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Polyhedral and tropical geometry of flag positroids

Jonathan Boretsky, Christopher Eur and Lauren Williams

A flag positroid of ranks r := (r1 < · · · < rk) on [n] is a flag matroid that can be realized by a real

rk × n matrix A such that the ri × ri minors of A involving rows 1, 2, . . . , ri are nonnegative for all

1 f i f k. In this paper we explore the polyhedral and tropical geometry of flag positroids, particularly

when r := (a, a + 1, . . . , b) is a sequence of consecutive numbers. In this case we show that the

nonnegative tropical flag variety TrFlg0
r,n equals the nonnegative flag Dressian FlDrg0

r,n , and that the points

µ = (µa, . . . , µb) of TrFlg0
r,n = FlDrg0

r,n give rise to coherent subdivisions of the flag positroid polytope

P(µ) into flag positroid polytopes. Our results have applications to Bruhat interval polytopes: for

example, we show that a complete flag matroid polytope is a Bruhat interval polytope if and only if its

(f 2)-dimensional faces are Bruhat interval polytopes. Our results also have applications to realizability

questions. We define a positively oriented flag matroid to be a sequence of positively oriented matroids

(Ç1, . . . , Çk) which is also an oriented flag matroid. We then prove that every positively oriented flag

matroid of ranks r = (a, a + 1, . . . , b) is realizable.
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1. Introduction

In recent years there has been a great deal of interest in the tropical Grassmannian [Speyer and Sturmfels

2004; Herrmann et al. 2009; 2014; Cachazo et al. 2019; Bossinger 2021], and matroid polytopes and

their subdivisions [Speyer 2008; Ardila et al. 2010; Early 2022], as well as “positive” [Postnikov 2007;

Speyer and Williams 2005; 2021; Oh 2008; Ardila et al. 2016; Le and Fraser 2019; Lukowski et al. 2023;

Arkani-Hamed et al. 2021b] and “flag” [Tsukerman and Williams 2015; Brandt et al. 2021; Bossinger et al.

2017; Jarra and Lorscheid 2024; Joswig et al. 2023; Boretsky 2022] versions of the above objects. The aim
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of this paper is to illustrate the beautiful relationships between the nonnegative tropical flag variety, the

nonnegative flag Dressian, and flag positroid polytopes and their subdivisions, unifying and generalizing

some of the existing results. We will particularly focus on the case of flag varieties (respectively, flag

positroids) consisting of subspaces (respectively, matroids) of consecutive ranks. This case includes both

Grassmannians and complete flag varieties.

For positive integers n and d with d < n, we let [n] denote the set {1, . . . , n} and we let
(
[n]
d

)
denote

the collection of all d-element subsets of [n]. Given a subset S ¦ [n] we let eS denote the sum of standard

basis vectors
∑

i∈S ei . For a collection B ¢
(
[n]
d

)
, we let

P(B) = the convex hull of {eB : B ∈ B} in R
n.

The collection B is said to define a matroid M of rank d on [n] if every edge of the polytope P(B) is

parallel to ei −e j for some i ̸= j ∈ [n]. In this case, we call B the set of bases of M , and define the matroid

polytope P(M) of M to be the polytope P(B). When B indexes the nonvanishing Plücker coordinates of

an element A of the Grassmannian Grd,n(C), we say that A realizes M , and it is well-known that P(B) is

the moment map image of the closure of the torus orbit of A in the Grassmannian [Gelfand et al. 1987].

We assume familiarity with the fundamentals of matroid theory as in [Oxley 2011] and [Borovik et al.

2003].

The above definition of matroid in terms of its polytope is due to [Gelfand et al. 1987]. Flag matroids

are natural generalizations of matroids that admit the following polytopal definition.

Definition 1.1 [Borovik et al. 2003, Corollary 1.13.5 and Theorem 1.13.6]. Let r = (r1, . . . , rk) be a

sequence of increasing integers in [n]. A flag matroid of ranks r on [n] is a sequence M = (M1, . . . , Mk)

of matroids of ranks (r1, . . . , rk) on [n] such that all vertices of the polytope

P(M) = P(M1) + · · · + P(Mk), the Minkowski sum of matroid polytopes,

are equidistant from the origin. The polytope P(M) is called the flag matroid polytope of M; we

sometimes say it is a flag matroid polytope of rank r .

Flag matroids are exactly the type A objects in the theory of Coxeter matroids [Gelfand and Serganova

1987; Borovik et al. 2003]. Just as a realization of a matroid is a point in a Grassmannian, a realization

of a flag matroid is a point in a flag variety. More concretely, a realization of a flag matroid of ranks

(r1, . . . , rk) is an rk × n matrix A over a field such that for each 1 f i f k, the ri × n submatrix of A

formed by the first ri rows of A is a realization of Mi . For an equivalent definition of flag matroids in

terms of Plücker relations on partial flag varieties; see [Jarra and Lorscheid 2024, Proposition A].

There is a notion of moment map for any flag variety (indeed for any generalized partial flag variety

G/P) [Gelfand and Serganova 1987; Borovik et al. 2003]. When a flag matroid M can be realized by a

point A in the flag variety, then its matroid polytope P(M) is the moment map image of the closure of the

torus orbit of A in the flag variety [Gelfand and Serganova 1987; Borovik et al. 2003, Corollary 1.13.5].

There are natural “positive” analogues of matroids, flag matroids, and their polytopes.
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Definition 1.2. Let r = (r1, . . . , rk) be a sequence of increasing integers in [n]. We say that a flag matroid

(M1, . . . , Mk) of ranks r on [n] is a flag positroid if it has a realization by a real matrix A such that the

ri × n submatrix of A formed by the first ri rows of A has all nonnegative minors for each 1 f i f k.

We refer to the flag matroid polytope of a flag positroid as a flag positroid polytope. It follows from

our definition above that flag positroids are realizable.

Setting k = 1 in Definition 1.2 gives the well-studied notion of positroids and positroid polytopes

[Postnikov 2007; Oh 2008; Ardila et al. 2016]. Therefore each flag positroid is a sequence of positroids.

In recent years it has been gradually understood that the tropical geometry of the Grassmannian and

flag variety, and in particular, the Dressian and flag Dressian, are intimately connected to (flag) matroid

polytopes and their subdivisions [Speyer 2008; Herrmann et al. 2009; Brandt et al. 2021]; see also

[Maclagan and Sturmfels 2015, Section 4]. A particularly attractive point of view, which sheds light on

the above connections, is the theory of (flag) matroids over hyperfields [Baker and Bowler 2019; Jarra

and Lorscheid 2024]. In this framework, the Dressian and flag Dressian are the Grassmannian and flag

variety over the tropical hyperfield, while matroids and flag matroids are the points of the Grassmannian

and flag variety over the Krasner hyperfield.

The tropical geometry of the positive Grassmannian and flag variety are particularly nice: the positive

tropical Grassmannian equals the positive Dressian, whose cones in turn parametrize subdivisions of

the hypersimplex into positroid polytopes [Speyer and Williams 2005; 2021; Lukowski et al. 2023;

Arkani-Hamed et al. 2021b]. And the positive tropical complete flag variety equals the positive complete

flag Dressian, whose cones parametrize subdivisions of the permutohedron into Bruhat interval polytopes

[Boretsky 2022; Joswig et al. 2023]. Theorem A below unifies and generalizes the above results.

Definition 1.3. Let T = R∪{∞} be the set underlying the tropical hyperfield, endowed with the topology

such that − log : Rg0 → T is a homeomorphism. Given a point w ∈ T([n]
r ), we define the support of w to

be w =
{

S ∈
(
[n]
r

)
: wS ̸= ∞

}
. When w is the set of bases of a matroid, we identify w with that matroid.

Let P(T([n]
r )) be the tropical projective space of T([n]

r ), which is defined as (T([n]
r ) \ {(∞, . . . ,∞)})/ ∼,

where w ∼ w′ if w = w′ + (c, . . . , c) for some c ∈ R.

Our main result is the following.

Theorem A. Suppose r is a sequence of consecutive integers (a, . . . , b) for some 1 f a f b f n. Then,

for µ = (µa, . . . , µb) ∈
∏b

i=a P(T([n]
i )), the following statements are equivalent:

(a) µ ∈ TrFlg0
r,n , the nonnegative tropicalization of the flag variety, i.e., the closure of the coordinate-wise

valuation of points in Flr,n(Cg0).

(b) µ ∈ FlDrg0
r,n , the nonnegative flag Dressian, i.e., the “solutions” to the positive-tropical Grassmann–

Plücker and incidence-Plücker relations.

(c) Every face in the coherent subdivision Dµ of the polytope P(µ) = P(µ1)+· · ·+ P(µk) induced by

µ is a flag positroid polytope (of rank r).
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Figure 1. Left-hand side: the coherent subdivision of the hypersimplex into positroid

polytopes induced by a point µ ∈ Dr>0
2,4 such that µ13 + µ24 = µ23 + µ14 < µ12 + µ34.

Right-hand side: the coherent subdivision of the permutohedron into Bruhat interval

polytopes induced by a point µ ∈ FlDr>0
(1,2,3),3 such that µ2 +µ13 = µ1 +µ23 < µ3 +µ12.

(d) Every face of dimension at most 2 in the subdivision Dµ of P(µ) is a flag positroid polytope (of

rank r).

(e) The support µ of µ is a flag matroid, and µ satisfies every three-term positive-tropical incidence

relation (respectively, every three-term positive-tropical Grassmann–Plücker relation) when a < b

(respectively, a = b).

For the definitions of the objects in Theorem A, see Proposition 3.6 for (a), Definition 3.3 for (b),

Definition 5.1 for (c), and Definition 3.8 for (e).

We note that if r = (d) is a single integer, Theorem A describes the relationship between the nonnegative

tropical Grassmannian, the nonnegative Dressian, and subdivisions of positroid polytopes (e.g., the

hypersimplex, if µ has no coordinates equal to ∞) into positroid polytopes. And when r = (1, 2, . . . , n),

Theorem A describes the relationship between the nonnegative tropical complete flag variety, the nonneg-

ative complete flag Dressian, and subdivisions of Bruhat interval polytopes (e.g., the permutohedron, if µ

has no coordinates equal to ∞) into Bruhat interval polytopes. We illustrate this relationship in the case

where µ has no coordinates equal to ∞ in Figure 1.

We prove the equivalence (a)⇐⇒(b) in Section 3.2, the implications (b)=⇒(c)=⇒(d)=⇒(e) in Section 5.2,

and the implication (e)=⇒(b) in Section 6.1.

Theorem A has applications to flag positroid polytopes.

Corollary 1.4. For a flag matroid M = (Ma, Ma+1, . . . , Mb) of consecutive ranks r = (a, a + 1, . . . , b),

its flag matroid polytope P(M) is a flag positroid polytope if and only if its (f 2)-dimensional faces are

flag positroid polytopes (of rank r).

Proof. Let µ = (µa, . . . , µb), with µi ∈ {0, ∞}(
[n]
i ), where the coordinates of each µi are either 0 or ∞

based on whether we have a basis or nonbasis of Mi . This gives rise to the trivial subdivision of the

corresponding flag matroid polytope P(µ) = P(M). The result now follows from the equivalence of (c)

and (d) in Theorem A. □
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In the Grassmannian case, that is, the case that r = (d) is a single integer, the flag positroid polytopes

of rank r are precisely the positroid polytopes, and in that case the above corollary appeared as [Lukowski

et al. 2023, Theorem 3.9].

Also in the Grassmannian case, the objects discussed in Theorem A are closely related to questions

of realizability. Note that by definition, every positroid has a realization by a matrix whose Plücker

coordinates are nonnegative, so it naturally defines a positively oriented matroid, that is, an oriented

matroid defined by a chirotope whose values are all 0 and 1. Conversely, every positively oriented matroid

can be realized by a positroid: this was first proved in [Ardila et al. 2017] using positroid polytopes,

and subsequently in [Speyer and Williams 2021], using the positive tropical Grassmannian. It is natural

then to ask if there is an analogous realizability statement in the setting of flag matroids, and if one can

characterize when a sequence of positroids forms a flag positroid; indeed, this was part of the motivation

for [Benedetti et al. 2022], which studied quotients of uniform positroids. Note however that questions

of realizability for flag matroids are rather subtle: for example, a sequence of positroids that form a

realizable flag matroid can still fail to be a flag positroid (see Example 4.4). By working with oriented

flag matroids, we give an answer to this realizability question in Corollary 1.5, in the case of consecutive

ranks.

Corollary 1.5. Suppose (M1, . . . , Mk) is a sequence of positroids on [n] of consecutive ranks r =

(r1, . . . , rk). Then, when considered as a sequence of positively oriented matroids, (M1, . . . , Mk) is a flag

positroid if and only if it is an oriented flag matroid.

We define a positively oriented flag matroid to be a sequence of positively oriented matroids (Ç1, . . . , Çk)

which is also an oriented flag matroid. Corollary 1.5 then says that every positively oriented flag matroid

of consecutive ranks (r1, . . . , rk) is realizable.

See Section 4.1 for a review of oriented matroids and oriented flag matroids. Note that because a

positroid by definition has a realization over R with all nonnegative minors, it defines a positively oriented

matroid. In Section 4.2, we deduce Corollary 1.5 from the equivalence of (a) and (b) in Theorem A. Another

proof using ideas from discrete convex analysis is sketched in Remark 4.7. In both proofs, the consecutive

ranks condition is indispensable. We do not know whether the corollary holds if r = (r1, . . . , rk) fails to

satisfy the consecutive rank condition.

Question 1.6. Suppose M and M ′ are positroids on [n] such that, when considered as positively oriented

matroids, they form an oriented flag matroid (M, M ′). Is (M, M ′) then a flag positroid?

