i} obtained from D as follows.

(1) Ifiisnotaloop, the contraction D/i is the delta-matroid with feasible sets B \ i for B a feasible
set of D containing i.

(2) Ifiis nota coloop, the deletion D \ i is the delta-matroid with feasible sets B \ i for B a feasible
set of D containing i.

(3) We define the projection D(i) as the delta-matroid with feasible sets B \ {i, i} for B a feasible
set of D.

(4) Ifiis a loop (resp., coloop), we define D/i = D \ i (resp., D\ i = D/i),sothatD/i =D\ i =
D(i).

If i is not a loop (resp., a coloop), then P(D /i) (resp., P(D \ i)) is obtained by intersecting P(D)
with the hyperplane x; = 0 (resp., x; = 1). We obtain P(D(i)) by taking the orthogonal projection
of P(D) onto x; = 0. Therefore, projections commute with each other and commute with dele-
tion and contraction. For I C [n], we write D(I) for the delta-matroid obtained by successively
projecting along each i € I, and similarly define D/I and D \ I.

In the introduction, we defined the U-polynomial Up(u, v) and its specialization, the interlace
polynomial Intn(v) = Up(0,v), via a recursion involving deletion, contraction, and projection,
similar to the deletion-contraction recursion for the Tutte polynomial of a matroid. Like the Tutte
polynomial of a matroid, the U-polynomial and the interlace polynomial also admit a nonre-
cursive formula in the following way. For a delta-matroid D with feasible sets 7 and S € AdS,,,
let

dp(S) = % glelg IB A S|, the lattice distance between eg,,; and P(D).
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Proposition 5.2. For a delta-matroid D on [n, n], define polynomials Intl’J(v) and U]’)(u, v) by

Int! (u) = 2 o) and UL (u, v) = 2 Wl Intgm(v).
SEAdS), Icln]

Then U]’D(u, v) satisfies the recursion for Up(u,v) in Definition 1.4. In particular, U]/) = Up and
Int]’J = Intp, and the recursive definition of Uy, is independent of the element i € [n] chosen.

Proof. We first show that Int]’J(v) satisfies the recursive property in Definition 1.4 with u = 0.
Then [23, Theorem 30] states that ifi € [n]is neither a loop nor coloop, then Intfj(v) = Int;D /l.(v) +
Int]’)\i(v), and that if every element is a loop or a coloop, then Int]’J(v) =(1+v)". If i is a loop or
a coloop of D, then it continues to be so in D/J and D \ J for J C [n] not containing i. Thus, we
conclude that Int;3 satisfies the desired recursive relation, and hence that Intg = Intp.

For the U-polynomial, we have that

U]’J(u, v) = uUl’)(l.)(u, V) + Z uV! Intp (V).
TBi

If i neither a loop nor coloop of D, then i is neither a loop nor coloop of D(J) for any J not
containing i. The defining recursion for the interlace polynomial gives that

Z u”l IntD(])(v) = Z u'” (IntD(])/i(v) + IntD(])\i(U)) = U,D/i(u’ U) + U],D\i(u’ U).
JBi JBi

Combining these yields U},(u,v) = U]’)/l.(u, v) + U]’)\i(u, V) + uU]’)(l_)(u, v) if i is not a loop or

coloop of D. If i is a loop or a coloop of D, then it continues to be so in D(J) for J C [n] not
containing i. Hence, if i is a loop or a coloop, we have

Up(u,0) = Y ul M Ity g (0) + u? ! Intp gy (0) = Y ulH(wIntp g (0) + @ + 1) It (©)),
JBi J3i

and hence U} (u,v) = (u+v + 1)U]’3\i(u, v). O

Given two delta-matroids D,, D, on disjoint ground sets, let D; X D, be the delta-matroid on
the union of the ground sets whose feasible sets are B, U B, for B; feasible in D;. Observe that
dp, (S1)dp,(S,) = dp xp,(S; U S,) and that projections commute with products, so Proposition 5.2
implies the following.
Corollary 5.3. For two delta-matroids D, and D, on disjoint ground sets, we have

UDlxDz(u, v) = UDl(u, U)UD2 (u,v).
We also note the following property of U, for future use.

Lemma 5.4. We have that

2 a'”UD(I)(u, v) =Up(u+a,v).
IC[n]
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Proof. We claim that, if i is not a loop or coloop, then

Z a'”UD(I)(u, V) = UD/i(u +a,v)+ UD\i(u +a,v) + (u + a)Upg;)(u + a,v).
IC[n]

We induct on the size of the ground set. Note that
Z a'”UD(I)(u, v)=a- Z a”'UD(l-UJ) = a - Upy)(u +a,v), and
ieIC[n] Je[n]\i

Z al”UD(I)(u, U) = z alJl(UD/l-(J)(u, U) + UD\i(J)(u, U) + uUD(iUJ)(u, U))
i¢IC[n] i¢jc[n]

Up/i(u +a,v) + Upy;(u + a,v) + uUp;)(u + a,v).

Summing these gives the claim. When i is a loop or coloop, it follows from the multiplicativity of
the U-polynomial (Corollary 5.3) that the left-hand side satisfies the expected product formula.
This shows that the left-hand side satisfies the defining recursion of the right-hand side. O

We now compute the U-polynomials of delta-matroids arising from matroids.

Example 5.5. We compute Up, for D = IP(M), where M is a matroid on [n] of rank . An element
i € [n]isaloop of D ifiisaloop of M, and i is never a coloop of D. Then D(i) and D/i are both
IP(M/i), and D \ i is IP(M \ i). Hence, U;p(yy) is a Tutte-Grothendieck invariant, which implies
that

Urnn(,0) = (17 Ty (w4 2, 222D,

u+1

Example 5.6. We compute Upyy) for a matroid M on [n]. Let coranky,(S) = rky([n]) — ranky(S)
be the corank and nullity,,(S) = |S| — rky,(S) the nullity of a subset S in M. Then we claim that

UP(M)(u, V) = Z STl coranky (S)+nullityy (T)
TCSC[n]

LetI C [n], and fix some S C [n] \ I. Then dp(S) = mingcgcsyr dp(M)(S’), and

dpy(S") = coranky(S) + nullityy, (")

= (corankM|SUI /S(S’ ) + coranky(SUI)) + (nullityww /S(S' ) + nullity;(S)).

The summand coranky;. . S+ nullity . (S”) achieves its minimum value 0 when S’ is a basis
of the minor M|y ;/S. The other summand is the constant coranky,(S U I) + nullity,;(S). The
claim then follows from Proposition 5.2.

It would be interesting to compute the U-polynomial of other families of delta-matroids such
as those arising from graphs and ribbon graphs (see Examples 6.4 and 6.5). Theorem B applies to
these delta-matroids, and therefore gives log-concavity results.

We conclude this section by recording a multivariable version of the U-polynomial in the
variables u,,... ,u,, . Because this multivariable version will arise naturally in our intersec-
tion computations on Xy , it will be useful for proving log-concavity results. For I € [n], set
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u! = [1,; u;- Following the formula in Proposition 5.2, we define

Up(uy, ... ,u,,0) := Z ul IntD(I)(U)-
IC[n]

Note that we recover the usual U-polynomial by setting u = u; = --- = u,,.

6 | REPRESENTABILITY AND ENVELOPING MATROIDS

We now discuss representability of delta-matroids and prepare for the construction of vector
bundles associated to realizations of delta-matroids in Section 7.

6.1 | Torus-orbit closures

We will discuss representability of delta-matroids using polytopes and torus-orbit closures. Let us
prepare with generalities on torus-orbit closures in projective spaces and associated polytopes.

