
Received: 16 January 2023 Revised: 30 January 2024 Accepted: 15 February 2024

DOI: 10.1112/plms.12592

Proceedings of the London
Mathematical SocietyRESEARCH ARTICLE

Signed permutohedra, delta-matroids, and
beyond

Christopher Eur1 Alex Fink2 Matt Larson3 Hunter Spink4

1Department of Mathematics, Harvard

University, Cambridge, Massachusetts,

USA

2School of Mathematical Sciences, Queen

Mary University of London, London, UK

3Department of Mathematics, Stanford

University, Stanford, California, USA

4Department of Mathematics, University

of Toronto, Toronto, Ontario, Canada

Correspondence

Matt Larson, Department of Mathematics,

Stanford University, 450 Jane Stanford

Way, Stanford, CA 94305, USA.

Email: mwlarson@stanford.edu

Funding information

National Science Foundation,

Grant/Award Number: DMS-2001854;

EPSRC, Grant/Award Number:

EP/X001229/1; NDSEG

Abstract

We establish a connection between the algebraic geom-

etry of the type ý permutohedral toric variety and the

combinatorics of delta-matroids. Using this connection,

we compute the volume and lattice point counts of type

ý generalized permutohedra. Applying tropical Hodge

theory to a new framework of <tautological classes

of delta-matroids,= modeled after certain vector bun-

dles associated to realizable delta-matroids, we establish

the log-concavity of a Tutte-like invariant for a broad

family of delta-matroids that includes all realizable

delta-matroids. Our results include new log-concavity

statements for all (ordinary) matroids as special cases.
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1 INTRODUCTION

For a nonnegative integer ÿ, let [ÿ] = {1, … , ÿ}. For a subset ÿ ⊆ [ÿ], let ÿÿ =
∑

ÿ∈ÿ ÿÿ ∈ ℝÿ be the

sum of the standard basis vectors indexed by ÿ. If ÿ ⩾ 1, the ýÿ−ÿ permutohedral fan Σýÿ−1
is the

complete fan in ℝÿ whose maximal cones are the chambers of the arrangement of hyperplanes

ÿÿÿ−ÿÿ
= {(ý1, … , ýÿ) ∈ ℝÿ ∶ ýÿ − ýÿ = 0} for all 1 ⩽ ÿ < ÿ ⩽ ÿ.

A polytope ÿ ⊂ ℝÿ is an ýÿ−ÿ generalized permutohedron if its normal fan coarsens the fan Σýÿ−1
.

The polyhedral properties of ýÿ−1 generalized permutohedra and the algebraic geometry of the

toric variety ÿýÿ−1
associated to Σýÿ−1

(as a fan in ℝÿ∕ℝ(1, … , 1)) have been well-studied as a way

to illuminate the structure of several combinatorial objects [2, 52], including graphs, posets, and,

notably in recent years, matroids.

Definition 1.1. AmatroidM on [ÿ] is a nonempty collection  of subsets of [ÿ], called the bases

ofM, such that the polytope

ÿ(M) = the convex hull of {ÿý ∶ ý ∈ } ⊂ [0, 1]ÿ

has all edges parallel translates of ÿÿ − ÿÿ for various ÿ, ÿ ∈ [ÿ], or, equivalently, such that ÿ(M) is

an ýÿ−1 generalized permutohedron with all vertices lying in {0, 1}
ÿ.

Recently, an interpretation of matroids as elements in the Chow cohomology ring of ÿýÿ−1

has led to fruitful developments in matroid theory [1, 10, 42, 47]. Conversely, this interpretation

allows matroid theory to inform the geometry ofÿýÿ−1
[34, 41]. Many of these developments have

recently been unified, recovered, and extended under the new framework of <tautological classes

of matroids= [9], modeled after certain torus-equivariant vector bundles on ÿýÿ−1
.

Meanwhile, the fan Σýÿ−1
generalizes to the fan ΣΦ of the Coxeter arrangement of an arbitrary

crystallographic root system Φ, the toric variety ÿýÿ−1
generalizes to the toric variety ÿΦ of ΣΦ,

and the combinatorial objects such as graphs, posets, and matroids generalize appropriately to

their Coxeter analogues (see [5, section 4] and references therein). For instance, in the theory

of Coxeter matroids [14], matroids in the usual sense are exactly the type ý minuscule Coxeter

matroids. Several works [31, 43, 53, 56] have studied the Chow cohomology ring of ÿΦ. Missing in

these previous works is an interaction between Coxeter matroids and the Chow cohomology ring

ofÿΦ that generalizes the interaction betweenmatroids and the Chow cohomology ring ofÿýÿ−1
.

We establish here such an interaction when Φ is a root system of type ý, noting that the type

ý minuscule Coxeter matroids are exactly delta-matroids (Definition 1.3). This interaction inter-

faces particularly well with the framework of <tautological classes of delta-matroids= we develop

in Section 7, which is modeled after toric vector bundles associated to maximal isotropic sub-

spaces that realize delta-matroids. Some barriers to establishing a uniform treatment for arbitrary

Coxeter types can be found in Remark 3.6.

1.1 Main combinatorial consequences

Definition 1.2. Let ÿ ⩾ 0. The ýÿ permutohedral fan Σýÿ is the complete fan in ℝÿ whose

maximal cones are the chambers of the arrangement of hyperplanes

ÿÿÿ±ÿÿ
= {(ý1, … , ýÿ) ∈ ℝÿ ∶ ýÿ ± ýÿ = 0} for all ÿ ≠ ÿ ∈ [ÿ], and

ÿÿÿ
= {(ý1, … , ýÿ) ∈ ℝÿ ∶ ýÿ = 0} for all ÿ ∈ [ÿ].
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The fan Σýÿ is the normal fan of the type ýÿ permutohedron Πýÿ
, also called the signed per-

mutohedron, which is the convex hull of {ý ⋅ (ÿ, … , 1) ∈ ℝÿ ∶ ý ∈ ÿý
ÿ }, where ÿ

ý
ÿ is the signed

permutation group (see Subsection 2.1). A polytope ÿ ⊂ ℝÿ is a ýÿ generalized permutohedron if

its normal fan Σÿ coarsens Σýÿ , or, equivalently, if each edge of ÿ is parallel to ÿÿ + ÿÿ , ÿÿ − ÿÿ , or

ÿÿ for various ÿ, ÿ ∈ [ÿ]. ýÿ generalized permutohedra are also known as bisubmodular polytopes,

see [37, Theorem 1].

A celebrated result of Postnikov [52] gives a formula for the volumes and lattice point enumer-

ators ofýÿ−1 generalized permutohedra in terms of transversals of subsets ÿ1, … , ÿý of [ÿ], that is,

subsets ÿ ⊆ [ÿ] such that there exist a bijection ÿ ∶ {1, … , ý} → ÿ with ÿ(ÿ) ∈ ÿÿ for all ÿ ∈ {1, … , ý}.

We give a formula for the volumes and lattice point enumerators of ýÿ generalized permutohedra

as follows.

Let [ÿ] = {1, … , ÿ}, and let [ÿ, ÿ] = [ÿ] ⊔ [ÿ], which is endowed with the obvious involution

(⋅). For ÿ ⊆ [ÿ, ÿ], we denote ÿÿ =
∑

ÿ∈ÿ ÿÿ , where ÿÿ ∶= −ÿÿ for ÿ ∈ [ÿ]. Define the set ýýÿ of

admissible subsets of [ÿ, ÿ] to be

ýýÿ = {ÿ ⊂ [ÿ, ÿ] such that {ÿ, ÿ} ⊈ ÿ for all ÿ ∈ [ÿ]}, and define ýýÿÿ = {ÿ ∈ ýýÿ ∶ |ÿ| = ÿ}

to be the set ofmaximal admissible subsets. A signed transversal of ÿ1, … , ÿÿ is an admissible subset

ÿ ∈ ýýÿÿ such that there exists a bijection ÿ ∶ {1, … , ÿ} → ÿ with ÿ(ÿ) ∈ ÿÿ for all ÿ = 1, … , ÿ. For

an admissible subset ÿ ∈ ýýÿ, let

Δ0
ÿ = the simplex that is the convex hull of {ÿÿ ∶ ÿ ∈ ÿ} ∪ {ÿ} in ℝÿ.

Theorem A. Let ÿ be a lattice ýÿ generalized permutohedron (i.e., ÿ has vertices in ℤÿ).

(a) There exists a unique set of integers {ýÿ ∈ ℤ ∶ ÿ ∈ ýýÿ ⧵ {∅}} such that the signed Minkowski

sum
∑

ÿ∈ýýÿ⧵{∅} ýÿΔ
0
ÿ
equals ÿ. Hence, we may write ÿ = ÿ({ýÿ}).

(b) For any sequence (ÿ1, … , ÿÿ) of nonempty admissible subsets of [ÿ, ÿ], one has that

mixed volume of {Δ0
ÿ1
, … , Δ0

ÿÿ
} = |{signed transversals of ÿ1, … , ÿÿ}|.

In particular, normalizing the volume of the standard simplex Δ0
[ÿ]

to be 1, one has

Vol (ÿ({ýÿ})) =
∑

(ÿ1,…,ÿÿ)

|{signed transversals of ÿ1, … , ÿÿ}| ⋅ ýÿ1ýÿ2 ⋯ ýÿÿ ,

where the sum is over all sequences (ÿ1, … , ÿÿ) of nonempty admissible subsets.

(c) Let Ψ be the linear operator on polynomials that replaces each monomial ý
ý1
1

⋯ý
ýÿ
ÿ in a poly-

nomial ÿ(ý1, … , ýÿ) by
ý1!⋯ýÿ!

(ý1+⋯+ýÿ)!

(ý1
ý1

)
⋯

(ýÿ
ýÿ

)
. Let□ = [0, 1]ÿ be the standard unit cube inℝÿ.

Then, we have

# lattice points of (ÿ({ýÿ}) −□) = Ψ(Vol (ÿ({ýÿ}))),

where ÿ({ýÿ}) −□ denotes the polytope ÿ({ý′
ÿ
}) with ý′

ÿ
= ýÿ − 1 if ÿ = {ÿ} ⊆ [ÿ] and ý′

ÿ
= ýÿ

otherwise. Here, the volume and lattice point counts are considered as polynomials in the {ýÿ}.
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The statements (a), (b), and (c) generalize to type ý the classical type ý results [4, Proposition

2.4], [52, Theorem 9.3], and [52, Theorem 11.3], respectively. Hence, Theorem A fully answers [5,

Question 9.3] for type ý. The statement (a) was also shown in [8] via a study of Tits algebras,

and a different set of polytopes satisfying the property in (a) was obtained in [50] via a study of

shard polytopes. Neither work gives a formula for the volume or lattice point enumerator. We will

deduce Theorem A via our study of delta-matroids.

Definition 1.3. A delta-matroid D on ground set [ÿ, ÿ] is a nonempty collection  ⊆ ýýÿÿ of

admissible subsets of [ÿ, ÿ] of cardinality ÿ, called the feasible sets of D, such that the polytope

ÿ(D) = the convex hull of {ÿý∩[ÿ] ∶ ý ∈  } ⊂ [0, 1]ÿ

has all edges parallel translates of ÿÿ + ÿÿ , ÿÿ − ÿÿ , or ÿÿ for various ÿ, ÿ ∈ [ÿ], or, equivalently, such

that ÿ(D) is a ýÿ generalized permutohedron with all vertices lying in {0, 1}ÿ. For ÿ ∈ [ÿ], we say

that ÿ is a loop, respectively, coloop, of D if no, respectively, every, feasible set contains ÿ.

We often identify a delta-matroid D with its polytope ÿ(D).

Delta-matroids were introduced in [15] by weakening the basis exchange axiom for matroids,

to allow cases where not all bases have the same cardinality. (A basis of D is the intersection of a

feasible set with [ÿ].) Several combinatorial settings that give rise tomatroids have generalizations

to delta-matroids.As one example, a bipartite graph yields a transversalmatroidwhose bases come

from maximal matchings, as the incident vertices in one part. Given an arbitrary graph, the sets

of vertices incident to matchings of any size are the bases of a delta-matroid [16]. As another,

a connected graph yields a graphic matroid whose bases are the spanning trees. Given a graph

embedded on a surface, the set of spanning <quasi-trees= are the bases of a delta-matroid [25,

26]: see Example 6.5. There is a theory of linear representability for delta-matroids as well: see

Subsection 6.2. For the equivalence of the definition of delta-matroids in the works cited above

and the one given here, see [14, chapter 4].

A matroid M on [ÿ] with set of bases  defines a delta-matroid D in two different ways: first,

by its base polytope ÿ(M), and, second, by its independence polytope

ýÿ(M) = the convex hull of (ÿý ∶ ý ⊆ [ÿ] such that ý ⊆ ý for some ý ∈ ) ⊂ [0, 1]ÿ,

whose edges are all of the form ÿÿ or ÿÿ − ÿÿ . We will frequently use ÿ(M) and ýÿ(M) to refer to

the delta-matroids obtained fromM as above.

We introduce a new invariant of delta-matroids defined by a recursive relation similar to the

one satisfied by Tutte polynomials ofmatroids. SeeDefinition 5.1 for the deletionD ⧵ ÿ, contraction

D∕ÿ, and projection D(ÿ) of a delta-matroid D.

Definition 1.4. For a delta-matroid D on [ÿ, ÿ] with feasible sets  , the ý-polynomial ýD(ÿ, ÿ)

is the unique bivariate polynomial satisfying the following properties.

∙ (Base case) If ÿ = 0, then ýD(ÿ, ÿ) = 1.
∙ (Recursive relation) If ÿ ⩾ 1 and ÿ ∈ [ÿ], then

ýD(ÿ, ÿ) =

{
ýD⧵ÿ(ÿ, ÿ) + ýD∕ÿ(ÿ, ÿ) + ÿýD(ÿ)(ÿ, ÿ) if ÿ is neither a loop nor a coloop

(ÿ + ÿ + 1) ⋅ýD⧵ÿ(ÿ, ÿ) if ÿ is a loop or a coloop.
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Proposition 5.2 verifies that this recursive definition is well-defined. Specializing ýD(ÿ, ÿ) at

ÿ = 0, one obtains the interlace polynomial IntD(ÿ), introduced in [7] for graphs and generalized

to delta-matroids in [23]. See [49] for a survey on interlace polynomials.† The invariant ýD also

gives rise to two invariants of (ordinary) matroids. Let ÿM denote the Tutte polynomial ofM. One

computes, as done in Examples 5.5 and 5.6, that

ýÿ(M)(ÿ, ÿ) =
∑

ÿ⊆ÿ⊆[ÿ]

ÿ|ÿ−ÿ|ÿcorankM(ÿ)+nullityM(ÿ),

so in particular, Intÿ(M)(ÿ) = ÿM(ÿ + 1, ÿ + 1), and

ýýÿ(M)(ÿ, ÿ) = (ÿ + 1)ÿ−rank(M) ÿM

(
ÿ + 2,

ÿ + ÿ + 1

ÿ + 1

)
.

Weestablish a log-concavity property forý-polynomials of delta-matroids that have an envelop-

ing matroid (Definition 6.6), a condition necessary for applying tools from the tropical Hodge

theory developed in [6]. Such delta-matroids includeÿ(M) and ýÿ(M)whenM is amatroid (Propo-

sition 6.11), and include realizable delta-matroids (Proposition 6.9), in particular the adjacency

delta-matroids of graphs (Example 6.4) and delta-matroids from graphs embedded on surfaces

(Example 6.5). We say that the coefficients of a homogeneous polynomial ÿ of degree ý form a

log-concave unbroken array if for any 1 ⩽ ÿ < ÿ ⩽ ÿ and any monomial ýÿ of degree ý′ ⩽ ý, the

coefficients of {ýý
ÿ
ýý−ý

′−ý
ÿ

ýÿ} form a nonnegative log-concave sequence with no internal zeros.

Theorem B. Let D be a delta-matroid that has an enveloping matroid. Then the polynomials

(ÿ + ÿ)ÿ ýD

(
ý

ÿ + ÿ
,
ÿ − ÿ

ÿ + ÿ

)
and (1.1)

(ÿ + ý)ÿ ýD

(
2ÿ + ý

ÿ + ý
,
ÿ − ÿ

ÿ + ý

)
(1.2)

have a log-concave unbroken array of coefficients. In fact, they are denormalized Lorentzian

polynomials in the sense of [20, 21].

In fact, we obtain that (1.1) is denormalized Lorentzian by showing that a specialization of

a multivariable version of the ý-polynomial is Lorentzian, which gives stronger log-concavity

results. See Theorem 8.1. Setting ý = 0 and ÿ = 1 in (1.1) implies that the transformation (ÿ +

1)ÿ IntD(
ÿ−1

ÿ+1
) of the interlace polynomial has nonnegative log-concave coefficients with no inter-

nal zeros, and hence has unimodal coefficients. We note that the interlace polynomial of a

realizable delta-matroid can have nonunimodal coefficients (Example 8.5); see Remark 8.4 for

a history of conjectures about unimodality for the interlace polynomial. Theorems B and 8.1 also

yield new log-concavity results for (ordinary) matroids. For instance, Theorem 8.1 implies that

the coefficients of ýD(ÿ, 0) are log-concave after multiplying the coefficient of ÿ
ý by ý!, and in

particular are strictly log-concave. Taking D = ÿ(M) for a matroidM, this implies that if we set

ÿý = |{ÿ ⊆ ÿ ⊆ [ÿ]∶ ÿ independent inM and ÿ spanning inM, |ÿ| − |ÿ| = ý}|,

† In our terms, the <interlace polynomial= defined in [7] equals IntD(ÿ − 1). Our definition agrees with [49, Definition 28]

and the polynomial denoted ÿ1 in [23].
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then ÿ2
ý
⩾

ý+1

ý
ÿý−1ÿý+1. See Corollary 8.2 for more implications of Theorem B. See Theorems 7.15

and 7.14 for the algebro-geometric results underlying the formulae (1.1) and (1.2), respectively,

and see Subsection 8 for the derivation of log-concavity from these formulae using tropical Hodge

theory.

Conjecture 1.5. The hypothesis that D has an enveloping matroid can be removed in Theorem B.

We do not know an easy way to check if a given delta-matroid has an enveloping matroid, so it

is difficult to test Conjecture 1.5. We have checked Conjecture 1.5 for all delta-matroids on at most

5 elements, which includes some delta-matroids that lack enveloping matroids: see Example 6.12.

1.2 Underlying geometry

We obtain Theorems A and B by establishing a new connection between the algebraic geometry

of the ýÿ permutohedral fan Σýÿ and the combinatorics of delta-matroids. The fan Σýÿ , as a ratio-

nal fan over ℤÿ, defines a smooth projective toric variety ÿýÿ
that we call the ýÿ-permutohedral

variety. We follow the conventions in [28, 39] for toric varieties and polyhedra, and we work over

an algebraically closed field ý. The toric variety ÿýÿ
is equipped with two well-studied rings, the

Chow cohomology ring ý∙(ÿýÿ
) and the Grothendieck ring of vector bundles ÿ(ÿýÿ

).

We construct an isomorphism between the rings ÿ(ÿýÿ
) and ý∙(ÿýÿ

), different from the clas-

sical Hirzebruch–Riemann–Roch theorem. Recall that the Hirzebruch–Riemann–Roch theorem

states that for an arbitrary smooth projective varietyÿ, theChern charactermap ýℎ∶ ÿ(ÿ) ⊗ ℚ
∼
→

ý∙(ÿ) ⊗ ℚ is an isomorphism such that

ÿ([]) = ∫ÿ ýℎ([]) ⋅ Td(ÿ) for all [] ∈ ÿ(ÿ),

where ÿ∶ ÿ(ÿ) → ℤ is the sheaf Euler characteristic map, ∫ÿ is the degree map, and Td(ÿ) ∈

ý∙(ÿ) ⊗ ℚ is the Todd class of ÿ.

To state our exceptional Hirzebruch–Riemann–Roch-type theorem, we need the following

definitions. Note that the product fan (Σý1)
ÿ, which is the fan induced by the arrangement of

coordinate hyperplanes in ℝÿ, is a coarsening of Σýÿ . Hence, as the toric variety of Σý1 is ℙ
1, we

have a birational toric morphism ÿýÿ
→ (ℙ1)ÿ. Let⊞(1) be the vector bundle on ÿýÿ

obtained

as the direct sum of the pullbacks of ℙ1(1) from each ℙ1 factor in the product (ℙ1)ÿ.

Theorem C. There exists a ring isomorphism ÿý ∶ ÿ(ÿýÿ
) → ý∙(ÿýÿ

) such that

ÿ([]) = ∫ÿýÿ

ÿý([]) ⋅ ý(⊞(1)) for all [] ∈ ÿ(ÿýÿ
),

where ý(⊞(1)) = ý0(⊞(1)) +⋯ + ýÿ(⊞(1)) denotes total Chern class of⊞(1).
We define the map ÿý and prove Theorem C in Subsection 3. We note that the map ÿý in The-

orem C differs from ýℎ and is an isomorphism integrally, and the class ý(⊞(1)) differs from
the Todd class of ÿýÿ

. The isomorphism ÿý here is closely related to the type ý exceptional

Hirzebruch–Riemann–Roch isomorphisms that appeared in [9] and [34] (see Subsection 3.3).

 1
4
6
0
2
4
4
x
, 2

0
2
4
, 3

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n
d
m

ath
so

c.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
2
/p

lm
s.1

2
5
9
2
 b

y
 H

arv
ard

 U
n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

5
/0

7
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



SIGNED PERMUTOHEDRA, DELTA-MATROIDS, AND BEYOND 7 of 54

The combinatorial utility of Theorem C is mediated by our Theorem D that describes a basis

of the ring ÿ(ÿýÿ
) in terms of Schubert delta-matroids (Proposition-Definition 2.7), which corre-

spond to the Bruhat cells of a type ý generalized flag variety (Example 6.3). Recall that there is

a standard correspondence between polytopes and base-point-free line bundles on toric varieties

[28, section 6.2].

Theorem D. The classes of line bundles on ÿýÿ
corresponding to the polytopes of Schubert delta-

matroids without coloops form a basis for ÿ(ÿýÿ
).

Theorem D is proved in Section 2. By combining Theorem C with Theorem D, we construct

in Corollary 4.5 a graded basis for ý∙(ÿýÿ
) indexed by coloop-free Schubert delta-matroids. By

considering the basis elements in ý1(ÿýÿ
), we deduce statement (a) of Theorem A. The rest of

Theorem A is deduced from Theorem C in Subsection 4.2. Theorem B is proved by constructing

torus-equivariant nef vector bundles on ÿýÿ
that are related to delta-matroids; see Subsections

7.2 and 7.3. The proof of Theorem B invokes Theorem C in Subsection 7.4 to compute certain

intersection numbers. Their log-concavity properties are established using tropical Hodge theory

in Section 8.

2 POLYTOPE ALGEBRAS OF DELTA-MATROIDS

In this section, we prove Theorem D, which describes ÿ(ÿýÿ
) in terms of delta-matroids. Subsec-

tion 2.1 sets up preliminaries on the fanΣýÿ and signed permutation groupÿ
ý
ÿ . The first step of the

proof of Theorem D is that ÿ(ÿýÿ
) is isomorphic to a combinatorially defined ring, the polytope

algebra ý(Σýÿ ) of indicator functions of lattice ýÿ generalized permutohedra modulo translation,

introduced in Subsection 2.2. This is a special case of the folklore statement that ÿ(ÿΣ) is iso-

morphic to a polytope algebra for an arbitrary smooth projective fan Σ, proven precisely in [34,

appendix A]. The isomorphism sends the class [ÿ(ÿ)] of the indicator function of a ýÿ generalized

permutohedron ÿ to the ÿ-class of the corresponding line bundle.

Subsection 2.3 introduces Schubert delta-matroids. Subsection 2.4 contains the bulk of the proof

of Theorem D, and Subsection 2.5 assembles it. The proof proceeds in three main steps. Using

polyhedral properties special to the unit cube [0, 1]ÿ, we show that the intersection of a lattice

ýÿ generalized permutohedron with the cube is a delta-matroid polytope (Proposition 2.12); tiling

by translates of this cube, we conclude that ý(Σýÿ ) is generated by classes of delta-matroid poly-

topes. Intersecting the cube with the dual of a cone of Σýÿ gives a Schubert delta-matroid polytope

(Corollary 2.16), which up to translation may be taken to be coloop-free; using the Brianchon–

Gram theorem, these intersections by themselves generate ý(Σýÿ ) (Theorem 2.17). The last step is

to show that Schubert delta-matroid polytopes satisfy no linear relations (Proposition 2.19 and the

sequel).