One may attempt to answer the question by appealing to the fact [Kung 1986, Exercise 8.14] that for a

flag matroid (M, M ′), one can always find a flag matroid (M1, . . . , Mk) of consecutive ranks such that

M1 = M and Mk = M ′. However, the analogous statement fails for flag positroids; see Example 4.6 for an

example of a flag positroid (M, M ′) on [4] of ranks (1, 3) such that there is no flag positroid (M, M2, M ′)

with rank of M2 equal to 2.

The consecutive rank condition has recently shown up in [Bloch and Karp 2023], which studied the

relation between two notions of total positivity for partial flag varieties, “Lusztig positivity” and “Plücker
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positivity” (see Section 2.1). In particular, the Plücker positive subset of a partial flag variety agrees with

the Lusztig positive subset of the partial flag variety precisely when the flag variety consists of linear

subspaces of consecutive ranks [Bloch and Karp 2023, Theorem 1.1].

A generalized Bruhat interval polytope [Tsukerman and Williams 2015, Definition 7.8 and Lemma 7.9]

can be defined as the moment map image of the closure of the torus orbit of a point A in the nonnegative

part (G/P)g0 (in the sense of Lusztig) of a flag variety G/P . When r is a sequence of consecutive

integers, it then follows from [Bloch and Karp 2023] that generalized Bruhat interval polytopes for Fl
g0
r;n

are precisely the flag positroid polytopes of ranks r . In the complete flag case, a generalized Bruhat

interval polytope is just a Bruhat interval polytope [Kodama and Williams 2015], that is, the convex hull

of the permutation vectors (z(1), . . . , z(n)) for all permutations z lying in some Bruhat interval [u, v].

We can now restate Corollary 1.4 as follows.

Corollary 1.7. For a flag matroid on [n] of consecutive ranks r , its flag matroid polytope is a generalized

Bruhat interval polytope if and only if its (f 2)-dimensional faces are generalized Bruhat interval

polytopes. In particular, for a complete flag matroid on [n], its flag matroid polytope is a Bruhat interval

polytope if and only if its (f 2)-dimensional faces are Bruhat interval polytopes.

The structure of this paper is as follows. In Section 2, we give background on total positivity and

Bruhat interval polytopes. In Section 3, we introduce the tropical flag variety, the flag Dressian, and

nonnegative analogues of these objects; we also prove the equivalence of (a) and (b) in Theorem A.

In Section 4 we discuss positively oriented flag matroids and prove Corollary 1.5. In Section 5 we

explain the relation between the flag Dressian and subdivisions of flag matroid polytopes, then prove

that (b)=⇒(c)=⇒(d)=⇒(e) in Theorem A. We prove some key results about three-term incidence and

Grassmann–Plücker relations in Section 6, which allow us to prove (e)=⇒(b) in Theorem A. Section 7

concerns projections of positive Richardsons to positroids: we characterize the positroid constituents of

complete flag positroids, and we characterize when two adjacent-rank positroids form an oriented matroid

quotient, or equivalently, can appear as constituents of a complete flag positroid. In Section 8, we make

some remarks about the various fan structures for TrFl>0
r;n; we then discuss fan structures and coherent

subdivisions in the case of the Grassmannian and complete flag variety, including a detailed look at the

case of TrFl>0
4 .

2. Background on total positivity and Bruhat interval polytopes

2.1. Background on total positivity. Let n ∈ Z+ and let r = {r1 < · · · < rk} ¦ [n]. For a field k, let

G = GLn(k), and let Pr;n(k) denote the parabolic subgroup of G of block upper-triangular matrices with

diagonal blocks of sizes r1, r2 − r1, . . . , rk − rk−1, n − rk . We define the partial flag variety

Flr;n(k) := GLn(k)/ Pr;n(k).

As usual, we identify Flr;n(k) with the variety of partial flags of subspaces in k
n:

Flr;n(k) = {(V1 ¢ · · · ¢ Vk) : Vi a linear subspace of k
n of dimension ri for i = 1, . . . , k}.
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We write Fln(k) for the complete flag variety Fl1,2,...,n;n(k). Note that Fln(k) can be identified with

GLn(k)/B(k), where B(k) is the subgroup of upper-triangular matrices. There is a natural projection Ã

from Fln(k) to any partial flag variety by simply forgetting some of the subspaces.

If A is an rk × n matrix such that Vri
is the span of the first ri rows, we say that A is a realization

of V := (V1 ¢ · · · ¢ Vk) ∈ Flr;n . Given any realization A of V and any 1 f i f k, we have the Plücker

coordinates or flag minors pI (A) where I ∈
(
[n]
ri

)
; concretely, pI (A) is the determinant of the submatrix

of A occupying the first ri rows and columns I . This gives the Plücker embedding of Flr;n(k) into

P
([n]

r1
)−1

× · · · × P
([n]

rk
)−1

taking V to ((pI (A))
I∈([n]

r1
), . . . , (pI (A))

I∈([n]
rk
)).

We now let k be the field R of real numbers. With this understanding, we will often drop the R from

our notation.

Definition 2.1. We say that a real matrix is totally positive if all of its minors are positive. We let GL>0
n

denote the subset of GLn of totally positive matrices.

There are two natural ways to define positivity for partial flag varieties. The first notion comes from

work of Lusztig [1994]. The second notion uses Plücker coordinates, and was initiated in work of

Postnikov [2007].

Definition 2.2. We define the (Lusztig) positive part of Flr;n , denoted by Fl>0
r;n , as the image of GL>0

n

inside Flr;n = GLn / Pr;n . We define the (Lusztig) nonnegative part of Flr;n , denoted by Fl
g0
r;n , as the

closure of Fl>0
r;n in the Euclidean topology.

We define the Plücker positive part (respectively, Plücker nonnegative part) of Flr;n to be the subset of

Flr;n where all Plücker coordinates are positive (respectively, nonnegative).1

It is well-known that the Lusztig positive part of Flr;n is a subset of the Plücker positive part of Flr;n ,

and that the two notions agree in the case of the Grassmannian [Talaska and Williams 2013, Corollary 1.2].

The two notions also agree in the case of the complete flag variety [Boretsky 2022, Theorem 5.21]. More

generally, we have the following.

Theorem 2.3 [Bloch and Karp 2023, Theorem 1.1]. The Lusztig positive (respectively, Lusztig nonnega-

tive) part of Flr;n equals the Plücker positive (respectively, Plücker nonnegative) part of Flr;n if and only

if the set r consists of consecutive integers.

See [Bloch and Karp 2023, Section 1.4] for more references and a nice discussion of the history. Since

in this paper we will be mainly studying the case where r consists of consecutive integers, we will use

the two notions interchangeably when there is no ambiguity.

Let B and B− be the opposite Borel subgroups consisting of upper-triangular and lower-triangular

matrices. Let W = Sn be the Weyl group of GLn . Given u, v ∈ W , the Richardson variety is the intersection

of opposite Bruhat cells

Ru,v := (Bv̇B/B) ∩ (B−u̇ B/B),

1The reader who is concerned about the fact that we are working with projective coordinates can replace “all Plücker

coordinates are positive” by “all Plücker coordinates are nonzero and have the same sign”.
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where v̇ and u̇ denote permutation matrices in GLn representing v and u. It is well-known that Ru,v is

nonempty precisely when u f v in Bruhat order, and in that case is irreducible of dimension ℓ(v)− ℓ(u).

For u, v ∈ W with u f v, let R>0
u,v :=Ru,v ∩Flg0

n be the positive part of the Richardson variety. Lusztig

conjectured and Rietsch [1998] proved that

Flg0
n =

⊔

ufv

R
>0
u,v (1)

is a cell decomposition of Flg0
n . Moreover, Rietsch showed that one obtains a cell decomposition of the

nonnegative partial flag variety Fl
g0
r;n by projecting the cell decomposition of Flg0

n [Rietsch 1998; 2006,

Section 6]. Specifically, if we let Wr be the parabolic subgroup of W generated by the simple reflections

{si | 1 f i f n − 1 and i /∈ {r1, . . . , rk}}, then one obtains a cell decomposition by using the projections

Ã(R>0
u,v) of the cells R>0

u,v where u f v and v is a minimal-length coset representative of W/Wr . (We note

moreover that Rietsch’s results hold for G a semisimple, simply connected linear algebraic group over C

split over R).

In the case of the Grassmannian, Postnikov [2007] studied the Plücker nonnegative part Gr
g0
d,n of the

Grassmannian, and gave a decomposition of it into positroid cells S>0
B

by intersecting Gr
g0
d,n with the

matroid strata. Concretely, if B is the collection of bases of an element of Gr
g0
d,n , then S>0

B
= {A ∈ Gr

g0
d,n |

pI (A) ̸= 0 if and only if I ∈B}. This cell decomposition of Gr
g0
d,n agrees with Rietsh’s cell decomposition

[Talaska and Williams 2013, Corollary 1.2].

2.2. Background on (generalized) Bruhat interval polytopes. Bruhat interval polytopes were defined in

[Kodama and Williams 2015], motivated by the connections to the full Kostant–Toda hierarchy.

Definition 2.4 [Kodama and Williams 2015]. Given two permutations u and v in Sn with u f v in Bruhat

order, the Bruhat interval polytope Pu,v is defined as

Pu,v = Conv{(x(1), x(2), . . . , x(n)) | u f x f v} ¢ R
n. (2)

We also define the (twisted) Bruhat interval polytope P̃u,v by

P̃u,v = Conv{(n + 1 − x−1(1), n + 1 − x−1(2), . . . , n + 1 − x−1(n)) | u f x f v} ¢ R
n. (3)

While the definition of Bruhat interval polytope in (2) is more natural from a combinatorial point of

view, as we’ll see shortly, the definition in (3) is more natural from the point of view of the moment map.

Note that the set of Bruhat interval polytopes is the same as the set of twisted Bruhat interval polytopes;

it is just a difference in labeling.

Remark 2.5. If we choose any point A in the cell R>0
u,v ¢ Flg0

n (thought of as an n × n matrix), and let

Mi be the matroid represented by the first i rows of A, then P̃u,v is the Minkowski sum of the matroid

polytopes P(M1), . . . , P(Mn) [Kodama and Williams 2015, Corollary 6.11]. In particular, P̃u,v is the

matroid polytope of the flag matroid M1, . . . , Mn .
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Following [Tsukerman and Williams 2015], we can generalize the notion of Bruhat interval polytope

as follows; see [loc. cit., Section 7.2] for notation.

Definition 2.6. Choose a generalized partial flag variety G/P = G/PJ , let WJ be the associated parabolic

subgroup of the Weyl group W , and let u, v ∈ W with u f v in Bruhat order and v a minimal-length coset

representative of W/WJ . Let Ã denote the projection from G/B to G/P , and let A be an element of the

cell Ã(R>0
u,v) of (Lusztig’s definition of) (G/P)g0.

A generalized Bruhat interval polytope P̃ J
u,v can be defined in any of the following equivalent ways

[Tsukerman and Williams 2015, Definition 7.8, Lemma 7.9, Proposition 7.10, Remark 7.11] and [Borovik

et al. 2003, Preface]:

• The moment map image of the closure of the torus orbit of A in G/P (which is a Coxeter matroid

polytope).

• The moment map image of the closure of the cell Ã(R>0
u,v).

• The moment map image of the closure of the projected Richardson variety Ã(Ru,v).

• The convex hull Conv{z ·ÄJ | u f z f v} ¢ t
∗
R

, where ÄJ is the sum of fundamental weights
∑

j∈J É j ,

and t
∗
R

is the dual of the real part of the Lie algebra t of the torus T ¢ G.

Remark 2.7. When G = GLn with fundamental weights e1, e1 +e2, . . . , e1 +· · ·+en−1, each generalized

Bruhat interval polytope P̃ J
u,v is the flag positroid polytope associated to a matrix A representing a

point of Fl
g0
r;n , with r = (r1, . . . , rk). In this case the generalized Bruhat interval polytope is precisely

the Minkowski sum P(M1) + · · · + P(Mk) of the matroid polytopes P(Mi ), where Mi is the matroid

realized by the first ri rows of A. In particular, the generalized Bruhat interval polytope P̃∅

u,v = P̃u,v is

the Minkowski sum P(M1) + · · · + P(Mn), where Mi is the positroid realized by the first i rows of any

matrix representing a point of A ∈ R>0
v,w. We will discuss how to read off the matroids Mi from (u, v) in

Section 7.2.

As mentioned in the introduction, when r is a sequence of consecutive ranks, the generalized Bruhat

interval polytopes for Fl
g0
r;n are precisely the flag positroid polytopes of ranks r . When r = (1, 2, . . . , n),

we recover the notion of Bruhat interval polytope, and when r is a single integer, we recover the notion

of positroid polytope.

3. The nonnegative tropicalization

3.1. Background on tropical geometry. We define the main objects in (a) and (b) of Theorem A, and

record some basic properties. For a more comprehensive treatment of tropicalizations and positive-

tropicalizations, we refer to [Maclagan and Sturmfels 2015, Chapter 6] and [Speyer and Williams 2005],

respectively.

For a point w = (w1, . . . , wm) ∈ Tm , we write w̄ for its image in the tropical projective space P(Tm).

For a = (a1, . . . , an) ∈ Zm , write a • w = a1w1 + · · · + amwm .
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Definition 3.1. For a real homogeneous polynomial

f =
∑

a∈A

caxa ∈ R[x1, . . . , xm], where A is a finite subset of Z
m
g0 and 0 ̸= ca ∈ R,

the extended tropical hypersurface Vtrop( f ) and the nonnegative tropical hypersurface V
g0
trop( f ) are subsets

of the tropical projective space P(Tm) defined by

Vtrop( f ) = {w̄ ∈ P(Tm) | the minimum in mina∈A(a • w), if finite, is achieved at least twice},

and

V
g0
trop( f ) =

{
w̄ ∈ P(Tm)

∣∣∣ the minimum in mina∈A(a • w), if finite, is achieved at least twice,

including at some a, a′ ∈ A such that ca and ca′ have opposite signs

}
.