Let H be a torus with character lattice Char(H). For a finite-dimensional representation V of H
and a point x € P(V'), we define the moment polytope P(H - x) of its orbit closure H - x as follows.
LetV =~ @fi o Vi be the canonical decomposition into H-eigenspaces, where H acts on each V;
with character a; € Char(H). For a representative v € V of x € P(V), let & be the set

o = {ai : v; # 0in the expression v = Eﬁio v;, wherev; € V; foralli =0, ... ,N}
which is independent of the choice of v. We define

P(H - x) = the convex hull of & C Char(H) ® R.

Over C, this agrees with the classical notion of moment polytopes; see, for instance, [39,
section 4.2] and [55, section 8]. Let us record the following basic facts.

Proposition 6.1. With notation as above:

(1) The (k-dimensional) H-orbits of H - x are in bijection with the (k-dimensional) faces of P(H - x)
(for all 0 < k < dim H). The character lattice of the quotient of H by the stabilizer of the
orbit corresponding a face F is the sublattice Z{F n o/} of Char(H). (Here F N  is translated
appropriately to contain the origin.)

(2) If t: H < H is an inclusion of a subtorus H' with the corresponding linear projection
* 1 Char(H), — Char(H')g, then P(H' - x) equals the projection (*P(H - x).

Proof. The orbit closure H - x is isomorphic to the H-variety
X, = the closure of the image of H — PI/|=1 defined by h = (h%),c -
The first statement is then [28, Corollary 3.A.6]. The second statement follows by construction

because the H-eigenspace V; with weight a; € Char(H) is an H'-eigenspace with weight (#q; €
Char(H"). N

d ‘€ "vT0T “XPrToorT

sdny wosy

:SdNY) SUONIPUOD) PuT SuLa, oY) 99§ “[$Z0T/L0/ST] U0 ATEIQET AUUQ AT “AUISIOATUN) PIPAIRH AQ 76571 SWIA/ZT 1 1:01/10p/wO Kot

- Kol Axeqouy

25UADFT SUOWIIOD) AATIFAI) A[qEIIdE A1 £q PAUIANGS A1 SAPIIT VO 195N JO SAINI 10] ATRIGIT AUIUO) A9TEA UO (i



34 of 54 | EUR ET AL.

6.2 | Representable delta-matroids

For a delta-matroid D with feasible sets F, let
P/(E) = 2P(D) — ey,;; = the convex hull of {e : B € F} C [-1,1]".

When P(D) = P(M) or P(D) = IP(M), we set m = P/(D\) and m = P/(]?), respectively. We
now describe representability of D in terms of the polytope P/(JT) and torus-orbit closures in a type
B Grassmannian.

The standard (2n + 1)-dimensional quadratic space is k***!, whose coordinates are labeled
{,..,n, 1,..,7, 0}, and which is equipped with the quadratic form

2
(X755 Xpys X1, e s Xpgs X) = X1 X7 + o+ + X, X5 + X

A maximal isotropic subspace L C k***! is an n-dimensional subspace for which the restric-
tion q|; is identically zero. The maximal orthogonal Grassmannian, denoted OGr(n;2n + 1), is
a variety whose k-valued points are in bijection with maximal isotropic subspaces of the standard
(2n + 1)-dimensional quadratic space k***!. By definition, OGr(n;2n + 1) is a closed subvariety

2n+1
of the Grassmannian Gr(n;2n + 1) with the Pliicker embedding Gr(n;2n + 1) & pC% )71, The
torus G2'*! acts on Gr(n; 2n + 1) by its standard action on k*"*!. The torus T = G, embeds into
G2 by (ty, ... ,t,) P (1, s by, tl‘l, .., t-1,1), and the induced action of T on Gr(n; 2n + 1) pre-
serves OGr(n; 2n + 1). We thus treat OGr(n; 2n + 1) as a T-variety with the T-equivariant Pliicker

2n+1
embedding in p( ;)_1.

Proposition 6.2. For L C k***! maximal isotropic, the set of admissible subsets

F ={S € AdS,, : the composition L < k***! » 5 is an isomorphism}

is the set of feasible sets of a delta-matroid D, and the moment polytope P(T - [L]) of the orbit closure
2n+1 —
of [L] as a point in p( ) ) is equal to P(D).

In this case, we say that L is a B,, representation of D. We say that D is B,, representable if it has
a B, representation. Over C, the proposition is [40, section 7, Theorem 1]. A type C analogue of
this statement for the Lagrangian Grassmannian, without the assertion about moment polytopes,
appears in [14, Theorem 3.4.3].

2n+1 _
Proof. Index the coordinates of p( )1 by size n subsets of [, n] U {0}. One verifies that:

» The T-fixed points of OGr(n;2n + 1) correspond to admissible subsets B € AdS,, of size n,
2n+1
where B gives a point in p(s )~ whose Pliicker coordinates are all zero except at B.

* The T-invariant closed curves of OGr(n; 2n + 1) correspond to pairs of T-fixed points such that,
writing B and B’ for the corresponding admissible subsets, e; — ey is parallel to e;, e; + e;, or
e; —e; forsome i, j € [n].

The proposition now follows from Proposition 6.1(1). O

Example 6.3. Schubert delta-matroids are B, representable, and their representations explain
their name as follows. The closed cells X,, of the Schubert stratification of OGr(n;2n + 1) are
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indexed by v € @E /©,,, and the containment relation among the X, is given by the reversed
Bruhat order. If x is a general point of X, then the delta-matroid represented by the corresponding
isotropic subspace is the standard Schubert delta-matroid Q,.[7. In particular, they are certain
generalized Bruhat interval polytopes corresponding to Schubert cells [57]. This is analogous to
the relationship between Schubert matroids on [n] of rank r and the Schubert stratification of
Gr(r;n).

A maximal isotropic subspace L of k*" with the quadratic form q(x,, ..., X,,, X1, ..., X) = X, X7 +
-+ + x,,Xx;; yields a maximal isotropic subspace L @ {0} in k*"*1, and hence a B,, representation of
a delta-matroid D. In such case, we say that L is a D,, representation of D. Such a delta-matroid is
an even delta-matroid, meaning that the parity of |B N [n]| for any feasible set B is the same [14,
Theorem 3.10.2].

In the literature, there are two prominent constructions of delta-matroids from graphs. Both
constructions yield even delta-matroids with D,, representations.

Example 6.4. Let G be a simple graph on vertex set [n], and let A; be its adjacency matrix with
entries considered as elements of F,. As the matrix A is skew-symmetric, the row-span of the n X
2n matrix [I,,|A;] is an isotropic subspace of F2", and hence defines an even delta-matroid D(G).
The interlace polynomial was originally defined and studied as a graph invariant. See [3, 7, 32].

Example 6.5. A graph I'embedded in a surface, also known as a ribbon graph, with edges labeled
by [n] defines a delta-matroid D(I") whose feasible sets are the “spanning quasi-trees” of T, that
is, the spanning subgraphs whose small neighborhood has just one boundary component. Note
that for a planar graph, this coincides with the usual graphical matroid of the graph. See [25] for
a history and proofs, and [26] for further connection between delta-matroids and ribbon graphs
generalizing the connection between matroids and graphs. [14, Theorem 4.3.5] shows that such a
delta-matroid has a D,, representation (see also [12]).

6.3 | Enveloping matroids

The notion of an enveloping matroid of a delta-matroid will play a crucial role when we construct
“tautological classes of delta-matroids” in Subsection 7 and when we apply tools from tropical
Hodge theory to prove Theorem B in Subsection 8.