2.1 The fan ÿýÿ
and the signed permutation groupÿý

ÿ

Let ÿ be a nonnegative integer. Recall that the ýÿ permutohedral fan Σýÿ was defined to be

the complete fan in ℝÿ whose maximal cones are the chambers of the type ý arrangement of

hyperplanes, the union of all hyperplanes of the form {ýÿ ± ýÿ = 0} and {ýÿ = 0}.
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8 of 54 EUR et al.

Definition 2.1. The Weyl reflection group corresponding to the real hyperplane arrangement

defining Σýÿ is the signed permutation groupÿ
ý
ÿ , which is the subgroup

ÿý
ÿ = {ý ∈ ÿ[ÿ,ÿ] ∶ ý(ÿ) = ý(ÿ) for all ÿ ∈ [ÿ, ÿ]} ⊂ ÿ[ÿ,ÿ],

whereÿ[ÿ,ÿ] denotes the symmetric group on [ÿ, ÿ].

A permutation ÿ of [ÿ] can be extended to a signed permutation of [ÿ, ÿ] by setting ÿ(ÿ) = ÿ(ÿ).

In this way, the permutation group ÿÿ is naturally a parabolic subgroup of ÿ
ý
ÿ , viewed as the

stabilizer of [ÿ] ⊂ [ÿ, ÿ]. Thenÿý
ÿ is a semidirect product

ÿý
ÿ = ÿÿ ⋉ {±1}ÿ,

where {±1}ÿ ⊴ ÿý
ÿ is the sign group such that the ÿth copy of {±1} is the subgroup generated by

the transposition (ÿ, ÿ). We denote the map to the set of left cosets ofÿÿ by

(ÿ1, … , ÿÿ)∶ ÿý
ÿ → {±1}ÿ,

which can also be described by

ÿÿ(ý) =

{
1 ÿ ∈ ý([ÿ])

−1 ÿ ∉ ý([ÿ]).

Recall that we have defined ÿÿ̄ = −ÿÿ ∈ ℝÿ for ÿ ∈ [ÿ]. We next fix notation for cones of Σýÿ .

Proposition 2.2. The maximal cones of Σýÿ are given by

ÿý = cone{ÿý(1), … , ÿý(1) +⋯ + ÿý(ÿ)}

for each ý ∈ ÿý
ÿ . The cone ÿý is the unique maximal cone containing ý ⋅ (ÿ, … , 1). The dual cones

are given by

ÿ∨
ý = cone{ÿý(1), ÿý(2) − ÿý(1), … , ÿý(ÿ) − ÿý(ÿ−1)}.

We describe here the various (left) actions ofÿý
ÿ we will consider.

∙ ÿý
ÿ acts on ℝÿ by ý ⋅ ÿÿ = ÿý(ÿ). This is the geometric definition of the Weyl group as the set of

isometries preserving the type ý hyperplane arrangement.
∙ ÿý

ÿ acts on the set of maximal cones of Σýÿ through its action on ℝÿ by ý ⋅ ÿý′ = ÿýý′ .
∙ ÿý

ÿ acts on the set of delta-matroids D through the action on the ground set [ÿ, ÿ].
∙ ÿý

ÿ acts on the set of delta-matroid polytopes ÿ(D) through its action on the set of delta-

matroids. This is not induced by the aboveÿý
ÿ -action on ℝÿ (which does not preserve the cube

[0, 1]ÿ containing all delta-matroid polytopes), but rather the ÿý
ÿ -action on ℝÿ conjugated by

translation by (− 1

2
, … , − 1

2
). Hence,ÿÿ acts in the usual way by permuting coordinates, but the

ÿth copy of {±1} in the sign group acts by reflection in the ýÿ =
1

2
hyperplane.

Remark 2.3. The orbit of a delta-matroid underÿÿ ⩽ ÿý
ÿ consists of all isomorphic delta-matroids

in the sense usual in the delta-matroid literature. Its orbit under {±1}ÿ ⊴ ÿý
ÿ are called its partial

duals [24]. So, itsÿý
ÿ -orbit consists of all partial duals of isomorphic delta-matroids.
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SIGNED PERMUTOHEDRA, DELTA-MATROIDS, AND BEYOND 9 of 54

2.2 The polytope algebra

We collect some facts about McMullen’s polytope algebra; see [34, appendix A] for a survey and

references. For a polyhedronÿ ⊆ ℝÿ, possibly unbounded, let ÿ(ÿ)∶ ℝÿ → ℤ be its indicator func-

tion, defined so that ÿ(ÿ)(ý) equals 1 if ý ∈ ÿ and 0 if not. Letÿ be a collection of polyhedra in

ℝÿ.

Definition 2.4. The indicator group ý(ÿ) is the group of functions fromℝÿ to ℤ generated by the

indicator functions ÿ(ÿ) for ÿ ∈ ÿ. A function ÿ∶ ÿ → ÿ valued in an abelian group ÿ is called

strongly valuative if it factors through the map ÿ∶ ÿ → ý(ÿ).

Let ℤÿ +ÿ = {ÿ + ÿ ∶ ÿ ∈ ℤÿ, ÿ ∈ ÿ} be the set of lattice translates of polyhedra inÿ.

Definition 2.5. The translation-invariant indicator group ý(ÿ) is the quotient

ý(ÿ) = ý(ℤÿ +ÿ)∕(ÿ(ÿ + ÿ) − ÿ(ÿ) ∶ ÿ ∈ ℤÿ, ÿ ∈ ÿ).

Wewrite [ÿ] for the class of a function ÿ ∈ ý(ℤÿ +ÿ) in this quotient. For a polyhedron ÿ ∈ ÿ,

we often write [ÿ] for the class [ÿ(ÿ)].

Suppose now thatÿ is the setÿℤ,Σ of lattice deformations of a smooth projective fan Σ in ℝÿ,

that is, ÿℤ,Σ = {ÿ ⊂ ℝÿ a lattice polytope whose normal fan coarsens Σ}. In this case, the group

ý(ÿℤ,Σ) is isomorphic to the subalgebra of McMullen’s polytope algebra spanned by polytopes in

ÿℤ,Σ [34, Proposition A.6] (see also [46]). In particular, ý(ÿℤ,Σ) acquires the structure of a unital

commutative ring [45, Lemma 6], with the product induced by [ÿ] ⋅ [ý] = [ÿ + ý].

The polytope algebra ý(ÿℤ,Σ) relates to the geometry of the smooth projective toric variety ÿΣ

of the fan Σ as follows. The standard correspondence between polyhedra and divisors on toric

varieties [28, section 6.2] (see also [5, section 2.4]) gives a bijection between polytopes ÿ ∈ ÿℤ,Σ

and base-point-free torus-invariant divisorsÿÿ onÿΣ. LetÿΣ
(ÿÿ) denote the corresponding line

bundle. We then have the following folklore isomorphism.

Theorem2.6 ([34, TheoremA.10] (cf. [48, Theorem 8])). The assignment [ÿ] ↦ [ÿΣ
(ÿÿ)] defines

an isomorphism of rings ý(ÿℤ,Σ)
∼
→ ÿ(ÿΣ).

We now specialize to the ýÿ permutohedral fan. Let

ÿÿℤ,ýÿ = ÿℤ,Σýÿ

be the set of ýÿ generalized permutohedra that are lattice polytopes. Then

ÿýÿýÿ = the set of all delta-matroids on [ÿ, ÿ]

is identified with the subset of ÿÿℤ,ýÿ consisting of polytopes with vertices in {0, 1}
ÿ.
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10 of 54 EUR et al.

2.3 Schubert delta-matroids

We now describe a special family of delta-matroids that we will use to provide bases for ý(ÿÿℤ,ýÿ )

and ý(ÿÿℤ,ýÿ ). By identifyingý ∈ ÿý
ÿ∕ÿÿ withý ⋅ [ÿ] ∈ ýýÿÿ, the Bruhat order provides a partial

order on ýýÿÿ, namely, the (hyperoctahedral) Gale order of [14, section 3.1.2], given as follows.

Endow [ÿ, ÿ] with the total order

ÿ < ⋯ < 1 < 1 < ⋯ < ÿ. (2.1)

Then, the Gale order on ýýÿÿ is the corresponding dominance order, which is described in two

equivalent ways.

∙ Given ÿ, ÿ′ ∈ ýýÿÿ, we have ÿ ⩽ ÿ′ if and only if |ÿ ∩ ý| ⩽ |ÿ′ ∩ ý| for every upper segmentý
of the order (2.1).

∙ In terms of elementwise inequalities, if ÿ = {ÿ1, … , ÿÿ} and ÿ
′ = {ÿ1, … , ÿÿ}with ÿ1 < ⋯ < ÿÿ and

ÿ1 < ⋯ < ÿÿ, then ÿ ⩽ ÿ′ if and only if ÿý ⩽ ÿý for all ý.

Proposition-Definition 2.7 ([14, section 6.1.1]). Each lower interval [[ÿ], ÿ] in the Gale order is

the set of feasible sets of a delta-matroid Ωÿ . We call the Ωÿ for ÿ ∈ ýýÿÿ the standard Schubert

delta-matroids. A Schubert delta-matroid is aÿý
ÿ -image of a standard Schubert delta-matroid.

Example 2.8. For ÿ = 3, the admissible sets dominated by {2, 1, 3} are

{2, 1, 3}, {3, 1, 2}, {2, 1, 3}, {3, 1, 2}, {3, 2, 1}, {3, 2, 1},

so the standard Schubert delta-matroid Ω{2,1,3} is the delta-matroid whose polytope is the convex

hull of

{ÿ{1,3}, ÿ{1,2}, ÿ{3}, ÿ{2}, ÿ{1}, ÿ{∅}}.

One may also recognize this polytope as the independence polytope of the matroid on [3] whose

bases are {1, 2} and {1, 3}.

For ÿ ∈ ýýÿÿ, the standard Schubert delta-matroid polytope ÿ(Ωÿ) is the independence poly-

tope of a type ý Schubert matroid in the following way. The standard Schubert matroid Ωý
ÿ
of a

subset ÿ ⊆ [ÿ] is the matroid on [ÿ] whose set of bases is

Ωý
ÿ = {ý ⊆ [ÿ] ∶ |ý| = |ÿ| and ý ⩽ ÿ in the dominance order},

where the dominance order is taken with respect to the ground set ordering 1 < ⋯ < ÿ.

Lemma 2.9. For ÿ, ÿ′ ∈ ýýÿÿ, then the following are equivalent.

(1) ÿ ⩽ ÿ′ in the Gale order.

(2) |ÿ ∩ {ÿ, … , ÿ}| ⩽ |ÿ′ ∩ {ÿ, … , ÿ}| for all 1 ⩽ ÿ ⩽ ÿ.

(3) There exists ý ⊂ [ÿ]with |ý| = |ÿ′ ∩ [ÿ]| such that ÿ ∩ [ÿ] ⊂ ý ⩽ ÿ′ ∩ [ÿ], where the inequality

is taken in the dominance order.

Proof. All equivalences are easy to verify directly, so we omit the proof. □
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SIGNED PERMUTOHEDRA, DELTA-MATROIDS, AND BEYOND 11 of 54

A Schubert matroid is aÿÿ-image of a standard Schubert matroid. From the equivalence of the

first and third parts of Lemma 2.9, we see that ÿ(Ωÿ) = ýÿ(Ωý
ÿ∩[ÿ]

), and so the subset

ÿýýÿýÿýÿ = the set of all Schubert delta-matroids on [ÿ, ÿ]

of ÿýÿýÿ is identified with the set ofÿ
ý
ÿ -images of independence polytopes of Schubert matroids

on [ÿ]. The name <Schubert (delta-)matroid= reflects a relationship with Schubert cells explained

in Example 6.3.

2.4 Intersecting with unit cubes

We record here some key properties concerning how lattice ýÿ generalized permutohedra inter-

sect with unit cubes. We will use them to prove Theorem D and some related isomorphisms in

the next subsection.

The natural level of generality of our first proposition, Proposition 2.12, is not only lattice ýÿ
generalized permutohedra but also their unbounded analogues. A polyhedron ÿ ⊆ ℝÿ is lattice

(over ℤÿ) if the affine span af f (ý) of any face ý of ÿ contains a coset of a subgroup of ℤÿ of rank

dimý. If ÿ is bounded, that is, ÿ is a polytope, this is equivalent to the vertices of ÿ being lattice

points, because the differences between vertices of ý generate the subgroup sought for any face ý.

Lemma 2.10. Let ÿ ⊂ ℝÿ be a (closed convex) polyhedron and ÿ∶ ℝÿ → ℝ a linear functional. If

ÿ+ = ÿ ∩ {ý ∈ ℝÿ ∶ ý1 ⩾ 0} is nonempty, then ÿ is bounded below on ÿ+ if and only if there exists

ÿ ⩾ 0 such that ÿ − ÿý1 is bounded below on ÿ.

Proof. Suppose ÿ is bounded below on ÿ+. If ÿ attains its minimum over points ý ∈ ÿ+ at a point

with ý1 > 0, then ÿ = 0 suffices. Otherwise take

ÿ = lim sup
ÿ→0+

1

ÿ

(
min{ÿ(ý) ∶ ý ∈ ÿ, ý1 = 0} − min{ÿ(ý′) ∶ ý′ ∈ ÿ, ý′1 = ÿ}

)
.

The limit superior exists because finitely many faces on the boundary of ÿ+ contain a minimizer

ý′, and for each either ÿ is bounded away from 0 or the face also contains a minimizer ý and the

quantity inside is constant. The converse is clear because ÿ ⩾ ÿ − ÿý1 on ÿ
+. □

Lemma2.11. Letÿ be a cone ofΣýÿ , and letÿ lie in the relative interior ofÿ. Then both the set of cones

of Σýÿ that meet cone{ÿ, ÿ1} and the order in which ÿ + ÿÿ1 meets these cones as ÿ ⩾ 0 increases are

functions of ÿ, independent of ÿ.

In lieu of a proof of Lemma 2.11, we describe the cones arising. This is easier in the language of

total preorders. Arbitrary cones of Σýÿ are in bijection with total preorders ≤ on [ÿ, ÿ] such that

for ÿ, ÿ ∈ [ÿ, ÿ], ÿ ⩽ ÿ if (and only if) ÿ ⩽ ÿ, via the map

⩽ ↦ ÿ⩽ = cone
{∑

ÿ⩽ÿ

ÿÿ ∶ ÿ ∈ [ÿ, ÿ]
}
.
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In Lemma 2.11, if ÿ = ÿ≤, then the cones whose relative interiors meet cone{ÿ, ÿ1} are the ÿ⪯ for

all ⪯ such that ≤ and ⪯ have the same restriction to [ÿ, ÿ] ⧵ {1, 1}, and for all ÿ ∈ [ÿ, ÿ], if 1 ⩽ ÿ

then 1 ⪯ ÿ.

Proposition 2.12. Let ÿ be a lattice polyhedron, possibly unbounded, whose normal fan coarsens a

subfan of Σýÿ . Ifÿ ∈ ℤÿ and ÿ ∩ (ÿ + [0, 1]ÿ) is nonempty, then ÿ ∩ (ÿ + [0, 1]ÿ) ∈ ÿÿℤ,ýÿ .

The above result is also proved in [37, 38], at least when ÿ is a lattice polytope, using the theory

of bisubmodular functions. We include a direct proof. The counterpart for typeý generalized per-

mutohedra follows from [54, (44.70)] on intersections with coordinate half-spaces, which implies

that Theorem 2.17 also holds for type ý.

Proof. By translating we may assume thatÿ = 0. The cube□ = [0, 1]ÿ is an intersection of coor-

dinate half-spaces. So, we reduce to considering the intersection of ÿ with a coordinate half-space

ÿ+, say {(ý1, … , ýÿ) ∈ ℝÿ ∶ ý1 ⩾ 0}, and showing that if ÿ ∩ ÿ+ is nonempty, then it is a lattice

polyhedron and has normal fan coarsening a subfan of Σýÿ . Together with the observation that

ÿ ∩□ is bounded because□ is, this proves the proposition.

First, we show that ÿ ∩ ÿ+ is lattice. Note that for any face ÿ of ÿ ∩ ÿ+, there is a face ý of ÿ

such that either

(1) ÿ = ý ∩ ÿ+ and dimÿ = dimý, or

(2) ÿ = ý ∩ ÿ and dimÿ = dimý − 1.

In the former case, af f (ÿ) = af f (ý). In the latter case, fix a cone of Σýÿ maximal among those

normal to ý. This cone has the form

cone{ÿý(1) + ÿý(2) +⋯ + ÿý(ÿý) ∶ ý = 1,… ,ÿ}

for some ý ∈ ÿý
ÿ and {ÿ1, … , ÿÿ} ⊆ [ÿ] by Proposition 2.2. Thus,

af f (ý) = {ý ∈ ℝÿ ∶ ýý(1) +⋯ + ýý(ÿý) = ÿÿý for all ý = 1,… ,ÿ},

= {ý ∈ ℝÿ ∶ ýý(ÿý−1)+1 +⋯ + ýý(ÿý) = ÿÿý − ÿÿý−1 for all ý = 1,… ,ÿ}, (2.2)

where the ÿÿ are integers because ÿ is lattice. The lattice points in af f (ÿ) = af f (ý) ∩ ÿ are those

with ý1 = 0, which form a coset of a subgroup of corank 1 among the lattice points in af f (ý)

because ý1 appears in at most one equation in (2.2). We have thus shown that ÿ ∩ ÿ+ is lattice.

Nowwe prove that the normal fan ofÿ ∩ ÿ+ coarsens a subfan ofΣýÿ .Write faceÿ ý for the face

of a polytopeý on which a linear functional ÿ∶ ℝÿ → ℝ attains its minimum; set faceÿ ý = ∅ by

convention if no minimum is attained. The assumption on ÿ is that for each cone ÿ of Σýÿ with

relative interior ÿ◦, it holds that faceÿ ÿ = faceÿ ÿ for all ÿ, ÿ ∈ ÿ◦. Our claim is that the same is

true of ÿ ∩ ÿ+.

Fix a cone ÿ of Σýÿ and ÿ, ÿ ∈ ÿ◦. By Lemma 2.10, faceÿ(ÿ ∩ ÿ+) = ∅ if and only if ÿ − ÿý1 lies

outside the normal fan of ÿ for all ÿ ⩾ 0, where ý1 is the first coordinate functional, and likewise

for ÿ. By Lemma 2.11, whether this happens depends only on ÿ, not on ÿ or ÿ. So, it remains to

handle the case faceÿ(ÿ ∩ ÿ+) ≠ ∅. If faceÿ ÿ is not disjoint fromÿ+, we are done, as in this case

faceÿ(ÿ ∩ ÿ+) = (faceÿ ÿ) ∩ ÿ+ = (faceÿ ÿ) ∩ ÿ+ = faceÿ(ÿ ∩ ÿ+).
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If they are disjoint, let ÿ ∈ ℝ be minimal such that ý ∶= faceÿ−ÿý1 ÿ intersects ÿ+, where ý1
is the first coordinate functional; some such ÿ exists by our earlier invocation of Lemma 2.10.

Note that ÿ > 0, so ÿ is a positive combination of ý1 and ÿ − ÿý1. As faceý1(ÿ ∩ ÿ+) = ÿ ∩ ÿ and

faceÿ−ÿý1(ÿ ∩ ÿ+) = ý ∩ ÿ+ intersect in their common face ý ∩ ÿ, this implies faceÿ(ÿ ∩ ÿ+) =

ý ∩ ÿ. Again by Lemma 2.11, the faces of the form faceÿ−ÿý1 ÿ, and their order they appear in as

ÿ varies, depend only on ÿ, so we have faceÿ(ÿ ∩ ÿ+) = ý ∩ ÿ also. □

Let

ÿ = −ÿ∨
id
= cone{−ÿ1, ÿ1 − ÿ2, … , ÿÿ−1 − ÿÿ} = {ý ∈ ℝÿ ∶

ÿ∑
ÿ=ý

ýÿ ⩽ 0 for ý ∈ [ÿ]}.

This is the type ýÿ negative root cone for the choice of positive roots corresponding to our Gale

order [14, section 3.2.2].

Lemma 2.13. Let ÿ ∈ {0, 1}ÿ and let ÿ ∈ ýýÿÿ be the size ÿ admissible set such that ÿ is the

indicator vector of ÿ ∩ [ÿ]. Then ÿ(Ωÿ) = (ÿ + ÿ) ∩ [0, 1]ÿ.

Proof. The half-space description ofÿ + ÿ is

ÿ + ÿ = {ý ∈ ℝÿ ∶

ÿ∑
ÿ=ý

ýÿ ⩽

ÿ∑
ÿ=ý

ÿÿ for ý ∈ [ÿ]}. (2.3)

By the equivalence of the first and second parts of Lemma 2.9, we see that ý ∈ (ÿ + ÿ) ∩ {0, 1}ÿ

if and only if, for the admissible set ÿ′ ∈ ýýÿÿ such that ý is the indicator vector of ÿ
′ ∩ [ÿ], we

have ÿ′ ⩽ ÿ in the Gale order. Therefore, (ÿ + ÿ) ∩ [0, 1]ÿ and Ωÿ contain the same set of lattice

points. As ÿ is the dual of a cone of Σýÿ , Proposition 2.12 applies and shows that (ÿ + ÿ) ∩ [0, 1]ÿ

is a lattice polytope. But Ωÿ is also a lattice polytope, so they are equal. □

Proposition 2.14. Let ÿ ∈ ℤÿ. If the intersection (ÿ + ÿ) ∩ [0, 1]ÿ is nonempty, then it is a

standard Schubert delta-matroid polytope.

Proof. Assume that (ÿ + ÿ) ∩ [0, 1]ÿ is nonempty. We construct a sequence ÿ0 = ÿ, ÿ1,. . . of

integer vectors so that

(ÿÿ + ÿ) ∩ [0, 1]ÿ = (ÿ + ÿ) ∩ [0, 1]ÿ. (2.4)

One of theÿÿ will lie in {0, 1}ÿ, whereupon the proposition follows from Lemma 2.13.

Denote the generators of ÿ, the negative simple roots, by ÿ1 = −ÿ1 and ÿÿ = ÿÿ−1 − ÿÿ for ÿ =

2, … , ÿ. An arbitrary lattice point ofÿÿ + ÿ has the form ý = ÿÿ +
∑ÿ

ÿ=1 ÿÿÿÿ for nonnegative inte-

gers ÿÿ . If ÿ
ÿ
ÿ
> 1 then we let ÿÿ+1 = ÿÿ + (ÿ

ÿ
ÿ
− 1)ÿÿ . In this case ýÿ ⩽ 1 only if ÿÿ > ÿ

ÿ
ÿ
− 1, so

ÿÿ + ÿ andÿÿ + (ÿ
ÿ
ÿ
− 1)ÿÿ + ÿ have the same intersectionwith [0, 1]ÿ and (2.4) holds. Similarly,

ifÿ
ÿ
ÿ
< 0, then we letÿÿ+1 = ÿÿ + (−ÿ

ÿ
ÿ
)ÿÿ+1, and (2.4) holds because ýÿ ⩾ 0 only if ÿÿ+1 > −ÿÿ

(note that ÿ < ÿ in this case, which follows from (ÿ + ÿ) ∩ [0, 1]ÿ being nonempty).

The sequence (
∑ÿ

ÿ=1 ÿÿ
ÿ
ÿ
)ÿ⩾0 is decreasing by construction, and bounded below by 0, because if∑ÿ

ÿ=1 ÿÿ
ÿ
ÿ
< 0 the functional

∑ÿ
ÿ=1 ÿýÿ takes negative values onÿ

ÿ + ÿ and nonnegative values on
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[0, 1]ÿ, implying (ÿÿ + ÿ) ∩ [0, 1]ÿ = ∅. So, it is finite, that is, the case ÿÿ ∈ {0, 1} happens after

finitely many steps. □

Corollary 2.15. The set ÿýýÿýÿýÿ is closed under nonempty intersections with faces of [0, 1]
ÿ.