We say that a point satisfies the tropical relation of f if it is in Vtrop( f ), and that it satisfies the positive-

tropical relation of f if it is in V
g0
trop( f ).

When f is a multihomogeneous real polynomial, we define Vtrop( f ) and V
g0
trop( f ) similarly as subsets

of a product of tropical projective spaces. We will consider tropical hypersurfaces of polynomials that

define the Plücker embedding of a partial flag variety.

Definition 3.2. For integers 0 < r f s < n, the (single-exchange) Plücker relations of type (r, s; n) are

polynomials in variables
{

x I : I ∈
(
[n]
r

)
∪

(
[n]
s

)}
defined as

Pr,s;n =

{ ∑

j∈J\I

sign( j, I, J )x I∪ j x J\ j

∣∣∣ I ∈
( [n]

r −1

)
, J ∈

( [n]

s+1

)}
,

where sign( j, I, J ) = (−1)|{k∈J |k< j}|+|{i∈I | j<i}|. When r = s, the elements of Pr,r;n are called the

Grassmann–Plücker relations (of type (r; n)), and when r < s, the elements of Pr,s;n are called the

incidence-Plücker relations (of type (r, s; n)).

As in the introduction, let r = (r1 < · · · < rk) be a sequence of increasing integers in [n]. We let

Pr;n =
⋃

rfs, r,s∈r Pr,s;n, and let ïPr;nð be the ideal generated by the elements of Pr;n . It is well-known

that for any field k the ideal ïPr;nð set-theoretically carves out the partial flag variety Flr;n(k) embedded

in
∏k

i=1 P(k
([n]

ri
)
) via the standard Plücker embedding [Fulton 1997, Section 9]. Similarly, the Plücker

relations define the tropical analogues of partial flag varieties as follows.

Definition 3.3. The tropicalization TrFlr;n of Flr;n , nonnegative tropicalization TrFl
g0
r;n of Flr;n , flag

Dressian FlDrr;n , and nonnegative flag Dressian FlDr
g0
r;n are subsets of

∏k
i=1 P(T

([n]
ri
)
) defined as

TrFlr;n =
⋂

f ∈ïPr;nð

Vtrop( f ) and TrFl
g0
r;n =

⋂

f ∈ïPr;nð

V
g0
trop( f ),

FlDrr;n =
⋂

f ∈Pr;n

Vtrop( f ) and FlDr
g0
r;n =

⋂

f ∈Pr;n

V
g0
trop( f ).
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When k = 1, i.e., when r consists of one integer d , one obtains the (nonnegative) tropicalization of the

Grassmannian TrGr
(g0)

d;n and the (nonnegative) Dressian Dr
(g0)

d;n studied in [Speyer and Sturmfels 2004;

Speyer and Williams 2005; 2021; Arkani-Hamed et al. 2021b]. Like Fln , we write only n in the subscript

when r = (1, 2, . . . , n).

Remark 3.4. In [Joswig et al. 2023, Section 6], the authors define the “positive flag Dressian” to consist of

the elements µ = (µ1, . . . , µk) ∈ FlDrr;n whose constituents µi are each in the strictly positive Dressian.

In our language, this is equal to considering the points of

⋂

f ∈
⋃k

i=1 Pri ,ri ;n

V
g0
trop( f ) ∩

⋂

f ∈
⋃

ri <r j
Pri ,r j ;n

Vtrop( f )

that have no ∞ coordinates. In a similar vein, we could consider defining the “nonnegative flag Dressian”

to be the elements of the flag Dressian whose constituents are in the nonnegative Dressian. This gives a

strictly larger set than our definition of the nonnegative flag Dressian, and has the shortcoming that the

equivalence of (a) and (b) in Theorem A would no longer hold; see Example 4.4.

We record a useful equivalent description of the (nonnegative) tropicalization of a partial flag variety

using Puiseux series. Recall the notion of the tropical semifield from Definition 1.3.

Definition 3.5. Let C = C{{t}} be the field of Puiseux series with coefficients in C, with the usual valuation

map val : C → T. Concretely, for f ̸= 0, val( f ) is the exponent of the initial term of f , and val(0) = ∞.

Let

C>0 = { f ∈ C \ {0} : the initial coefficient of f is real and positive} and Cg0 = C>0 ∪ {0}.

For a point p ∈ Flr;n(C) ¦
∏k

i=1 P(C
([n]

ri
)
), applying the valuation val : C → T coordinate-wise to

the Plücker coordinates gives a point val(p) ∈
∏k

i=1 P(T
([n]

ri
)
). Noting that val(C) = Q ∪ {∞} ¢ T, we

say that a point in
∏k

i=1 P(T
([n]

ri
)
) has rational coordinates if it is a point in

∏k
i=1 P((Q ∪ {∞})

([n]
ri
)
).

Let Flr;n(Cg0) be the subset of Flr;n(C) consisting of points with all coordinates in Cg0, i.e., the points

p ∈ Flr;n(C) ¦
∏k

i=1 P(C
([n]

ri
)
) that have a representative in

∏k
i=1 C

([n]
ri
)

g0 .

Proposition 3.6. The set {val(p) : p ∈Flr;n(C)} equals the set of points in TrFlr;n with rational coordinates.

Likewise, the set {val(p) : p ∈ Flr;n(Cg0)} equals the set of points in TrFl
g0
r;n with rational coordinates.

Moreover, we have

TrFlr;n = the closure of {val(p) : p ∈ Flr;n(C)} in

k∏

i=1

P(T
([n]

ri
)
) and

TrFl
g0
r;n = the closure of {val(p) : p ∈ Flr;n(Cg0)} in

k∏

i=1

P(T
([n]

ri
)
).



1344 Jonathan Boretsky, Christopher Eur and Lauren Williams

Proof. The first equality is known as the (extended) fundamental theorem of tropical geometry [Maclagan

and Sturmfels 2015, Theorems 3.2.3 and 6.2.15]. The second equality is the analogue for nonnegative

tropicalizations, established in [Speyer and Williams 2005, Proposition 2.2]. □

Remark 3.7. The need to restrict to rational coordinates and the need to take the closure in Proposition 3.6

can be removed if we let C be the Maltsev–Neumann ring C((R)) (see [Poonen 1993, Section 3]) which

satisfies val(C) = T; see also [Markwig 2010].

Let us also record an equivalent description of the (nonnegative) flag Dressian when r is a sequence of

consecutive integers. We need the following definition. As is customary in matroid theory, we write Si j

for the union S ∪ {i, j} of subsets S and {i, j} of [n].

Definition 3.8. The set P
(3)

r,r;n of three-term Grassmann–Plücker relations (of type (r; n)) is the subset

of Pr,r;n consisting of polynomials of the form

xSi j xSkℓ − xSik xSjℓ + xSiℓxSjk

for a subset S ¦ [n] of cardinality r −2 and a subset {i < j < k < ℓ} ¦ [n] disjoint from S. Similarly, the

set P
(3)

r,r+1;n of three-term incidence–Plücker relations (of type (r, r +1)) is the subset of Pr,r;n consisting

of polynomials of the form

xSi xSjk − xSj xSik + xSk xSi j

for a subset S ¦ [n] of cardinality r − 1 and a subset {i < j < k} ¦ [n] disjoint from S.

Let P
(3)

r;n be the union of the three-term Grassmann–Plücker and three-term incidence-Plücker relations,

which we refer to as the three-term Plücker relations.

Proposition 3.9. Suppose r = (r1 < · · · < rk) consists of consecutive integers. Then a point µ =

(µ1, . . . , µk) ∈
∏k

i=1 P(T
([n]

ri
)
) is in the (nonnegative) flag Dressian if and only if its support µ =

(µ1, . . . , µk) is a flag matroid and µ satisfies the (nonnegative-)tropical three-term Plücker relations.

More explicitly, we have

FlDrr;n =

{
µ ∈

k∏

i=1

P(T
([n]

ri
)
)

∣∣∣ µ is a flag matroid and µ ∈
⋂

f ∈P
(3)

r;n

Vtrop( f )

}
, and

FlDr
g0
r;n =

{
µ ∈

k∏

i=1

P(T
([n]

ri
)
)

∣∣∣ µ is a flag matroid and µ ∈
⋂

f ∈P
(3)

r;n

V
g0
trop( f )

}
.

Proof. We will use the language and results from the study of matroids over hyperfields. See [Baker

and Bowler 2019] for hyperfields and relation to matroid theory, and see [Gunn 2019, Section 2.3] for a

description of the signed tropical hyperfield TR, for which we note the following fact: The underlying set

of TR is (R×{+, −})∪{∞}, so given c ∈ T, one can identify it with the element (c, +) ∈ R×{+, −} of

TR if c < ∞ and ∞ otherwise.



Polyhedral and tropical geometry of flag positroids 1345

In the language of hyperfields, for a homogeneous polynomial f in m variables and a hyperfield F,

one has the notion of the “hypersurface of f over F,” which is a subset VF( f ) of P(Fm). When F is

the tropical hyperfield T, this coincides with Vtrop( f ) in Definition 3.1. When F is the signed tropical

hyperfield TR, a point w ∈ Tm , when considered as a point of TRm , is in VTR( f ) if and only if it is in

V
g0
trop( f ). Thus, in the language of flag matroids over hyperfields [Jarra and Lorscheid 2024], the flag

Dressian is the partial flag variety Flr;n(T) over T, and the nonnegative flag Dressian is the subset of the

partial flag variety Flr;n(TR) over TR consisting of points that come from T.

Now, both the tropical hyperfield and the signed tropical hyperfield are perfect hyperfields because

they are doubly distributive [Baker and Bowler 2019, Corollary 3.45]. Our proposition then follows from

[Jarra and Lorscheid 2024, Theorem 2.16 and Corollary 2.24], which together state the following: When

r consists of consecutive integers, for a perfect hyperfield F, a point p ∈
∏k

i=1 P(F
([n]

ri
)
) is in the partial

flag variety Flr;n(F) over F if and only if the support of p is a flag matroid and p satisfies the three-term

Plücker relations over F. □

For completeness, we include the proof of the following fact.

Lemma 3.10. The signed tropical hyperfield TR is doubly distributive. That is, for any x, y, z, w ∈ TR,

one has an equality of sets (x ⊞ y) · (z ⊞w) = xz ⊞ xw⊞ yz ⊞ yw.

Proof. If any one of the four x, y, z, w is ∞, then the desired equality is the usual distributivity of the

signed tropical hyperfield. Thus, we now assume that all four elements are in R × {+, −}, and write

x = (xR, xS) ∈ R × {+, −} and similarly for y, z, w. If xR > yR, then xzR > yzR and xwR > ywR, so

the equality follows again from the usual distributivity. So we now assume that all four elements have

the same value in R, and the equality then follows from the fact that the signed hyperfield S is doubly

distributive. □

Remark 3.11. Even when r does not consist of consecutive integers, [Jarra and Lorscheid 2024, The-

orem 2.16] implies that the flag Dressian and the nonnegative flag Dressian are carved out by fewer

polynomials than Pr;n in the following way: Denoting by

P
ad j

r;n =

k⋃

i=1

Pri ,ri ;n ∪

k−1⋃

i=1

Pri ,ri+1;n,

one has

FlDrr;n =
⋂

f ∈P
ad j

r;n

Vtrop( f ) and FlDr
g0
r;n =

⋂

f ∈P
ad j

r;n

V
g0
trop( f ).

This generalizes the fact that a sequence of matroids (M1, . . . , Mk) is a flag matroid if and only if

(Mi , Mi+1) is a flag matroid for all i = 1, . . . , k − 1 [Borovik et al. 2003, Theorems 1.7.1 and 1.11.1].

The following corollary of Proposition 3.9 is often useful in computation. It states that the nonnegative

tropical flag Dressian is in some sense “convex” inside the tropical flag Dressian.
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Corollary 3.12. Suppose that r = (r1 < · · · < rk) consists of consecutive integers, and suppose we

have points µ1, . . . ,µℓ ∈
∏k

i T
([n]

ri
)

that are in FlDr
g0
r;n . Then, if a nonnegative linear combination

c1µ1 + · · · + cℓµℓ is in FlDrr;n , it is in FlDr
g0
r;n .

Proof. We make the following general observation: Suppose f = c³x³ − c´ x´ + cµ xµ is a three-term

polynomial in R[x1, . . . , xm] with c³, c´, cµ positive. Then an element u ∈ Tm satisfies the positive-

tropical relation of f if and only if ´ • u = min{³ • u, µ • u}. Hence, if u1, . . . , uℓ ∈ Tm each satisfy this

relation, then a nonnegative linear combination of them can satisfy the tropical relation of f only if the

term at ´ achieves the minimum, that is, only if the positive-tropical relation is satisfied. The corollary

now follows from this general observation and Proposition 3.9. □

3.2. Equivalence of (a) and (b) in Theorem A. Let r be a sequence of consecutive integers (a, . . . , b) for

some 1 f a f b f n. We will show that TrFl
g0
r;n = FlDr

g0
r;n . The inclusion TrFl

g0
r;n ¦ FlDr

g0
r;n is immediate

from Definition 3.3. We will deduce TrFl
g0
r;n § FlDr

g0
r;n by utilizing the two known cases of the equality

TrFl
g0
r;n = FlDr

g0
r;n — when r = (r) and when r = (1, 2, . . . , n).

We start by recalling that tropicalization behaves well on subtraction-free rational maps.

Definition 3.13. Let f =
∑

a∈A caxa ∈ R[x1, . . . , xm] be a real polynomial, where A is a finite subset of

Z
m
g0 and 0 ̸= ca ∈ R. We define the tropicalization Trop( f ) : Rm → R to be the piecewise-linear map

w 7→ mina∈A(a • w), where as before, a • w = a1w1 + · · · + amwm .

Note that Trop( f1 f2) = Trop( f1)+Trop( f2). Moreover, if f1 and f2 are two polynomials with positive

coefficients, and a1, a2 ∈ R>0, then Trop(a1 f1 + a2 f2) = min(Trop( f1), Trop( f2)). These facts imply

the following simple lemma, which appears as [Rietsch and Williams 2019, Lemma 11.5]; see [Speyer

and Williams 2005, Proposition 2.5] and [Pachter and Sturmfels 2004] for closely related statements.