Letenv : R?" — R" be the map given by env(xy, ... , X, X1, .-, X;;) = (X — X{, ... , X,, — X). TO
avoid confusion with our notation that e; = —e; € R", we use uy, ... ,u,,uy, ... , u; to refer to the
standard basis of R*". For S C [n, 1], letug = Y ;cq u;. If S € AdS, then env(ug) = eg.
Definition 6.6. Let M be a matroid on [n, 7i], and let D be a delta-matroid on [n, 77]. Then M is
an enveloping matroid of D if the image of P(M) under env is P/(H)

Remark 6.7. In [17, section 4], Bouchet considers matroids M on [n, 7i] whose independent sets
that are admissible are the subsets of the feasible sets of a delta-matroid D. He calls such a matroid
a sheltering matroid of D. It follows from [44, section 3.3] that M is a sheltering matroid if and
only if env(IP(M)) = P(D) + [] — e}, so Lemma 7.6 will show that enveloping matroids are
sheltering matroids.
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In [14, Exercise 3.12.6], the authors consider matroids whose bases that are admissible are the
feasible sets of D. They call such a matroid also an enveloping matroid, which disagrees with
Definition 6.6.

Let D be the delta-matroid on [2, 2] with feasible sets {1, 2} and {1, 2}. The matroid on [2, 2] with
bases {1, 2},{1, 2}, and {2, 2} is a sheltering matroid for D, but it is not an enveloping matroid. The
matroid with bases {1, 2},{1,2}, and {1, 1} is an enveloping matroid in the sense of [14, Exercise
3.12.6], but it is not a sheltering matroid.

Our main examples of delta-matroids with enveloping matroids are B, representable delta-
matroids (Proposition 6.9), which in particular includes delta-matroids arising from graphs and
graphs embedded on surfaces by Examples 6.4 and 6.5, and delta-matroids arising from matroids
(Proposition 6.11).

Existence of enveloping matroids behaves well with respect to operations on delta-matroids as
follows. Let M be an enveloping matroid of a delta-matroid D on [n, n].

* Forw e @5 , the @5 -action on [n, 71] makes w - M an enveloping matroid of w - D.

* For i € [n], the matroid minor M/i \ i (resp., M \ i/1) is an enveloping matroid for D/i (resp.,
D\ i.

 If M’ is an enveloping matroid of another delta-matroid D’ on ground set disjoint from that of
D, then M @ M’ is an enveloping matroid for D x D’.

* The dual delta-matroid D+ is the delta-matroid with feasible sets {B : B a feasible set of D}.
Then the dual matroid M+ is an enveloping matroid for D-+.

For future use in Subsection 8, we record an observation that loops and coloops of D and M are
compatible.

Lemma 6.8. Let D be a delta-matroid with an enveloping matroid M, and let i € [n]. Theniis a
loop (resp., coloop) in D if and only if i is a loop and i a coloop (resp., i is a coloop and i a loop) in M.
In particular, if D is loop-free and coloop-free, then so is M.

Proof. Letus prove the statement for when i is a loop, that is, the polytope 17(3) C R"is contained
in the hyperplane x; = —1. If a basis B of M contains i or does not contain i, then env(up) lies in
X; 2 0. Hence, i is a loop and i a coloop of M. The other direction is similar. O

Proposition 6.9. Let L C k’"*1 be a B,, representation of a delta-matroid D, and let L' denote
the image of L under the projection to k*" forgetting the x,-coordinate. Then the matroid that L'
represents is an enveloping matroid of D. In particular, every B, representable delta-matroid has an
enveloping matroid.

Proof. Let M be the matroid that L represents. As a point in OGr(n;2n + 1) C Gr(n;2n+1) C
pCy ])_1, the moment polytope of G2+ . [L] is P(M), whereas the moment polytope of T - [L] is
P/(D\) by Proposition 6.2. Then Proposition 6.1(2) implies that the image of P(M) under the com-
position env o7, is P(D), where 7, : R?"*1 — R2" is the projection forgetting the Oth coordinate.
Note that L’ isa representation of M \ 0, and env(P(M \ 0)) is contained in env o7z,(P(M)) = IT(_D\)
Each feasible set of D is a basis of M that does not contain 0, and hence is a basis of M \ 0, which
proves that env(P(M \ 0)) = 17(3) O
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Remark 6.10. Because the Weyl groups of type B and C root systems coincide, one may con-
sider delta-matroids as type C Coxeter matroids, and consequently consider C,, representability in
terms of Lagrangian subspaces in a 2n-dimensional space with a symplectic form. See [13] or [14,
section 3.4]. The proof of Proposition 6.9 shows that C, representable delta-matroids also have
enveloping matroids.

Proposition 6.11. Let M be a matroid on [n]. Then the delta-matroids P(M) and IP(M) have
enveloping matroids.

—1 —1
Proof. For P(M), we show that M @ M is an enveloping matroid, where M is the isomorphic
image of M+ under (-) : [n] — [#]. Minkowski sums commute with linear projections, so

env(P(M @ M) = env(P(M) + P(M )
= P(M) + (—P(M™))

= P(M) + (P(M) — ej,;) = P(M).

—1 _

For IP(M) we take the free product M[JM of [29], whose bases are the sets S U T of size
rank M + rank M+ = n with S, T C [n] such that S is independent in M and T is spanning in M*.
Write SP(N) for the spanning set polytope of a matroid N, so SP(N+) = —IP(N) + e[, We show
that

POM[IM ) = (IP(M) + SP(M ™)) 0 H,

where H is the hyperplane {v € R** : ¥ 10 = n}. For a polytope Q, any vertex of Q N H is

i€[n,n
of the form F N H, where F is a vertex or edge of Q. The polytope IP(M) + SP(ML) is a lattice
polytope whose edge directions all have the form u; orw; —u; fori, j € [n, 7] because each edge
of a Minkowski sum is parallel to an edge of one of the two summands. As Y, 7 U; takes values
0 or 1on all of these direction vectors, if H intersects an edge of IP(M) + SP(ML) transversely, then
the intersection is a lattice point. Therefore, (IP(M) + SP(ML)) N H is a lattice polytope as well.
By definition of the free product, P(M [] Ml) and this intersection have the same set of lattice
points, so they are equal. Now as above

env(P(M M) C env(IP(M) + SP(M )

= IP(M) + (—SP(M%))

= IP(M) + (IP(M) — e[,)) = IP(M).

The containment is an equality because every vertex of IP(M) has the form €5 — €55 for S an

—1
independent set of M, and this vertex has the preimage (ug, up\g) in PIM M ). O

d ‘€ "vT0T “XPrToorT

sdny wosy

:SdNY) SUONIPUOD) PuT SuLa, oY) 99§ “[$Z0T/L0/ST] U0 ATEIQET AUUQ AT “AUISIOATUN) PIPAIRH AQ 76571 SWIA/ZT 1 1:01/10p/wO Kot

- Kol Axeqouy

25UADFT SUOWIIOD) AATIFAI) A[qEIIdE A1 £q PAUIANGS A1 SAPIIT VO 195N JO SAINI 10] ATRIGIT AUIUO) A9TEA UO (i



38 of 54 | EUR ET AL.

Example 6.12. In [17, section 4], Bouchet gives the example, which he attributes to Duchamp, of
the delta-matroid with the set of feasible sets

F = {{i’ 2’ g’ a-}’{]_" 27 39 4}’ {i’ 2’ 3’ 4}9 {1’ 27 39 a-}’ {1’ 2’ 3’ 4}!

{1,2,3,4},{1,2,3,4},{1,2,3,4},{1,2,3,4}}.

There is no matroid on [4, 4] whose set of bases that are admissible is F. In particular, this delta-
matroid does not have an enveloping matroid.