Proof. By theÿý
ÿ symmetry and iteration, it is enough to prove that if ÿ = ÿ(D) for D a standard

Schubert delta-matroid and ý is a facet of [0, 1]ÿ, then ÿ ∩ ý ∈ ÿýýÿýÿýÿ. Write ÿ = (ÿ + ÿ) ∩

[0, 1]ÿ as in Proposition 2.14, and ý = ÿ ∩ [0, 1]ÿ for a hyperplane ÿ = {ý ∈ ℝÿ ∶ ýÿ = ý} where

ÿ ∈ [ÿ] and ý ∈ {0, 1}. Then ÿ ∩ ý = (ÿ + ÿ) ∩ ÿ ∩ [0, 1]ÿ. Let ÿ∶ ÿ → ℝÿ−1 be the map omit-

ting the ÿth coordinate. Using (2.3) and its counterpart forýÿ−1, one can check that (ÿ + ÿ) ∩ ÿ is

identified byÿwith a translate of the cone−ÿ∨
id
which is dual to a cone inΣýÿ−1 . Therefore,ÿ takes

ÿ ∩ ý to a type ýÿ−1 standard Schubert delta-matroid polytope. This implies that ÿ ∩ ý is a Schu-

bert delta-matroid polytope, as follows. In the case ÿ = {ý ∈ ℝÿ ∶ ýÿ = 0}, if ÿ(ÿ ∩ ý) = ÿ(Ωÿ)

for ÿ a maximal admissible subset of [ÿ − 1], then ÿ ∩ ý = ÿ(Ωÿ∪{ÿ}) by Lemma 2.13. The other

possible choices ofÿ areÿý
ÿ images of this one, so in generalÿ ∩ ý is aÿý

ÿ image ofÿ(Ωÿ∪{ÿ}). □

Corollary 2.16. Let□′ be a face of [0, 1]ÿ, and ÿ be a cone of Σýÿ . For ÿ ∈ ℤÿ, if the intersection

(ÿ + ÿ∨) ∩□′ is nonempty, then it is in ÿýýÿýÿýÿ.

Proof. If ÿ is a maximal cone of Σýÿ , then ÿ
∨ is a Weyl image of the cone ÿ = −ÿ∨

id
above, and the

result follows from Proposition 2.14 and Corollary 2.15.

For an arbitrary cone ÿ, we reduce to the preceding case. The cone ÿ is a face of a maximal

cone ÿ of Σýÿ , so ÿ∨ is a tangent cone of ÿ∨, that is, ÿ∨ = −ý + ÿ∨ for a face ý ⊂ ÿ∨. Now for

ÿ′ ∈ −ý ∩ ℤÿ, we have

ÿ∨ ⊇ (−ý ∩ (ÿ′ + ý)) + ÿ∨ = ÿ′ + ÿ∨.

Ifÿ′ is chosen deep enough in the interior of−ý, the defining half-spaces ofÿ +ÿ′ + ÿ∨ will all

contain□′, soÿ + ÿ∨ andÿ +ÿ′ + ÿ∨ will have the same intersection with□′. □

2.5 Bases from Schubert delta-matroids

We are now ready to prove the following intermediate step for the proof of Theorem D.

Theorem 2.17. One has

ý(ℤÿ + ÿýýÿýÿýÿ) = ý(ℤÿ + ÿýÿýÿ) = ý(ÿÿℤ,ýÿ ).

Proof. Let ÿ ⊂ ℝÿ be a lattice ýÿ generalized permutohedron. We will write ÿ(ÿ) as a sum of

indicator functions of lattice translates of Schubert delta-matroid polytopes. This will prove that

ý(ÿÿℤ,ýÿ ) ⊂ ý(ℤÿ + ÿýýÿýÿýÿ), and the left-to-right inclusions in the theorem are clear.

Recall the signed permutohedron Πýÿ
. By the Brianchon–Gram theorem applied to ÿ + ÿΠýÿ

in the pointwise limit ÿ → 0+, we have

ÿ(ÿ) =
∑

ÿ∈Σýÿ

(−1)codimÿ ÿ(ÿ + ÿ∨).
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Note that ÿ + ÿ∨ is a lattice translate of ÿ∨.

Tileℝÿ by lattice translates of Boolean cubes [0, 1]ÿ. Let  be the set of all such cubes that meet
ÿ, together with their common internal faces, so that we have an inclusion-exclusion relation

ÿ(
⋃
ý∈

ý) =
∑
ý∈

(−1)codim(ý) ÿ(ý).

Then

ÿ(ÿ) =
∑
ý∈

(−1)codim(ý) ÿ(ÿ ∩ ý) =
∑
ý∈

∑
ÿ∈Σýÿ

(−1)codim(ý)+codim(ÿ) ÿ((ÿ + ÿ∨) ∩ ý).

By Corollary 2.16, the right-hand side is in ý(ℤÿ + ÿýýÿýÿýÿ). □

We remark that the second equality of the theorem could have been proved using the tiling by

Boolean cubes and Proposition 2.12 without invoking the Brianchon–Gram theorem.

Corollary 2.18. One has

ý(ÿýýÿýÿýÿ) = ý(ÿýÿýÿ) = ý(ÿÿℤ,ýÿ ).

Proof. What is left to prove after Theorem 2.17 is that the three groups of relations are equal.

These are generated by ÿ(ÿ + ÿ) − ÿ(ÿ) where ÿ ∈ ℤÿ and ÿ ∈ ÿýýÿýÿýÿ, ÿýÿýÿ, and ÿÿℤ,ýÿ ,

respectively. If ÿ ∈ ÿÿℤ,ýÿ , then another use of Theorem 2.17 gives us a finite expression

ÿ(ÿ + ÿ) − ÿ(ÿ) =
∑

ý∈ÿýýÿýÿýÿ ,ÿ∈ℤ
ÿ

ÿý,ÿ (ÿ(ÿ + ÿ + ý) − ÿ(ÿ + ý))

=
∑

ý∈ÿýýÿýÿýÿ ,ÿ∈ℤ
ÿ

ÿý,ÿ ((ÿ(ÿ + ÿ + ý) − ÿ(ý)) − (ÿ(ÿ + ý) − ÿ(ý))).

So, the relations for ý(ÿÿℤ,ýÿ ) are also relations for ý(ÿýýÿýÿýÿ), and the other containments are

obvious. □

We prepare for the proof of Theorem D by proving the analogous fact for ý(ÿýÿýÿ).

Proposition 2.19. The set {ÿ(ÿ) ∶ ÿ ∈ ÿýýÿýÿýÿ} is a basis for ý(ÿýÿýÿ).

Proof. The first equality in Theorem 2.17 implies that every ÿ(ÿ) for ÿ a delta-matroid polytope can

be expressed as a linear combination of indicator functions of Schubert delta-matroid polytopes.

Here we note that a lattice translate of a Schubert delta-matroid polytope ÿ(D), provided it is

contained in the unit cube, is again a Schubert delta-matroid polytope because it is a ÿý
ÿ -image

of ÿ(D).

For linear independence, suppose we have a nontrivial relation

ý∑
ÿ=1

ÿÿÿ(ÿÿ) = 0 with ý ⩾ 1 and ÿ1, … , ÿý ≠ 0,
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whereÿ1, … , ÿý are Schubert delta-matroids. By Proposition 2.14, there existsý ∈ ÿý
ÿ andÿ ∈ ℤÿ

such that ÿ1 = [0, 1]ÿ ∩ (ÿ + ý ⋅ ÿ). Without loss of generality, we may assume that ÿ1 does not

contain ÿÿ for all ÿ > 1. In particular, no ÿÿ for ÿ > 1 is contained inÿ +ý ⋅ ÿ. Now, [35, Theorem
2.3] implies that the assignment

ÿ ↦

{
1 if ÿ ⊂ ÿ + ý ⋅ ÿ and ÿ ∩ ÿ ≠ ∅

0 otherwise

defines a strongly valuative function on ÿÿℤÿ ,ýÿ
. Applying this function to both sides of the

relation
∑ý

ÿ=1 ÿÿÿ(ÿÿ) = 0 then yields ÿ1 = 0, a contradiction. □

We are ready to prove Theorem D. Converted to a statement about polyhedra by using

Theorem 2.6, the theorem asserts that a basis of ý(ÿÿℤ,ýÿ ) is

ÿýýÿýÿýýýÿÿ ∶= {D ∈ ÿýýÿýÿýÿ ∶ D has no coloops}.

The superscript ýýÿ stands for <coloop-free=. We verify that, among the polytopes of the delta-

matroids in ÿýýÿýÿýýýÿÿ , there is exactly one translate of any Schubert delta-matroid polytope. For

anyD ∈ ÿýýÿýÿý, changing any coloopsDmay have to loops gives a translate in ÿýýÿýÿýýýÿÿ . If for

two delta-matroids D and D′ we have ÿ(D′) = ÿ + ÿ(D) for some ÿ ∈ ℤÿ, then ÿ ∈ {−1, 0, 1}ÿ;

if for some ÿ we have ÿÿ = 1, then ÿ(D′) ⊆ {ý ∈ ℝÿ ∶ ýÿ = 1} and ÿ(D) ⊆ {ý ∈ ℝÿ ∶ ýÿ = 0}, and

ifÿ1 = −1 then these containments hold vice versa, so not both D and D′ are coloop-free.

Our method for proving Theorem D can also be used to deduce the counterpart of the theorem

in typeý, that is, that coloop-free Schubert matroids are a basis for the translation-invariant poly-

tope algebra of lattice typeý generalized permutohedra. Another proof of the typeý theorem can

be assembled from [9, Theorem D] and the analogous theorem for the cohomology ring in typeý

appearing in [41].

Proof of Theorem D. Theorem 2.17 shows that {[ÿ] ∶ ÿ ∈ ÿýýÿýÿýýýÿÿ } generates ý(ÿýýÿýÿýÿ). So,

we must prove linear independence.

We first show translates of coloop-free Schubert delta-matroids are linearly independent in

ý(ℤÿ + ÿýýÿýÿýÿ). Suppose we are given a finite relation

∑
ÿ∈ÿýýÿýÿýýýÿÿ ,ÿ∈ℤÿ

ÿÿ,ÿ ÿ(ÿ + ÿ) = 0.

Let ý ⊆ ℤÿ be the set of vectors ÿ such that, for some (ÿ,ÿ) with ÿÿ,ÿ ≠ 0, ÿ + ÿ intersects the

translate [0, 1)ÿ + ÿ of the half-open cube. Our objective is to prove ý empty. Suppose otherwise,

and let ÿ ∈ ý be lexicographicallyminimum.Restricting our relation to the closed cube ÿ + [0, 1]ÿ

gives

∑
ÿ∈ÿýýÿýÿýýýÿÿ ,ÿ∈ℤÿ

ÿÿ,ÿ ÿ((ÿ + ÿ) ∩ (ÿ + [0, 1]ÿ)) = 0.

If (ÿ + ÿ) ∩ (ÿ + [0, 1]ÿ) is nonempty, then it has the form ÿ + ý for some ý ∈ ÿýýÿýÿýÿ by

Corollary 2.15. Letting

ý(ý) = {(ÿ,ÿ) ∶ (ÿ + ÿ) ∩ (ÿ + [0, 1]ÿ) = ÿ + ý},
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we collect identical translates:

∑
ý∈ÿýýÿýÿýÿ

( ∑
(ÿ,ÿ)∈ý(ý)

ÿÿ,ÿ

)
ÿ(ÿ + ý) = 0.

By Proposition 2.19, every inner sum is zero. For anyý ∈ ÿýýÿýÿýýýÿÿ , minimality of ÿ implies that

the only possibly nonzero summand in this inner sum is the one indexed by (ÿ,ÿ) = (ý, ÿ), so

ÿý,ÿ = 0. But this contradicts ÿ ∈ ý.

Now, a linear dependence in ý(ÿÿℤ,ýÿ ),

∑
ÿ∈ÿýýÿýÿýýýÿÿ

ÿÿ [ÿ(ÿ)] = 0,

lifts to ý(ÿÿℤ,ýÿ ) as a relation

∑
ÿ∈ÿýýÿýÿýýýÿÿ

ÿÿ ÿ(ÿ) +
∑

ý,ÿ∈ℤÿ⧵{0}

ÿý,ÿ (ÿ(ÿ + ý) − ÿ(ý)) = 0

over some family of latticeýÿ generalized permutohedraý, where finitelymany ÿý,ÿ are nonzero.

Applying Theorem 2.17 to these ý, this can be rewritten

∑
ÿ∈ÿýýÿýÿýýýÿÿ

ÿÿ ÿ(ÿ) +
∑

ÿ∈ÿýýÿýÿýÿ ,ÿ≠0
ýÿ,ÿ (ÿ(ÿ + ÿ) − ÿ(ÿ)) = 0.

Every ÿ ∈ ÿýýÿýÿýÿ has a lattice translate ÿ
′ ∈ ÿýýÿýÿýýýÿÿ , and we can use the relation ÿ(ÿ +

ý) − ÿ(ý) = (ÿ(ÿ + ý) − ÿ(ý′)) − (ÿ(ý) − ÿ(ý′)) for any polytopes ý,ý′ to rewrite the second

sum:

∑
ÿ∈ÿýýÿýÿýýýÿÿ

ÿÿ ÿ(ÿ) +
∑

ÿ′∈ÿýýÿýÿýýýÿÿ ,ÿ≠0
ýÿ′,ÿ (ÿ(ÿ + ÿ′) − ÿ(ÿ′)) = 0.

The earlier lifted linear independence statement implies that each polytope in the above sum has

a zero coefficient, that is, ýÿ,ÿ = 0 for all ÿ ≠ 0 and ÿÿ −
∑

ÿ≠0 ýÿ,ÿ = 0. Therefore, ÿÿ = 0 for

all ÿ ∈ ÿýýÿýÿýýýÿÿ . □

3 THE EXCEPTIONAL HIRZEBRUCH–RIEMANN–ROCH-TYPE
THEOREM

We prove Theorem C, relating the Grothendieck ring of vector bundlesÿ(ÿýÿ
) to the Chow coho-

mology ý∙(ÿýÿ
), in two parts. In Subsection 3.2, we establish the isomorphism ÿý ∶ ÿ(ÿýÿ

) →

ý∙(ÿýÿ
) via localization methods in torus-equivariant geometry. Then, in Subsection 3.3, we

establish the formula involving the sheaf Euler characteristic by relating the isomorphism ÿý to

a similar isomorphism for stellahedral varieties established in [34].
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3.1 ÿ-rings and Chow rings of ÿýÿ

Let ÿ = ÿÿ
ÿ be the torus embedded in ÿýÿ

, and let ÿÿ(ÿýÿ
) be the ÿ-equivariant ÿ-ring

of ÿýÿ
, which is the Grothendieck ring of ÿ-equivariant vector bundles on ÿýÿ

, and let

ý∙
ÿ
(ÿýÿ

) be the ÿ-equivariant Chow ring in the sense of [33]. We describe the equivariant and

nonequivariant ÿ and Chow rings of ÿýÿ
. We will make use of descriptions of ÿÿ(ÿýÿ

) and

ý∙
ÿ
(ÿýÿ

) coming from equivariant localization. See [34, section 2] for a review of equivariant

localization.

We first set up some notation. To describe the adjacent maximal cones in Σýÿ , we use the

following special involutions inÿý
ÿ :

∙ ÿÿ,ÿ+1 = (ÿ, ÿ + 1)(ÿ, ÿ + 1) for 1 ⩽ ÿ ⩽ ÿ − 1, and
∙ ÿÿ = (ÿ, ÿ).

Then ÿý is adjacent to ÿý′ exactly if ý = ý′ÿÿ,ÿ+1 for some ÿ, in which case the common

facet normal is ±(ÿý(ÿ) − ÿý(ÿ+1)), or ý = ý′ÿÿ, in which case the common facet normal is

±ÿý(ÿ). Recall that ÿÿ(pt) = ℤ[ÿ±1
1
, … , ÿ±1

ÿ ] andý∙
ÿ
(pt) = ℤ[ý1, … , ýÿ]. Let ÿÿ̄ = ÿ−1

ÿ
and ýÿ̄ = −ýÿ

for ÿ ∈ [ÿ].

Theorem 3.1 [51, 59]. The following hold.

(1) The injective localization map ÿÿ(ÿýÿ
) → ÿÿ(ÿ

ÿ
ýÿ
) =

⨁
ý∈ÿý

ÿ
ÿÿ(pt) identifies ÿÿ(ÿýÿ

) with

the set of collections of elements (ÿý)ý∈ÿý
ÿ
∈

⨁
ý∈ÿý

ÿ
ℤ[ÿ±1

1
, … , ÿ±1

ÿ ] such that

∙ if ýÿÿ,ÿ+1 = ý′ for 1 ⩽ ÿ ⩽ ÿ − 1, then ÿý ≡ ÿý′ mod 1 − ÿý(ÿ)ÿ
−1
ý(ÿ+1)

, and

∙ if ýÿÿ = ý′ then ÿý ≡ ÿý′ mod 1 − ÿý(ÿ).

The diagonal embedding of ℤ[ÿ±1
1
, … , ÿ±1

ÿ ] into
⨁

ý∈ÿý
ÿ
ÿÿ(pt) identifies ℤ[ÿ

±1
1
, … , ÿ±1

ÿ ] with

a subring of ÿÿ(ÿýÿ
), and the ÿ-ring ÿ(ÿýÿ

) is given by

ÿ(ÿýÿ
) = ÿÿ(ÿýÿ

)∕(ÿ1 − 1,… , ÿÿ − 1).

(2) The injective localization map ý∙
ÿ
(ÿýÿ

) → ý∙
ÿ
(ÿÿ

ýÿ
) =

⨁
ý∈ÿý

ÿ
ý∙
ÿ
(pt) identifies ý∙

ÿ
(ÿýÿ

) with

the set of collections of elements (ÿý)ý∈ÿý
ÿ
∈

⨁
ý∈ÿý

ÿ
ℤ[ý1, … , ýÿ] such that

∙ if ýÿÿ,ÿ+1 = ý′ for 1 ⩽ ÿ ⩽ ÿ − 1, then ÿý ≡ ÿý′ mod ýý(ÿ) − ýý(ÿ+1), and
∙ if ýÿÿ = ý′ then ÿý ≡ ÿý′ mod ýý(ÿ).

The diagonal embedding of ℤ[ý1, … , ýÿ] into
⨁

ý∈ÿý
ÿ
ý∙
ÿ
(pt) identifies ℤ[ý1, … , ýÿ] with a

subring of ý∙
ÿ
(ÿýÿ

), and the Chow ring ý∙(ÿýÿ
) is given by

ý∙(ÿýÿ
) = ý∙

ÿ(ÿýÿ
)∕(ý1, … , ýÿ).

There is an action ofÿý
ÿ by automorphisms on ÿýÿ

, so we functorially obtain an action ofÿý
ÿ

on ÿ(ÿýÿ
) and ý∙(ÿýÿ

). We now describe ÿý
ÿ -actions on ÿÿ(ÿýÿ

) and ý∙
ÿ
(ÿýÿ

), the latter being

the type ýÿ case of Tymoczko’s dot action [58]. To do so, we prepare with some generalities on

maps between torus-equivariantÿ-rings for actions of potentially different tori. For ÿ = 1, 2, let ÿÿ
be a torus and ÿÿ a smooth projective ÿÿ-variety. Suppose we have a map of tori ÿ∶ ÿ1 → ÿ2 and
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a map ÿ∶ ÿ1 → ÿ2 with the commuting diagram

where the two vertical maps are the torus actions. Then, by treating ÿ2 as a ÿ1-variety via ÿ, we

have the induced maps

ÿÿ2
(ÿ2) → ÿÿ1

(ÿ2)
ÿ
∗

→ ÿÿ1
(ÿ1) (3.1)

where the first map is the <forgetful map= and the second map is the pullback map. We similarly

have induced maps of equivariant Chow rings.

In our situation,wewill haveÿ1 = ÿ2 = ÿ andÿ1 = ÿ2 = ÿýÿ
in the followingway.An element

ý ∈ ÿý
ÿ acts on ℝÿ by ÿÿ ↦ ÿý(ÿ). We consider ℝ

ÿ as the real vector space Cochar(ÿ) ⊗ ℝ that

contains the fan Σýÿ . Thisÿ
ý
ÿ -action defines an automorphism ÿý ∶ ÿ → ÿ given by ÿÿ ↦ ÿý−1(ÿ).

As theÿý
ÿ -action maps Σýÿ isomorphically onto itself, the map ÿý extends to an automorphism

ÿý ∶ ÿýÿ
→ ÿýÿ

. Themap ÿý is not a ÿ-equivariant map, but it fits into the commuting diagram

Hence, we have the maps

ÿý ∶ ÿÿ(ÿýÿ
) → ÿÿ(ÿýÿ

)
ÿ
∗
ý
→ ÿÿ(ÿýÿ

)

as in (3.1), and similarly for ý∙
ÿ
(ÿýÿ

). The assignments ý ↦ ÿý−1 give aÿý
ÿ -action descending to

the usualÿý
ÿ -action on ÿ(ÿýÿ

) and ý∙(ÿýÿ
). In terms of the localization description of ÿÿ(ÿýÿ

)

and ý∙
ÿ
(ÿýÿ

) in Theorem 3.1, the action has the following explicit description.

(1) An element ý ∈ ÿý
ÿ acts on ÿ ∈ ÿÿ(ÿýÿ

) by (ý ⋅ ÿ)ý′ = ÿý−1ý′(ÿý(1), … , ÿý(ÿ)).

(2) An element ý ∈ ÿý
ÿ acts on ÿ ∈ ý∙

ÿ
(ÿýÿ

) by (ý ⋅ ÿ)ý′ = ÿý−1ý′(ýý(1), … , ýý(ÿ)).

3.2 The exceptional isomorphism

Recall the map ÿ∶ ÿý
ÿ → {±1}ÿ from Subsection 2.1.

Theorem 3.2. There is an injective ring map

ÿýÿ ∶ ÿÿ(ÿýÿ
) → ý∙

ÿ(ÿýÿ
)[1∕(1 ± ýÿ)] ∶= ý∙

ÿ(ÿýÿ
)[{ 1

1−ýÿ
, 1

1+ýÿ
}1⩽ÿ⩽ÿ]

obtained by

(ÿýÿ(ÿ))ý(ý1, … , ýÿ) = ÿý(ℎÿ1(ý)(ý1), … , ℎÿÿ(ý)(ýÿ)),
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where

ℎÿ(ý) = (1 + ÿý)ÿ ∶=

{
1 + ý ÿ = +1
1

1−ý
ÿ = −1

.

This equivariant map ÿý
ÿ
descends to a nonequivariant isomorphism ÿý ∶ ÿ(ÿýÿ

)
∼
→ ý∙(ÿýÿ

).

Finally, ÿý and ÿý
ÿ
areÿý

ÿ -equivariant in the sense that they intertwine the aboveÿ
ý
ÿ -actions:

ÿýÿ(ý ⋅ ÿ) = ý ⋅ ÿýÿ(ÿ), and ÿ
ý(ý ⋅ ÿ) = ý ⋅ ÿý(ÿ).

Proof. We first check that ÿý
ÿ
isÿý

ÿ -equivariant. For ÿ ∈ ÿÿ(ÿýÿ
), we have that

(ÿýÿ(ý ⋅ ÿ))ý′ = ÿý−1ý′(ℎÿ1(ý′)(ÿý(1)), … , ℎÿÿ(ý′)(ÿý(ÿ))), and

(ý ⋅ ÿýÿ(ÿ))ý′ = ÿý−1ý′((1 + ÿ1(ý
′)ýý(1))

ÿ1(ý
′), … , (1 + ÿÿ(ý

′)ýý(ÿ))
ÿÿ(ý

′)),

which are equal. We now check the congruence conditions. First, we check forý′ = ýÿÿ,ÿ+1 that

(ÿýÿ(ÿ))ý ≡ (ÿýÿ(ÿ))ý′ mod ýý(ÿ) − ýý(ÿ+1).

Byÿý
ÿ -equivariance, this is equivalent to

(ÿýÿ(ý
−1 ⋅ ÿ))id ≡ (ÿýÿ(ý

−1 ⋅ ÿ))ÿÿ,ÿ+1 mod ýÿ − ýÿ+1,

which by definition of ÿý
ÿ
, and the fact that ÿÿ(id) = ÿÿ(ÿÿ,ÿ+1) = 1 for all ÿ, is equivalent to

(ý−1 ⋅ ÿ)id(ý1 + 1,… , ýÿ + 1) ≡ (ý−1 ⋅ ÿ)ÿÿ,ÿ+1(ý1 + 1,… , ýÿ + 1) mod ýÿ − ýÿ+1.