Lemma 3.14. Let f = ( f1, . . . , fn) : Cm → Cn be a rational map defined by polynomials f1, . . . , fn

with positive coefficients (or more generally by subtraction-free rational expressions). Let (x1, . . . , xm) ∈

(Cg0)
m , such that f (x1, . . . , xm) = (y1, . . . , yn). Then

(Trop( f ))(val(x1), . . . , val(xm)) = (val(y1), . . . , val(yn)).

The next result states that we can extend points in the nonnegative Dressian to points in the nonnegative

two-step flag Dressian.

Proposition 3.15. Given µd ∈ Dr
g0
d;n with rational coordinates, there exists µd+1 ∈ Dr

g0
d+1;n such that

(µd , µd+1) ∈ FlDr
g0
d,d+1;n . Similarly, there exists µd−1 ∈ Dr

g0
d−1;n such that (µd−1, µd) ∈ FlDr

g0
d−1,d;n .

The proof of Proposition 3.15 requires the following refined results about Rietsch’s cell decomposition

of the nonnegative flag variety.
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Theorem 3.16. The nonnegative flag variety has a cell decomposition into positive Richardsons

Fln(Cg0) =
⊔

vfw

Rv,w(C>0)

where each cell Rv,w(C>0) can be parametrized using a map

Æv,w : (C>0)
ℓ(w)−ℓ(v) → Rv,w(C>0).

Moreover, this parametrization can be expressed as an embedding into projective space (e.g., using the

flag minors) using polynomials in the parameters with positive coefficients.

Proof. The first statement comes from [Marsh and Rietsch 2004, Theorem 11.3]; Marsh and Rietsch

were working over R and R>0 but the same proof holds over Puiseux series. The statement that the

parametrization can be expressed as an embedding into projective space using positive polynomials comes

from [Rietsch and Williams 2008, Proposition 5.1]. □

Corollary 3.17. Each m-dimensional positroid cell SB(C>0) in the nonnegative Grassmannian Grd,n(Cg0)

is the projection Ãd(Rv,w(C>0)) of some positive Richardson of dimension m = ℓ(w)− ℓ(v) in Fln(Cg0),

so we get a subtraction-free rational map

Ãd ◦ Æv,w : (C>0)
m → Rv,w(C>0) → SB(C>0).

Proof. That fact that each positroid cell is the projection of a positive Richardson was discussed in

Section 2.1. The result now follows from Theorem 3.16. □

Proof of Proposition 3.15. Using [Arkani-Hamed et al. 2021b, Theorem 9.2], the fact that µd ∈ Dr
g0
d;n

with rational coordinates implies that µd = val({1I (Vd)}) for some subspace Vd ∈ Grd,n(Cg0), and hence

Vd lies in some positroid cell SB(C>0) over Puiseux series.

By Corollary 3.17, Vd is the projection of a point (V1, . . . , Vn) of Fln(Cg0), which in turn is the image

of a point (x1, . . . , xm) ∈ (C>0)
m , and the Plücker coordinates 1I (V j ) of each V j are expressed as positive

polynomials 1I (x1, . . . , xm) in the parameters x1, . . . , xm .

In particular, we have subtraction-free maps

Ãd ◦ Æv,w : (C>0)
m → Fln(Cg0) → Grd,n(Cg0)

taking

(x1, . . . , xm) 7→ {1I (x1, . . . , xm) | I ¢ [n]} 7→
{
1I (x1, . . . , xm)

∣∣ I ∈
( [n]

d

)}
.

The fact that the maps Æv,w and Ãd are subtraction-free implies by Lemma 3.14 that we can tropicalize

them, obtaining maps

Trop(Ãd ◦ Æv,w) : R
m → TrFlg0

n → TrGr
g0
d,n

taking

(val(x1), . . . , val(xm)) 7→ {val(1I (x1, . . . , xm)) | I ¢ [n]} 7→
{

val(1I (x1, . . . , xm)) | I ∈
( [n]

d

)}
.
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We now let µd+1 =
{
val(1I (Vd+1)) | I ∈

(
[n]

d+1

)}
and µd−1 =

{
val(1I (Vd−1)) | I ∈

(
[n]

d−1

)}
. By

construction we have that all the three-term (incidence) Plücker relations hold for (µd , µd+1), and

similarly for (µd−1, µd). Therefore (µd , µd+1) ∈ FlDr
g0
d,d+1;n and (µd−1, µd) ∈ FlDr

g0
d−1,d;n . □

The following consequence of Proposition 3.15 is very useful.

Corollary 3.18. Let a′ f a f b f b′ be positive integers, and let r = (a, a + 1, . . . , b) and r ′ =

(a′, a′ + 1, . . . , b′) be sequences of consecutive integers. Then any point (µa, . . . , µb) ∈ FlDr
g0
r;n with

rational coordinates can be extended to a point (µa′, µa′+1, . . . , µa, . . . , µb, . . . , µb′) ∈ FlDr
g0
r ′;n .

Proof. We start with µ = (µa, µa+1, . . . , µb) ∈ FlDr
g0
r;n . We take µb and repeatedly use Proposition 3.15

to construct µb+1, then µb+2, . . . , µb′ . Similarly we take µa and use Proposition 3.15 to construct

µa−1, µa−2, . . . , µa′ . Now by construction (µa′, µa′+1, . . . , µa, . . . , µb, . . . , µb′) satisfies:

• µi ∈ Dr
g0
i;n for i = a′, a′ + 1, . . . , b′.

• All three-term incidence-Plücker relations hold (because the three-term incidence-Plücker relations

occur only in consecutive ranks).

Therefore (µa′, µa′+1, . . . , µb′) ∈ FlDr
g0
r ′;n by Proposition 3.9. □

Theorem 3.19. Let r = (a, a + 1, . . . , b) be a sequence of consecutive integers, and let µ ∈ FlDr
g0
r;n with

rational coordinates. Then µ ∈ TrFl
g0
r;n .

Proof. We start with µ= (µa, µa+1, . . . , µb)∈ FlDr
g0
r;n and use Corollary 3.18 to construct (µ1, . . . , µn)∈

FlDrg0
n . Now [Boretsky 2022, Theorem 5.21trop] states that FlDrg0

n = TrFlg0
n . Hence, we have

(µ1, . . . , µn) ∈ TrFlg0
n , so (µa, µa+1, . . . , µb) ∈ TrFlg0

r,n . □

Proof of (a) ⇐⇒ (b) in Theorem A. We only need show that (b)=⇒(a), i.e., that TrFl
g0
r;n § FlDr

g0
r;n , since

the other direction is trivial. But this follows from Theorem 3.19 because the points in FlDr
g0
r;n with

rational coordinates are dense in FlDr
g0
r;n , and TrFl

g0
r;n is closed. □

Remark 3.20. Note that our method of proof crucially used the fact that r is a sequence of consecutive

integers: we used Proposition 3.15 to fill in the ranks from b through n and from a down to 1. But if

say we were considering r = {a, b} with b − a > 1 and µ = (µa, µb), we could not guarantee using

Proposition 3.15 that we could construct µb−1, µb−2, . . . , µa+1 in a way that is consistent with µa .

Remark 3.21. Recall from Theorem 2.3 that if r is a sequence of consecutive integers, the two notions of

the positive/nonnegative part of the flag variety (see Definition 2.2) coincide. The method used to prove

the equivalence of (a) and (b) in Theorem A can be applied in a nontropical context to prove Theorem 2.3

in an alternate way. We start by noting that the result holds when r = (a), which is to say, for the

nonnegative Grassmannian [Talaska and Williams 2013, Corollary 1.2] and also when r = (1, 2, . . . , n),

which is to say, for the nonnegative complete flag variety [Boretsky 2022, Theorem 5.21]. To prove

the result for r = (a, a + 1, . . . , b), we start with a flag V• = (Va, . . . , Vb) in ranks r whose Plücker

coordinates are all nonnegative, so that V• is Plücker nonnegative. As in Proposition 3.15, we can use

the r = (a) case to argue that the flag can be extended to lower ranks in such a way that all the Plücker
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coordinates are nonnegative. Dually, we can extend to higher ranks from the r = (b) case. This yields a

complete flag (V1, . . . , Vn) with all nonnegative Plücker coordinates. We can then apply the result in the

complete flag case to conclude that (V1, . . . , Vn) lies in Flg0
n . Thus, V• is a projection of the nonnegative

complete flag (V1, . . . , Vn) and itself lies in Fl
g0
r;n , which is to say, V• is Lusztig nonnegative.

The strictly positive tropicalization of a partial flag variety TrFl>0
r;n is the subset of TrFl

g0
r;n consisting

of points whose coordinates are never ∞. Define similarly the strictly positive flag Dressian FlDr>0
r;n .

The weaker version of Theorem 3.19 stating that TrFl>0
n = FlDr>0

n was established in [Joswig et al.

2023, Lemma 19] as follows. One starts by noting that if µ ∈ Dr
g0
r+m;n+m , then the sequence of minors

(µr , . . . , µr+m) where µr+i =µ\{n+1, . . . , n+i}/{n+i+1, . . . , n+m} is a point in FlDr
g0
r,...,r+m;n . Then,

the crucial step is a construction in discrete convex analysis [Murota and Shioura 2018, Proposition 2]

that shows that every element of FlDr>0
n arises from an element of Dr>0

n;2n in this way. One then appeals

to Gr>0
r;n = Dr>0

r;n established in [Speyer and Williams 2021].

Example 3.22 shows that the above argument does not work if one replaces “strictly positive” with

“nonnegative.” In particular, the crucial step fails: that is, not every element of FlDrg0
n arises from an

element of Dr
g0
n;2n in such a way.

Example 3.22. Let (M1, M2, M3) be matroids on [3] whose sets of bases are ({1, 3}, {13}, {123}). The

matrix 


1 0 1

0 0 1

0 −1 0




shows that it is a flag positroid. However, we claim that there is no positroid M of rank 3 on [6] such that

M1 = M \4/56, M2 = M \45/6, and M3 = M \ 456. Since all three cases involve deletion by 4, if we

replace M \4 by M ′, and decrease each of 5, 6 by 1, then we are claiming that there is no positroid M ′ of

rank 3 on [5] such that

M1 = M ′/45, M2 = M ′ \4/5, and M3 = M ′ \ 45. (4)

From M1 = M ′/45 and M2 = M ′ \4/5, we have that M ′/5 has bases {14, 34, 13}, and similarly, we have

M ′ \ 4 has bases {135, 123}. Hence, the set of bases of M ′ contains {123, 135, 145, 345}, and does not

contain {125, 235, 245}. By considering the Plücker relation

p134 p235 = p123 p345 + p135 p234,

we see that no positroid satisfies these properties.

4. Positively oriented flag matroids

In this section we explain the relationship between the nonnegative flag Dressian and positively oriented

flag matroids, and we apply our previous results to flag matroids. In particular, we prove Corollary 1.5,

which says that every positively oriented flag matroid of consecutive ranks is realizable. We also prove
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Corollary 4.8, which says that a positively oriented flag matroid of consecutive ranks a, . . . , b can be

extended to ranks a′, . . . , b′ (for a′ f a f a f b).

4.1. Oriented matroids and flag matroids. We give here a brief review of oriented matroids in terms

of Plücker relations. Let S = {−1, 0, 1} be the hyperfield of signs. For a polynomial f =
∑

a∈A caxa ∈

R[x1, . . . , xm], we say that an element Ç ∈ Sm is in the null set of f if the set {sign(ca)Ç
a}a∈A is either

{0} or contains {−1, 1}.

Definition 4.1. An oriented matroid of rank r on [n] is a point Ç ∈ S([n]
r ), called a chirotope, such that

Ç is in the null set of f for every f ∈ Pr,r;n . Similarly, an oriented flag matroid of ranks r is a point

χ = (Ç1, . . . , Çk) ∈
∏k

i=1 S
([n]

ri
)

such that χ is in the null set of f for every f ∈ Pr;n .

While these definitions may seem different from those in the standard reference [Björner et al. 1999]

on oriented matroids, Definition 4.1 is equivalent to [Björner et al. 1999, Definition 3.5.3] by [Baker and

Bowler 2019, Example 3.33]. The definition of oriented flag matroid here is equivalent to the definition

of a sequence of oriented matroid quotients [Björner et al. 1999, Definition 7.7.2] by [Jarra and Lorscheid

2024, Example above Theorem D].

Definition 4.2. A positively oriented matroid is an oriented matroid Ç such that Ç only takes values 0

or 1. Similarly, we define a positively oriented flag matroid to be an oriented flag matroid χ such that χ

only takes values 0 or 1.

A positroid M defines a positively oriented matroid Ç = ÇM where Ç takes value 1 on its bases and

0 otherwise. da Silva [1987] conjectured that every positively oriented matroid arises in this way; this

conjecture was subsequently proved in [Ardila et al. 2017] and then [Speyer and Williams 2021].

Theorem 4.3 [Ardila et al. 2017]. Every positively oriented matroid Ç is realizable, i.e., Ç has the form

ÇM for some positroid M.

By Theorem 4.3, each positively oriented flag matroid is a sequence of positroids which is also an

oriented flag matroid.

In this section we will prove Corollary 1.5, which generalizes Theorem 4.3, and says that every

positively oriented flag matroid (Ç1, . . . , Çk) of consecutive ranks r1 < · · · < rk can be realized by a

flag positroid. But before we prove it, let us give an example that shows that imposing the oriented flag

matroid condition is stronger than imposing that we have a realizable flag matroid whose consistent

matroids are positroids.