7 | VECTOR BUNDLES AND K-CLASSES

We now define two types of equivariant vector bundles associated to realizations of delta-matroids,
which we call isotropic tautological bundles and enveloping tautological bundles, respectively. The
isotropic tautological bundles are analogous to the bundles used in [9], and the enveloping tau-
tological bundles are analogous to the bundles used in [34]. The construction of an isotropic
tautological bundle depends on the choice of a B, representation of a delta-matroid, and the
construction of an enveloping tautological bundle depends on the choice of a realization of an
enveloping matroid. The K-classes of the bundles will only depend on the delta-matroid, which
leads to the construction of isotropic tautological classes and enveloping tautological classes for all
delta-matroids, not necessarily with a B,, representation or a representable enveloping matroid.

In both cases, we will construct a T-equivariant map from X to a Grassmannian and define
the bundles as pullbacks of certain universal bundles. Let us therefore prepare with a discussion
of maps from X B, tO Grassmannians. The discussion can be easily adapted to replace X B, with
any smooth projective toric variety, but such generality would not be needed here.

7.1 | Maps into Grassmannians

Let L C kY be a linear space of dimension r, corresponding to a point [L] of Gr(r; N) and rep-
resenting a matroid M of rank r on [N]. Let t: T — Gﬁ be an inclusion of T into the torus
acting on Gr(r; N), and let i : Char(Gﬁ) — Char(T) be the pullback map on character lattices.
Then (#*P(M) is a lattice polytope in Char(T) ® R. Suppose that Zp refines the normal fan of
#*(P(M)). For each w € @5 and any v in the interior of C,,, let B,, be any basis of M such that the
corresponding vertex of P(M) maps under * into the v-minimal vertex f ace, (* P(M).

Proposition 7.1. With the set-up as above, there is a unique T-equivariant morphism ¢ : Xp —
Gr(r; N) such that the identity of T C Xp_is sent to [L]. The pullback ¢; (Syy;,) of the tautological
subbundle on Gr(r;N) is a T-equivariant vector bundle on X B, such that, for each w € @f, the
T-equivariant K-class localizes to

[qoz(suniv)]w = Z L#Ti'

i€B,,

Proof. The moment polytope (taken with respect to the Pliicker embedding of the Grassmannian)
of the Gﬁ-orbit closure G% -[L] € Gr(r; N)is P(M), so, by Proposition 6.1(2), the moment polytope

of the T-orbit closure T - [L] is (¥ P(M). Note that T - [L] is a (possibly nonnormal) toric variety
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whose embedded torus is T/ Staby([L]). The normalization of T - [L] is a toric variety whose fan
is the normal fan of (* P(M) (considered in Cochar(T) ® R, possibly with linearity space), and
whose lattice may be finer than the lattice in Zp, . We therefore have a unique morphism X B, ~
T - [L] & Gr(r; N) such that the identity of T is sent to [L].

To compute the localization of [¢](Sp,)] to a fixed point of X corresponding to w € &5,
we consider the image of this fixed point, x,, € Gr(r; N). Because pullbacks commute with pull-
backs, it suffices to compute the pullback of [S,,;,] to x,, in T-equivariant K-theory. Note that
x,, is a T-fixed point, which implies that G - x,, is acted on trivially by T, so K;(GY - x,)) =
KGN - x,)®7Z [Tlil, s Tﬁl]. Therefore, the pullback in T-equivariant K-theory of [S,,;, ] to any

pointof GY - x,, is the same element of Z[Tlil, ..., T¥1]. The GN -fixed points of G, - x,, are exactly
the vertices of P(M) in the preimage of face,, (* P(M). The pullback in Gfl-equivariant K-theory of
[Suniv] to a GY -fixed point of Gr(r; N) corresponding to B, C [N]is Y ;¢ 5, Ti- Applying * implies
the result. O

For using Proposition 7.1, we set up some notation for a delta-matroid D and w € @E .

* Let B, (D) be the w-minimal feasible set of D, that is, the feasible set corresponding to the vertex
face, P(D) of P(D) on which any linear functional v in C;, achieves its minimum.

* Likewise, let B[)**(D) be the w-maximal feasible set corresponding to the vertex of P(D) on
which any linear functional in the interior of C,, achieves its maximum.

Note that B)**(D) = B,,(D1). We omit (D) and simply write B,, if no confusion is expected.

7.2 | Construction of isotropic tautological bundles

Let Oeoa(z;:l(tﬁznﬂ) be the rank 2n + 1 trivial bundle on OGr(n;2n + 1), which is equipped with the

standard quadratic form, and which is a T-equivariant vector bundle with the action

(Fpseee s b)) = (X eee s Xy Xy ooy X X0) = (X s X ] X o £ 2, X). (7.0)
®2n+1
OGr(n;2n+1)’
OGr(n;[0]2n + 1) corresponding to the maximal isotropic subspace L C k*"*! is L. Under the
inclusion OGr(n;2n + 1) C Gr(n;2n + 1), the bundle T, is the T-equivariant subbundle of
Oeo)cz:’:(tﬁznﬂ) obtained as the restriction of the universal subbundle on Gr(n;2n + 1). Then the
following proposition follows from Proposition 7.1 and the fact that OGr(n;2n + 1) is a T-fixed
subvariety of Gr(n;2n + 1).

Let T,,, be the universal isotropic subbundle of @ whose fiber over a point of

Proposition 7.2. For each B, representation L C k*"*! of a delta-matroid D, we have a
T-equivariant map

Xpg —T- [L] & OGr(n;2n +1)

such that the identity of T is sent to [L]. For each w € &5, the pullback of T ,,;, localizes to Y T;

at the T-fixed point of Xp corresponding to w.

i€B,,

Note our continued use of the convention that T; = T i‘l fori € [n].
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Definition 7.3. Let L be a B, representation of a delta-matroid D. Then the isotropic tautological
bundle I; onX, B, is the pullback of 7 ;, under the map X B, ™ OGr(n;2n + 1) in Proposition 7.2.

univ

Let (9692”+1 be the rank 2n + 1 trivial bundle with a T-equivariant structure given by the action
of T on kZ”“ in (7.1). Note that 7, is the unique T-equivariant subbundle of (D@Z”Jrl whose fiber
at the identity of T C Xp is the isotropic subspace L. In particular, its dual IV is globally gen-
erated, and 7; is an anti- ‘nef vector bundle. The equivariant K-class of 7 depends only on the

delta-matroid D. Moreover, we show that this K-class is well-defined for any delta-matroid, not
necessarily representable.

Proposition 7.4. For any delta-matroid D on [n, 7], there is a class [I] € Kp(X Bn) defined by

[Zp]w 2 T;.

i€B,,

We define the isotropic tautological class [ I, ] of D by the above formula. Proposition 7.2 implies
that [I] = [Z;] if L is a B,, representation of D.

Proof. We need to check that the above formula satisfies the compatibility condition in The-
orem 3.1. Let w € @5, and set w’ = wr;;,,. Then the cones corresponding to w and w’ share
a hyperplane whose normal vector is e,,;) — €,;11). As the normal fan of P(D) coarsens Zg,,
the w-minimal and w’-minimal vertices of P/(B) either coincide or differ by an edge parallel to
€u(i) — €u(i+1)- Thisimplies that [Ip ], — [Ip],y is either 0 or (T ;) — Tyy(i41))> Which is divisible
-1

by 1-— Tw(i)Tw(i+l)'

Now set w’ = wr,,. Then the cones corresponding to w and w’ share a hyperplane whose normal
vector is e,,(,). Again, that the normal fan of P(D) coarsens X implies that either [Ip], = [Zp],y
or [Ip], — [Iply = (1 = Tyy,y) is divisible by 1 — T,y O

Remark 7.5. We could also consider the quotient bundles (9692"+1 /I,. However, one can verify
that [Z,]+ [Z,]V = [0®*"*1],and so ¢([I,]Y) = c((9652”Jrl / IL) Therefore studying the quotient

bundle does not give any new elements of A*(Xp ).