As ý−1 ⋅ ÿ ∈ ÿÿ(ÿýÿ
), we have ((ý−1 ⋅ ÿ)id(ÿ1, … , ÿÿ) ≡ (ý−1 ⋅ ÿ)ÿÿ,ÿ+1(ÿ1, … , ÿÿ)) mod 1 −

ÿ−1
ÿ
ÿÿ+1, and the result follows from replacingÿÿ with ýÿ + 1 for all ÿ. Now, we check forý′ = ýÿÿ

that

(ÿýÿ(ÿ))ý ≡ (ÿýÿ(ÿ))ý′ mod ýý(ÿ).

Indeed, this similarly follows from the fact that ý ⋅ ÿ ∈ ÿÿ(ÿýÿ
) and the compatibility

(ý−1 ⋅ ÿ)id(ÿ1, … , ÿÿ) ≡ (ý−1 ⋅ ÿ)ÿÿ (ÿ1, … , ÿÿ) mod ÿÿ − 1.

As we now know that ÿý
ÿ
is well-defined, from the defining formula it is trivial to check that it is

an injective ring map.

We now check that the map ÿý
ÿ
descends nonequivariantly to a map ÿý ∶ ÿ(ÿýÿ

) → ý∙(ÿýÿ
).

Note that under the map ý∙
ÿ
(ÿýÿ

) → ý∙(ÿýÿ
) we have 1 ± ýÿ ↦ 1, so there is an induced map

ý∙
ÿ
(ÿýÿ

)[ 1

1±ýÿ
] → ý∙(ÿýÿ

). To obtain the map ÿý, we have to show that under the composite

ÿÿ(ÿýÿ
) → ý∙

ÿ
(ÿýÿ

)[ 1

1±ýÿ
] → ý∙(ÿýÿ

), the ideal (ÿ1 − 1,… , ÿÿ − 1) gets mapped to 0. Indeed,

ÿý
ÿ
(ÿÿ − 1) = ýÿ ⋅ ÿÿ where (ÿÿ)ý is 1 if ÿÿ(ý) = 1 and 1

1−ýÿ
if ÿÿ(ý) = −1. Therefore, ÿý

ÿ
(ÿÿ − 1) is

zero under the map ý∙
ÿ
(ÿýÿ

)[ 1

1±ýÿ
] → ý∙(ÿýÿ

) because ýÿ maps to 0.
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The ÿý
ÿ -equivariance of ÿý follows immediately from the ÿý

ÿ -equivariance of ÿý
ÿ
, so it

remains to check that ÿý is an isomorphism. For this, we identify the image of ÿý
ÿ
. Note that

ÿý(ÿÿ(ÿýÿ
)) lies in the subring ý ⊂ ý∙

ÿ
(ÿýÿ

)[ 1

1±ýÿ
] consisting of those g where gý lies in the ring

ÿÿ(pt)[
1

1+ÿ1(ý)ý1
, … , 1

1+ÿÿ(ý)ýÿ
] for all ý. Define

ℎ−1ÿ (ÿ) = ÿ(ÿÿ − 1) ∶=

{
ÿ − 1 ÿ = +1

1 − ÿ−1 ÿ = −1.

It is easy to see that for g ∈ ýwe have gý(ℎ
−1
ÿ1(ý)

(ý1), … , ℎ−1
ÿÿ(ý)

(ýÿ)) ∈ ÿÿ(pt) for allý, and, arguing

as before, we see that

ý ↦ gý(ℎ
−1
ÿ1(ý)

(ý1), … , ℎ−1
ÿÿ(ý)

(ýÿ))

gives a preimage of g under ÿý
ÿ
. Hence, ÿý

ÿ
∶ ÿÿ(ÿýÿ

) → ý is an isomorphism. Now, note that

the ÿÿ constructed above has the property that ÿÿ ∈ ý×, so the ideal (ÿ1 − 1,… , ÿÿ − 1) ⊂ ÿÿ(ÿýÿ
)

maps under ÿý
ÿ
to the ideal (ý1, … , ýÿ) ⊂ ý. Hence, because

ýÿ(ÿýÿ
) ⊂ ý ⊂ ýÿ(ÿýÿ

)

[
1

1 ± ýÿ

]

and 1

1±ýÿ
gets sent to 1 after quotienting by (ý1, … , ýÿ), we conclude that ÿý induces an

isomorphism

ÿ(ÿýÿ
) ≅ ý∕(ý1, … , ýÿ) = ýÿ(ÿýÿ

)

[
1

1 ± ýÿ

]
∕(ý1, … , ýÿ) = ý∙(ÿýÿ

).
□

3.3 Stellahedral geometry

We show that the isomorphism ÿý of Theorem 3.2 satisfies

ÿ([]) = ∫ÿýÿ

ÿý([]) ⋅ ý(⊞(1))

for any [] ∈ ÿ(ÿýÿ
), thereby completing the proof of Theorem C. Although one can prove this

via theAtiyah–Bott localization formula, as in [9], we present amore geometric proof that explains

how our result relates to a previous exceptional Hirzebruch–Riemann–Roch-type theorem given

in [34] for stellahedral varieties. Note that (Σý1)
ÿ is a fan in ℝÿ whose cones are

Cone(ÿÿ ∶ ÿ ∈ ÿ) for ÿ an admissible subset of [ÿ, ÿ].

Definition 3.3. The stellahedral fan Σÿýÿ is a fan in ℝÿ obtained from (Σý1)
ÿ by iteratively per-

forming stellar subdivisions on all faces of the nonpositive orthantCone(ÿÿ ∶ ÿ ∈ [ÿ̄]) startingwith

the maximal face.

Note that the ýÿ permutohedral fan Σýÿ is obtained by performing such iterated stellar subdivi-

sions on all the orthants. In other words, the fan Σýÿ is the common refinement of the 2
ÿ different
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F IGURE 1 The fans (Σý1
)2 (left), Σÿý2

(middle), and Σý2
(right).

<copies= of the stellahedral fan: For each admissible subset ÿ ∈ ýýÿÿ, we have the <copy= of the

stellahedral fan obtained from (Σý1)
ÿ by performing the iterated stellar subdivision on the orthant

Cone(ÿÿ ∶ ÿ ∈ ÿ). See Figure 1 for an illustration when ÿ = 2.

The stellahedral variety ÿÿýÿ
is the toric variety associated to the fan Σÿýÿ . As the fans Σýÿ , Σÿýÿ ,

and (Σý1)
ÿ forma sequential coarsening,wehave a natural sequence ofmapsÿýÿ

→ ÿÿýÿ
→ (ℙ1)ÿ

of toric varieties. The map ÿýÿ
→ ÿÿýÿ

is also considered in [27]. Recall that⊞(1) denotes the
vector bundle onÿýÿ

that is the direct sum of the pullbacks ofℙ1(1) from eachℙ1 factor in (ℙ1)ÿ.

We reuse the notation⊞(1) for the similar vector bundle pulled back only to ÿÿýÿ
.

Stellahedral varieties play a central role in the proof the top-heavy conjecture and the nonnega-

tivity of Kazhdan–Lusztig polynomials of matroids [18, 19]. The connection between stellahedral

varieties and matroids was further developed in [34]. In our case, we will need the following

exceptional Hirzebruch–Riemann–Roch-type theorem for stellahedral varieties.

Theorem 3.4 [34, Theorems 1.9 and 6.1]. There is an isomorphism ÿÿ ∶ ÿÿ(ÿÿýÿ
) →

ý∙
ÿ
(ÿÿýÿ

)[1∕(1 − ýÿ)] defined by

ÿý(ÿ1, … , ÿÿ) ↦ ÿý(
1

1−ý1
, … , 1

1−ýÿ
),

where ÿý(ÿ1, … , ÿÿ) ∈ ℤ[ÿ±1
1
, … , ÿ±1

ÿ ] is the localization value of a ÿ-class ÿ ∈ ÿÿ(ÿÿýÿ
) at a ÿ-

fixed point ý of ÿÿýÿ
. It descends to an isomorphism ÿ∶ ÿ(ÿÿýÿ

) → ý∙(ÿÿýÿ
) that satisfies

ÿ([]) = ∫ÿÿýÿ

ÿ([]) ⋅ ý(⊞(1)) for any [] ∈ ÿ(ÿÿýÿ
).

The isomorphism ÿý of Theorem 3.2 is an extension of this isomorphism ÿ as follows.

Lemma 3.5. Let ý∶ ÿýÿ
→ ÿÿýÿ

be the toric morphism described above. The following diagram

commutes:

Proof. For amatroidM on [ÿ], its independence polytope ýÿ(M) is a deformation ofΣÿýÿ and hence

defines a class [ýÿ(M)] in the polytope algebra ý(ÿℤ,Σÿýÿ
) [34, Example 3.15]. Moreover, the set

{[ýÿ(M)] ∶ M a matroid on [ÿ]} spans ý(ÿℤ,Σÿýÿ
) as an abelian group [34, Proposition 7.4], which
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is isomorphic to ÿ(ÿÿýÿ
) via Theorem 2.6. Hence, it suffices to show the commutativity of the

diagram on the spanning set {[ýÿ(M)] ∶ M a matroid on [ÿ]}. Now, for ÿ ∈ [ÿ] and any maximal

cone ÿ of Σýÿ containing ÿÿ , the ÿ-equivariant localization value of [ýÿ(M)] at ÿ is a Laurent

polynomial in the variables ÿÿ for ÿ ≠ ÿ, because the vertex of ýÿ(M) minimizing the standard

pairing with a vector in the interior of ÿ has zero as its ÿth coordinate. By the descriptions of the

maps ÿÿ and ÿ
ý
ÿ
, this implies that ý∗ÿÿ([ýÿ(M)]) = ÿý

ÿ
([ýÿ(M)]) for any matroidM on [ÿ]. □

We caution that the torus-equivariant analogue of the above diagram does not commute. We

can now finish the proof of Theorem C.

Proof of Theorem C. We have shown that ÿý is an isomorphism in Theorem 3.2. It remains to

show the Hirzebruch–Riemann–Roch-type formula

ÿ([]) = ∫ÿÿýÿ

ÿý([]) ⋅ ý(⊞(1)) for any [] ∈ ÿ(ÿýÿ
).

Theorem D implies that ÿ(ÿýÿ
) is generated as an abelian group by Weyl images of indepen-

dence polytopes of matroids. Hence, it suffices to check the Hirzebruch–Riemann–Roch-type

formula forWeyl images of independence polytopes of matroids. Moreover, byWeyl-equivariance

of ÿý, it suffices to check this for independence polytopes of matroids. Then this follows from the

projection formula, Theorem 3.4, and Lemma 3.5. □

Remark 3.6. There are two obstructions to establishing analogues of Theorems C and D for arbi-

trary root systems. First, Propositions 2.12 and 2.14 about intersections with the unit cube, which

were essential to our proof of TheoremD, no longer holdwhen the unit cube is replaced by (minus-

cule) weight polytopes of types other than ý and ý, for instance, in type ÿ. See [35, Remark 3.15].

Second, the useful feature of Σýÿ in the construction of the map ÿý
ÿ
in Theorem 3.2 and in the

proof of Theorem C is that Σýÿ can be viewed as a common refinement of 2
ÿ <copies= of the stel-

lahedral fan Σÿýÿ . For arbitrary crystallographic root systems Φ, we do not know whether ÿ(ÿΦ)

and ý∙(ÿΦ) are integrally isomorphic.

In Subsection 7.4, we will make use of the following <dual= version of ÿý. For a vari-

ety ÿ, define the ring involution ÿÿ ∶ ÿ(ÿ) → ÿ(ÿ) by [] ↦ [∨] and the ring involution

ÿý ∶ ý∙(ÿ) → ý∙(ÿ) by multiplication by (−1)ý in degree ý. Define the <dual= isomorphism

ÿý ∶ ÿ(ÿýÿ
) → ý∙(ÿýÿ

) by ÿý◦ÿ
ý◦ÿÿ . Similarly define ÿý

ÿ
. The isomorphism ÿý satisfies the

following Hirzebruch–Riemann–Roch-type formula. To state it, let ÿ ∈ ý1(ÿýÿ
) be the divisor

class on ÿýÿ
corresponding to the ÿ-dimensional cross polytope, which is the ýÿ generalized

permutohedron◊ = Conv(ÿÿ ∶ ÿ ∈ [ÿ, ÿ]) ⊂ ℝÿ.

Proposition 3.7. For any [] ∈ ÿ(ÿýÿ
), one has

ÿ([]) = ∫ÿýÿ

ÿý([]) ⋅ ý(⊞(−1)) ⋅ (1 + ÿ +⋯ + ÿÿ).

Proof. A primitive vector in a ray of Σýÿ is ÿÿ for some nonempty admissible subset ÿ of [ÿ, ÿ].

We note that the minimum of the standard pairing ïý, ÿÿð for ý ∈ ◊ is −1. Under the standard

correspondence between polytopes and base-point-free divisors on toric varieties that we have
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been using, this means that ÿ is the sum of all boundary divisors on ÿýÿ
. In other words, by [28,

Theorem8.1.6], the line bundle(−ÿ) is the canonical bundle ofÿýÿ
. Applying Serre duality along

with ÿý = ÿý◦ÿ
ý◦ÿÿ to Theorem C, we have that

ÿ([]) = (−1)ÿÿ([(−ÿ)] ⋅ ÿÿ([]))
= (−1)ÿ ∫ÿýÿ

ÿý([(−ÿ)] ⋅ ÿÿ([])) ⋅ ý(⊞(1))

= (−1)ÿ ∫ÿýÿ

ÿý

(
ÿý([(ÿ)] ⋅ []) ⋅ ý(⊞(−1)))

= ∫ÿýÿ

ÿý([(ÿ)]) ⋅ ÿý([]) ⋅ ý(⊞(−1)).

It suffices now to show that ÿý([(ÿ)]) = 1 + ÿ +⋯ + ÿÿ. For this, we compute using torus-

equivariant localization. For ý ∈ ÿý
ÿ such that faceÿ ◊ = −ÿÿ for any ÿ ∈ ÿ◦

ý, we have that

[(ÿ)]ý = ÿÿ . For such ý, we must have that ÿ ∈ ý([ÿ]), so this maps to 1∕(1 − ýÿ) under ÿ
ý
ÿ
. If

faceÿ ◊ = ÿÿ , [(ÿ)]ý = ÿ−1
ÿ
, and we must have ÿ ∉ ý([ÿ]), so this maps to 1∕(1 + ýÿ) under ÿ

ý
ÿ
.

We thus see that ÿý([(ÿ)]) = ý((−ÿ))−1 = 1 + ÿ +⋯ + ÿÿ, as desired. □

We now introduce a set of equivariant ÿ-classes that is inspired by [9, Definition 10.4]. Say that

a class [] ∈ ÿÿ(ÿýÿ
) has <nice Chern roots= if, on the maximal cone corresponding to ý ∈ ÿý

ÿ ,

we have []ý = ÿý,0 +
∑

ÿ∈ý([ÿ]) ÿý,ÿÿ
−1
ÿ

−
∑

ÿ∉ý([ÿ]) ÿý,ÿÿÿ .

We first define some notation. For [] ∈ ÿÿ(ÿýÿ
), let ýÿ([], ÿ) = ýÿ

0
([]) + ýÿ

1
([])ÿ +⋯ ∈

ý∙
ÿ
(ÿýÿ

)[ÿ] be the equivariant Chern polynomial. The equivariant Segre power series ýÿ([], ÿ) =
ýÿ
0
([]) + ýÿ

1
([])ÿ +⋯ ∈ ý∙

ÿ
(ÿýÿ

)[[ÿ]] is defined by ýÿ([], ÿ) ∶= ýÿ([], ÿ)−1. Recall that the
map that assigns a vector bundle  to its rank extends to a map rk∶ ÿ(ÿýÿ

) → ℤ. If we write

[]ý =
∑ýý

ÿ=1
ÿý,ÿÿ

ÿý,ÿ , then, with ÿ a formal variable, we have that

∞∑
ÿ=0

⋀ÿ[]ýÿÿ =
ýý∏
ÿ=1

(1 + ÿÿý,ÿÿ)ÿý,ÿ , and

∞∑
ÿ=0

Symÿ[]ýÿÿ =
ýý∏
ÿ=1

(
1

1 − ÿÿý,ÿÿ

)ÿý,ÿ
.

Proposition 3.8. If [] has nice Chern roots, then
∑
ÿ⩾0

ÿýÿ (
⋀ÿ[])ÿÿ = (ÿ + 1)rk() ýÿ

(
[], ÿ

ÿ + 1

)
,

∑
ÿ⩾0

ÿýÿ(
⋀ÿ[])ÿÿ = (ÿ + 1)rk() ýÿ([]∨) ýÿ([]∨, 1

ÿ + 1

)
,

∑
ÿ⩾0

ÿýÿ (Sym
ÿ[])ÿÿ = 1

(1 − ÿ)rk() ý
ÿ
(
[], ÿ

ÿ − 1

)
, and

∑
ÿ⩾0

ÿýÿ(Sym
ÿ[])ÿÿ = ýÿ([]∨)

(1 − ÿ)rk() ý
ÿ
(
[]∨, 1

1 − ÿ

)
.
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Proof. We prove the formulae involving ÿý; the formulae involving ÿý are similar. Consider a

maximal cone corresponding to ý ∈ ÿý
ÿ , and write

[]ý = ÿý,0 +
∑

ÿ∈ý([ÿ])

ÿý,ÿÿ
−1
ÿ −

∑
ÿ∉ý([ÿ])

ÿý,ÿÿÿ .

Then

∑
ÿ⩾0

ÿýÿ(
⋀ÿ[])ýÿÿ = (ÿ + 1)ÿý,0

∏
ÿ∈ý([ÿ])

(1 + ÿýÿ(ÿ
−1
ÿ )ÿ)ÿý,ÿ

∏
ÿ∉ý([ÿ])

(1 + ÿýÿ(ÿÿ)ÿ)
ÿý,ÿ

= (ÿ + 1)ÿý,0
∏

ÿ∈ý([ÿ])

(1 + (1 + ýÿ)
−1ÿ)ÿý,ÿ

∏
ÿ∉ý([ÿ])

(1 + (1 − ýÿ)
−1ÿ)ÿý,ÿ

= (ÿ + 1)rk()
∏

ÿ∈ý([ÿ])

(1 + ýÿ)
−ÿý,ÿ

(
1 +

ýÿ
ÿ + 1

) ∏
ÿ∉ý([ÿ])

(1 − ýÿ)
−ÿý,ÿ

(
1 −

ýÿ
ÿ + 1

)

= (ÿ + 1)rk()ýÿ([]∨)ý ýÿ
(
[]∨, 1

ÿ + 1

)
ý
.

Similarly, we compute

∑
ÿ⩾0

ÿýÿ(Sym
ÿ[])ýÿÿ = 1

(1 − ÿ)ÿý,0

∏
ÿ∈ý([ÿ])

(
1

1 − ÿý
ÿ
(ÿ−1

ÿ
)ÿ

)ÿý,ÿ ∏
ÿ∉ý([ÿ])

(
1

1 − ÿý
ÿ
(ÿÿ)ÿ

)ÿý,ÿ

=
1

(1 − ÿ)ÿý,0

∏
ÿ∈ý([ÿ])

1

(1 − (1 + ýÿ)
−1ÿ)ÿý,ÿ

∏
ÿ∉ý([ÿ])

1

(1 − (1 − ýÿ)
−1ÿ)ÿý,ÿ

=
1

(1 − ÿ)rk()
∏

ÿ∈ý([ÿ])

1 + ýÿ
1 + ýÿ∕(1 − ÿ)

∏
ÿ∉ý([ÿ])

1 − ýÿ
1 − ýÿ∕(1 − ÿ)

=
ýÿ([]∨)

(1 − ÿ)rk() ý
ÿ
(
[]∨, 1

1 − ÿ

)
. □

4 THE CHOWCOHOMOLOGY RING OF ÿýÿ

In this section, we first combine Theorems C and D to obtain a basis for the Chow cohomology

ring ý∙(ÿýÿ
). We then prove Theorem A by using the Hirzebruch–Riemann–Roch-type formula

that ÿý satisfies.

4.1 A Schubert basis

We now describe the structure of the Chow cohomology ring ý∙(ÿýÿ
) in terms of <augmented

Bergman classes= of matroids. LetM be a matroid of rank ÿ on [ÿ]. The augmented Bergman fan

of M is a subfan ΣM of the stellahedral fan Σÿýÿ obtained by gluing together the order complex

of lattice of flats and the independence complex ofM; for a precise definition, see [19, Definition

2.4]. Assigning weight 1 to each of its maximal cones defines a Minkowski weight [ΣM], called the

augmented Bergman class ofM, which can be considered as an element inýÿ−ÿ(ÿÿýÿ
). Augmented

 1
4
6
0
2
4
4
x
, 2

0
2
4
, 3

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n
d
m

ath
so

c.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
2
/p

lm
s.1

2
5
9
2
 b

y
 H

arv
ard

 U
n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

5
/0

7
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



26 of 54 EUR et al.

Bergman classes are nef Chow classes, and they span extremal rays of the cone of nef classes in

ýÿ−ÿ(ÿÿýÿ
) [19, Proposition 2.8].

We will consider the pullbacks of augmented Bergman classes to ÿýÿ
under the morphism

ý∶ ÿýÿ
→ ÿÿýÿ

described in Subsection 3.3. These pullbacks continue to span extremal rays of

the cone of nef classes in ý∙(ÿýÿ
). We will also refer to these pulled back classes as augmented

Bergman classes. For a matroidM, letM⟂ be the dual matroid. Only two properties of augmented

Bergman classes will be used in the rest of the paper.

(1) For any matroidM, the class [ΣM] is nonzero.

(2) WhenMhas rankÿ − 1, the class [ΣM] is the first Chern class of the line bundle corresponding

to the simplex ýÿ(M⟂).

We now introduce some terminology. Say that a delta-matroidDwith feasible sets is standard

cornered if, whenever ý ∈  and ÿ ∈ ý ∩ [ÿ], then ý ⧵ {ÿ} ∪ {ÿ} ∈  . For example, delta-matroids
of the form ýÿ(M) are standard cornered. In fact, this is the only example.

Lemma 4.1. Any standard cornered delta-matroid is of the form ýÿ(M) for a matroidM.

Proof. We show the matroid independent set axioms for  = {ý ∩ [ÿ] ∶ ý ∈  }. By assumption,
 is a nonempty family of sets closed under taking subsets, so we must prove the independent set
augmentation axiom. Letý, ý ∈  with |ý ∩ [ÿ]| < |ý ∩ [ÿ]|. Let ý be the smallest face of [0, 1]ÿ
containing ÿ = ÿý∩[ÿ] and ÿ = ÿý∩[ÿ]. We have that ÿ(D) ∩ ý is a delta-matroid polytope. Let ÿ be

the vertex cone of ÿ in ÿ(D) ∩ ý (with the apex of ÿ at the origin). Then ÿ contains ÿ − ÿ and is

generated by type ýÿ roots. Because ÿ − ÿ has strictly positive sum of coordinates, ÿ must have a

generatorwith strictly positive sumof coordinates, either ÿÿ or ÿÿ + ÿÿ for some ÿ, ÿ ∈ [ÿ]. So, either

ÿ + ÿÿ or ÿ + ÿÿ + ÿÿ lies in ÿ(D) ∩ ý; because D is standard cornered, the latter case implies the

former one. By the choice of ý, the element ÿ lies in ý ⧵ ý, and hence (ý ∩ [ÿ]) ∪ {ÿ} ∈ . □

Say that a delta-matroid C is cornered if there is ý ∈ ÿý
ÿ such that ý ⋅ C is standard cornered.

We now develop some properties of cornered delta-matroids.

Lemma 4.2. LetM be a matroid of rank ÿ on [ÿ]. Then the degree ÿ part of ÿý([ýÿ(M)]) vanishes

for ÿ > ÿ, is equal to [ΣM⟂] in degree ÿ, and is 1 in degree 0.

Proof. That ÿ∶ ÿ(ÿÿýÿ
) → ý∙(ÿÿýÿ

) has this property follows from [34, Lemma 5.9]. Then the

result follows from Lemma 3.5. □

Lemma 4.3. Let M1,M2 be matroids on [ÿ], and suppose that ý1 ⋅ [ýÿ(M1)] = ý2 ⋅ [ýÿ(M2)] for

some ý1, ý2 ∈ ÿý
ÿ . Then the rank ofM1 is equal to the rank ofM2, and ý1 ⋅ [ΣM⟂

1
] = ý2 ⋅ [ΣM⟂

2
].