Example 4.4. We give an example of a realizable flag matroid that has positroids as its constituent

matroids but is not a flag positroid. This example also appeared in [Joswig et al. 2023, Example 5] and

[Bloch and Karp 2023, Example 6]. Let (M, M ′) be matroids of ranks 1 and 2 on [3] whose sets of bases

are {1, 3} and {12, 13, 23}, respectively. Both are positroids. We can realize (M, M ′) as a flag matroid

using the matrix [
a 0 b

c d e

]
,
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where the nonvanishing minors a, b, ad, −bd, ae − bc are nonzero. In order to realize (M, M ′) as a

flag positroid, we need to choose real numbers a, b, c, d, e such that all these minors are strictly positive.

However, a > 0 and ad > 0 implies d > 0, while b > 0 and −bd > 0 implies d < 0.

This example is consistent with Corollary 1.5 because (M, M ′), when considered as a sequence of

positively oriented matroids, is not an oriented flag matroid.

4.2. From the nonnegative flag Dressian to positively oriented flag matroids. We start with the following

simple observation. While the proof is very simple, we label it a “theorem” to emphasize its importance.

Theorem 4.5. The set of positively oriented flag matroids of ranks r can be identified with the set of points

of the nonnegative flag Dressian FlDr
g0
r;n whose coordinates are all either 0 or ∞.

Proof. Given a point Ç = (Ç1, . . . , Çm) ∈ {0, 1}m ¢ Sm ,2 we define t (Ç) = (t1, . . . , tm) ∈ Tm by setting

ti = 0 if Çi = 1 and ti = ∞ if Çi = 0. Then, we observe that Ç is in the null set of a polynomial

f ∈ R[x1, . . . , xm] if and only if the image of t (Ç) in P(Tm) is a point in V
g0
trop( f ). Therefore, each

positively oriented flag matroid χ can be identified with the element t (χ) in the nonnegative flag Dressian

FlDr
g0
r;n . □

We now prove that every positively oriented flag matroid χ = (Ç1, . . . , Çk) of consecutive ranks

r1 < · · · < rk is realizable.

Proof of Corollary 1.5. By the lemma, we may identify a positively oriented flag matroid χ as an element

t (χ) of the nonnegative flag Dressian. Because the ranks r are consecutive integers, the equivalence

(a)⇐⇒(b) of Theorem A implies that t (χ) is thus a point in TrFl
g0
r;n . Because t (χ) has rational coordinates

(all non-∞ coordinates are 0), Proposition 3.6 implies that t (χ) = val(p) for some p ∈
∏k

i=1 P(C
([n]

ri
)

g0 ).

Setting the parameter t in each Puisseux series of p to 0 now gives the realization of χ as a flag positroid.

□

As in Question 1.6, we do not know whether the corollary holds when r does not consist of consecutive

integers. The following example shows that one cannot reduce to the consecutive ranks case.

Example 4.6. We give an example of a flag positroid (M, M ′) on [4] of ranks (1, 3) such that there is no

flag positroid (M, M2, M ′) with rank of M2 equal to 2. Let the sets of bases of M and M ′ be {1, 2, 3, 4}

and {123, 234}, respectively. The matrix 


1 1 1 1

0 1 0 0

0 0 1 0




for example shows that (M, M ′) is a flag positroid. However, this flag positroid cannot be extended to a

flag positroid with consecutive ranks. To see this, note that any realization of (M, M ′) as a flag positroid,

2Note that (Ç1, . . . , Çm) is not a sequence of chirotopes in this proof, instead each Çi ∈ S.
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after row-reducing by the first row, is of the form




1 a b c

0 x y 0

0 z w 0




where a, b, c > 0 and xw − yz > 0. The minors of the matrix formed by the first two rows include

x, y, −cx, −cy, which cannot be all nonnegative since c > 0 and not both of x and y are zero.

Remark 4.7. Let us sketch an alternate proof of Corollary 1.5 that relies only on the weaker version of

(a)⇐⇒(b) in Theorem A that the strictly positive parts agree, i.e., that TrFl>0
r;n = FlDr>0

r;n . For a matroid

M of rank d, define ÄM ∈ R([n]
d ) by ÄM(S) = d − rkM(S) for S ∈

(
[n]
d

)
, where rkM is the rank function

of M . If M is a positively oriented matroid, then ÄM is a point in the positive Dressian Dr>0
d,n [Speyer

and Williams 2021, proof of Theorem 5.1]. One can use this to show that if M = (M1, . . . , Mk) is a

positively oriented flag matroid of consecutive ranks r , then the sequence ρ = (ÄM1
, . . . , ÄMk

) is a point

in FlDr>0
r;n . Since TrFl>0

r;n = FlDr>0
r;n and ρ has rational coordinates, Proposition 3.6 implies that there is a

point p ∈ Flr;n(Cg0) with val(p) = ρ. Consider the coordinate p(S) ∈ C of p at a subset S ∈
(
[n]
ri

)
. By

construction, the initial term of p(S) is ctq for some positive real c and a nonnegative integer q , where q

is zero exactly when S is a basis of Mi . Thus, setting the parameter t to 0 in the Puisseux series of p

gives a realization of M as a flag positroid.

We now use Theorem 4.5 to give a matroidal analogue of Corollary 3.18.

Corollary 4.8. Let a′ f a f b f b′ be positive integers, and let (Ma, Ma+1, . . . , Mb) be a positively

oriented flag matroid on [n] of consecutive ranks a, a + 1, . . . , b, that is, a sequence of positroids

Ma, . . . , Mb which is also an oriented flag matroid. Then we can extend it to a positively oriented flag

matroid (Ma′, Ma′+1, . . . , Ma, . . . , Mb, . . . , Mb′) of consecutive ranks a′, a′ + 1, . . . , b′.

Proof. As in Theorem 4.5, we view the positively oriented flag matroid (Ma, . . . , Mb) as a point of the

nonnegative flag Dressian (µa, . . . , µb) ∈ FlDr
g0
r;n whose coordinates are all either 0 or ∞. The desired

statement almost follows from Proposition 3.15: we just need to check that we can extend (µa, . . . , µb)

in a way which preserves the fact that coordinates are all either 0 or ∞. This is true, and we prove it by

following the proof of Proposition 3.15 and replacing all instances of the positive Puiseux series C>0 by

the positive Puiseux series with constant coefficients, that is, by R>0. Alternatively, we can use our result

that (Ma, . . . , Mb) is realizable by a flag positroid, and then argue as in Remark 3.21. □

5. Subdivisions of flag matroid polytopes

5.1. Flag Dressian and flag matroidal subdivisions. Consider a point µ= (µ1, . . . , µk)∈
∏k

i=1 P(T
([n]

ri
)
)

such that its support µ is a flag matroid. By construction, the vertices of the flag matroid polytope P(µ)

have the form eB1
+ · · · + eBk

where Bi is a basis of the matroid µi for each i = 1, . . . , k.
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Definition 5.1. We define Dµ to be the coherent subdivision of P(µ) induced by assigning each vertex

eB1
+ · · · + eBk

of P(µ) the weight µ1(B1) + · · · + µk(Bk). That is, the faces of Dµ correspond to the

faces of the lower convex hull of the set of points

{(eB1
+ · · · + eBk

, µ1(B1) + · · · +µk(Bk)) ∈ R
n × R : eB1

+ · · · + eBk
a vertex of P(µ)}.

The points of the flag Dressians are exactly the ones for which the subdivision Dµ consists of flag

matroid polytopes.

Theorem 5.2 [Brandt et al. 2021, Theorem A(a) and (c)]. A point µ ∈
∏k

i=1 P(T
([n]

ri
)
) is in the flag

Dressian FlDrr;n if and only if the all faces of the subdivision Dµ are flag matroid polytopes.

When r consists of consecutive integers (a, a + 1, . . . , b), the nonnegative analogue of this theorem

is the equivalence of (b) and (c) in Theorem A, which states that a point µ ∈
∏b

i=a P(T([n]
i )) is in the

nonnegative flag Dressian FlDr
g0
r;n if and only if all faces of the subdivision Dµ are flag positroid polytopes.

A different nonnegative analogue of Theorem 5.2 that holds for r not necessarily consecutive, but loses

the flag positroid property, can be found in Remark 5.6.

5.2. The proof of (b)=⇒(c)=⇒(d)=⇒(e) in Theorem A. We start by recording two observations. The first

is a well-known consequence of the greedy algorithm for matroids; see for instance [Ardila and Klivans

2006, Proposition 4.3]. For a matroid M on [n] and a vector v ∈ Rn , let face(P(M), v) be the face of the

matroid polytope P(M) that maximizes the standard pairing with v.

Proposition 5.3. Let M be a matroid on [n] and let S = (∅ ª S1 ª · · · ª Sℓ ª [n]) be a chain of

nonempty proper subsets of [n]. For a vector vS in the relative interior of the cone Rg0{eS1
, . . . , eSℓ

}, we

have

face(P(M), vS ) = P(MS ),

where MS = M |S1 · M |S2/S1 · M |S3/S2 · · · · · M/Sℓ is the direct sum of minors of M.

For M = (M1, . . . , Mk) a flag matroid, since P(M) is the Minkowski sum P(M1) + · · · + P(Mk), we

likewise have that face(P(M), vS ) = P(MS ) = P(MS

1 )+· · ·+ P(MS

k ), where MS = (MS

1 , . . . , MS

k ).

In particular, the face of a flag matroid polytope is a flag matroid polytope.

The second observation concerns the following operations that we will show preserve the nonnegative

flag Dressian. Recall that for w ∈ T([n]
r ), its support w is {S ∈

(
[n]
r

)
: wS ̸= ∞}:

• We consider a point w ∈ T([n]
r ) as a set of weights on the vertices {eS : S ∈ w} of P(w) ¢ Rn . Given

an affine-linear function ϕ : Rn → R and an element w ∈ T([n]
r ), we define

ϕw ∈ T([n]
r ) by (ϕw)(S) = ϕ(eS) + w(S) for S ∈

(
[n]

r

)
.

• For a point w ∈ T([n]
r ), denote by win ∈ T([n]

r ) its initial part, i.e.,

win(S) =

{
0 if w(S) = min

{
w(S′) : S′ ∈

(
[n]
r

)}
,

∞ otherwise.
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Proposition 5.4. Let r = (r1, . . . , rk) be a sequence of increasing integers in [n]. Suppose w =

(w1, . . . , wk) ∈ FlDr
g0
r;n . Then, the following hold:

(1) The support w is a positively oriented flag matroid. In particular, it is a flag positroid when

r = (r1, . . . , rk) consists of consecutive integers.

(2) We have ϕw = (ϕw1, . . . , ϕwk) ∈ FlDr
g0
r;n for any affine-linear functional ϕ on Rn .

(3) We have w
in = (win

1 , . . . , win
k ) ∈ FlDr

g0
r;n .

Proof. We may consider w as an element
∏k

i=1 P(T
([n]

ri
)
) by assigning the value 0 to a subset S if it is in

the support of w and ∞ otherwise. Then, we have w ∈ FlDr
g0
r;n because the terms in each of the tropical

Plücker relations that achieve the minimum when evaluated at w continue to do so when evaluated at w.

The statement (1) follows from Theorem 4.5 and Corollary 1.5

The support is unchanged by ϕ, so ϕw is a flag matroid. The statement (2) now follows because for

each of the positive-tropical Plücker relations, the operation ϕ preserves the terms at which the minimum

is achieved.

The support w
in is a flag matroid by Theorem 5.2 and because P(win) is a face in the subdivision

Dw of P(w). The statement (3) now follows because for each of the positive-tropical Plücker relations,

the operation in either preserves the terms at which the minimum is achieved or changes all the terms

involved to ∞. □

Remark 5.5. While it’s not needed here, we note that Proposition 5.4 is the “positive” analogue of

the following statement, which is proved similarly: If w ∈ FlDrr;n , then (1) w is a flag matroid, (2)

ϕw ∈ FlDrr;n , and (3) w
in ∈ FlDrr;n; see also [Brandt et al. 2021, Corollary 4.3.2] for related statements.

Proof of (b) =⇒ (c). Every face in the coherent subdivision is the initial one after an affine-linear

transformation. Hence, the implication follows from Proposition 5.4. □

Remark 5.6. One may modify the statement (c) to the following:

(c’) Every face in the coherent subdivision Dµ of P(µ) is the flag matroid polytope of a positively

oriented flag matroid.

Similar argument as above shows that (b)=⇒(c’) even when r doesn’t consist of consecutive integers.

One can also verify the converse (c’)=⇒(b) in this more general case as follows:

Suppose for contradiction (c’) but not (b) for some µ. Then Theorem 5.2 implies that µ is in the flag

Dressian, and thus the failure of (b) implies that there is a Plücker relation where the minimum occurs at

least twice but at the terms whose coefficients have the same sign. Proposition 5.4 implies that, replacing

µ by ϕµ for some ϕ if necessary, we may conclude that the same is true for that Plücker relation evaluated

at µ
in. But then µ

in, which arise as a face in the subdivision, is not a positively oriented flag matroid by

Theorem 4.5, contradicting (c’).

There is no equivalence of (c’) and (e) since three-term incidence relations exist only for consecutive

ranks.
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The implication (c)=⇒(d) is immediate.

Proof of (d) =⇒ (e). First, (d) implies that every edge of the subdivision Dµ of P(µ) is a flag matroid

polytope, i.e., it is parallel to ei − e j for some i ̸= j ∈ [n]. Hence the edges of P(µ) have the same

property, so µ is a flag matroid.

We start with the case a = b, where µ is just (µ). We need check the validity of the three-term

positive-tropical Grassmann–Plücker relations, say for an arbitrary choice of S ¢ [n] and {i < j < k <

ℓ} ¦ [n] \ S. Let S be a maximal chain S1 ª · · ·ª Sm of subsets of [n] with the property that Sa = S and

Sa+1 = S ∪ {i jkℓ} for some a ∈ [m]. Then, Proposition 5.3 implies that for a vector vS in the relative

interior of the cone Rg0{eS1
, . . . , eSm

}, we have

face(P(µ), vS ) = P(µS ) ≃ P(µ|S ∪ i jkℓ/S).