7.3 | Construction of enveloping tautological bundles

From each realization L C k" of an enveloping matroid M of a delta-matroid D, we construct the
enveloping tautological bundles Sf and Qf cLetm: Xp — P! denote the composition X B,
(PY)" — P!, where the latter map is the projection onto the ith factor. Let us treat P! as the toric
variety of the fan in R consisting of the positive ray, negative ray, and the origin. P! has two torus-
fixed divisors co and o that correspond, respectively, to the negative ray and the positive ray. These
torus-fixed divisors correspond, respectively, to the intervals [0,1] and [—1, 0] under the standard
correspondence between polytopes and base-point-free divisors on toric varieties [28, chapter 6].
Let O(1,) and O(1,) be the respective toric line bundles isomorphic to Op1(1), and define

M= P rroa,) &7 oa,).

i€[n]
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‘We now show the existence of vector bundles Sf and Qf onX B, that fit into a short exact sequence
of T-equivariant vector bundles

0—)85—)M—>Qf—>0,

which is characterized by the property that the fiber over of the identity point of T is 0 —» L —
k** — k*" /L — 0. We prepare with a combinatorial lemma. Recall that [] denotes the cube [0, 1]",
and the standard basis of R?" is denoted ug,..,W,ug,.. 0,

Lemma 7.6. Let M be an enveloping matroid of a delta-matroid D. Then
env(IP(M)) = P(D) + ] — e,

Proof. First we note that env(IP(M)) is contained in P(D) + [] — ey, Every vertex of env(IP(M))
can be written as % env(ug) + % env(—ug) for some basis B of M and S C B. Then % env(ug) €
P(D) = (5, ,3) and 5 env(—ug) € (1= (5, .. » 3)-

Now it suffices to show that every vertex of P(D) + [] — ey, is contained in env(IP(M)). Let v
be a vector in the interior of C,,. Then

face,(P(D) + [ — ey,)) = face,(P(D) — 5e,)) + face, (] — ;€[,))

1 1

= 7€, t F€u(n)
1 1

= 3€B, ~ 3€uw(n)-

Because the normal fan of P(D) + [ — ey, is a coarsening of X , every vertex is of the form

%eBw - %ew([n]) for some w € 5. We see that this is equal to env(ug —upg ~,([n))- Because

B, nw([n]) C B, this is contained in IP(M). O

We first construct the dual of the vector bundle Q’LE . Let L' be the dual space (k*"/L)V, consid-
ered as a subspace of k*® under the isomorphism (k*")" ~ k?". It represents the dual matroid
of the matroid represented by L. Let the torus T act on k** = k*" x k** by the usual action
(115 oo s by X £ X5 o0, £, X57) N thee first k" factor and trivially on the second k*" factor. We
let T act on Gr(n;4n) accordingly.

Proposition 7.7. For a representation L of an enveloping matroid M of a delta-matroid D, let E; C
k*" be the image of L* under the diagonal embedding k** < k*". Then there is a composition of
T-equivariant maps

¢ Xg =T [E.] & Gr(n;4n).

We define the enveloping tautological quotient bundle Qf to be the dual of the pullback of the
universal subbundle on Gr(n;4n) via the map ¢; .

Proof. Let T be the 2n-dimensional torus Gﬁf with the action on Gr(n; 4n) induced by

(tl’ ey tzn) . (xl, . ,X4n) = (tlxl, ey tzann, x2n+1, ey X4n).
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By [34, Proposition 3.16], the moment polytope of T - [E; ] is IP(M*'). By Proposition 6.1(2), the

moment polytope of T - [E; ] is env(IP(M')) = P(DY) + [ - ep,- Note that the normal fan of
PMOYHY+[ - e[, coarsens X , so we conclude by Proposition 7.1. 1

By construction, we have a surjection (‘);'?4” - Qf . There is also a surjection (9;‘24” — M, given
Bn Bn

by taking the direct sum over all i = 1, ..., n of the surjections

of, =H'(P',0(%) & 01,) ® Ox, — 7,0(1:,) & 7, 0(1,),
whose kernel is ﬂi*(—loo) (4> 71'1.*(—10).
Proposition 7.8. The composition

P -1 )@ 7 (-1,) > (9;‘3;‘: - oFf

i€[n]
is zero, so there isa map M — Qf .
‘We define the enveloping subbundle Sf to be the kernel of the map M — Qf .

Proof. 1t suffices to check this on the dense open torus T C Xy . By considering each factor of
T = G} separately, the computation reduces to the case n = 1. Over a point ¢ € Gy, the fiber
of T (-1,) ® 7(-1,) C (9;914 is the subspace {(ta,t~'b,a,b) : (a,b) € k?} C k* The form of E;
then implies the claim. O

We now compute the T-equivariant K-classes of SLE and Qf .

Proposition 7.9. The equivariant K-classes of Sf and Qf are given by

[SFl, = B nw(nDl+ Y T,and[Qf], =n—BI*nw(nhl+ Y T

icw([n]),i¢By™ ieBp*nw([n])

Proof. Let v be a vector in the interior of C,,. We have noted that B}** of D is equal to the w-
minimal feasible set of D+. Then, as in the proof of Lemma 7.6, we have that

1 1 1 1
face,(P(DY) + [0 — ep,)) = €5, (n1) = 5€uw((n) = >€5m ~ 3Cuw(ln))-

To compute the localization of the pullback of S,,;,, we find a preimage of face,(P(D*) + []—
e[,)) in the polytope of the matroid represented by E;. A preimage in IP(M%) of this vertex is

Ugmas — Upmas ()" A preimage of this in the matroid polytope of the matroid represented by E;

extends the independent set BT#* \ BM# n w([n]) of M to a basis without adding any elements

in [2n]. Proposition 7.1 then implies that the localization of the pullback of S, ;, at the fixed point
of Xp corresponding to w is
IB2 N w([n])| + > T, = B3 nw(nDl+ ), T

i€BMaX\ BMaX ([ n]) iEBM X A ([n])
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Because Qf is the dual of the pullback of S,,;,, this gives the result for Qf . We note that [M],, =
n+ Yicw(np Ti- AS [SF] = [M] - [QF], the result for [SF] follows. O

In particular, the equivariant K-classes of [SLE] and [Qf] depend only on the delta-matroid
associated to L. For arbitrary delta-matroid D, the proof of Proposition 7.4 immediately adapts to
show that we may define enveloping tautological classes [Sg ]and [QED] inK;(X Bn) by the formulae
in Proposition 7.9. Note that the enveloping tautological classes [Sg 1V and [Qg]v have “nice Chern
roots” in the sense discussed above Proposition 3.8.

Remark 7.10. Arguing analogously to [9, Proposition 5.6], one can show that any fixed polynomial
in the tautological classes of delta-matroids or their Chern classes is a valuative invariant of delta-
matroids in the sense of [35].

7.4 | Intersection computations

We now compute several intersection numbers arising from the Chern and Segre classes of
isotropic and enveloping tautological classes. We first do the computations with enveloping tau-
tological classes, which are easier to work with because they are closely related to the exceptional
isomorphisms ¢? and ¢? introduced in Section 3. We then relate an intersection number of the
Chern classes of the isotropic tautological classes to one involving enveloping tautological classes.

We begin by realizing both the interlace polynomial and the U-polynomial as intersection num-
bers of the enveloping tautological classes. Because the classes [Sg ] do not have any positivity
properties, this does not give log-concavity properties for the interlace polynomial. But these
results will form the basis for later intersection theory computations that prove Theorem B. In
[34, Theorem 8.1], the analogous computation on X st, yields the rank-generating function of a
matroid.