Proof. By the ÿý
ÿ -equivariance of ÿ

ý, we must have that ý1 ⋅ [ΣM⟂
1
] = ý2 ⋅ [ΣM⟂

2
]. Lemma 4.2

identifies the rank ofM as the degree of the top nonzero piece of ÿý([ýÿ(M)]). □

In particular, if C = ý ⋅ ýÿ(M) is a cornered delta-matroid, then we define the cornered rank

rkcor(C) as the rank ofM, which is independent of the choice ofM and ý, and we define

[ΣC] ∶= ý ⋅ [ΣM⟂].

Note that [Σýÿ(M⟂)] = [ΣM]. The following is an immediate consequence of Lemma 4.2.
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Lemma 4.4. Let C be a cornered delta-matroid. Then the degree ÿ part of ÿý([C]) vanishes for

ÿ > rkcor(C), is equal to [ΣC] in degree rkcor(C), and is 1 in degree 0.

Now we construct our basis for ý∙(ÿýÿ
), noting that Schubert delta-matroids are cornered.

Corollary 4.5. For any 0 ⩽ ÿ ⩽ ÿ,

{[ΣC] ∶ C ∈ ÿýýÿýÿýýýÿÿ and rkcor(C) = ÿ}

is a basis for ýÿ(ÿýÿ
).

Proof. Endow ÿ(ÿýÿ
) with a grading by declaring the ÿth graded piece to be generated by the

elements {[ÿ(C)]∶ C ∈ ÿýýÿýÿýýýÿÿ , rkcor(C) = ÿ}; this is well-defined by Theorem D. Combining

TheoremDwith TheoremC, we have that {ÿý([ÿ(C)]) ∶ C ∈ ÿýýÿýÿýýýÿÿ } is a basis ofý∙(ÿýÿ
). By

Lemma 4.4, ÿý is lower-triangular with respect to the gradings on ÿ(ÿýÿ
) and ý∙(ÿýÿ

) and the

degree ÿ part of ÿý([C]) is [ΣC], so we conclude. □

Setting ÿ = 1 in the corollary yields Theorem A(a) as follows.

Proof of Theorem A(a). The polytope of a delta-matroid in ÿýýÿýÿýýýÿÿ of cornered rank 1 is a

translate of a simplex Δ0
ÿ
for ÿ ∈ ýýÿ ⧵ {∅}, and vice versa. Namely, ÿ(Ω

[ÿ]⧵{ÿ}∪{ÿ}
) = Δ0

{1,…,ÿ}
, and

if D = ý ⋅Ω
[ÿ]⧵{ÿ}∪{ÿ}

, then ÿ(D) = ý ⋅ ÿ(Ω
[ÿ]⧵{ÿ}∪{ÿ}

) differs from Δ0
ý⋅{1,…,ÿ}

= ý ⋅ Δ0
{1,…,ÿ}

only by the

translations that distinguish theÿý
ÿ -action on delta-matroid polytopes from theÿý

ÿ -action on ℝÿ

in Subsection 2.1. No two simplices Δ0
ÿ
are translations of each other except for the pairs of line

segments {Δ0
{ÿ}
, Δ0

{ÿ}
}. Hence, setting ÿ = 1 in Corollary 4.5, we have that the set

{the divisor class associated to Δ0
ÿ
∶ ÿ ∈ ýýÿ ⧵ {∅} and ÿ ≠ {ÿ} for ÿ ∈ [ÿ]}

is a basis of ý1(ÿýÿ
). Thus, up to translation by a vector in ℤÿ, every ýÿ generalized permuto-

hedron is a signed Minkowski sum of the simplices Δ0
ÿ
in the displayed set. As Δ0

{ÿ}
= Δ0

{ÿ}
− ÿÿ ,

reinserting the segments Δ0

{ÿ}
into the set accounts for the translations. □

Remark 4.6. The ℎ-vector of the Coxeter complex ΣΦ of a root system Φ, or, equivalently, the

sequence of dimensions of the graded pieces of ý∙(ÿΦ), is equal to the vector of Φ-Eulerian num-

bers [11, 22], which are defined in terms of the descents of elements in theCoxeter group associated

to Φ. Concretely, in type ý the set of descents of an element ý ∈ ÿý
ÿ is

des(ý) = {ÿ ∈ [ÿ] ∶ ý(ÿ − 1) > ý(ÿ)},

where we define ý(0) = 0 to fit into the total order as ÿ < ⋯ < 1 < 0 < 1 < ⋯ < ÿ. The ÿth ýÿ
Eulerian number is then

ℎÿ(ýÿ) ∶= |{ý ∈ ÿý
ÿ ∶ des(ý) = ÿ}|.

In particular, Corollary 4.5 implies that the ýÿ Eulerian numbers count the coloop-free Schubert

delta-matroids of cornered rank ÿ. An analogous statement for typeýwas shown in [41]. In neither
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type ý nor type ý do we know of a natural bijection between the set of Weyl group elements with

a fixed number of descents and the corresponding set of coloop-free Schubert (delta-)matroids.

4.2 Volumes and lattice point enumerators

We now compute volumes and lattice point counts of ýÿ generalized permutohedra by using The-

orem C. We will use the following observation throughout. For an admissible subset ÿ ∈ ýýÿ, let

ℎÿ be the divisor class on ÿýÿ
associated to the simplex Δ0

ÿ
. Because simplices are Weyl images of

the independence polytopes of standard Schubertmatroids of cornered rank 1, Lemma 4.4 implies

that ÿý([Δ0
ÿ
]) = 1 + ℎÿ .

Proof of Theorem A(b). For a sequence (ÿ1, … , ÿÿ) of ÿ admissible subsets, standard results in

toric geometry [39, section 5.4] imply that the mixed volume of the corresponding simplices is the

intersection product ∫ÿýÿ
ℎÿ1 ⋯ℎÿÿ , which is equal to

∫ÿýÿ

(1 + ℎÿ1)⋯ (1 + ℎÿÿ ) = ∫ÿýÿ

ÿý([Δ0
ÿ1
]⋯ [Δ0

ÿÿ
]) = ∫ÿýÿ

ÿý([Δ0
ÿ1
+⋯ + Δ0

ÿÿ
]).

Let ÿ be theMinkowski sum Δ0
ÿ1
+⋯ + Δ0

ÿÿ
. By construction, the polytope ÿ is <saturated toward

the origin= in the following sense: For any subset ÿ ⊆ [ÿ], let Orthÿ = ℝÿ
⩾0

× ℝ
[ÿ]⧵ÿ
⩽0

. If ÿ ∈ ÿ ∩

Orthÿ , then any ÿ ∈ Orthÿ such that ÿ − ÿ ∈ Orthÿ is also in ÿ. We tile ℝ
ÿ by lattice translates of

the unit cube□ = [0, 1]ÿ, and express

[ÿ] =

( ∑
ÿ∈ℤÿ

[ÿ ∩ (ÿ +□)]

)

+ a linear combination of {[ÿ ∩ (ÿ + ý)] ∶ ÿ ∈ ℤÿ, ý a proper face of□}

Every intersection ÿ ∩ (ÿ +□) or ÿ ∩ (ÿ + ý) in the expression is a translate of a delta-matroid

polytope by Proposition 2.12. Because ÿ is saturated toward the origin, these delta-matroid

polytopes are cornered by Lemma 4.1. For such a delta-matroid C, by Lemma 4.4 we have

∫ÿýÿ
ÿý([ÿ(C)]) = 0 when ÿ(C) ≠ □. When ÿ(C) = □ we have

∫ÿýÿ

ÿý([□]) = ∫ÿýÿ

ÿý([Δ0
{1}
]⋯ [Δ0

{ÿ}
]) = ∫ÿýÿ

(1 + ℎ{1})⋯ (1 + ℎ{ÿ}) = 1.

We have thus reduced to counting the number of ÿ such that ÿ ∩ (ÿ +□) = ÿ +□. This hap-

pens only whenÿ +□ contains the origin, as each simplex is contained in the cross-polytope◊,
so ÿ ⊂ ÿ◊, and every integral translate of□ contained in ÿ◊ contains the origin. In other words,

we are counting the set of cardinality-ÿ admissible subsets ÿ ∈ ýýÿÿ such that ÿÿ ∈ ÿ. This set,

by the construction of ÿ, is in bijection with the set of signed transversals of (ÿ1, … , ÿÿ). □

Proof of TheoremA(c). Denote byýýÿ∉[ÿ] the subset {ÿ ∈ ýýÿ ∶ |ÿ| > 1 or ÿ = {ÿ} ⊂ [ÿ]} of admis-

sible subsets of [ÿ, ÿ]. Note that the divisor class on ÿýÿ
corresponding to the cube□ = [0, 1]ÿ is
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ℎ{1} +⋯ + ℎ{ÿ}. By standard results in toric geometry [39, section 3.5], the quantity

(# lattice points of (ÿ({ýÿ}) −□))

is computed by the Euler characteristic

ÿ
»¼¼½

£¤¤¥
∑

ÿ∈ýýÿ∉[ÿ]

ýÿΔ
0
ÿ +

∑
ÿ∈[ÿ]

(ýÿ − 1)Δ0
{ÿ}

¦§§̈
¿ÀÀÁ
.

Noting that ý(⊞(1)) = ∏
ÿ∈[ÿ](1 + ℎ{ÿ}), we apply Theorem C to obtain

ÿ
»
¼¼½

£
¤¤¥

∑
ÿ∈ýýÿ∉[ÿ]

ýÿΔ
0
ÿ +

∑
ÿ∈[ÿ]

(ýÿ − 1)Δ0
{ÿ}

¦
§§̈
¿
ÀÀÁ

= ∫ÿýÿ

∏
ÿ∈ýýÿ∉[ÿ]

ÿý([Δ0
ÿ])

ýÿ ⋅
∏
ÿ∈[ÿ]

ÿý([Δ0
{ÿ}
])ýÿ−1 ⋅ ý(⊞(1))

= ∫ÿýÿ

∏
ÿ∈ýýÿ∉[ÿ]

(1 + ℎÿ)
ýÿ ⋅

∏
ÿ∈[ÿ]

(1 + ℎ{ÿ})
ýÿ

= ∫ÿýÿ

∏
ÿ∈ýýÿ⧵{∅}

(
ÿ∑

ý=0

(
ýÿ
ý

)
ℎ
ýÿ
ÿ

)

= Ψ

(
Vol

( ∑
ÿ∈ýýÿ⧵{∅}

ýÿΔ
0
ÿ

))
,

as desired. □

Finally, we note that the mixed volume computation above can be generalized to arbitrary

cornered delta-matroids as follows.

Theorem 4.7. Let C1, … , Cý be cornered delta-matroids with
∑

rkcor(Cÿ) = ÿ, and write Cÿ = ýÿ ⋅
ýÿ(Mÿ). Then we have

∫ÿýÿ

[ΣC1
]⋯ [ΣCý

]

=

||||||

{
ÿ ∈ ýýÿÿ

|||||
ÿ a signed transversal of (ý1 ⋅ ý1, … , ý1 ⋅ ý1, … , ýý ⋅ ýý, … , ýý ⋅ ýý)
where ýÿ is a basis ofMÿ and ýÿ ⋅ ýÿ is repeated rkcor(Cÿ) times

}||||||
.

Proof. The argument is similar to the proof of Theorem A(b), so we sketch only the main steps.

By Theorem C and Lemma 4.4, we have

∫ÿýÿ

[ΣC1
]⋯ [ΣCý

] = |{ÿ ∈ ℤÿ ∶ C1 +⋯ + Cý ⊇ (ÿ +□)}|,
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where □ = [0, 1]ÿ. Write ýÿýÿ(Mÿ) for the image of the polytope ýÿ(Mÿ) under the isome-

try associated to ýÿ for the standard geometric action of ÿý
ÿ on ℝÿ. Then ÿ(C1) +⋯ + ÿ(Cý)

is an integral translate of ÿ = ý1ýÿ(M1) +⋯ + ýýýÿ(Mý), so we may equivalently compute

|{ÿ ∈ ℤÿ ∶ ÿ ⊇ (ÿ +□)}|. Because ýÿýÿ(Mÿ) ⊂ rkcor(Cÿ)◊ for the cross-polytope ◊, we have
ÿ ⊆ (

∑
rkcor(Cÿ))◊ = ÿ◊. Hence, for ÿ ⊇ (ÿ +□), we must have that ÿ◊ ⊃ ÿ +□ so ÿ +□

contains the origin. Hence, we are counting the number of ÿ ∈ ýýÿÿ such that ÿÿ ∈ ÿ. The desired

formula follows. □

Corollary 4.8. For a matroidM of rank ÿ and admissible subsets ÿ1, … , ÿÿ ∈ ýýÿ, we have

∫ÿýÿ

[ΣM] ⋅ ℎÿ1 ⋯ℎÿÿ =

||||||

{
ÿ ∈ ýýÿÿ

|||||
ÿ a signed transversal of (ÿ1, … , ÿÿ, ý, … , ý)

for some basis ý ofM⟂

}||||||
.

5 TUTTE-LIKE INVARIANTS OF DELTA-MATROIDS

We first recall some combinatorial operations on delta-matroids. In the context of multi-matroids,

these operations can be found in [17].

Definition 5.1. LetD be a delta-matroid on [ÿ, ÿ̄], and let ÿ ∈ [ÿ]. We define three delta-matroids

on [ÿ, ÿ̄] ⧵ {ÿ, ÿ̄} obtained from D as follows.

(1) If ÿ is not a loop, the contractionD∕ÿ is the delta-matroid with feasible sets ý ⧵ ÿ for ý a feasible

set of D containing ÿ.

(2) If ÿ is not a coloop, the deletionD ⧵ ÿ is the delta-matroid with feasible sets ý ⧵ ÿ̄ for ý a feasible

set of D containing ÿ̄.

(3) We define the projection D(ÿ) as the delta-matroid with feasible sets ý ⧵ {ÿ, ÿ̄} for ý a feasible

set of D.

(4) If ÿ is a loop (resp., coloop), we define D∕ÿ = D ⧵ ÿ (resp., D ⧵ ÿ = D∕ÿ), so that D∕ÿ = D ⧵ ÿ =

D(ÿ).

If ÿ is not a loop (resp., a coloop), then ÿ(D∕ÿ) (resp., ÿ(D ⧵ ÿ)) is obtained by intersecting ÿ(D)

with the hyperplane ýÿ = 0 (resp., ýÿ = 1). We obtain ÿ(D(ÿ)) by taking the orthogonal projection

of ÿ(D) onto ýÿ = 0. Therefore, projections commute with each other and commute with dele-

tion and contraction. For ý ⊆ [ÿ], we write D(ý) for the delta-matroid obtained by successively

projecting along each ÿ ∈ ý, and similarly define ÿ∕ý and ÿ ⧵ ý.

In the introduction, we defined theý-polynomialýD(ÿ, ÿ) and its specialization, the interlace

polynomial IntD(ÿ) = ýD(0, ÿ), via a recursion involving deletion, contraction, and projection,

similar to the deletion-contraction recursion for the Tutte polynomial of a matroid. Like the Tutte

polynomial of a matroid, the ý-polynomial and the interlace polynomial also admit a nonre-

cursive formula in the following way. For a delta-matroid D with feasible sets  and ÿ ∈ ýýÿÿ,

let

ýD(ÿ) =
1

2
min
ý∈ |ý△ ÿ|, the lattice distance between ÿÿ∩[ÿ] and ÿ(D).
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Proposition 5.2. For a delta-matroid D on [ÿ, ÿ], define polynomials Int′D(ÿ) andý
′
D
(ÿ, ÿ) by

Int′D(ÿ) =
∑

ÿ∈ýýÿÿ

ÿýD(ÿ), andý′
D(ÿ, ÿ) =

∑
ý⊆[ÿ]

ÿ|ý| Int′
D(ý)

(ÿ).

Then ý′
D
(ÿ, ÿ) satisfies the recursion for ýD(ÿ, ÿ) in Definition 1.4. In particular, ý

′
D
= ýD and

Int′D = IntD, and the recursive definition ofýD is independent of the element ÿ ∈ [ÿ] chosen.

Proof. We first show that Int′D(ÿ) satisfies the recursive property in Definition 1.4 with ÿ = 0.

Then [23, Theorem 30] states that if ÿ ∈ [ÿ] is neither a loop nor coloop, then Int′D(ÿ) = Int′
D∕ÿ

(ÿ) +

Int′
D⧵ÿ

(ÿ), and that if every element is a loop or a coloop, then Int′D(ÿ) = (1 + ÿ)ÿ. If ÿ is a loop or

a coloop of D, then it continues to be so in D∕ý and D ⧵ ý for ý ⊆ [ÿ] not containing ÿ. Thus, we

conclude that Int′D satisfies the desired recursive relation, and hence that Int
′
D = IntD.

For the ý-polynomial, we have that

ý′
D(ÿ, ÿ) = ÿý′

D(ÿ)
(ÿ, ÿ) +

∑
ý∌ÿ

ÿ|ý| IntD(ý)(ÿ).

If ÿ neither a loop nor coloop of D, then ÿ is neither a loop nor coloop of D(ý) for any ý not

containing ÿ. The defining recursion for the interlace polynomial gives that

∑
ý∌ÿ

ÿ|ý| IntD(ý)(ÿ) =
∑
ý∌ÿ

ÿ|ý|(IntD(ý)∕ÿ(ÿ) + IntD(ý)⧵ÿ(ÿ)
)
= ý′

D∕ÿ
(ÿ, ÿ) + ý′

D⧵ÿ
(ÿ, ÿ).

Combining these yields ý′
D
(ÿ, ÿ) = ý′

D∕ÿ
(ÿ, ÿ) + ý′

D⧵ÿ
(ÿ, ÿ) + ÿý′

D(ÿ)
(ÿ, ÿ) if ÿ is not a loop or

coloop of D. If ÿ is a loop or a coloop of D, then it continues to be so in D(ý) for ý ⊆ [ÿ] not

containing ÿ. Hence, if ÿ is a loop or a coloop, we have

ý′
D(ÿ, ÿ) =

∑
ý∌ÿ

ÿ|ý|+1 IntD(ý∪ÿ)(ÿ) + ÿ|ý| IntD(ý)(ÿ) =
∑
ý∌ÿ

ÿ|ý|(ÿ IntD(ý∪ÿ)(ÿ) + (ÿ + 1) IntD(ý∪ÿ)(ÿ)
)
,

and hence ý′
D
(ÿ, ÿ) = (ÿ + ÿ + 1)ý′

D⧵ÿ
(ÿ, ÿ). □

Given two delta-matroids D1, D2 on disjoint ground sets, let D1 × D2 be the delta-matroid on

the union of the ground sets whose feasible sets are ý1 ⊔ ý2 for ýÿ feasible in Dÿ . Observe that

ýD1
(ÿ1)ýD2

(ÿ2) = ýD1×D2
(ÿ1 ⊔ ÿ2) and that projections commutewith products, so Proposition 5.2

implies the following.

Corollary 5.3. For two delta-matroids D1 and D2 on disjoint ground sets, we have

ýD1×D2
(ÿ, ÿ) = ýD1

(ÿ, ÿ)ýD2
(ÿ, ÿ).

We also note the following property of ýD for future use.

Lemma 5.4. We have that

∑
ý⊆[ÿ]

ÿ|ý|ýD(ý)(ÿ, ÿ) = ýD(ÿ + ÿ, ÿ).
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Proof. We claim that, if ÿ is not a loop or coloop, then

∑
ý⊆[ÿ]

ÿ|ý|ýD(ý)(ÿ, ÿ) = ýD∕ÿ(ÿ + ÿ, ÿ) + ýÿ⧵ÿ(ÿ + ÿ, ÿ) + (ÿ + ÿ)ýÿ(ÿ)(ÿ + ÿ, ÿ).

We induct on the size of the ground set. Note that

∑
ÿ∈ý⊆[ÿ]

ÿ|ý|ýD(ý)(ÿ, ÿ) = ÿ ⋅
∑

ý∈[ÿ]⧵ÿ

ÿ|ý|ýD(ÿ∪ý) = ÿ ⋅ýD(ÿ)(ÿ + ÿ, ÿ), and

∑
ÿ∉ý⊆[ÿ]

ÿ|ý|ýD(ý)(ÿ, ÿ) =
∑

ÿ∉ý⊂[ÿ]

ÿ|ý|(ýD∕ÿ(ý)(ÿ, ÿ) + ýD⧵ÿ(ý)(ÿ, ÿ) + ÿýD(ÿ∪ý)(ÿ, ÿ))

= ýD∕ÿ(ÿ + ÿ, ÿ) + ýD⧵ÿ(ÿ + ÿ, ÿ) + ÿýD(ÿ)(ÿ + ÿ, ÿ).

Summing these gives the claim. When ÿ is a loop or coloop, it follows from the multiplicativity of

the ý-polynomial (Corollary 5.3) that the left-hand side satisfies the expected product formula.

This shows that the left-hand side satisfies the defining recursion of the right-hand side. □

We now compute the ý-polynomials of delta-matroids arising from matroids.

Example 5.5. We computeýD forD = ýÿ(M), whereM is a matroid on [ÿ] of rank ÿ. An element

ÿ ∈ [ÿ] is a loop of D if ÿ is a loop ofM, and ÿ is never a coloop of D. Then D(ÿ) and D∕ÿ are both

ýÿ(M∕ÿ), and D ⧵ ÿ is ýÿ(M ⧵ ÿ). Hence, ýýÿ(M) is a Tutte–Grothendieck invariant, which implies

that

ýýÿ(M)(ÿ, ÿ) = (ÿ + 1)ÿ−ÿÿM

(
ÿ + 2,

ÿ + ÿ + 1

ÿ + 1

)
.

Example 5.6. We computeýÿ(M) for amatroidM on [ÿ]. Let corankM(ÿ) = rkM([ÿ]) − rankM(ÿ)

be the corank and nullityM(ÿ) = |ÿ| − rkM(ÿ) the nullity of a subset ÿ inM. Then we claim that

ýÿ(M)(ÿ, ÿ) =
∑

ÿ⊆ÿ⊆[ÿ]

ÿ|ÿ−ÿ|ÿcorankM(ÿ)+nullityM(ÿ).

Let ý ⊆ [ÿ], and fix some ÿ ⊆ [ÿ] ⧵ ý. Then ýÿ(M)(ý)(ÿ) = minÿ⊆ÿ′⊆ÿ∪ý ýÿ(M)(ÿ
′), and

ýÿ(M)(ÿ
′) = corankM(ÿ

′) + nullityM(ÿ
′)

= (corankM|ÿ∪ý∕ÿ(ÿ
′) + corankM(ÿ ∪ ý)) + (nullityM|ÿ∪ý∕ÿ(ÿ

′) + nullityM(ÿ)).

The summand corankM|ÿ∪ý (ÿ
′) + nullityM|ÿ∪ý (ÿ

′) achieves its minimum value 0 when ÿ′ is a basis

of the minor ý|ÿ∪ý∕ÿ. The other summand is the constant corankM(ÿ ∪ ý) + nullityM(ÿ). The

claim then follows from Proposition 5.2.

It would be interesting to compute the ý-polynomial of other families of delta-matroids such

as those arising from graphs and ribbon graphs (see Examples 6.4 and 6.5). Theorem B applies to

these delta-matroids, and therefore gives log-concavity results.

We conclude this section by recording a multivariable version of the ý-polynomial in the

variables ÿ1, … , ÿÿ, ÿ. Because this multivariable version will arise naturally in our intersec-

tion computations on ÿýÿ
, it will be useful for proving log-concavity results. For ý ⊆ [ÿ], set
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ÿý =
∏

ÿ∈ý ÿÿ . Following the formula in Proposition 5.2, we define

ýD(ÿ1, … , ÿÿ, ÿ) ∶=
∑
ý⊆[ÿ]

ÿý Intÿ(ý)(ÿ).

Note that we recover the usual ý-polynomial by setting ÿ = ÿ1 = ⋯ = ÿÿ.

6 REPRESENTABILITY AND ENVELOPINGMATROIDS

We now discuss representability of delta-matroids and prepare for the construction of vector

bundles associated to realizations of delta-matroids in Section 7.

6.1 Torus-orbit closures

Wewill discuss representability of delta-matroids using polytopes and torus-orbit closures. Let us

prepare with generalities on torus-orbit closures in projective spaces and associated polytopes.