For the second identification, we have used that

• the matroid polytope of a direct sum of matroids is the product of the matroid polytopes;

• with the exception of (Sa, Sa+1) = (S, S ∪ i jkℓ), all other minors of the matroid µ corresponding to

(Sb, Sb+1) in the chain have their polytopes being a point because |Sb+1 \ Sb| = 1.

Let r̂ be the rank of the matroid minor µ|S∪i jkℓ/S. For a basis B̂ of µ|S∪i jkℓ/S, let B be the basis of µ

such that the vertex eB of P(µ) corresponds to the vertex eB̂ of P(µ|S ∪ i jkℓ/S) under the identification

above. Identifying [4] = {1 < 2 < 3 < 4} with {i < j < k < ℓ}, we may thus consider “restricting” µ to

the face P(µ|S ∪ i jkℓ/S) to obtain an element µ̂ = µ|S ∪ i jkℓ/S ∈ Dr̂r;4 defined by

µ̂(B̃) =

{
µ(B) if B̂ a basis of µ|S ∪ i jkℓ/S,

∞ otherwise,
for B̂ ∈

( [4]

r̂

)
.

It is straightforward to check that for points in a Dressian on four elements, the three-term positive-tropical

Grassmann–Plücker relations are satisfied if and only if every 2-dimensional faces in the corresponding

subdivision are positroid polytopes. Since the faces of the subdivision Dµ̂ of P(µ|S ∪ i jkℓ/S) are

a subset of the faces of the subdivision Dµ, we have that µ satisfies the three-term tropical-positive

Grassmann–Plücker relation involving i jkℓ and S.

Let us now treat the case a < b, whose proof is similar. We check the validity of the three-term positive-

tropical incidence-Plücker relations, say for an arbitrary choice of S ¢ [n] and {i < j < k} ¦ [n] \ S. Let

S be a maximal chain S1 ª · · · ª Sm of subsets of [n] with the property that Sa = S and Sa+1 = S ∪ i jk

for some a ∈ [m]. Then, Proposition 5.3 implies that for a vector vS in the relative interior of the cone

Rg0{eS1
, . . . , eSm

}, we have

face(P(µ), vS ) = P(µS ) ≃ P(µ|S ∪ i jk/S).

For the second identification, we have used that

• the matroid polytope of a direct sum of matroids is the product of the matroid polytopes;

• with the exception of (Sa, Sa+1) = (S, S ∪ i jk), all other minors of the constituent matroids of µ

corresponding to (Sb, Sb+1) in the chain have their polytopes being a point because |Sb+1 \ Sb| = 1.
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Note that the polytope P(µ|S ∪ i jk/S) is at most 2-dimensional since it is a flag matroid polytope on

3 elements. Similarly to the a = b case, we may “restrict” µ to the face P(µ|S ∪ i jk/S) to obtain an

element µ̂=µ|S∪i jk/S ∈ FlDr3, it is straightforward to verify that the unique three-term positive-tropical

incidence relation involving S and i jk is satisfied if and only if the subdivision Dµ̂ consists only of flag

positroid polytopes. Since the faces of the subdivision Dµ̂ are a subset of the faces of the subdivision Dµ,

we have that µ satisfies the three-term incidence relation involving S and {i, j, k}. □

6. Three-term incidence relations

6.1. The proof of (e)=⇒(b) in Theorem A. In the case that a = b in Theorem A, the implication (e)=⇒(b)

is the content of Proposition 3.9.

To prove the implication when a < b, we will show the following key theorem.

Theorem 6.1. Suppose µ = (µ1, µ2) ∈ P(T([n]
r )) × P(T( [n]

r+1)) satisfies every three-term positive-tropical

incidence relation. If the support µ is a flag matroid, then µ ∈ FlDr
g0
r,r+1;n .

Proof of (e)=⇒ (b). Since r consists of consecutive integers, Theorem 6.1 implies that if µ is a flag matroid

and µ satisfies every three-term positive-tropical incidence relation, then µ also satisfies every three-term

positive-tropical Grassmann–Plücker relation. Hence µ is an element of FlDr
g0
r;n by Proposition 3.9. □

The proof of Theorem 6.1 relies on the following technical lemma.

Lemma 6.2. Suppose w ∈ T([5]
2 ) satisfies all three-term positive-tropical Grassmann–Plücker relations

involving the element 5. Suppose moreover that wi5 < ∞ for some i = 1, 2, 3, 4. Then w ∈ Dr
g0
2;5, i.e., w

also satisfies the three-term positive-tropical Grassmann–Plücker relation not involving 5.

Proof. The idea of the proof of Lemma 6.2 is that in the usual Grassmannian Gr2,5, if we can invert

certain Plücker coordinates, then we can write the three-term Grassmann–Plücker relation not involving 5

as a linear combination of three of the other three-term Grassmann–Plücker relations. In particular, we

have the following identity, which is easy to verify.

Lemma 6.3. If p25 ̸= 0 (respectively, p35 ̸= 0) then p13 p24 − p12 p34 − p14 p23 can be written in the

following ways.

p13 p24−p12 p34−p14 p23

= (p13 p25−p12 p35−p15 p23)
p24

p25

−(p14 p25−p12 p45−p15 p24)
p23

p25

+(p24 p35−p23 p45−p25 p34)
p12

p25

= (p13 p25−p12 p35−p15 p23)
p34

p35

−(p14 p35−p13 p45−p15 p34)
p23

p35

+(p24 p35−p23 p45−p25 p34)
p13

p35

.

We next note that we can interpret the first (respectively, second) expression in Lemma 6.3 tropically

as long as w25 < ∞ (respectively, w35 < ∞).

Case 1: w25 < ∞. Then we can make sense of the terms on the right hand side of the first expression

of Lemma 6.3 tropically. Since the three-term positive tropical Plücker relations involving 5 hold, and



Polyhedral and tropical geometry of flag positroids 1357

w25 < ∞, we have

w13 + w25 + w24 − w25 = min(w12 + w35 + w24 − w25, w15 + w23 + w24 − w25),

w14 + w25 + w23 − w25 = min(w12 + w45 + w23 − w25, w15 + w24 + w23 − w25),

w24 + w35 + w12 − w25 = min(w23 + w45 + w12 − w25, w25 + w34 + w12 − w25).

We now simplify these expressions and underline terms that agree, obtaining

w13 + w24 = min(w12 + w35 + w24 − w25, w15 + w23 + w24 − w25), (5)

w14 + w23 = min(w12 + w45 + w23 − w25
::::::::::::::::::::

, w15 + w24 + w23 − w25), (6)

w24 + w35 + w12 − w25 = min(w23 + w45 + w12 − w25
::::::::::::::::::::

, w34 + w12). (7)

There are now eight cases to consider, based on whether the minimum is achieved by the first or second

term in each of (5), (6), (7). All cases are straightforward. If the minimum is achieved by the first term in

(5) and the second term in (7), then we find that w13 + w24 = w12 + w34 f w14 + w23. In the other six

cases, we find that w13 + w24 = w14 + w23 f w12 + w34. Therefore the positive tropical Plücker relation

involving 1, 2, 3, 4 is satisfied.

Case 2: w35 < ∞. The argument for Case 2 is the same as for Case 1, except we use the tropicalization

of the second identity in Lemma 6.3.

Case 3: w25 = w35 = ∞. In this case, since 5 is not a loop, either w15 < ∞ or w45 < ∞. Suppose that

w15 < ∞. Then the positive tropical Plücker relations

• w13 + w25 = min(w12 + w35, w15 + w23),

• w14 + w25 = min(w12 + w45, w15 + w24),

• w14 + w35 = min(w13 + w45, w15 + w34),

imply that w23 = w24 = w34 = ∞, and hence the positive tropical Plücker relation involving 1, 2, 3, 4 is

satisfied. The case where w45 < ∞ is similar. □

For w ∈ T([n]
r ), define its dual w§ ∈ T( [n]

n−r) by w§(I ) = w([n] \ I ). It is straightforward to verify that

w is an element of Drr;n (resp. Dr
g0
r;n) if and only if w§ is an element of Drn−r;n (resp. Dr

g0
n−r;n). This

matroid duality gives the following dual formulation of Lemma 6.2.

Corollary 6.4. Suppose w ∈ T([5]
3 ) satisfies all three-term positive-tropical Grassmann–Plücker relations

that contain a variable indexed by S ∈
(
[5]
3

)
with 5 /∈ S. If w is a matroid such that 5 is not a coloop, then

w ∈ Dr
g0
3;5, i.e., w also satisfies the three-term positive-tropical Grassmann–Plücker relation whose every

variable contains 5 in its indexing subset.

We are now ready to prove Theorem 6.1. We expect that the proof of Theorem 6.1 here adapts well to

give an analogous statement for arbitrary perfect hyperfields.
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Proof of Theorem 6.1. Given such µ = (µ1, µ2) ∈ P(T([n]
r )) × P(T( [n]

r+1)), define µ̃ ∈ P(T([n+1]
r+1 )) by

µ̃(S) =

{
µ1(S \ (n + 1)) if (n + 1) ∈ S,

µ2(S) otherwise.

Because µ is a flag matroid, we have that µ̃ is a matroid, with the element (n + 1) that is neither a loop

nor a coloop. We observe that µ̃ ∈ Dr
g0
r+1;n+1 if and only if µ ∈ FlDr

g0
r,r+1;n because the validity of the

three-term positive-tropical Grassmann–Plücker relations for µ̃ is equivalent to the validity of both the

three-term positive-tropical incidence relations and the three-term positive-tropical Grassmann–Plücker

relations for µ.

We need to check that µ̃ satisfies every three-term positive-tropical Grassmann–Plücker relation of

type (r + 1; n + 1). Consider the three-term relation associated to the subset S ¦ [n + 1] of cardinality

r − 1 and {i < j < k < ℓ} ¦ [n + 1] disjoint from S. We have three cases:

• ℓ = n + 1. In this case, erasing the index n + 1 in the expression for the corresponding three-term

Grassmann–Plücker relation yields a three-term incidence relation of type (r, r + 1; n), which is

satisfied by our assumption on µ.

• (n+1)∈ S. In this case, considering the minor µ̃|S∪i jkℓ/(S\(n+1)) and then applying Corollary 6.4

implies that the three-term Grassmann–Plücker relation is satisfied.

• (n + 1) /∈ S ∪ i jkℓ. In this case, considering the minor µ̃|S ∪ i jkℓ(n + 1)/S and then applying

Lemma 6.2 implies that the three-term Grassmann–Plücker relation is satisfied.

In every case the three-term positive-tropical Grassmann–Plücker relation is satisfied, as desired. □

7. Projections of positive Richardsons to positroids

One recurrent theme in our paper has been the utility of projecting a complete flag positroid (equivalently,

a positive Richardson) to a positroid (or a positroid cell). This has come up in Rietsch’s cell decomposition

of a nonnegative (partial) flag variety, in our proofs in Section 3.2, and in the expression of a Bruhat

interval polytope as a Minkowski sum of positroid polytopes in Remark 2.7. Positive Richardsons can be

indexed by pairs (u, v) of permutations with u f v. Meanwhile, by work of Postnikov [2007], positroid

cells of Gr
g0
d,n can be indexed by Grassmann necklaces. In this section we will give several concrete

combinatorial recipes for constructing the positroids obtained by projecting a (complete) flag positroid.

We will also discuss the problem of determining when a collection of positroids can be identified with a

(complete) flag positroid.

7.1. Indexing sets for cells of Gr
≥0
d,n

. As discussed in Section 2.1, there are two equivalent ways of

thinking about the positroid cell decomposition of Gr
g0
d,n:

Gr
g0
d,n =

⊔
S>0
B

=
⊔

u,v

Ã(R>0
u,v).
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In the union on the right, Ã is the projection from Fln to Grd,n , and u, v range over all permutations u fv in

Sn , such that v is a minimal-length coset representative of W/Wd , and Wd =ïs1, . . . ,sd−1, ŝd ,sd+1, . . . ,sn−1ð.

We write W d for the set of minimal-length coset representatives of W/Wd . Recall that a descent of a

permutation z is a position j such that z( j) > z( j + 1). We have that W d is the subset of permutations in

Sn which have at most one descent, and if it exists, that descent must be in position d .

Even if v /∈ W d , the projection of R>0
u,v to Gr

g0
d,n is still a positroid, which we will characterize below.

We start by defining Grassmann necklaces [Postnikov 2007].

Definition 7.1. Let I = (I1, . . . , In) be a sequence of subsets of
(
[n]
d

)
. We say I is a Grassmann necklace

of type (d, n) if the following holds:

• If i ∈ Ii , then Ii+1 = (Ii \ i) ∪ j for some j ∈ [n].

• If i /∈ Ii , then Ii+1 = Ii .

In order to define the bijection between these Grassmann necklaces and positroids, we need to define

the i -Gale order on
(
[n]
d

)
.

Definition 7.2. We write <i for the following shifted linear order on [n].

i <i i + 1 <i · · · <i n <i 1 <i · · · <i i − 1.

We also define the i -Gale order on d-element subsets by setting

{a1 <i · · · <i ad} fi {b1 <i · · · <i bd}

if and only if aℓ fi bℓ for all 1 f ℓ f d.

Given a positroid M , we define a sequence IM = (I1, . . . , In) of subsets of [n] by letting Ii be the

minimal basis of M in the i-Gale order. The following result is from [Postnikov 2007, Theorem 17.1].

Proposition 7.3. For any positroid M , IM is a Grassmann necklace. The map M 7→ IM gives a bijection

between positroids of rank d on [n] and Grassmann necklaces of type (d, n).

7.2. Projecting positive Richardsons to positroids. In this section we will give several descriptions of

the constituent positroids appearing in a complete flag positroid (that is, a flag matroid represented by a

positive Richardson). We start by reviewing a cryptomorphic definition of flag matroid, based on [Borovik

et al. 2003, Sections 1.7–1.11].