Theorem 7.11. We have that fXB c([SE] u) - c([QE], v) = v" Intp(u/v).

Proof. To compute /XBn c([S5],u) - c([QL ], v), we look at the degree n part of ¢’ ([SE], u)-
cT([QED], v). Let S € AdS,,, and consider the cone 75 whose rays are {e; : i € S}. Then 7 is a max-
imal cone in the fan (231 )" of (P')". The linear function defined by eg attains its maximum on a
face F of P(D), and every function in the interior of 75 attains its maximum on a face of F because
every cone of X thatis contained in 7y contains eg. Note any point x of F minimizes the distance
to eg from P(D).

Note that C,, € 7 if and only if S = w([n]). For each w € @Ij with S = w([n]), we have that

IUsED, = [ a+t). andc’(QED,= [ a+w.

ieS,i¢Bp™* ieSNBYX
We see that the degree n part of ¢’ ([SE], u),, - ¢T([QE],v), is

(=1)/SN1Ally o) yn=do(S)p ..y

Note that, for each S € AdS,,, the piecewise polynomial function that is (—=1)I""l¢, ... £, on g
and vanishes otherwise is c,f(@ ie[n] n;‘(D(l)), where we give O(1) on the ith copy of P! the O(1,,)
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linearization if i € S, and give it the O(1,) linearization if i € S. Proposition 5.2 gives

/ (S5l w - c([Qf)v)= D ub®yr=d(® / (@77 0(1)) = v" Inty(u/v).
XBn (Pl)n

SEAdS,

We prepare to do more computations by studying how enveloping tautological classes restrict to
smaller type B permutohedral varieties. The description of the fan of 2 implies that the closure of
each coordinate G"~! € T in X B, can be identified with X . The inclusion is G~ !-equivariant,
so for each i € n, we have a map K;(Xp ) — KG;In—l(X B,_,) given by the composition of the for-
getful map K(X Bn) - KG‘r}n—l 0.4 Bn) and the restriction map. Recall that for a delta-matroid D and
I C [n], D(I) is the projection of D away from I.

Proposition 7.12. Theimages of [S], [QF), and [Ip,] under the map Kr(Xp,) > Kgn1(X, ) are
1+ [Sg(i)], 1+ [Qg(i)], and 1 + [T ;] respectively.

Proof. Under the embedding Xp =< Xj , each G~ !-fixed point of X B,_, is the identity of the
torus embedded into a T-fixed curve in X on which G1 acts trivially. We may compute the
G?n‘l-equivariant localization at this fixed point by computing the T-equivariant localization at
any T-fixed point of this curve, and then applying the forgetful map K(pt) = Kn-1(pt). Then
the result follows from the definition of the tautological classes. " O

Proposition 7.13. We have that

Up(u.v) = /X CEOQ). ) - e([SEL v) - e[ QED.

Bp

Proof. The zero-locus of a general element of the complete linear system of 7;7O(1) is

{t € T: t; = A} for some 1 € k*. As these divisor are all G,,-translates of the closure of G !, the
class [X Bn—l] e Al(X Bn) represents cl(nj(ﬂ(l)). Letting i vary, we see that c(EHO(1)) is the sum
of the Chow classes of the closures of the coordinate subtori of T. The closure of each coordinate
subtorus of T can be identified with a smaller Xp, . By the projection formula and Proposition 7.12,
we see that

[ c@om.w sl ciefln= ¥ ul' [ aistlol, | 108D,
XB,, X n—|I| n—|I|

1<[n] By

= 2 ISyl 0) - e b 1

IC(n] XBpin

The result follows from Theorem 7.11 and Proposition 5.2. O

Recall that y is the first Chern class of the line bundle corresponding to the cross polytope () and
s denotes the Segre class. We now do the computation that underlies the proof of Theorem B(1.2).

Theorem 7.14. We have that

1
1=y

-c(HOQ), x) = (y+w)nUD<Zz+x y—z>.

EVv E
/XB” S(QEI. 2) - e([QE L, w) - e tx 222
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The key tools in the proof are the two exceptional isomorphisms and the Hirzebruch-Riemann-
Roch-type formulae that they satisfy, which are a manifestation of Serre duality. This allows us
to show the equality of certain intersection numbers, and we leverage Theorem 7.11 to compute
more intersection numbers.

Proof. We prove the theorem in three steps.
Step 1: We have that

/X S(QETY. 2) - e([QE]) = Up(22, ~2).

Because  [SE]+[Qf] = [M]=[HO1)®?], we have that c([S5],2)-c([Qf].2)=
c(FAO(1)®2, 2) = c(HO(1), 2z). So,

SUQE]Y, 2) = e([SE], —2) - c(EHO), 22).

Then, using Proposition 7.12, we see that

/ S(QETY.2) - e([QEL w) = / e(1SE], —2) - «(@OW). 22) - e[ Q] w)
X, Xg,

= Y @l / (1S L =2) - e([QE L w)

IC[n] Bp—1|
= Z(Zz)'”w” I Intppy(—z/w).
IC[n]

Setting w = 1 and using Lemma 5.4 gives the result.
Step 2: We have that

2z 1—z>

1 '
[ Qb ciflw - 1 = v wry (P 1)

Let [[]] be the class of the line bundle corresponding to the cube [] = [0, 1]". From Lemma 3.5 and
[34, Corollary 6.5(1)], we have that both ¢2([[1]) = c(FBO(1)) and ¢B([[J]) = c(FHO(1)). Applying
Proposition 3.8, Proposition 3.7, and Theorem C, we get that

)(((Z Sym/ [QE]VZ> (Z Al [QED]Vw> [D]>
>0 i>0

- /XB (a _lz)n ‘S([Q’S]V,zzj) w4+ D" c([gg]v’ HLw) . ﬁ

- /XB" a _12)ns<[Q§],ﬁ> S(w+ 1" ([QE] T ) - c({0O(1),2).

Equating the two right-hand sides, canceling, and replacing w by —-— and z by =, we obtain

[ S92 ciQblw) 7= = [ 51051 1-2)- c1QBw -+ 1) c(@OM).2)
Xg, -7 X,
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Substituting in the result of Step 1 after homogenizing, we have that

: v _awyu (22D 1=z
/XBnS([invyz—n-c([%l,l+w>—<1+w> 0o (i)

Therefore, using Lemma 5.4, we have that

/ S([Qg]v,z) . C([Qg],ﬂ)) . L}/ — z 2|I|(1 + w)n_lllUD(I)<M’ 1;Z>
Xg, -

1 1€ 1+w 14w

" 2 M 20z-1) 1-
=+w) Z<1+w> UD(I)( 1+w ’1+5J>

ICE

=(1+w)”UD( 2z 1—z>

1+w l+w/

Step 3: We now prove the result. We compute:

/ S(1QE1,2) - el QB w) -~ - e(EOm), )
Xp, -yy

=%%ﬂﬂé%“[mﬂ D) e hw) 1=

- 2z y—z
= Z(y"'w)” lIle[lUD(I)( ) )
= y+w y+w

:(y+U.))nUD<2Z+x y_z>

y+w' y+w

Theorem 7.15. Let D be a delta-matroid. We have that O

/X G

n

x X y—q
(y+ )n < LTI & ’ >'
1 4y +q vy +g

Recall that h; = ¢;(7;O(1)), and note that Hl.”:l(l + xh;) = c(FHO(1), x). We prove the above
theorem by relating it to Theorem 7.14. We first recall the equivariant descriptions of ¢ ([Z]Y).
Recall that if i € [n], then £; := —t;. On a fixed point of X corresponding to w € @5 , we have
that

T, 9w = [T -t = [JQ + 19

i€By, lem

Proof. We claim that
S([Qgi]v’ Q) : C([QEDL], q) : C(EHO(l)’ —ZQ) = c([ID]V’ Q)
Then Theorem 7.14 implies that

/X il

-/ S(QRT"0) <19, 1. ) - (@O, ~20)

y—q
= +g)" Int — ).
O+ nDL<y+q>
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Then, assuming the claim, the result follows using that Int(v) = Inty.(v), Proposition 7.12, and
the definition of the multivariate U-polynomial.
Observe that

_ 1
dUoplou= ] (+ng,ands’ (5 1w =" - = [I 1 g
i€Bnw([n]) ieB,nw([n]) !