Letÿ be a torus with character lattice Char(ÿ). For a finite-dimensional representationý ofÿ

and a point ý ∈ ℙ(ý), we define themoment polytope ÿ(ÿ ⋅ ý) of its orbit closureÿ ⋅ ý as follows.
Let ý ≃

⨁ý
ÿ=0 ýÿ be the canonical decomposition into ÿ-eigenspaces, where ÿ acts on each ýÿ

with character ÿÿ ∈ Char(ÿ). For a representative ÿ ∈ ý of ý ∈ ℙ(ý), letý be the set

ý =
{
ÿÿ ∶ ÿÿ ≠ 0 in the expression ÿ =

∑ý
ÿ=0 ÿÿ , where ÿÿ ∈ ýÿ for all ÿ = 0, … ,ý

}

which is independent of the choice of ÿ. We define

ÿ(ÿ ⋅ ý) = the convex hull ofý ⊂ Char(ÿ) ⊗ ℝ.

Over ℂ, this agrees with the classical notion of moment polytopes; see, for instance, [39,

section 4.2] and [55, section 8]. Let us record the following basic facts.

Proposition 6.1. With notation as above:

(1) The (ý-dimensional)ÿ-orbits ofÿ ⋅ ý are in bijection with the (ý-dimensional) faces of ÿ(ÿ ⋅ ý)
(for all 0 ⩽ ý ⩽ dimÿ). The character lattice of the quotient of ÿ by the stabilizer of the

orbit corresponding a face ý is the sublattice ℤ{ý ∩ý} of Char(ÿ). (Here ý ∩ý is translated

appropriately to contain the origin.)

(2) If ÿ ∶ ÿ′ ↪ ÿ is an inclusion of a subtorus ÿ′ with the corresponding linear projection

ÿ# ∶ Char(ÿ)ℝ → Char(ÿ′)ℝ, then ÿ(ÿ
′ ⋅ ý) equals the projection ÿ#ÿ(ÿ ⋅ ý).

Proof. The orbit closureÿ ⋅ ý is isomorphic to the ÿ-variety

ÿý = the closure of the image ofÿ → ℙ|ý|−1 defined by ℎ ↦ (ℎÿ)ÿ∈ý .

The first statement is then [28, Corollary 3.A.6]. The second statement follows by construction

because the ÿ-eigenspace ýÿ with weight ÿÿ ∈ Char(ÿ) is an ÿ′-eigenspace with weight ÿ#ÿÿ ∈

Char(ÿ′). □
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6.2 Representable delta-matroids

For a delta-matroid D with feasible sets  , let
ÿ̂(D) = 2ÿ(D) − ÿ[ÿ] = the convex hull of {ÿý ∶ ý ∈  } ⊂ [−1, 1]ÿ.

When ÿ(D) = ÿ(M) or ÿ(D) = ýÿ(M), we set ÿ̂(M) ∶= ÿ̂(D) and ý̂ÿ(M) ∶= ÿ̂(D), respectively. We

now describe representability ofD in terms of the polytope ÿ̂(D) and torus-orbit closures in a type

ý Grassmannian.

The standard (2ÿ + 1)-dimensional quadratic space is ý2ÿ+1, whose coordinates are labeled

{1, … , ÿ, 1, … , ÿ, 0}, and which is equipped with the quadratic form

ÿ(ý1, … , ýÿ, ý1̄, … , ýÿ̄, ý0) = ý1ý1̄ +⋯ + ýÿýÿ̄ + ý20 .

A maximal isotropic subspace ÿ ⊂ ý2ÿ+1 is an ÿ-dimensional subspace for which the restric-

tion ÿ|ÿ is identically zero. The maximal orthogonal Grassmannian, denoted ÿÿÿ(ÿ; 2ÿ + 1), is

a variety whose ý-valued points are in bijection with maximal isotropic subspaces of the standard

(2ÿ + 1)-dimensional quadratic space ý2ÿ+1. By definition, ÿÿÿ(ÿ; 2ÿ + 1) is a closed subvariety

of the Grassmannian ÿÿ(ÿ; 2ÿ + 1) with the Plücker embedding ÿÿ(ÿ; 2ÿ + 1) ↪ ℙ(
2ÿ+1
ÿ )−1. The

torus ÿ2ÿ+1
m acts on ÿÿ(ÿ; 2ÿ + 1) by its standard action on ý2ÿ+1. The torus ÿ = ÿÿ

ÿ embeds into

ÿ2ÿ+1
m by (ý1, … , ýÿ) ↦ (ý1, … , ýÿ, ý

−1
1
, … , ý−1ÿ , 1), and the induced action of ÿ onÿÿ(ÿ; 2ÿ + 1) pre-

servesÿÿÿ(ÿ; 2ÿ + 1). We thus treatÿÿÿ(ÿ; 2ÿ + 1) as a ÿ-variety with the ÿ-equivariant Plücker

embedding in ℙ(
2ÿ+1
ÿ )−1.

Proposition 6.2. For ÿ ⊂ ý2ÿ+1 maximal isotropic, the set of admissible subsets

 = {ÿ ∈ ýýÿÿ ∶ the composition ÿ ↪ ý2ÿ+1 ↠ ýÿ is an isomorphism}

is the set of feasible sets of a delta-matroidD, and the moment polytope ÿ(ÿ ⋅ [ÿ]) of the orbit closure

of [ÿ] as a point in ℙ(
2ÿ+1
ÿ )−1 is equal to ÿ̂(D).

In this case, we say that ÿ is a ýÿ representation of D. We say that D is ýÿ representable if it has

a ýÿ representation. Over ℂ, the proposition is [40, section 7, Theorem 1]. A type ÿ analogue of

this statement for the Lagrangian Grassmannian, without the assertion about moment polytopes,

appears in [14, Theorem 3.4.3].

Proof. Index the coordinates of ℙ(
2ÿ+1
ÿ )−1 by size ÿ subsets of [ÿ, ÿ] ∪ {0}. One verifies that:

∙ The ÿ-fixed points of ÿÿÿ(ÿ; 2ÿ + 1) correspond to admissible subsets ý ∈ ýýÿÿ of size ÿ,

where ý gives a point in ℙ(
2ÿ+1
ÿ )−1 whose Plücker coordinates are all zero except at ý.

∙ The ÿ-invariant closed curves ofÿÿÿ(ÿ; 2ÿ + 1) correspond to pairs of ÿ-fixed points such that,

writing ý and ý′ for the corresponding admissible subsets, ÿý − ÿý′ is parallel to ÿÿ , ÿÿ + ÿÿ , or

ÿÿ − ÿÿ for some ÿ, ÿ ∈ [ÿ].

The proposition now follows from Proposition 6.1(1). □

Example 6.3. Schubert delta-matroids are ýÿ representable, and their representations explain

their name as follows. The closed cells ÿÿ of the Schubert stratification of ÿÿÿ(ÿ; 2ÿ + 1) are
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indexed by ÿ ∈ ÿý
ÿ∕ÿÿ, and the containment relation among the ÿÿ is given by the reversed

Bruhat order. If ý is a general point ofÿÿ, then the delta-matroid represented by the corresponding

isotropic subspace is the standard Schubert delta-matroid Ωÿ⋅[ÿ]. In particular, they are certain

generalized Bruhat interval polytopes corresponding to Schubert cells [57]. This is analogous to

the relationship between Schubert matroids on [ÿ] of rank ÿ and the Schubert stratification of

ÿÿ(ÿ; ÿ).

Amaximal isotropic subspace ÿ of ý2ÿ with the quadratic form ÿ(ý1, … , ýÿ, ý1, … , ýÿ) = ý1ý1 +

⋯ + ýÿýÿ yields a maximal isotropic subspace ÿ ⊕ {0} in ý2ÿ+1, and hence a ýÿ representation of

a delta-matroid D. In such case, we say that ÿ is a ÿÿ representation of D. Such a delta-matroid is

an even delta-matroid, meaning that the parity of |ý ∩ [ÿ]| for any feasible set ý is the same [14,

Theorem 3.10.2].

In the literature, there are two prominent constructions of delta-matroids from graphs. Both

constructions yield even delta-matroids with ÿÿ representations.

Example 6.4. Let ÿ be a simple graph on vertex set [ÿ], and let ýÿ be its adjacency matrix with

entries considered as elements of ý2. As thematrixýÿ is skew-symmetric, the row-span of the ÿ ×

2ÿmatrix [ýÿ|ýÿ] is an isotropic subspace of ý
2ÿ
2
, and hence defines an even delta-matroid D(ÿ).

The interlace polynomial was originally defined and studied as a graph invariant. See [3, 7, 32].

Example 6.5. A graph Γ embedded in a surface, also known as a ribbon graph, with edges labeled

by [ÿ] defines a delta-matroid D(Γ) whose feasible sets are the <spanning quasi-trees= of Γ, that

is, the spanning subgraphs whose small neighborhood has just one boundary component. Note

that for a planar graph, this coincides with the usual graphical matroid of the graph. See [25] for

a history and proofs, and [26] for further connection between delta-matroids and ribbon graphs

generalizing the connection between matroids and graphs. [14, Theorem 4.3.5] shows that such a

delta-matroid has a ÿÿ representation (see also [12]).

6.3 Enveloping matroids

The notion of an enveloping matroid of a delta-matroid will play a crucial role when we construct

<tautological classes of delta-matroids= in Subsection 7 and when we apply tools from tropical

Hodge theory to prove Theorem B in Subsection 8.

Let env ∶ ℝ2ÿ → ℝÿ be the map given by env(ý1, … , ýÿ, ý1̄, … , ýÿ̄) = (ý1 − ý1̄, … , ýÿ − ýÿ̄). To

avoid confusion with our notation that ÿ
ÿ
= −ÿÿ ∈ ℝÿ, we use ÿ1, … , ÿÿ, ÿ1̄, … , ÿÿ̄ to refer to the

standard basis of ℝ2ÿ. For ÿ ⊂ [ÿ, ÿ̄], let ÿÿ =
∑

ÿ∈ÿ ÿÿ . If ÿ ∈ ýýÿ, then env(ÿÿ) = ÿÿ .

Definition 6.6. LetM be a matroid on [ÿ, ÿ̄], and let D be a delta-matroid on [ÿ, ÿ̄]. ThenM is

an enveloping matroid of D if the image of ÿ(M) under env is ÿ̂(D).

Remark 6.7. In [17, section 4], Bouchet considers matroids M on [ÿ, ÿ̄] whose independent sets

that are admissible are the subsets of the feasible sets of a delta-matroidD. He calls such amatroid

a sheltering matroid of D. It follows from [44, section 3.3] that M is a sheltering matroid if and

only if env(ýÿ(M)) = ÿ(D) +□ − ÿ[ÿ], so Lemma 7.6 will show that enveloping matroids are

sheltering matroids.
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In [14, Exercise 3.12.6], the authors consider matroids whose bases that are admissible are the

feasible sets of D. They call such a matroid also an enveloping matroid, which disagrees with

Definition 6.6.

LetD be the delta-matroid on [2, 2̄]with feasible sets {1, 2} and {1, 2̄}. Thematroid on [2, 2̄]with

bases {1, 2}, {1, 2̄}, and {2, 2̄} is a sheltering matroid for D, but it is not an enveloping matroid. The

matroid with bases {1, 2}, {1, 2̄}, and {1, 1̄} is an enveloping matroid in the sense of [14, Exercise

3.12.6], but it is not a sheltering matroid.

Our main examples of delta-matroids with enveloping matroids are ýÿ representable delta-

matroids (Proposition 6.9), which in particular includes delta-matroids arising from graphs and

graphs embedded on surfaces by Examples 6.4 and 6.5, and delta-matroids arising from matroids

(Proposition 6.11).

Existence of enveloping matroids behaves well with respect to operations on delta-matroids as

follows. LetM be an enveloping matroid of a delta-matroid D on [ÿ, ÿ].

∙ For ý ∈ ÿý
ÿ , theÿ

ý
ÿ -action on [ÿ, ÿ̄]makes ý ⋅M an enveloping matroid of ý ⋅ D.

∙ For ÿ ∈ [ÿ], the matroid minorM∕ÿ ⧵ ÿ̄ (resp.,M ⧵ ÿ∕ÿ̄) is an enveloping matroid for D∕ÿ (resp.,

D ⧵ ÿ).
∙ IfM′ is an enveloping matroid of another delta-matroid D′ on ground set disjoint from that of

D, thenM⊕M′ is an enveloping matroid for D × D′.
∙ The dual delta-matroid D⟂ is the delta-matroid with feasible sets {ý∶ ý a feasible set of D}.

Then the dual matroidM⟂ is an enveloping matroid for D⟂.

For future use in Subsection 8, we record an observation that loops and coloops ofD andM are

compatible.

Lemma 6.8. Let D be a delta-matroid with an enveloping matroidM, and let ÿ ∈ [ÿ]. Then ÿ is a

loop (resp., coloop) inD if and only if ÿ is a loop and ÿ a coloop (resp., ÿ is a coloop and ÿ a loop) inM.

In particular, if D is loop-free and coloop-free, then so isM.

Proof. Let us prove the statement for when ÿ is a loop, that is, the polytope ÿ̂(ÿ) ⊂ ℝÿ is contained

in the hyperplane ýÿ = −1. If a basis ý ofM contains ÿ or does not contain ÿ, then env(ÿý) lies in

ýÿ ⩾ 0. Hence, ÿ is a loop and ÿ a coloop ofM. The other direction is similar. □

Proposition 6.9. Let ÿ ⊂ ý2ÿ+1 be a ýÿ representation of a delta-matroid D, and let ÿ′ denote

the image of ÿ under the projection to ý2ÿ forgetting the ý0-coordinate. Then the matroid that ÿ
′

represents is an enveloping matroid ofD. In particular, every ýÿ representable delta-matroid has an

enveloping matroid.

Proof. Let M be the matroid that ÿ represents. As a point in ÿÿÿ(ÿ; 2ÿ + 1) ⊂ ÿÿ(ÿ; 2ÿ + 1) ⊂

ℙ(
2ÿ+1
ÿ )−1, the moment polytope of ÿ2ÿ+1

m ⋅ [ÿ] is ÿ(M), whereas the moment polytope of ÿ ⋅ [ÿ] is
ÿ̂(D) by Proposition 6.2. Then Proposition 6.1(2) implies that the image of ÿ(M) under the com-

position env ◦ÿ0 is ÿ̂(D), where ÿ0 ∶ ℝ2ÿ+1 → ℝ2ÿ is the projection forgetting the 0th coordinate.

Note thatÿ′ is a representation ofM ⧵ 0, and env(ÿ(M ⧵ 0)) is contained in env ◦ÿ0(ÿ(M)) = ÿ̂(D).

Each feasible set of D is a basis ofM that does not contain 0, and hence is a basis ofM ⧵ 0, which

proves that env(ÿ(M ⧵ 0)) = ÿ̂(D). □
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Remark 6.10. Because the Weyl groups of type ý and ÿ root systems coincide, one may con-

sider delta-matroids as typeÿ Coxeter matroids, and consequently considerÿÿ representability in

terms of Lagrangian subspaces in a 2ÿ-dimensional space with a symplectic form. See [13] or [14,

section 3.4]. The proof of Proposition 6.9 shows that ÿÿ representable delta-matroids also have

enveloping matroids.

Proposition 6.11. Let M be a matroid on [ÿ]. Then the delta-matroids ÿ(M) and ýÿ(M) have

enveloping matroids.

Proof. For ÿ(M), we show that M⊕M
⟂
is an enveloping matroid, where M

⟂
is the isomorphic

image ofM⟂ under (⋅) ∶ [ÿ] → [ÿ̄]. Minkowski sums commute with linear projections, so

env(ÿ(M⊕M
⟂
)) = env(ÿ(M) + ÿ(M

⟂
))

= ÿ(M) + (−ÿ(M⟂))

= ÿ(M) + (ÿ(M) − ÿ[ÿ]) = ÿ̂(M).

For ýÿ(M) we take the free product M□M
⟂
of [29], whose bases are the sets ÿ ∪ ÿ of size

rankM + rankM⟂ = ÿ with ÿ, ÿ ⊆ [ÿ] such that ÿ is independent inM and ÿ is spanning inM⟂.

Write ÿÿ(N) for the spanning set polytope of a matroid N, so ÿÿ(N⟂) = −ýÿ(N) + ÿ[ÿ]. We show

that

ÿ(M□M
⟂
) = (ýÿ(M) + ÿÿ(M

⟂
)) ∩ ÿ,

where ÿ is the hyperplane {ÿ ∈ ℝ2ÿ ∶
∑

ÿ∈[ÿ,ÿ̄] ÿÿ = ÿ}. For a polytope ý, any vertex of ý ∩ ÿ is

of the form ý ∩ ÿ, where ý is a vertex or edge of ý. The polytope ýÿ(M) + ÿÿ(M
⟂
) is a lattice

polytope whose edge directions all have the form ÿÿ or ÿÿ − ÿÿ for ÿ, ÿ ∈ [ÿ, ÿ̄] because each edge

of a Minkowski sum is parallel to an edge of one of the two summands. As
∑

ÿ∈[ÿ,ÿ̄] ÿÿ takes values

0 or 1 on all of these direction vectors, ifÿ intersects an edge of ýÿ(M) + ÿÿ(M
⟂
) transversely, then

the intersection is a lattice point. Therefore, (ýÿ(M) + ÿÿ(M
⟂
)) ∩ ÿ is a lattice polytope as well.

By definition of the free product, ÿ(M□M
⟂
) and this intersection have the same set of lattice

points, so they are equal. Now as above

env(ÿ(M□M
⟂
)) ⊆ env(ýÿ(M) + ÿÿ(M

⟂
))

= ýÿ(M) + (−ÿÿ(M⟂))

= ýÿ(M) + (ýÿ(M) − ÿ[ÿ]) = ý̂ÿ(M).

The containment is an equality because every vertex of ý̂ÿ(M) has the form ÿÿ − ÿ
ý⧵ÿ

for ÿ an

independent set ofM, and this vertex has the preimage (ÿÿ , ÿý⧵ÿ) in ÿ(M□M
⟂
). □
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Example 6.12. In [17, section 4], Bouchet gives the example, which he attributes to Duchamp, of

the delta-matroid with the set of feasible sets

 = {{1̄, 2̄, 3̄, 4̄},{1̄, 2̄, 3̄, 4}, {1̄, 2, 3, 4̄}, {1, 2̄, 3, 4̄}, {1, 2, 3̄, 4̄},

{1̄, 2, 3, 4}, {1, 2̄, 3, 4}, {1, 2, 3̄, 4}, {1, 2, 3, 4}}.

There is no matroid on [4, 4̄] whose set of bases that are admissible is  . In particular, this delta-
matroid does not have an enveloping matroid.

7 VECTOR BUNDLES AND ÿ-CLASSES

Wenowdefine two types of equivariant vector bundles associated to realizations of delta-matroids,

which we call isotropic tautological bundles and enveloping tautological bundles, respectively. The

isotropic tautological bundles are analogous to the bundles used in [9], and the enveloping tau-

tological bundles are analogous to the bundles used in [34]. The construction of an isotropic

tautological bundle depends on the choice of a ýÿ representation of a delta-matroid, and the

construction of an enveloping tautological bundle depends on the choice of a realization of an

enveloping matroid. The ÿ-classes of the bundles will only depend on the delta-matroid, which

leads to the construction of isotropic tautological classes and enveloping tautological classes for all

delta-matroids, not necessarily with a ýÿ representation or a representable enveloping matroid.

In both cases, we will construct a ÿ-equivariant map from ÿýÿ
to a Grassmannian and define

the bundles as pullbacks of certain universal bundles. Let us therefore prepare with a discussion

of maps from ÿýÿ
to Grassmannians. The discussion can be easily adapted to replace ÿýÿ

with

any smooth projective toric variety, but such generality would not be needed here.

7.1 Maps into Grassmannians

Let ÿ ⊂ ýý be a linear space of dimension ÿ, corresponding to a point [ÿ] of ÿÿ(ÿ;ý) and rep-

resenting a matroid M of rank ÿ on [ý]. Let ÿ ∶ ÿ → ÿý
m be an inclusion of ÿ into the torus

acting on ÿÿ(ÿ;ý), and let ÿ# ∶ Char(ÿý
m) → Char(ÿ) be the pullback map on character lattices.

Then ÿ#ÿ(M) is a lattice polytope in Char(ÿ) ⊗ ℝ. Suppose that Σýÿ refines the normal fan of

ÿ#(ÿ(M)). For each ý ∈ ÿý
ÿ and any ÿ in the interior of ÿý, let ýý be any basis ofM such that the

corresponding vertex of ÿ(M)maps under ÿ♯ into the ÿ-minimal vertex faceÿ ÿ
#ÿ(M).

Proposition 7.1. With the set-up as above, there is a unique ÿ-equivariant morphism ÿÿ ∶ ÿýÿ
→

ÿÿ(ÿ;ý) such that the identity of ÿ ⊂ ÿýÿ
is sent to [ÿ]. The pullback ÿ∗

ÿ
(univ) of the tautological

subbundle on ÿÿ(ÿ;ý) is a ÿ-equivariant vector bundle on ÿýÿ
such that, for each ý ∈ ÿý

ÿ , the

ÿ-equivariant ÿ-class localizes to

[ÿ∗ÿ(univ)]ý =
∑
ÿ∈ýý

ÿ#ÿÿ .

Proof. Themoment polytope (taken with respect to the Plücker embedding of the Grassmannian)

of theÿý
m-orbit closureÿ

ý
m ⋅ [ÿ] ⊂ ÿÿ(ÿ;ý) isÿ(M), so, by Proposition 6.1(2), themoment polytope

of the ÿ-orbit closure ÿ ⋅ [ÿ] is ÿ#ÿ(M). Note that ÿ ⋅ [ÿ] is a (possibly nonnormal) toric variety
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whose embedded torus is ÿ∕ Stabÿ([ÿ]). The normalization of ÿ ⋅ [ÿ] is a toric variety whose fan
is the normal fan of ÿ#ÿ(M) (considered in Cochar(ÿ) ⊗ ℝ, possibly with linearity space), and

whose lattice may be finer than the lattice in Σýÿ . We therefore have a unique morphism ÿýÿ
→

ÿ ⋅ [ÿ] ↪ ÿÿ(ÿ;ý) such that the identity of ÿ is sent to [ÿ].

To compute the localization of [ÿ∗
ÿ
(univ)] to a fixed point of ÿýÿ

corresponding to ý ∈ ÿý
ÿ ,

we consider the image of this fixed point, ýý ∈ ÿÿ(ÿ;ý). Because pullbacks commute with pull-

backs, it suffices to compute the pullback of [univ] to ýý in ÿ-equivariant ÿ-theory. Note that

ýý is a ÿ-fixed point, which implies that ÿý
m ⋅ ýý is acted on trivially by ÿ, so ÿÿ(ÿ

ý
m ⋅ ýý) =

ÿ(ÿý
m ⋅ ýý) ⊗ ℤ[ÿ±1

1
, … , ÿ±1

ÿ ]. Therefore, the pullback in ÿ-equivariantÿ-theory of [univ] to any

point ofÿý
m ⋅ ýý is the same element ofℤ[ÿ

±1
1
, … , ÿ±1

ÿ ]. Theÿý
m-fixed points ofÿ

ý
m ⋅ ýý are exactly

the vertices of ÿ(M) in the preimage of faceÿ ÿ
#ÿ(M). The pullback in ÿý

m-equivariantÿ-theory of

[univ] to aÿ
ý
m-fixed point ofÿÿ(ÿ;ý) corresponding to ýý ⊂ [ý] is

∑
ÿ∈ýý

ÿÿ . Applying ÿ
# implies

the result. □

For using Proposition 7.1, we set up some notation for a delta-matroid D and ý ∈ ÿý
ÿ .

∙ Let ýý(D) be theý-minimal feasible set ofD, that is, the feasible set corresponding to the vertex

faceÿ ÿ(D) of ÿ(D) on which any linear functional ÿ in ÿ
◦
ý achieves its minimum.

∙ Likewise, let ýmax
ý (D) be the ý-maximal feasible set corresponding to the vertex of ÿ(D) on

which any linear functional in the interior of ÿý achieves its maximum.

Note that ýmax
ý (D) = ýý(D

⟂). We omit (D) and simply write ýý if no confusion is expected.