A flag F = F1 ¢ F2 ¢ · · · ¢ Fk on [n] is an increasing sequence of finite subsets of [n]. A flag matroid

is a collection F of flags satisfying the maximality property. Recall that eS denotes the 01 indicator vector

in Rn associated to a subset S ¢ [n]. For a flag F = F1 ¢ F2 ¢ · · · ¢ Fk we let eF = eF1
+ · · · + eFk

. In

this language, the flag matroid polytope of F is PF = Conv{eF | F ∈ F}, whose vertices are precisely the

points eF for F ∈ F .

In the complete flag case, each point eF is a permutation vector (z(1), . . . , z(n)) for some z ∈ Sn . Note

that we can read off z := z(F) from F by setting z(i) = j , where j is the unique element of Fi \ Fi−1.
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Given u f v in Bruhat order, we define the Bruhat interval flag matroid Fu,v to be the complete flag

matroid whose flags are precisely

{z([1]) ¢ z([2]) ¢ · · · ¢ z([n])} for u f z f v,

where [i] denotes {1, 2, . . . , i} and z([i]) denotes {z(1), . . . , z(i)}. Then by the above discussion, the

(twisted) Bruhat interval polytope

P̃u,v = Conv{(n + 1 − z−1(1), n + 1 − z−1(2), . . . , n + 1 − z−1(n)) | u f z f v}

is the flag matroid polytope of the Bruhat interval flag matroid Fu,v.

This observation leads naturally to the following definition.

Definition 7.4. Consider a complete flag matroid F on [n], which we identify with a collection S of

permutations on [n]. By the maximality property [Borovik et al. 2003, Section 1.7.2] and its relation to the

tableau criterion for Bruhat order [Borovik et al. 2003, Theorem 5.17.3], S contains a unique permutation

u (respectively, v) which is minimal (respectively, maximal) in Bruhat order among all elements of S.

We say that Fu,v is the Bruhat interval envelope of F .

It follows from Definition 7.4 that the Bruhat interval envelope of a complete flag matroid F contains F ;

however, in general this inclusion is strict. It is an equality precisely when F is a Bruhat interval flag

matroid.

Recall that if F = (F1, . . . , Fn) and G = (G1, . . . , Gn) are flags, we say that F is less than or equal

to G in the f j Gale order (and write F f j G) if and only if Fi f j Gi for all 1 f i f n. (We also talk

about the “usual” Gale order with respect to the total order 1 < 2 < · · · < n.) The Maximality Property

for flag matroids implies that for any flag matroid F , there is always a unique element which is maximal

(and a unique element which is minimal) with respect to f j .

We now give a Grassmann necklace characterization of the positroid constituents of a complete flag

positroid, which follows from the previous discussion plus Proposition 7.3.

Proposition 7.5. Consider a complete flag positroid M = (M1, . . . , Mn) on [n], that is, the flag positroid

associated to any point of R>0
u,v, for some u f v. For each 1 f j f n, let z( j) be the Gale-minimal

permutation with respect to f j in the interval [u, v]. Then the Grassmann necklace of the positroid M j is

(z(1)([ j]), z(2)([ j]), . . . , z(n)([ j])).

Example 7.6. Consider the flag positroid associated to a point of R>0
u,v, where u = (1, 2, 4, 3) and

v = (4, 2, 1, 3) (which we abbreviate as 1243 and 4213). The interval [u, v] consists of

[u, v] = {1243, 1423, 2143, 2413, 4123, 4213}.

We now use Proposition 7.5, and find that the Gale-minimal permutations of [u, v] with respect to f1,

f2, f3, f4 are 1243, 2413, 4123, 4123. Therefore the Grassmann necklaces for the constituent positroids

M1, M2, M3 and M4 are (1, 2, 4, 4), (12, 24, 14, 14), (124, 124, 124, 124), and (1234, 1234, 1234, 1234).
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Alternatively, we can read off the flags in the flag positroid from the permutations in [u, v], obtaining

the flags

{1 ¢ 12 ¢ 124, 1 ¢ 14 ¢ 124, 2 ¢ 12 ¢ 124, 2 ¢ 24 ¢ 124, 4 ¢ 14 ¢ 124, 4 ¢ 24 ¢ 124}.

(Note that for brevity, we have omitted the subset 1234 from the end of each flag above.) We can now

read off the bases of M1, M2, M3, M4 from the flags, obtaining {1, 2, 4}, {12, 14, 24}, {124}, and {1234}.

We can then directly calculate the Grassmann necklaces from these sets of bases, getting the same answer

as above.

If we compute the Minkowski sum of the positroids M1, M2, M3, M4 above, we obtain the twisted

Bruhat interval polytope P̃1243,4213 = P2314,4312, whose vertices are

{(4, 3, 1, 2), (4, 2, 1, 3), (3, 4, 1, 2), (3, 2, 1, 4), (2, 4, 1, 3), (2, 3, 1, 4)},

as noted in Remark 2.7.

The following result gives an alternative description of the constituent positroids of a complete flag

matroid, this time in terms of bases.

Lemma 7.7 [Kodama and Williams 2015, Lemma 3.11; Billey and Weaver 2022, Theorem 1.4]. Consider

a complete flag positroid, that is, a flag matroid represented by a point of a positive Richardson R>0
u,v,

where u, v ∈ Sn and u f v in Bruhat order. Choose 1 f d f n. Let Ã denote the projection from Fln to

Grd,n . Then the bases of the rank d positroid represented by Ã(R>0
u,v) are {z([d]) | u f z f v}.

Finally, we remark that [Bloch and Karp 2023, Remark 5.24] gives yet another description of the

constituent positroids of a complete flag positroid, this time in terms of pairs of permutations.

7.3. Characterizing when two adjacent-rank positroids form an oriented matroid quotient. We have

discussed how to compute the projection of a complete flag positroid to a positroid. Moreover, it is

well-known that every positroid is the projection of a complete flag positroid. In this section we will give

a criterion for determining when two positroids Mi and Mi+1 on [n] of ranks i and i + 1 can be obtained

as the projection of a complete flag positroid (see Theorem 7.14).

We recall the definition of oriented matroid quotient in the setting at hand.

Definition 7.8. We say that two positroids Mi and Mi+1 on [n] of ranks i and i + 1 form an oriented

matroid quotient if (Mi , Mi+1) is an oriented flag matroid.

The following statement is a direct consequence of Corollary 4.8.

Proposition 7.9. Let Mi and Mi+1 be positroids on [n] of ranks i and i + 1. Then there is a complete flag

positroid with Mi and Mi+1 as constituents if and only if (Mi , Mi+1) form an oriented matroid quotient.

Proposition 7.10. Suppose that (M1, . . . , Mn) is a sequence of positroids of ranks 1, 2, . . . , n on [n],

such that each pair Mi and Mi+1 forms an oriented matroid quotient. Then (M1, . . . , Mn) is a complete

flag positroid. Moreover, it is realized by a point of the positive Richardson R>0
u,v, where we can explicitly

construct u and v as follows:
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• Let Bmin
1 , . . . , Bmin

n (respectively, Bmax
1 , . . . , Bmax

n ) be the bases of M1, . . . , Mn which are minimal

(maximal) with respect to the usual Gale ordering. Then u, v ∈ Sn are defined by

u(i) = Bmin
i \ Bmin

i−1 and v(i) = Bmax
i \ Bmax

i−1 .

Proof. As in Theorem 4.5, we identify each positroid Mi with the image t (Çi ) of its chirotope Çi ; we have

that t (Çi ) lies in Dr
g0
i;n . The fact that each pair Mi , Mi+1 forms an oriented matroid quotient means that

(t (Ç1), . . . , t (Çn)) satisfies all three-term incidence-Plücker relations, and hence (t (Ç1), . . . , t (Çn)) ∈

FlDrg0
n . Since FlDrg0

n = TrFlg0
n , we have proved that (M1, . . . , Mn) is a complete flag positroid.

To prove the characterization of u and v, we use Lemma 7.7. In particular, it follows from Lemma 7.7

and the Tableaux Criterion for Bruhat order that the Gale-minimal and Gale-maximal bases of the rank d

positroid Ã(R>0
u,v) are u([d]) and v([d]). The result now follows. □

As we’ve seen in Example 4.4 it is a subtle question to determine whether a pair of positroids M1

and M2 of ranks r and r + 1 form an oriented matroid quotient. One way is to construct an n by r + 1

matrix such that the minor in rows 1, . . . , r and columns I is nonzero if and only if I is a basis of M1

while the maximal minor in rows 1, . . . , r + 1 and columns J is nonzero if and only if J is a basis of M2.

Another way is to check the three-term relations over the signed tropical hyperfield, as in Proposition 3.9.

We do not have an efficient way to do either of these things. Instead, in Theorem 7.14, we will give an

algorithmic, combinatorial way to verify whether M1 and M2 form an oriented matroid quotient.

Construction 1. Given two positroids M1 and M2 on the ground set [n] of ranks r and r +1, respectively,

which form a positively oriented matroid quotient, we construct a positroid M := M(M1, M2) of rank

r + 1 on the ground set [n + 1] where n + 1 is neither a loop nor a coloop. The bases of M are precisely

B(M) = B(M2) ∪ {B ∪ {n + 1} | B ∈ B(M1)}.

Construction 2. Conversely, given a rank r positroid M on ground set [n + 1], where (n + 1) is neither a

loop nor coloop, we construct two positroids M1 := M1(M) and M2 := M2(M) which form a positively

oriented matroid quotient, as follows. Let Ã be a matrix realizing M ; therefore its Plücker coordinates

are nonnegative. We apply row operations to rewrite Ã in the form

A =




0

A′ 0

0

∗ ∗ ∗ · · · ∗ 1


 .

Let M1 denote the matroid on [n] realized by A′ and let M2 denote the matroid on [n] realized by A′

together with the row of ∗’s below it. Then M1 and M2 are both positroids (since the Plücker coordinates

of A′ and A are all nonnegative), and they form a positively oriented quotient. Moreover, it is clear that

M1 = M \ (n + 1) and M2 = M/(n + 1).

The idea of our algorithm is to translate Constructions 1 and 2 into operations on Grassmann necklaces,

so that Construction 1 is well-defined even if M1 and M2 fail to form a positively oriented quotient. Clearly
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if we start with positroids M1 and M2 forming a positively oriented matroid quotient, then Construction 1

followed by 2 is the identity map. Conversely, if Construction 1 followed by 2 is the identity map, then

since Construction 2 always outputs a positively oriented matroid quotient, we must have started with

positroids forming a positively oriented matroid quotient.

We let mini {S1, . . . , Sk} denote the minimum of the sets S1, . . . , Sk in the fi order.

Proposition 7.11. Let M1 and M2 be positroids of consecutive ranks which form a positively oriented

quotient. Let IM j
= (I

( j)

1 , . . . , I
( j)
n ) be the Grassmann necklace of M j for j = 1, 2. Define

Ji =





I
(2)

1 for i = 1,

mini {I
(1)
i ∪ {n + 1}, I

(2)
i } for 2 f i f n,

I
(1)

1 ∪ {n + 1} for i = n + 1.

Then J = (J1, . . . , Jn+1) is the Grassmann necklace of the positroid M = M(M1, M2) on [n + 1] whose

bases are precisely

B(M) = B(M2) ∪ {B ∪ {n + 1} | B ∈ B(M1)}.

Proof. It suffices to show that each basis of M is i-Gale greater than J (i) for all i ∈ [n + 1]. One also

need to check that the J (i) are in fact bases of M but this is clear by definition.

Note that the fi minimal flag of a flag matroid consists of the fi minimal bases of each of its constituent

matroids [Borovik et al. 2003, Corollary 7.2.1]. Thus, I
(1)
t ¢ I

(2)
t for each t ∈ [n].

First, let S ¢ [n] be a basis of M2. For i ∈ [n], we have S gi I
(2)
i gi Ji . Since neither S nor

I
(2)
i contain n + 1, S gn+1 I

(2)

1 . By our earlier observation, I
(2)

1 = I
(1)

1 ∪ {a} for some a ∈ [n]. Thus,

I
(2)

1 gn+1 I
(1)

1 ∪ {n + 1}. We conclude that S gi Ji for all i ∈ [n + 1].

Next, consider S∪{n+1} for S a basis of M1. For 2 f i f n, we have S∪{n+1} gi I
(1)
i ∪{n+1} gi Ji .

Since neither S nor I
(1)
i contain n + 1, we have S g1 I

(1)

1 and S ∪ {n + 1} gn+1 I
(1)

1 ∪ {n + 1} = Jn+1.

Since I
(2)

1 = I
(1)

1 ∪ {a}, we have I
(1)

1 ∪ {n + 1} g1 I
(2)

1 = J1. We conclude that S ∪ {n + 1} gi Ji for all

i ∈ [n + 1]. □

If M1 and M2 form a positively oriented quotient, we should obtain them from the positroid M =

M(M1, M2), constructed as in Proposition 7.11, by deleting and contracting n + 1. The following result

explains how these operations affect Grassmann necklaces.

Proposition 7.12 [Oh 2008, Proposition 7 and Lemma 9]. Let M be a positroid on [n + 1] such that

n + 1 is neither a loop nor a coloop, with Grassmann necklace (Ji )
n+1
i=1 . Then the Grassmann necklaces

(K
(1)

1 , . . . , K
(1)
n ) and (K

(2)

1 , . . . , K
(2)
n ) of M1 = M/(n + 1) and M2 = M \ (n + 1), are as follows:

K
(1)
i =

{
Ji \ {n + 1}, n + 1 ∈ Ji ,

Ji \ {maxi (Ji \ Jn+1)}, n + 1 /∈ Ji ,

K
(2)
i =

{
(Ji \ {n + 1}) ∪ {mini (Jn+1 \ Ji )}, n + 1 ∈ Ji ,

Ji , n + 1 /∈ Ji .
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Taken together, the last two results yield a recipe for verifying whether two positroids, given in

terms of their Grassmann necklaces, form a positively oriented quotient. First apply the construction of

Proposition 7.11. If that yields a Grassmann necklace, apply Proposition 7.12 and see if that yields the

original Grassmann necklaces. If so, the two Grassmann necklaces form a positively oriented quotient.