On P!, the piecewise polynomial function that is ¢ on the cone {x < 0} and —t on the cone {x > 0}
is a linearization of @(—2). Therefore, with this linearization, we have that

J@o0), —29), = H_(1 +1,9).

iew([n])

Then the claim follows from multiplying the above expressions together. O

8 | LOG-CONCAVITY

In this section, we prove Theorem B. First we recall some definitions. Let f € R[x, ... ,x,,] be a
homogeneous polynomial of degree d. If f = )" a,,,x™, then the normalization of f, denoted N(f),
is the polynomial ) am’%, where m! = m;! .- m,! if m = (my, ... ,m,). We call f the denormal-
ization of N(f). We say that f is strictly Lorentzian if the coefficient of every monomial of degree
d is positive, and every quadratic form obtained by taking d — 2 partial derivatives of f is nonde-
generate with signature (+, —, ... , —). We say that f is Lorentzian if it is a coefficientwise limit of
strictly Lorentzian polynomials. It follows from [20, Example 2.26] and [20, Theorem 2.10] that a
denormalized Lorentzian polynomial has a log-concave unbroken array of coefficients. We now

state a strengthening of (1.1) in Theorem B.

Theorem 8.1. Let D be a delta-matroid that has an enveloping matroid. Then the polynomial

Xy Xn y—q
o+ )”U< , ) (8.1)
V¥ y+d y+q

is denormalized Lorentzian.

By [21, Lemma 4.8], this is indeed a strengthening of the statement that (1.1) is denormalized
Lorentzian. Even when D has an enveloping matroid, we do not know if there is a denormalized
Lorentzian evaluation of the multivariable U-polynomial that specializes to (1.2). We have the
following corollaries of Theorems B and 8.1.

Corollary 8.2. Let D be a delta-matroid that has an enveloping matroid. Then the coefficients of
v+ D)"Up(0, ﬁ) =@+1)" IntD(}yﬁ) and Up(2u, —u) form a nonnegative log-concave sequence
with no internal zeros, and in particular form a unimodal sequence. After multiplying the coefficient
of uk in Up(u,0) or Up(u, —1) by k!, the resulting sequence is a nonnegative log-concave sequence
with no internal zeros.

Proof. To obtain the first two results, we set x =0,g=11in (1.1) and set x =y =0,w =1 in
(1.2), respectively, and then apply [21, Lemma 4.8]. To obtain the last two results, we normalize
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(8.1) and set y=q=1/2,x; =u and set y =0,q = 1,x; = u, respectively, and then apply
[20, Corollary 3.7]. ]

Remark 8.3. In [44, Proposition 3.4, Theorem 3.8], the third author showed that the coefficients
of Up(u, 0) count the number of independent set (i.e., subsets of feasible sets) of D by their car-
dinality, and the coefficients of U (1, —1) count the number of faces of a delta-matroid analogue
of the broken circuit complex of a matroid. In particular, Corollary 8.2 gives an analogue of the
log-concavity of the independence polynomial and the characteristic polynomial of a matroid [1].

Remark 8.4. For the adjacency delta-matroid D(G) of a graph G (Example 6.4), [7] conjectured
that the coefficients of Intp;)(v — 1) form a unimodal sequence, which was disproved by [30].
Both works conjectured that Intp(v) has unimodal coefficients. We note that Intp(v) may not
have unimodal coefficients even when D is an even delta-matroid with a D,, representation, like
D(G). See Example 8.5. In [36, Corollary 7.22], Ferroni and Schroter gave an example of a matroid
M such that Intpp)(v) is not unimodal.

Example 8.5. Let U7 be the even delta-matroid on [n, n] whose feasible sets are

{SuU([n]\S) : S C[n]with |S| <rand |S| =r mod 2}.

That is, the vertices of the polytope P(U; , ) are obtained from IP(U, ,,) by taking only the vertices
corresponding to subsets with parity equal to that of r. Then U?  has a D, representation by the
row-span of the n X 2n matrix

where I, is the k X k identity matrix, A is a general r X (n — r) matrix, and B is a general r X
r skew-symmetric matrix. In particular, U7, has an enveloping matroid. Using the formula in
Proposition 5.2, we compute that the coefficients of (1,v,v?,v3,...) in Intye " (v) are

m—3,2m

< ) 2 < > <’” 2> <”l 1) <Hl>
<ism-3 i 0<i<sm—3 i
m

—3 mod?2 i£Zm—3 mod 2

1=
For large m, this sequence is not unimodal. For instance, at m = 10 the sequence reads
(94 184,169 766,167 960, 184 756, ...).

In particular, the interlace polynomial of an even delta-matroids with a D,, representation need
not have unimodal or log-concave coefficients.

Remark 8.6. The nonnegativity of the coefficients of Up(2u, —u), which is part of the content of
Corollary 8.2, can be proven directly using the recursive definition of the U-polynomial.
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8.1 | Motivation

We exhibit the general strategy for constructing log-concave sequences from vector bundles, first
used in [9, section 9] and later placed into a general framework in [34]. We do this in the spe-
cial case of showing that the coefficients of (y + 1)" IntD(%) are log-concave when D has an
enveloping matroid.

Setting x = 0 and q = 1 in Theorem 7.15, we have the equality

-1
/XBn LI 5 —1yy =0+t <§?>

Suppose first we are in the special case that D has a B,, representation L C k***!. The first step
will be rewriting this intersection to involve Segre classes rather than Chern classes. As I; is a
subbundle of (9;‘?;"“, by dualizing we obtain a short exact sequence

n

D2n+1 \2
0—>ICL—>(9XBn -1, -0

for some vector bundle ;. Then c(IZ) = 5(K;), and so

n n
1 1 k k k 2n—k. k
)= [ st =Yyt [ st = Xk [ e
'/XB,, L1 —yy Xg, L1 g ,;0 Xp, nokAL ];0 P(K)

where § is the first Chern class of O(1) on P(K; ). The Khovanskii-Teissier inequality implies the
coefficient sequence is log-concave. To establish this log-concavity beyond the case that D is B,
representable, we note that we may rewrite the last equation as

n n
Yo [ ee I [ i
k=0 P(]CL) k=0 XBnXPZ"

where [P(K)] € A"(Xp X p2") = A’(XBn)[(S]/(SZ”“) is the fundamental class of P(K;) C
Xp, x P We have the formula [P(K;)] = Y. ¢,_;(Z))8". The formula for this class makes
sense for any delta-matroid, and one can formally define [P(Kp)] = 2?:0 c,_i([Ip]V)d! €
A'(Xp X P¥). By Theorem 7.15, [y on[P(Kp)]8#~Fy* still computes the coefficients of (y +

D" Intp (3.

To deduce log-concavity, we need to know that the Chow class [P(Kpy)] has Hodge-theoretic
properties resembling those of an irreducible subvariety. The framework of [34, section 8.3] con-
structs classes that are associated to any matroid that have good Hodge-theoretic properties.” The
strategy is to relate the class to the Bergman fan of some matroid, which has good Hodge-theoretic
properties by [1]. The notion of valuativity for invariants of matroids is used to reduce certain com-
putations to the case of realizable matroids. When D has an enveloping matroid M, we can use

this to deduce that [P(Kp)] has good Hodge-theoretic properties.