7.2 Construction of isotropic tautological bundles

Let ⊕2ÿ+1
ÿÿÿ(ÿ;2ÿ+1)

be the rank 2ÿ + 1 trivial bundle on ÿÿÿ(ÿ; 2ÿ + 1), which is equipped with the

standard quadratic form, and which is a ÿ-equivariant vector bundle with the action

(ý1, … , ýÿ) ⋅ (ý1, … , ýÿ, ý1, … , ýÿ, ý0) = (ý1ý1, … , ýÿýÿ, ý
−1
1 ý1̄, … , ý−1ÿ ýÿ̄, ý0). (7.1)

Let univ be the universal isotropic subbundle of ⊕2ÿ+1
ÿÿÿ(ÿ;2ÿ+1)

, whose fiber over a point of

ÿÿÿ(ÿ; [0]2ÿ + 1) corresponding to the maximal isotropic subspace ÿ ⊂ ý2ÿ+1 is ÿ. Under the

inclusion ÿÿÿ(ÿ; 2ÿ + 1) ⊂ ÿÿ(ÿ; 2ÿ + 1), the bundle univ is the ÿ-equivariant subbundle of

⊕2ÿ+1
ÿÿÿ(ÿ;2ÿ+1)

obtained as the restriction of the universal subbundle on ÿÿ(ÿ; 2ÿ + 1). Then the

following proposition follows from Proposition 7.1 and the fact that ÿÿÿ(ÿ; 2ÿ + 1) is a ÿ-fixed

subvariety of ÿÿ(ÿ; 2ÿ + 1).

Proposition 7.2. For each ýÿ representation ÿ ⊂ ý2ÿ+1 of a delta-matroid D, we have a

ÿ-equivariant map

ÿýÿ
→ ÿ ⋅ [ÿ] ↪ ÿÿÿ(ÿ; 2ÿ + 1)

such that the identity of ÿ is sent to [ÿ]. For eachý ∈ ÿý
ÿ , the pullback of univ localizes to∑ÿ∈ýý

ÿÿ
at the ÿ-fixed point of ÿýÿ

corresponding to ý.

Note our continued use of the convention that ÿ
ÿ
= ÿ−1

ÿ
for ÿ ∈ [ÿ].
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Definition 7.3. Let ÿ be a ýÿ representation of a delta-matroid D. Then the isotropic tautological

bundle ÿ onÿýÿ
is the pullback of univ under themapÿýÿ

→ ÿÿÿ(ÿ; 2ÿ + 1) in Proposition 7.2.

Let⊕2ÿ+1
ÿýÿ

be the rank 2ÿ + 1 trivial bundle with a ÿ-equivariant structure given by the action

of ÿ on ý2ÿ+1 in (7.1). Note that ÿ is the unique ÿ-equivariant subbundle of ⊕2ÿ+1
ÿýÿ

whose fiber

at the identity of ÿ ⊂ ÿýÿ
is the isotropic subspace ÿ. In particular, its dual ∨

ÿ
is globally gen-

erated, and ÿ is an anti-nef vector bundle. The equivariant ÿ-class of ÿ depends only on the
delta-matroid D. Moreover, we show that this ÿ-class is well-defined for any delta-matroid, not

necessarily representable.

Proposition 7.4. For any delta-matroid D on [ÿ, ÿ̄], there is a class [D] ∈ ÿÿ(ÿýÿ
) defined by

[D]ý =
∑
ÿ∈ýý

ÿÿ .

We define the isotropic tautological class [D] ofD by the above formula. Proposition 7.2 implies

that [D] = [ÿ] if ÿ is a ýÿ representation of D.
Proof. We need to check that the above formula satisfies the compatibility condition in The-

orem 3.1. Let ý ∈ ÿý
ÿ , and set ý

′ = ýÿÿ,ÿ+1. Then the cones corresponding to ý and ý′ share

a hyperplane whose normal vector is ÿý(ÿ) − ÿý(ÿ+1). As the normal fan of ÿ̂(D) coarsens Σýÿ ,

the ý-minimal and ý′-minimal vertices of ÿ̂(D) either coincide or differ by an edge parallel to

ÿý(ÿ) − ÿý(ÿ+1). This implies that [D]ý − [D]ý′ is either 0 or±(ÿý(ÿ) − ÿý(ÿ+1)), which is divisible

by 1 − ÿý(ÿ)ÿ
−1
ý(ÿ+1)

.

Now setý′ = ýÿÿ. Then the cones corresponding toý andý′ share a hyperplanewhose normal

vector is ÿý(ÿ). Again, that the normal fan of ÿ̂(D) coarsens Σýÿ implies that either [D]ý = [D]ý′

or [D]ý − [D]ý′ = ±(1 − ÿý(ÿ)) is divisible by 1 − ÿý(ÿ). □

Remark 7.5. We could also consider the quotient bundles ⊕2ÿ+1
ÿýÿ

∕ÿ. However, one can verify
that [ÿ] + [ÿ]∨ = [⊕2ÿ+1], and so ý([ÿ]∨) = ý(⊕2ÿ+1

ÿýÿ
∕ÿ). Therefore, studying the quotient

bundle does not give any new elements of ý∙(ÿýÿ
).

7.3 Construction of enveloping tautological bundles

From each realization ÿ ⊂ ý2ÿ of an enveloping matroidM of a delta-matroidD, we construct the

enveloping tautological bundles ý
ÿ
and ý

ÿ
. Let ÿÿ ∶ ÿýÿ

→ ℙ1 denote the composition ÿýÿ
→

(ℙ1)ÿ → ℙ1, where the latter map is the projection onto the ÿth factor. Let us treat ℙ1 as the toric

variety of the fan in ℝ consisting of the positive ray, negative ray, and the origin. ℙ1 has two torus-

fixed divisors∞ and ý that correspond, respectively, to the negative ray and the positive ray. These

torus-fixed divisors correspond, respectively, to the intervals [0,1] and [−1, 0] under the standard

correspondence between polytopes and base-point-free divisors on toric varieties [28, chapter 6].

Let (1∞) and (1ý) be the respective toric line bundles isomorphic to ℙ1(1), and define

 =
⨁
ÿ∈[ÿ]

ÿ∗
ÿ (1∞) ⊕ ÿ∗

ÿ (1ý).
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Wenow show the existence of vector bundlesý
ÿ
andý

ÿ
onÿýÿ

that fit into a short exact sequence

of ÿ-equivariant vector bundles

0 → ý
ÿ →  → ý

ÿ → 0,

which is characterized by the property that the fiber over of the identity point of ÿ is 0 → ÿ →

ý2ÿ → ý2ÿ∕ÿ → 0.We preparewith a combinatorial lemma. Recall that□ denotes the cube [0, 1]ÿ,

and the standard basis of ℝ2ÿ is denoted ÿ1, … , ÿÿ, ÿ1̄, … , ÿÿ̄.

Lemma 7.6. LetM be an enveloping matroid of a delta-matroid D. Then

env(ýÿ(M)) = ÿ(D) +□ − ÿ[ÿ].

Proof. First we note that env(ýÿ(M)) is contained in ÿ(D) +□ − ÿ[ÿ]. Every vertex of env(ýÿ(M))

can be written as 1

2
env(ÿý) +

1

2
env(−ÿÿ) for some basis ý of M and ÿ ⊂ ý. Then 1

2
env(ÿý) ∈

ÿ(D) − ( 1
2
, … , 1

2
) and 1

2
env(−ÿÿ) ∈ □ − ( 1

2
, … , 1

2
).

Now it suffices to show that every vertex of ÿ(D) +□ − ÿ[ÿ] is contained in env(ýÿ(M)). Let ÿ

be a vector in the interior of ÿý. Then

faceÿ(ÿ(D) +□ − ÿ[ÿ]) = faceÿ(ÿ(D) −
1

2
ÿ[ÿ]) + faceÿ(□ − 1

2
ÿ[ÿ])

= 1

2
ÿýý + 1

2
ÿý([ÿ̄])

= 1

2
ÿýý − 1

2
ÿý([ÿ]).

Because the normal fan of ÿ(D) +□ − ÿ[ÿ] is a coarsening of Σýÿ , every vertex is of the form
1

2
ÿýý − 1

2
ÿý([ÿ]) for some ý ∈ ÿý

ÿ . We see that this is equal to env(ÿýý − ÿýý∩ý([ÿ])). Because

ýý ∩ ý([ÿ]) ⊂ ýý, this is contained in ýÿ(M). □

We first construct the dual of the vector bundle ý
ÿ
. Let ÿ⟂ be the dual space (ý2ÿ∕ÿ)∨, consid-

ered as a subspace of ý2ÿ under the isomorphism (ý2ÿ)∨ ≃ ý2ÿ. It represents the dual matroid

of the matroid represented by ÿ. Let the torus ÿ act on ý4ÿ = ý2ÿ × ý2ÿ by the usual action

(ý1ý1, … , ýÿýÿ, ý
−1
1
ý1, … , ý−1ÿ ýÿ) on the first ý

2ÿ factor and trivially on the second ý2ÿ factor. We

let ÿ act on ÿÿ(ÿ; 4ÿ) accordingly.

Proposition 7.7. For a representation ÿ of an enveloping matroidM of a delta-matroidD, let ýÿ ⊂

ý4ÿ be the image of ÿ⟂ under the diagonal embedding ý2ÿ ↪ ý4ÿ. Then there is a composition of

ÿ-equivariant maps

ÿÿ ∶ ÿýÿ
→ ÿ ⋅ [ýÿ] ↪ ÿÿ(ÿ; 4ÿ).

We define the enveloping tautological quotient bundle ý
ÿ
to be the dual of the pullback of the

universal subbundle on ÿÿ(ÿ; 4ÿ) via the map ÿÿ.

Proof. Let ÿ̃ be the 2ÿ-dimensional torus ÿ2ÿ
ÿ with the action on ÿÿ(ÿ; 4ÿ) induced by

(ý1, … , ý2ÿ) ⋅ (ý1, … , ý4ÿ) = (ý1ý1, … , ý2ÿý2ÿ, ý2ÿ+1, … , ý4ÿ).
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By [34, Proposition 3.16], the moment polytope of ÿ̃ ⋅ [ýÿ] is ýÿ(M
⟂). By Proposition 6.1(2), the

moment polytope of ÿ ⋅ [ýÿ] is env(ýÿ(M
⟂)) = ÿ(D⟂) +□ − ÿ[ÿ]. Note that the normal fan of

ÿ(D⟂) +□ − ÿ[ÿ] coarsens Σýÿ , so we conclude by Proposition 7.1. □

By construction, we have a surjection⊕4ÿ
ÿýÿ

→ ý
ÿ
. There is also a surjection⊕4ÿ

ÿýÿ
→ , given

by taking the direct sum over all ÿ = 1, … , ÿ of the surjections

⊕4
ÿýÿ

≃ ÿ0(ℙ1,(1∞) ⊕ (1ý)) ⊗ ÿýÿ
→ ÿ∗

ÿ (1∞) ⊕ ÿ∗
ÿ (1ý),

whose kernel is ÿ∗
ÿ
(−1∞) ⊕ ÿ∗

ÿ
(−1ý).

Proposition 7.8. The composition

⨁
ÿ∈[ÿ]

ÿ∗
ÿ (−1∞) ⊕ ÿ∗

ÿ (−1ý) → ⊕4ÿ
ÿýÿ

→ ý
ÿ

is zero, so there is a map → ý
ÿ
.

We define the enveloping subbundle ý
ÿ
to be the kernel of the map → ý

ÿ
.

Proof. It suffices to check this on the dense open torus ÿ ⊂ ÿýÿ
. By considering each factor of

ÿ = ÿÿ
m separately, the computation reduces to the case ÿ = 1. Over a point ý ∈ ÿm, the fiber

of ÿ∗
ÿ
(−1∞) ⊕ ÿ∗

ÿ
(−1ý) ⊆ ⊕4

ℙ1
is the subspace {(ýÿ, ý−1ÿ, ÿ, ÿ)∶ (ÿ, ÿ) ∈ ý2} ⊆ ý4. The form of ýÿ

then implies the claim. □

We now compute the ÿ-equivariant ÿ-classes of ý
ÿ
and ý

ÿ
.

Proposition 7.9. The equivariant ÿ-classes of ý
ÿ
and ý

ÿ
are given by

[ý
ÿ ]ý = |ýmax

ý ∩ ý([ÿ])| + ∑
ÿ∈ý([ÿ]),ÿ∉ýmax

ý

ÿÿ , and [ý
ÿ ]ý = ÿ − |ýmax

ý ∩ ý([ÿ])| + ∑
ÿ∈ýmax

ý ∩ý([ÿ])

ÿÿ .

Proof. Let ÿ be a vector in the interior of ÿý. We have noted that ý
max
ý of D is equal to the ý-

minimal feasible set of D⟂. Then, as in the proof of Lemma 7.6, we have that

faceÿ(ÿ(D
⟂) +□ − ÿ[ÿ]) =

1

2
ÿýý(D⟂) −

1

2
ÿý([ÿ]) =

1

2
ÿ
ýmax
ý

− 1

2
ÿý([ÿ]).

To compute the localization of the pullback of univ , we find a preimage of faceÿ(ÿ(D
⟂) +□ −

ÿ[ÿ]) in the polytope of the matroid represented by ýÿ. A preimage in ýÿ(M⟂) of this vertex is

ÿ
ýmax
ý

− ÿ
ýmax
ý ∩ý([ÿ])

. A preimage of this in the matroid polytope of the matroid represented by ýÿ

extends the independent set ýmax
ý ⧵ ýmax

ý ∩ ý([ÿ]) ofM⟂ to a basis without adding any elements

in [2ÿ]. Proposition 7.1 then implies that the localization of the pullback of univ at the fixed point

of ÿýÿ
corresponding to ý is

|ýmax
ý ∩ ý([ÿ])| + ∑

ÿ∈ýmax
ý ⧵ýmax

ý ∩ý([ÿ])

ÿÿ = |ýmax
ý ∩ ý([ÿ])| + ∑

ÿ∈ýmax
ý ∩ý([ÿ])

ÿÿ .
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Because ý
ÿ
is the dual of the pullback of univ , this gives the result for ý

ÿ
. We note that []ý =

ÿ +
∑

ÿ∈ý([ÿ]) ÿÿ . As [ý
ÿ
] = [] − [ý

ÿ
], the result for [ý

ÿ
] follows. □

In particular, the equivariant ÿ-classes of [ý
ÿ
] and [ý

ÿ
] depend only on the delta-matroid

associated to ÿ. For arbitrary delta-matroid D, the proof of Proposition 7.4 immediately adapts to

show that wemay define enveloping tautological classes [ý
D
] and [ý

D
] inÿÿ(ÿýÿ

) by the formulae

in Proposition 7.9. Note that the enveloping tautological classes [ý
D
]∨ and [ý

D
]∨ have <nice Chern

roots= in the sense discussed above Proposition 3.8.

Remark 7.10. Arguing analogously to [9, Proposition 5.6], one can show that any fixed polynomial

in the tautological classes of delta-matroids or their Chern classes is a valuative invariant of delta-

matroids in the sense of [35].

7.4 Intersection computations

We now compute several intersection numbers arising from the Chern and Segre classes of

isotropic and enveloping tautological classes. We first do the computations with enveloping tau-

tological classes, which are easier to work with because they are closely related to the exceptional

isomorphisms ÿý and ÿý introduced in Section 3. We then relate an intersection number of the

Chern classes of the isotropic tautological classes to one involving enveloping tautological classes.

We begin by realizing both the interlace polynomial and theý-polynomial as intersection num-

bers of the enveloping tautological classes. Because the classes [ý
D
] do not have any positivity

properties, this does not give log-concavity properties for the interlace polynomial. But these

results will form the basis for later intersection theory computations that prove Theorem B. In

[34, Theorem 8.1], the analogous computation on ÿÿýÿ
yields the rank-generating function of a

matroid.

Theorem 7.11. We have that ∫ÿýÿ
ý([ý

D
], ÿ) ⋅ ý([ý

D
], ÿ) = ÿÿ IntD(ÿ∕ÿ).

Proof. To compute ∫ÿýÿ
ý([ý

D
], ÿ) ⋅ ý([ý

D
], ÿ), we look at the degree ÿ part of ýÿ([ý

D
], ÿ) ⋅

ýÿ([ý
D
], ÿ). Let ÿ ∈ ýýÿÿ, and consider the cone ÿÿ whose rays are {ÿÿ ∶ ÿ ∈ ÿ}. Then ÿÿ is a max-

imal cone in the fan (Σý1)
ÿ of (ℙ1)ÿ. The linear function defined by ÿÿ attains its maximum on a

face ý of ÿ(D), and every function in the interior of ÿÿ attains its maximum on a face of ý because

every cone of Σýÿ that is contained in ÿÿ contains ÿÿ . Note any point ý of ýminimizes the distance

to ÿÿ from ÿ(D).

Note that ÿý ∈ ÿÿ if and only if ÿ = ý([ÿ]). For each ý ∈ ÿý
ÿ with ÿ = ý([ÿ]), we have that

ýÿ([ý
D])ý =

∏
ÿ∈ÿ,ÿ∉ýmax

ý

(1 + ýÿ), and ýÿ([ý
D])ý =

∏
ÿ∈ÿ∩ýmax

ý

(1 + ýÿ).

We see that the degree ÿ part of ýÿ([ý
D
], ÿ)ý ⋅ ýÿ([ý

D
], ÿ)ý is

(−1)|ÿ∩[ÿ̄]|ÿýD(ÿ)ÿÿ−ýD(ÿ)ý1⋯ ýÿ.

Note that, for each ÿ ∈ ýýÿÿ, the piecewise polynomial function that is (−1)
|ÿ∩[ÿ̄]|ý1⋯ ýÿ on ÿÿ

and vanishes otherwise is ýÿÿ (
⨁

ÿ∈[ÿ] ÿ
∗
ÿ
(1)), where we give(1) on the ÿth copy of ℙ1 the(1∞)
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linearization if ÿ ∈ ÿ, and give it the (1ý) linearization if ÿ̄ ∈ ÿ. Proposition 5.2 gives

∫ÿýÿ

ý([ý
D], ÿ) ⋅ ý([ý

D], ÿ) =
∑

ÿ∈ýýÿÿ

ÿýD(ÿ)ÿÿ−ýD(ÿ) ∫(ℙ1)ÿ ýÿ(⊕ÿ∗
ÿ (1)) = ÿÿ IntD(ÿ∕ÿ).

□

Weprepare to domore computations by studying how enveloping tautological classes restrict to

smaller typeý permutohedral varieties. The description of the fan ofΣýÿ implies that the closure of

each coordinate ÿÿ−1
m ⊂ ÿ in ÿýÿ

can be identified with ÿýÿ−1
. The inclusion is ÿÿ−1

m -equivariant,

so for each ÿ ∈ ÿ, we have a map ÿÿ(ÿýÿ
) → ÿÿÿ−1

m
(ÿýÿ−1

) given by the composition of the for-

getful map ÿÿ(ÿýÿ
) → ÿÿÿ−1

m
(ÿýÿ

) and the restriction map. Recall that for a delta-matroid D and

ý ⊆ [ÿ], D(ý) is the projection of D away from ý.

Proposition 7.12. The images of [ý
D
], [ý

D
], and [D] under themapÿÿ(ÿýÿ

) → ÿÿÿ−1
m

(ÿýÿ−1
) are

1 + [ý
D(ÿ)

], 1 + [ý
D(ÿ)

], and 1 + [D(ÿ)], respectively.
Proof. Under the embedding ÿýÿ−1

↪ ÿýÿ
, each ÿÿ−1

m -fixed point of ÿýÿ−1
is the identity of the

torus embedded into a ÿ-fixed curve in ÿýÿ
on which ÿÿ−1

m acts trivially. We may compute the

ÿÿ−1
m -equivariant localization at this fixed point by computing the ÿ-equivariant localization at

any ÿ-fixed point of this curve, and then applying the forgetful map ÿÿ(pt) → ÿÿÿ−1
m

(pt). Then

the result follows from the definition of the tautological classes. □

Proposition 7.13. We have that

ýD(ÿ, ÿ) = ∫ÿýÿ

ý(⊞(1), ÿ) ⋅ ý([ý
D], ÿ) ⋅ ý([ý

D]).

Proof. The zero-locus of a general element of the complete linear system of ÿ∗
ÿ
(1) is

{ý ∈ ÿ∶ ýÿ = ÿ} for some ÿ ∈ ý∗. As these divisor are all ÿÿ-translates of the closure of ÿ
ÿ−1
m , the

class [ÿýÿ−1
] ∈ ý1(ÿýÿ

) represents ý1(ÿ
∗
ÿ
(1)). Letting ÿ vary, we see that ý(⊞(1)) is the sum

of the Chow classes of the closures of the coordinate subtori of ÿ. The closure of each coordinate

subtorus of ÿ can be identified with a smallerÿýý
. By the projection formula and Proposition 7.12,

we see that

∫ÿýÿ

ý(⊞(1), ÿ) ⋅ ý([ý
D], ÿ) ⋅ ý([ý

D], 1) =
∑
ý⊆[ÿ]

ÿ|ý| ∫ÿýÿ−|ý|
ý([ý

D], ÿ)|ÿýÿ−|ý|
⋅ ý([ý

D], 1)|ÿýÿ−|ý|

=
∑
ý⊆[ÿ]

ÿ|ý| ∫ÿýÿ−|ý|
ý([ý

D(ý)
], ÿ) ⋅ ý([ý

D(ý)
], 1).

The result follows from Theorem 7.11 and Proposition 5.2. □

Recall that ÿ is the first Chern class of the line bundle corresponding to the cross polytope◊ and

ý denotes the Segre class. We now do the computation that underlies the proof of Theorem B(1.2).

Theorem 7.14. We have that

∫ÿýÿ

ý([ý
D]

∨, ÿ) ⋅ ý([ý
D], ý) ⋅

1

1 − ÿÿ
⋅ ý(⊞(1), ý) = (ÿ + ý)ÿýD

(
2ÿ + ý

ÿ + ý
,
ÿ − ÿ

ÿ + ý

)
.
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The key tools in the proof are the two exceptional isomorphisms and theHirzebruch–Riemann–

Roch-type formulae that they satisfy, which are a manifestation of Serre duality. This allows us

to show the equality of certain intersection numbers, and we leverage Theorem 7.11 to compute

more intersection numbers.

Proof. We prove the theorem in three steps.

Step 1: We have that

∫ÿýÿ

ý([ý
D]

∨, ÿ) ⋅ ý([ý
D]) = ýD(2ÿ, −ÿ).

Because [ý
D
] + [ý

D
] = [] = [⊞(1)⊕2], we have that ý([ý

D
], ÿ) ⋅ ý([ý

D
], ÿ) =

ý(⊞(1)⊕2, ÿ) = ý(⊞(1), 2ÿ). So,
ý([ý

D]
∨, ÿ) = ý([ý

D], −ÿ) ⋅ ý(⊞(1), 2ÿ).
Then, using Proposition 7.12, we see that

∫ÿýÿ

ý([ý
D]

∨, ÿ) ⋅ ý([ý
D], ý) = ∫ÿýÿ

ý([ý
D], −ÿ) ⋅ ý(⊞(1), 2ÿ) ⋅ ý([ý

D], ý)

=
∑
ý⊆[ÿ]

(2ÿ)|ý| ∫ÿýÿ−|ý|
ý([ý

D(ý)
], −ÿ) ⋅ ý([ý

D(ý)
], ý)

=
∑
ý⊆[ÿ]

(2ÿ)|ý|ýÿ−|ý| IntD(ý)(−ÿ∕ý).

Setting ý = 1 and using Lemma 5.4 gives the result.

Step 2: We have that

∫ÿýÿ

ý([ý
D]

∨, ÿ) ⋅ ý([ý
D], ý) ⋅

1

1 − ÿ
= (1 + ý)ÿýD

(
2ÿ

1 + ý
,
1 − ÿ

1 + ý

)
.

Let [□] be the class of the line bundle corresponding to the cube□ = [0, 1]ÿ. FromLemma 3.5 and

[34, Corollary 6.5(1)], we have that both ÿý([□]) = ý(⊞(1)) and ÿý([□]) = ý(⊞(1)). Applying
Proposition 3.8, Proposition 3.7, and Theorem C, we get that

ÿ

((∑
ÿ⩾0

Symÿ[ý
D]

∨ÿ

)(∑
ÿ⩾0

∧ÿ[ý
D]

∨ý

)
[□]

)

= ∫ÿýÿ

1

(1 − ÿ)ÿ
⋅ ý

(
[ý

D]
∨,

ÿ

ÿ − 1

)
⋅ (ý + 1)ÿ ⋅ ý

(
[ý

D]
∨,

ý

1 + ý

)
⋅

1

1 − ÿ

= ∫ÿýÿ

1

(1 − ÿ)ÿ
ý
(
[ý

D],
1

1 − ÿ

)
⋅ (ý + 1)ÿ ⋅ ý

(
[ý

D],
1

1 + ý

)
⋅ ý(⊞(1), 2).

Equating the two right-hand sides, canceling, and replacing ý by − ý

1+ý
and ÿ by ÿ

ÿ−1
, we obtain

∫ÿýÿ

ý([ý
D]

∨, ÿ) ⋅ ý([ý
D], ý) ⋅

1

1 − ÿ
= ∫ÿýÿ

ý([ý
D], 1 − ÿ) ⋅ ý([ý

D], ý + 1) ⋅ ý(⊞(1), 2).
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Substituting in the result of Step 1 after homogenizing, we have that

∫ÿýÿ

ý([ý
D]

∨, ÿ − 1) ⋅ ý([ý
D], 1 + ý) = (1 + ý)ÿýD

(
2(ÿ − 1)

1 + ý
,
1 − ÿ

1 + ý

)
.

Therefore, using Lemma 5.4, we have that

∫ÿýÿ

ý([ý
D]

∨, ÿ) ⋅ ý([ý
D], ý) ⋅

1

1 − ÿ
=

∑
ý⊆[ÿ]

2|ý|(1 + ý)ÿ−|ý|ýD(ý)

(
2(ÿ − 1)

1 + ý
,
1 − ÿ

1 + ý

)

= (1 + ý)ÿ
∑
ý⊆ý

(
2

1 + ý

)|ý|
ýD(ý)

(
2(ÿ − 1)

1 + ý
,
1 − ÿ

1 + ý

)

= (1 + ý)ÿýD

(
2ÿ

1 + ý
,
1 − ÿ

1 + ý

)
.

Step 3: We now prove the result. We compute:

∫ÿýÿ

ý([ý
D]

∨, ÿ) ⋅ ý([ý
D], ý) ⋅

1

1 − ÿÿ
⋅ ý(⊞(1), ý)

=
∑
ý⊆[ÿ]

ý|ý| ∫ÿýÿ

ý([ý
D(ý)

]∨, ÿ) ⋅ ý([ý
D(ý)

], ý) ⋅
1

1 − ÿÿ

=
∑
ý⊆[ÿ]

(ÿ + ý)ÿ−|ý|ý|ý|ýD(ý)

(
2ÿ

ÿ + ý
,
ÿ − ÿ

ÿ + ý

)

= (ÿ + ý)ÿýD

(
2ÿ + ý

ÿ + ý
,
ÿ − ÿ

ÿ + ý

)
.

□Theorem 7.15. Let D be a delta-matroid. We have that

∫ÿýÿ

ý([D]∨, ÿ) ⋅ 1

1 − ÿÿ
⋅

ÿ∏
ÿ=1

(1 + ýÿℎÿ) = (ÿ + ÿ)ÿýD

(
ý1

ÿ + ÿ
,… ,

ýÿ
ÿ + ÿ

,
ÿ − ÿ

ÿ + ÿ

)
.

Recall that ℎÿ = ý1(ÿ
∗
ÿ
(1)), and note that ∏ÿ

ÿ=1(1 + ýℎÿ) = ý(⊞(1), ý). We prove the above
theorem by relating it to Theorem 7.14. We first recall the equivariant descriptions of ýÿ([D]∨).
Recall that if ÿ ∈ [ÿ], then ýÿ̄ ∶= −ýÿ . On a fixed point of ÿýÿ

corresponding to ý ∈ ÿý
ÿ , we have

that

ýÿ([D]∨, ÿ)ý =
∏
ÿ∈ýý

(1 − ýÿÿ) =
∏
ÿ∈ýý

(1 + ýÿÿ).

Proof. We claim that

ý([ý
D⟂]

∨, ÿ) ⋅ ý([ý
D⟂], ÿ) ⋅ ý(⊞(1), −2ÿ) = ý([D]∨, ÿ).

Then Theorem 7.14 implies that

∫ÿýÿ

ý([D]∨, ÿ) ⋅ 1

1 − ÿÿ
= ∫ÿýÿ

ý([ý
D⟂]

∨, ÿ) ⋅ ý([ý
D⟂], ÿ) ⋅ ý(⊞(1), −2ÿ)

= (ÿ + ÿ)ÿ IntD⟂

(
ÿ − ÿ

ÿ + ÿ

)
.
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Then, assuming the claim, the result follows using that IntD(ÿ) = IntD⟂(ÿ), Proposition 7.12, and

the definition of the multivariate ý-polynomial.

Observe that

ýÿ([ý
D⟂], ÿ)ý =

∏
ÿ∈ýý∩ý([ÿ])

(1 + ýÿÿ), and ý
ÿ([ý

D⟂]
∨, ÿ)ý = ýÿ([ý

D⟂], −ÿ)
−1
ý =

∏
ÿ∈ýý∩ý([ÿ])

1

1 + ýÿÿ
.

On ℙ1, the piecewise polynomial function that is ý on the cone {ý < 0} and−ý on the cone {ý > 0}

is a linearization of (−2). Therefore, with this linearization, we have that
ýÿ(⊞(1), −2ÿ)ý =

∏
ÿ∈ý([ÿ])

(1 + ýÿÿ).

Then the claim follows from multiplying the above expressions together. □

8 LOG-CONCAVITY

In this section, we prove Theorem B. First we recall some definitions. Let ÿ ∈ ℝ[ý1, … , ýÿ] be a

homogeneous polynomial of degreeý. Ifÿ =
∑

ÿÿý
ÿ, then thenormalization ofÿ, denotedý(ÿ),

is the polynomial
∑

ÿÿ
ýÿ

ÿ!
, whereÿ! = ÿ1!⋯ÿÿ! ifÿ = (ÿ1, … ,ÿÿ). We call ÿ the denormal-

ization of ý(ÿ). We say that ÿ is strictly Lorentzian if the coefficient of every monomial of degree

ý is positive, and every quadratic form obtained by taking ý − 2 partial derivatives of ÿ is nonde-

generate with signature (+,−,… ,−). We say that ÿ is Lorentzian if it is a coefficientwise limit of

strictly Lorentzian polynomials. It follows from [20, Example 2.26] and [20, Theorem 2.10] that a

denormalized Lorentzian polynomial has a log-concave unbroken array of coefficients. We now

state a strengthening of (1.1) in Theorem B.

Theorem 8.1. Let D be a delta-matroid that has an enveloping matroid. Then the polynomial

(ÿ + ÿ)ÿýD

(
ý1

ÿ + ÿ
,… ,

ýÿ
ÿ + ÿ

,
ÿ − ÿ

ÿ + ÿ

)
(8.1)

is denormalized Lorentzian.

By [21, Lemma 4.8], this is indeed a strengthening of the statement that (1.1) is denormalized

Lorentzian. Even when D has an enveloping matroid, we do not know if there is a denormalized

Lorentzian evaluation of the multivariable ý-polynomial that specializes to (1.2). We have the

following corollaries of Theorems B and 8.1.

Corollary 8.2. Let D be a delta-matroid that has an enveloping matroid. Then the coefficients of

(ÿ + 1)ÿýD(0,
ÿ−1

ÿ+1
) = (ÿ + 1)ÿ IntD(

ÿ−1

ÿ+1
) andýD(2ÿ, −ÿ) formanonnegative log-concave sequence

with no internal zeros, and in particular form a unimodal sequence. After multiplying the coefficient

of ÿý in ýD(ÿ, 0) or ýD(ÿ, −1) by ý!, the resulting sequence is a nonnegative log-concave sequence

with no internal zeros.

Proof. To obtain the first two results, we set ý = 0, ÿ = 1 in (1.1) and set ý = ÿ = 0,ý = 1 in

(1.2), respectively, and then apply [21, Lemma 4.8]. To obtain the last two results, we normalize
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(8.1) and set ÿ = ÿ = 1∕2, ýÿ = ÿ and set ÿ = 0, ÿ = 1, ýÿ = ÿ, respectively, and then apply

[20, Corollary 3.7]. □

Remark 8.3. In [44, Proposition 3.4, Theorem 3.8], the third author showed that the coefficients

of ýD(ÿ, 0) count the number of independent set (i.e., subsets of feasible sets) of D by their car-

dinality, and the coefficients of ýD(ÿ, −1) count the number of faces of a delta-matroid analogue

of the broken circuit complex of a matroid. In particular, Corollary 8.2 gives an analogue of the

log-concavity of the independence polynomial and the characteristic polynomial of a matroid [1].

Remark 8.4. For the adjacency delta-matroid D(ÿ) of a graph ÿ (Example 6.4), [7] conjectured

that the coefficients of IntD(ÿ)(ÿ − 1) form a unimodal sequence, which was disproved by [30].

Both works conjectured that IntD(ÿ)(ÿ) has unimodal coefficients. We note that IntD(ÿ)may not

have unimodal coefficients even when D is an even delta-matroid with a ÿÿ representation, like

D(ÿ). See Example 8.5. In [36, Corollary 7.22], Ferroni and Schröter gave an example of a matroid

M such that Intÿ(M)(ÿ) is not unimodal.

Example 8.5. Let U◦
ÿ,ÿ be the even delta-matroid on [ÿ, ÿ] whose feasible sets are

{ÿ ∪ ([ÿ] ⧵ ÿ) ∶ ÿ ⊆ [ÿ] with |ÿ| ⩽ ÿ and |ÿ| ≡ ÿ mod 2}.

That is, the vertices of the polytope ÿ(U◦
ÿ,ÿ) are obtained from ýÿ(Uÿ,ÿ) by taking only the vertices

corresponding to subsets with parity equal to that of ÿ. Then U◦
ÿ,ÿ has a ÿÿ representation by the

row-span of the ÿ × 2ÿmatrix

where ýý is the ý × ý identity matrix, ý is a general ÿ × (ÿ − ÿ) matrix, and ý is a general ÿ ×

ÿ skew-symmetric matrix. In particular, U◦
ÿ,ÿ has an enveloping matroid. Using the formula in

Proposition 5.2, we compute that the coefficients of (1, ÿ, ÿ2, ÿ3, …) in IntU◦
ÿ−3,2ÿ

(ÿ) are

»
¼¼¼½

∑
0⩽ÿ⩽ÿ−3

ÿ≡ÿ−3 mod 2

(
2ÿ

ÿ

)
,

∑
0⩽ÿ⩽ÿ−3

ÿ≢ÿ−3 mod 2

(
2ÿ

ÿ

)
+

(
2ÿ

ÿ − 2

)
,

(
2ÿ

ÿ − 1

)
,

(
2ÿ

ÿ

)
, …

¿
ÀÀÀÁ
.

For largeÿ, this sequence is not unimodal. For instance, atÿ = 10 the sequence reads

(94 184, 169 766, 167 960, 184 756, …).

In particular, the interlace polynomial of an even delta-matroids with a ÿÿ representation need

not have unimodal or log-concave coefficients.

Remark 8.6. The nonnegativity of the coefficients of ýD(2ÿ, −ÿ), which is part of the content of

Corollary 8.2, can be proven directly using the recursive definition of the ý-polynomial.
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8.1 Motivation

We exhibit the general strategy for constructing log-concave sequences from vector bundles, first

used in [9, section 9] and later placed into a general framework in [34]. We do this in the spe-

cial case of showing that the coefficients of (ÿ + 1)ÿ IntD(
ÿ−1

ÿ+1
) are log-concave when D has an

enveloping matroid.

Setting ý = 0 and ÿ = 1 in Theorem 7.15, we have the equality

∫ÿýÿ

ý([ÿ]∨) ⋅ 1

1 − ÿÿ
= (ÿ + 1)ÿ IntD

(
ÿ − 1

ÿ + 1

)
.

Suppose first we are in the special case that D has a ýÿ representation ÿ ⊂ ý2ÿ+1. The first step

will be rewriting this intersection to involve Segre classes rather than Chern classes. As ÿ is a
subbundle of ⊕2ÿ+1

ÿýÿ
, by dualizing we obtain a short exact sequence

0 → ÿ → ⊕2ÿ+1
ÿýÿ

→ ∨
ÿ → 0

for some vector bundleÿ. Then ý(∨
ÿ
) = ý(ÿ), and so

∫ÿýÿ

ý(∨
ÿ )

1

1 − ÿÿ
= ∫ÿýÿ

ý(ÿ)
1

1 − ÿÿ
=

ÿ∑
ý=0

ÿý ∫ÿýÿ

ýÿ−ý(ÿ)ÿ
ý =

ÿ∑
ý=0

ÿý ∫ℙ(ÿ)
ÿ2ÿ−ýÿý,

where ÿ is the first Chern class of (1) on ℙ(ÿ). The Khovanskii–Teissier inequality implies the

coefficient sequence is log-concave. To establish this log-concavity beyond the case that D is ýÿ
representable, we note that we may rewrite the last equation as

ÿ∑
ý=0

ÿý ∫ℙ(ÿ)
ÿ2ÿ−ýÿý =

ÿ∑
ý=0

ÿý ∫ÿýÿ
×ℙ2ÿ

[ℙ(ÿ)]ÿ
2ÿ−ýÿý,

where [ℙ(ÿ)] ∈ ý∙(ÿýÿ
× ℙ2ÿ) = ý∙(ÿýÿ

)[ÿ]∕(ÿ2ÿ+1) is the fundamental class of ℙ(ÿ) ⊂

ÿýÿ
× ℙ2ÿ. We have the formula [ℙ(ÿ)] =

∑ÿ
ÿ=0 ýÿ−ÿ(∨

ÿ
)ÿÿ . The formula for this class makes

sense for any delta-matroid, and one can formally define [ℙ(D)] =
∑ÿ

ÿ=0 ýÿ−ÿ([D]∨)ÿÿ ∈
ý∙(ÿýÿ

× ℙ2ÿ). By Theorem 7.15, ∫ÿ×ℙ2ÿ [ℙ(D)]ÿ
2ÿ−ýÿý still computes the coefficients of (ÿ +

1)ÿ IntD(
ÿ−1

ÿ+1
).

To deduce log-concavity, we need to know that the Chow class [ℙ(D)] has Hodge-theoretic

properties resembling those of an irreducible subvariety. The framework of [34, section 8.3] con-

structs classes that are associated to anymatroid that have good Hodge-theoretic properties.† The

strategy is to relate the class to the Bergman fan of somematroid, which has goodHodge-theoretic

properties by [1]. The notion of valuativity for invariants ofmatroids is used to reduce certain com-

putations to the case of realizable matroids. When D has an enveloping matroid M, we can use

this to deduce that [ℙ(D)] has good Hodge-theoretic properties.

† For technical reasons, we actually work with classes in ý∙(ÿýÿ
× ℙ2ÿ−1) instead of ý∙(ÿýÿ

× ℙ2ÿ) that more naturally

extend to all rank ÿ matroids, but the underlying idea is the same.
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8.2 Proof of log-concavity

Before proving Theorem B, we prove a log-concavity statement for an arbitrary matroid of rank ÿ

on [ÿ, ÿ̄] (Theorem 8.10) by using the framework in [34, section 8.3], which is based on [9, section

9]. Afterward, we relate this log-concavity statement to Theorem B. Using Proposition 7.1, we

construct two types of vector bundles on ÿýÿ
that are associated to a realization of a matroid of

rank ÿ on [ÿ, ÿ̄]. First we give a definition (cf. Definition 2.4).

Definition 8.7. Let ý be an abelian group. A function

ÿ∶ {matroids of rank ÿ on [ÿ]} → ý

is valuative if it factors through the mapM ↦ ÿ(ÿ(M)). That is, for any matroidsM1, … ,Mý and

integers ÿ1, … , ÿý such that
∑

ÿÿÿ(ÿ(Mÿ)) = 0, we have that
∑

ÿÿÿ(Mÿ) = 0.

Let ÿ act on ý4ÿ by (ý1ý1, ý2ý2, … , ýÿýÿ, ý
−1
1
ýÿ+1, … , ý−1ÿ ý2ÿ, ý2ÿ+1, … , ý4ÿ). Let ÿ ⊂ ý2ÿ be a lin-

ear space of dimension ÿ. Let ýÿ be the image of ÿ
⟂ under the diagonal embedding of ý2ÿ into ý4ÿ

and consider the point [ýÿ] ∈ ÿÿ(ÿ; 4ÿ). The fan of the normalization of ÿ ⋅ [ýÿ] is the normal
fan of env(ýÿ(M)). Every edge of env(ýÿ(M)) is parallel to ÿÿ or ÿÿ ± ÿÿ , so Σýÿ is a coarsening of

the normal fan of env(ýÿ(M)). Therefore, there is a toric morphism ÿΣýÿ
→ ÿÿ(ÿ; 4ÿ). Set univ

and univ to be the universal subbundle and quotient bundle, respectively, on ÿÿ(ÿ; 4ÿ). Let ̃ý
ÿ

and ̃ý
ÿ
be the duals of the pullbacks of univ and univ , respectively.

Lemma 8.8. For eachý ∈ ÿý
ÿ , let ýý be any independent set ofM

⟂ such that any functional in the

interior of ÿý achieves its minimum on the corresponding vertex of env(ýÿ(M⟂)). Then

[̃ý
ÿ ]ý = ÿ − |ýý ∩ ý([ÿ])| + ∑

ÿ∈ýý∩ý([ÿ])

ÿÿ , and [̃ý
ÿ ]ý = ÿ + |ýý ∩ ý([ÿ])| + ∑

ÿ∉ý([ÿ])∩ýý

ÿÿ .

Note that the classes [̃ý
ÿ
] and [̃ý

ÿ
] only depend on the matroidM that ÿ represents. For any

matroidM of rank ÿ on [ÿ, ÿ̄], we define classes [̃ý
M
] and [̃ý

M
] in ÿÿ(ÿýÿ

); the proof of Proposi-

tion 7.4 adapts to show that these are indeed well-defined. The proof of [9, Proposition 5.6] shows

that any function that maps a matroidM of rank ÿ on [ÿ, ÿ̄] to a fixed polynomial expression in

the Chern classes of [̃ý
M
] and [̃ý

M
] is a valuative invariant of matroids of rank ÿ on [ÿ, ÿ̄].

We now construct analogues of isotropic tautological bundles. Consider a matroid M of rank

ÿ on [ÿ, ÿ̄] represented by ÿ ⊂ ý2ÿ. Then ÿ determines a ý-valued point of ÿÿ(ÿ; 2ÿ). We have a

ÿ-action on ÿÿ(ÿ; 2ÿ) given by

(ý1, … , ýÿ) ⋅ (ý1, … , ýÿ, ý1̄, … , ýÿ̄) = (ý1ý1, … , ýÿýÿ, ý
−1
1 ýÿ̄ , … , ý−1ÿ ýÿ̄).

The fan of the normalization of ÿ ⋅ [ÿ] is the toric variety with normal fan env(ÿ(M)), which

is a coarsening of Σýÿ . This determines a morphism ÿýÿ
→ ÿÿ(ÿ; 2ÿ); define ̃ÿ to be dual of

the pullback of the universal quotient bundle univ under this map. Proposition 7.1 implies the

following lemma.
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Lemma 8.9. Forý ∈ ÿý
ÿ , let ýý be a basis corresponding to any vertex in the preimage of the vertex

of env(ÿ(M)) that any functional in ÿ◦
ý achieves its minimum on. Then

[̃ÿ]ý =
∑
ÿ∈ýý

ÿÿ .

Note that the above description of the equivariant ÿ-class depends only on the matroid M.

Define [̃M] ∈ ÿÿ(ÿýÿ
) by the above formula for any M; the proof of Proposition 7.4 adapts to

show that these are indeed well-defined. The proof of [9, Proposition 5.6] shows that any func-

tion that maps a matroid M of rank ÿ on [ÿ, ÿ̄] to a fixed polynomial expression in the Chern

classes of [̃M] is a valuative invariant of matroids of rank ÿ on [ÿ, ÿ̄]. We now use the framework

[34, section 8.3], which establishes log-concavity properties for classes constructed in this way

associated to loop-free and coloop-free matroidsM. Indeed, the above constructions give globally

generated vector bundles associated to realizations of matroids of rank ÿ on [ÿ, ÿ̄]. The Chern

classes of these vector bundle depend only on the underlying matroid and depend valuatively on

the matroid. Then [34, Theorem 8.7] gives the following result.

Theorem 8.10. Let M be a loop-free and coloop-free matroid of rank ÿ on [ÿ, ÿ̄]. Then the

polynomials

∫ÿýÿ

ý([̃ý
M]

∨, ÿ) ⋅ ý([̃ý
M], ý) ⋅

1

1 − ÿÿ
⋅ ý(⊞(1), ý) and ∫ÿýÿ

ý([̃M], ÿ) ⋅
1

1 − ÿÿ
⋅

ÿ∏
ÿ=1

(1 + ýÿℎÿ)

are denormalized Lorentzian.

Proof of Theorem B and Theorem 8.1. We first do (1.2). Consider the case when D is loop-free

and coloop-free. By Lemma 6.8, the enveloping matroidM ofD is loop-free and coloop-free. Then

[̃ý
M
] = [ý

D
], so ý([̃ý

M
]∨, ÿ) = ý([ý

D
]∨, ÿ). Also, ý([̃ý

M
], ý) = ý([̃ý

M
], ý) = ý([ý

D
], ý). We see

that

∫ÿýÿ

ý([̃ý
M]

∨, ÿ) ⋅ ý([̃ý
M], ý) ⋅

1

1 − ÿÿ
⋅ ý(⊞(1), ý)

= ∫ÿýÿ

ý([ý
D]

∨, ÿ) ⋅ ý([ý
D], ý) ⋅

1

1 − ÿÿ
⋅ ý(⊞(1), ý) = (ÿ + ý)ÿýD

(
2ÿ + ý

ÿ + ý
,
ÿ − ÿ

ÿ + ý

)

by Theorem 7.14. So, when D is loop-free and coloop-free, Theorem 8.10 gives that the above

polynomial is denormalized Lorentzian. In general, we can write D = D′ × ÿ(ý0,ý) × ÿ(ýý,ý) for

some ý and ý, where ÿ′ is loop-free and coloop-free. Using the behavior of theý-polynomial for

delta-matroids with loops, we have that

(ÿ + ý)ÿýD

(
2ÿ + ý

ÿ + ý
,
ÿ − ÿ

ÿ + ý

)

=

(
(ÿ + ý)ÿ−ý−ýýD′

(
2ÿ + ý

ÿ + ý
,
ÿ − ÿ

ÿ + ý

))
⋅

(
(ÿ + ý)ýýÿ(ý0,ý)

(
2ÿ + ý

ÿ + ý
,
ÿ − ÿ

ÿ + ý

))
⋅

(
(ÿ + ý)ýýÿ(ýý,ý)

(
2ÿ + ý

ÿ + ý
,
ÿ − ÿ

ÿ + ý

))

= (ÿ + ý)ÿ−ý−ýýD′

(
2ÿ + ý

ÿ + ý
,
ÿ − ÿ

ÿ + ý

)
⋅ (ÿ + 3ÿ + ý)ý+ý .
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As product of denormalized Lorentzian polynomials are denormalized Lorentzian [20, Corol-

lary 3.8], we see that (1.2) is denormalized Lorentzian for all delta-matroids D that have an

enveloping matroid.

The proof of Theorem 8.1 is identical: one shows that, when M is an enveloping matroid of a

loop-free and coloop-free delta-matroid D,

∫ÿýÿ

ý([̃M], ÿ) ⋅
1

1 − ÿÿ
⋅

ÿ∏
ÿ=1

(1 + ýÿℎÿ) = ∫ÿýÿ

ý([D]∨, ÿ) ⋅ 1

1 − ÿÿ
⋅

ÿ∏
ÿ=1

(1 + ýÿℎÿ)

= (ÿ + ÿ)ÿýD

(
ý1

ÿ + ÿ
,… ,

ýÿ
ÿ + ÿ

,
ÿ − ÿ

ÿ + ÿ

)

by Theorem 7.15. One then deduces the general case using the behavior of theý-polynomial under

products. □

Remark 8.11. Our proof that (1.2) is denormalized Lorentzian only requires that D has a shelter-

ing matroid, as we only need that there is a matroidM with env(ýÿ(M)) = ÿ(D) +□ − ÿ[ÿ]. See

Remark 6.7.
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