T For technical reasons, we actually work with classes in A*(X B, X P27-1) instead of A*(X B, X P2") that more naturally
extend to all rank n matroids, but the underlying idea is the same.

d ‘€ "vT0T “XPrToorT

sdny wosy

:SdNY) SUONIPUOD) PuT SuLa, oY) 99§ “[$Z0T/L0/ST] U0 ATEIQET AUUQ AT “AUISIOATUN) PIPAIRH AQ 76571 SWIA/ZT 1 1:01/10p/wO Kot

Koy resqraur

25UADFT SUOWIIOD) AATIFAI) A[qEIIdE A1 £q PAUIANGS A1 SAPIIT VO 195N JO SAINI 10] ATRIGIT AUIUO) A9TEA UO (i



50 of 54 | EURET AL.

8.2 | Proof of log-concavity

Before proving Theorem B, we prove a log-concavity statement for an arbitrary matroid of rank n
on [n, 7] (Theorem 8.10) by using the framework in [34, section 8.3], which is based on [9, section
9]. Afterward, we relate this log-concavity statement to Theorem B. Using Proposition 7.1, we
construct two types of vector bundles on X that are associated to a realization of a matroid of
rank n on [n, i]. First we give a definition (cf. Definition 2.4).

Definition 8.7. Let A be an abelian group. A function
@ . {matroids of rank r on [n]} — A

is valuative if it factors through the map M — 1(P(M)). That is, for any matroids My, ..., M; and
integers ay, ..., a; such that ) a;1(P(M;)) = 0, we have that ) a;p(M;) = 0.

Let T act on k* by (¢,X1, 65X, wvv s £y Xy 7 Xppp 15 oo £ Xy Xy 15 005 Xay)- Let L C k" be a lin-
ear space of dimension n. Let E; be the image of L under the diagonal embedding of k*" into k*"
and consider the point [E; ] € Gr(n;4n). The fan of the normalization of T - [E; ] is the normal
fan of env(IP(M)). Every edge of env(IP(M)) is parallelto e; ore; + e >80 Zp s a coarsening of
the normal fan of env(IP(M)). Therefore, there is a toric morphism XEB" — Gr(n;4n). Set S iy

and Q,,;, to be the universal subbundle and quotient bundle, respectively, on Gr(n;4n). Let ]Cf
and Qf be the duals of the pullbacks of Q,,;, and S,,;,, respectively.

Lemma 8.8. Foreachw € @f, let T, be any independent set of M* such that any functional in the
interior of C,, achieves its minimum on the corresponding vertex of env(IP(M™)). Then

[0Fl, =n—Il,nw(nDl+ ) T,and[Kf], =n+Il,nw(nDl+ Y T
iel,nw([n]) igw([n])nIy,

Note that the classes [QF] and [K}] only depend on the matroid M that L represents. For any
matroid M of rank r on [n, 7i], we define classes [Q)] and [K};] in K7(Xj ); the proof of Proposi-
tion 7.4 adapts to show that these are indeed well-defined. The proof of [9, Proposition 5.6] shows
that any function that maps a matroid M of rank n on [n, 1] to a fixed polynomial expression in
the Chern classes of [Qf,[] and []f,’f/[] is a valuative invariant of matroids of rank » on [n, 71].

We now construct analogues of isotropic tautological bundles. Consider a matroid M of rank
n on [n, 7] represented by L C k**. Then L determines a k-valued point of Gr(n;2n). We have a
T-action on Gr(n;2n) given by

(Es e s ty) (s e s Xy X5 ee 5 X7) = (B X4, e ,tnxn,tl_lx;,... ,t;lx,-l).

The fan of the normalization of T - [L] is the toric variety with normal fan env(P(M)), which
is a coarsening of ¥ . This determines a morphism X — Gr(n;2n); define K} to be dual of
the pullback of the universal quotient bundle Q, ;, under this map. Proposition 7.1 implies the
following lemma.

univ
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Lemma 8.9. Forw € @’Vf, let B,, be a basis corresponding to any vertex in the preimage of the vertex
of env(P(M)) that any functional in C; achieves its minimum on. Then
]CL]w Z T
i€B,,

Note that the above description of the equivariant K-class depends only on the matroid M.
Define [K),] € Kp(X B,) by the above formula for any M; the proof of Proposition 7.4 adapts to
show that these are indeed well-defined. The proof of [9, Proposition 5.6] shows that any func-
tion that maps a matroid M of rank n on [n, 7] to a fixed polynomial expression in the Chern
classes of [K),] is a valuative invariant of matroids of rank n on [n, 7]. We now use the framework
[34, section 8.3], which establishes log-concavity properties for classes constructed in this way
associated to loop-free and coloop-free matroids M. Indeed, the above constructions give globally
generated vector bundles associated to realizations of matroids of rank n on [n,7i]. The Chern
classes of these vector bundle depend only on the underlying matroid and depend valuatively on
the matroid. Then [34, Theorem 8.7] gives the following result.

Theorem 8.10. Let M be a loop-free and coloop-free matroid of rank n on [n,n]. Then the
polynomials

5E v OF 1
/ G2 R ) T o). ) and /

Xg,
are denormalized Lorentzian.

Proof of Theorem B and Theorem 8.1. We first do (1.2). Consider the case when D is loop-free

and coloop-free. By Lemma 6.8, the enveloping matroid M of D is loop-free and coloop-free. Then
5E1 — [OF AE _ E o — ~(TOF _ E

[}?M] = [Q7], so s([Qy 1", 2) = s([Q}]", 2). Also, s([Ky; ], w) = c([Qy], w) = c([Qf], w). We see

that

/ Q51 2) - s ] w) - —— - (@), )
Xp, =Yy

- / (051", ) e([Q5] w) - -
Xz,

(@O0, ) = 0+ w)"UD<2Z +x u)

y+w'y+w

by Theorem 7.14. So, when D is loop-free and coloop-free, Theorem 8.10 gives that the above
polynomial is denormalized Lorentzian. In general, we can write D = D’ X P(U ;) X P(Uy ;) for
some k and #, where D’ is loop-free and coloop-free. Using the behavior of the U-polynomial for
delta-matroids with loops, we have that

-z
(y+w)"UD(ZZ+x y >

y+w'y+w

—k— 2z4+x Y—2
= +w) (2=, = .
<(y ) D<y+w y+w>>

k 2z+x Y—2Z ¢ 2Z+x Y—2Z
+ U —_—, . + U —_—,
((y w) p(UO‘k)<y+w y+w>> <(y w) P(U,/f)<y+w y+w>>

2Zz4+x Y —2
y+w'y+w

= +w)" Uy < > (2 43y + w)7.
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As product of denormalized Lorentzian polynomials are denormalized Lorentzian [20, Corol-
lary 3.8], we see that (1.2) is denormalized Lorentzian for all delta-matroids D that have an
enveloping matroid.

The proof of Theorem 8.1 is identical: one shows that, when M is an enveloping matroid of a
loop-free and coloop-free delta-matroid D,

n n
~ 1 1
s([Rul, @) - . (1+x-h~)=/ c([Ip]Y,q) - J1a+xh)
/XBn M L—yy 111 o Xg, D 1—-yy 11:! v
x Xo ¥y—4q
=+ )"U( L )
Vo3 ¥ v+ a y+g

by Theorem 7.15. One then deduces the general case using the behavior of the U-polynomial under
products. O

Remark 8.11. Our proof that (1.2) is denormalized Lorentzian only requires that D has a shelter-
ing matroid, as we only need that there is a matroid M with env(IP(M)) = P(D) + [] — e[,). See
Remark 6.7.
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