Our next goal is to streamline this recipe. Let I(1) = (I
(1)

1 , . . . , I
(1)
n ) and I(2) = (I

(2)

1 , . . . , I
(2)
n ) be

Grassmann necklaces of positroids of ranks r and r + 1, respectively. Note that a necessary condition

for the positroids corresponding to I(1) and I(2) forming a positively oriented quotient is that I
(1)
i ¢ I

(2)
i

for all i ∈ [n]. Now, we define a subset S as follows: For each i , if I
(1)
i ∪ {n + 1} <i I

(2)
i , let i ∈ S.

Since I
(2)
i = I

(1)
i ∪ a for some a ∈ [n], this is as simple as checking whether a <i n + 1. If the positroids

corresponding to I(1) and I(2) form a positively oriented quotient, applying Proposition 7.11 and then

Proposition 7.12 should leave them unchanged. It is straightforward to see that i ∈ S if and only if

n +1 ∈ Ji in Proposition 7.12. In particular, since J is a Grassmann necklace, S must either be an interval

of the form [d, n], or empty.

Next we claim that, once we verify that S is an interval of the form [d, n] or is empty, then it follows

automatically that J , as constructed in Proposition 7.11, is a Grassmann necklace.

Lemma 7.13. Let I(1) = (I
(1)

1 , . . . , I
(1)
n ) and I(2) = (I

(2)

1 , . . . , I
(2)
n ) be Grassmann necklaces of types

(r, n) and (r +1, n), respectively. Construct J = (J1, . . . , Jn+1) as in Proposition 7.11. Let S = {i ∈ [n] |

I
(1)
i ∪ (n + 1) <i I

(2)
i }. If S = [d, n] for some d f n or S = ∅, then J is a Grassmann necklace.

Proof. It is clear from the definition that J satisfies the Grassmann necklace condition for each pair of

consecutive sets Ji and Ji+1 except for when i = k −1, i = n and i = n +1 (where we label sets cyclically

so that Jn+2 = J1).

If S ̸=∅, then Jn = I
(1)
n ∪{n +1}. This makes it clear that the Grassmann necklace condition holds for

Jn and Jn+1. Also, sing the fact that I
(1)
i ¢ I

(2)
i for all i , it is not hard to verify the Grassmann necklace

condition for Jn+1 and J1.

This leaves us to check the condition for Jk−1 and Jk . In this case, Jk−1 = I
(2)

k−1 and Jk = I
(1)
k ∪{n +1}.

Our goal is to show that Jk = (Jk−1 \ {k − 1}) ∪ {a} for some a ∈ [n + 1]. It is immediately obvious that

we necessarily have a = n + 1. Thus, we are left to show that I
(1)
k ∪ {n + 1} = (I

(2)

k−1 \ {k − 1}) ∪ {n + 1},

or that I
(1)
k = I

(2)

k−1 \ {k − 1}.

Let ai be defined by I
(1)
i = (I

(1)

i−1\{i −1})∪{ai }, let bi be defined by I
(2)
i = (I

(2)

i−1\{i −1})∪{bi } and let ci

be defined by I
(2)
i = I

(1)
i ∪{ci }. We observe that I

(1)
k = (I

(1)

k−1\{k−1})∪{ak}= (I
(2)

k−1\{ck−1, k−1})∪{ak}.

Also, I
(1)
k = I

(2)
k \ {ck} = (I

(2)

k−1 \ {ck, k − 1}) ∪ {bk}. Comparing these two equalities, we conclude that

either ak = ck−1 and bk = ck , or ck−1 = ck and ak = bk . The first case is what we want to prove, so let us

show by contradiction that the second case cannot occur.

Assume ck = ck−1 and ak = bk . By assumption, I
(1)

k−1 ∪ {ck−1} = I
(2)

k−1 <k−1 I
(1)

k−1 ∪ {n + 1} and

I
(1)
k ∪ {n + 1} <k I

(2)
k = I

(1)
k ∪ {ck}. Thus, ck−1 <k−1 n + 1 and ck >k n + 1. Since ck = ck−1, this means

they are both equal to k − 1. However, if ck = k − 1, then M2 has k − 1 as a coloop. it follows that

bk = k − 1, which means ak = k − 1 as well. Thus, in this case, I
(1)
k = I

(1)

k−1 = I
(2)

k−1 \ {k − 1}, as desired.
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Finally, if A = ∅, we can check that the Grassmann necklace condition holds for Jn+1 and J1 as

before. The we are just left to verify this condition for Jn and Jn+1. We can apply the same logic

but with Jk−1 replaced by Jn = I
(2)
n and Jk replaced by Jn+1 = I (1) ∪ {n + 1}. Specifically, we find

I
(1)

1 = (I
(2)
n \ {cn, n}) ∪ {a1} = I

(2)
n \ {c1, n}) ∪ {b1}. We then must show that it is impossible for

c1 = cn and a1 = b1. However, I
(1)
n ∪ {cn} = I

(2)
n <n I

(1)
n ∪ {n + 1}. Moreover, it is always true that

I
(1)

1 ∪ {n + 1} <n+1 I
(1)

1 ∪ {c1} = I
(1)

2 . Using c1 = cn , we then find cn <n (n + 1) and cn >n+1 (n + 1)

which means that c1 = cn = n and we can conclude as in the previous paragraph. □

Combining Propositions 7.11, 7.12 and Lemma 7.13, we obtain the following:

Theorem 7.14. Fix positroids M1 and M2 on [n] of ranks r and r + 1, respectively. Let I = IM1
=

(I1, . . . , In) and J = IM2
= (J1, . . . , Jn) be their Grassmann necklaces. We now set S = {i ∈ [n] |

Ii ∪ {n + 1} fi Ji }, where fi denotes the fi Gale order on [n + 1]. Define ai = maxi (Ji \ I1) and

bi = mini (I1 \ Ii ). Then M1 and M2 form a positively oriented quotient if and only if the following

conditions hold:

(1) For i ∈ [n], Ii ¢ Ji .

(2) S is an interval of the form [d, n] or S = ∅.

(3) For i /∈ S, Ii = Ji \ {ai }.

(4) For i ∈ S, Ji = Ii ∪ {bi }.

Proof. First, suppose that we have a positively oriented quotient. As explained earlier, the first two

conditions always hold for positively oriented quotients. We know that applying the constructions of

Propositios 7.11 and 7.12 in sequence should preserve our positively oriented quotient. Observing what

conditions this imposes on the constituent Grassmann necklaces yields conditions (3) and (4).

Conversely, if the conditions in the theorem statement hold, then by Lemma 7.13, applying the

construction of Proposition 7.11 to I and J yields another Grassmann necklace K on [n + 1] such that

n + 1 is neither a loop nor a coloop of the positroid corresponding to K. Then, conditions (3) and (4)

guarantee that applying the construction of Proposition 7.12 to K will recover I and J . The result of

applying Proposition 7.12 to the Grassmann necklace of a positroid M with n + 1 neither a loop nor a

coloop is the pair of Grassmann necklaces corresponding to M/(n + 1) and M \ (n + 1), which form a

positively oriented quotient. □

Example 7.15. Let I = (123, 235, 356, 456, 561, 613) and J = (1235, 2356, 3456, 4562, 5612, 6123).

Then A = {4, 5, 6} is an interval with upper endpoint n = 6. Note that a1 = 5, a2 = 6 and a3 = 6, while

b4 = 1, b5 = 2 and b6 = 2. The positroids with these Grassmann necklaces do not form a positively

oriented quotient since it is false that I3 = J3 \ {a3}.

However, if we start with the Grassmann necklaces I = (123, 235, 345, 456, 561, 613) and J =

(1235, 2356, 3456, 4562, 5612, 6123), then the values of the ai and bi are unchanged. It is straightforward

to verify that the conditions of Theorem 7.14 hold and so the positroids corresponding to I and J do in

fact form a positively oriented quotient.
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We now have a tool that allows us to recognize flag positroids in consecutive ranks without finding a

realization or certifying the incidence relations over the signed hyperfield.

Corollary 7.16. Suppose (Ma, Ma+1, . . . , Mb) is a sequence of positroids of ranks a, a + 1, . . . , b. Then

(Ma, Ma+1, . . . , Mb) is a flag positroid if and only if for a f i < b, the pair of positroids (Mi , Mi+1)

satisfy the conditions of Theorem 7.14.

Proof. By Proposition 7.10, it suffices to check that each such pair forms a positively oriented quotient,

which is precisely the content of Theorem 7.14. □

8. Fan structures for and coherent subdivisions from TrGr>0
d;n and TrFl>0

n

In this section we make some brief remarks about the various fan structures for TrFl>0
r;n and coher-

ent subdivisions from points of TrFl>0
r;n . Code written for the computations here can be found at

https://github.com/chrisweur/PosTropFlagVar. We take a detailed look at the Grassmannian and complete

flag variety, in particular the case of TrFl>0
4 .

8.1. Fan structures. There are multiple possibly different natural fan structures for TrFl>0
r;n:

(i) The Plücker fan (induced by the three-term tropical Plücker relations).

(ii) The secondary fan (induced according to the coherent subdivision as in Corollary 8.3).

(iii) The Gröbner fan (induced according to the initial ideal of the ideal ïPr;nð).

(iv) The simultaneous refinement of the fans dual to the Newton polytopes of the Plücker coordinates,

when the Plücker coordinates are expressed in terms of a “positive parametrization” of Fl>0
r;n , such as

an X -cluster chart.

(v) (If the cluster algebra associated to Flr;n has finitely many cluster variables) the same fan as above

but with (the larger set of) cluster variables replacing Plücker coordinates.

Note that by definition, fan (v) is always a refinement of (iv).

In the case of the positive tropical Grassmannian, the fan structures in (iv) and (v) were studied in

[Speyer and Williams 2005, Definition 4.2 and Section 8], where the authors observed that for Gr2,n , fan

(iv) (which coincides with (v)) is isomorphic to the cluster complex of type An−3;3 for Gr3,6 and Gr3,7,

fan (iv) is isomorphic to a coarsening of the corresponding cluster complex, while fan (v) is isomorphic

to the cluster complex (of types D4 and E6, respectively). Conjecture 8.1 of [Speyer and Williams 2005]

says that fan (v) (associated to the positive tropicalization of a full rank cluster variety of finite type)

should be isomorphic to the corresponding cluster complex. This conjecture was essentially resolved in

[Jahn et al. 2021; Arkani-Hamed et al. 2021a] by working with F-polynomials.

Theorem 14 of [Olarte et al. 2019] states that the Plücker fan and the secondary fan structures for

Dressians coincide, and hence implies that (i) and (ii) coincide because the positive Dressian and the

positive tropical Grassmannian are the same [Speyer and Williams 2021]. For TrGr2,n , the results of

3See [Fomin and Zelevinsky 2003] for background on the cluster complex.
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[Speyer and Sturmfels 2004, Section 4] imply that (i), (ii), and (iii) agree, and combining this with [Speyer

and Williams 2005, Section 5] implies that all five fan structures agree for TrGr>0
2,n . For TrGr>0

3,6, we

computed that (iii) and (v) strictly refine (i), but the two fan structures are not comparable.

We can consider the same fan structures in the case of the positive tropical complete flag variety.

When n = 3, the fan TrFl>0
n modulo its lineality space is a one-dimensional fan, and all fan structures

coincide. For TrFln (before taking the positive part), one can find computations of the fan (iii) for n = 4

and n = 5 in [Bossinger et al. 2017, Section 3], the fan (i) and its relation to (iii) for n = 4 in [Brandt

et al. 2021, Example 5.2.3], and the fan (ii) and its relation to (iii) for n = 4 in [Joswig et al. 2023,

Section 5]. Returning to the positive tropicalization, Bossinger [2022, Section 5.1] computed the fan

structure (iii) for TrFl>0
4 , and found it was dual to the three-dimensional associahedron; in particular,

there are 14 maximal cones and the f -vector is (14, 21, 9, 1). Using the positive parametrization of

[Boretsky 2022] (a graphical version of the parametrizations of [Marsh and Rietsch 2004]) for TrFl>0
n ,

we computed the polyhedral complex underlying (iv) for n = 4 in Macaulay2 by computing the normal

fan of the Minkowski sum of the Newton polytopes of the Plücker coordinates expressed in the chosen

parametrization; we obtained the f -vector (13, 20, 9, 1). We also computed (v) after incorporating the

additional non-Plücker cluster variable p2 p134 − p1 p234. Combining these, we find that for n = 4, (i)=(iv)

and (ii)=(iii). We also find that both (ii) and (v) strictly refine (i)=(iv) and are both isomorphic to the

normal fan of the three-dimensional associahedron, but are not comparable fan structures.

The fact that the fan structure (v) of TrFl>0
4 is dual to the three-dimensional associahedron is consistent

with [Speyer and Williams 2005, Conjecture 8.1] and the fact that Fl4 has a cluster algebra structure of

finite type A3 [Geiss et al. 2008, Table 1], whose cluster complex is dual to the associahedron.

We now give a graphical way to think about the fan structure on TrFl>0
4 , building on the ideas of

[Speyer and Williams 2005] and [Brandt et al. 2021, Example 5.2.3].

Example 8.1. A planar tree on [n] is an unrooted tree drawn in the plane with n leaves labeled by

1, 2, . . . , n (in counterclockwise order). By [Speyer and Williams 2005], TrGr>0
2;n parametrizes metric

planar trees, and its cones correspond to the various combinatorial types of planar trees. In particular,

if we assign real-valued lengths to the edges of a planar tree, then the negative of the distance between

leaf i and j encodes the positive tropical Plücker coordinate wi j of a point in the corresponding cone.

In particular, it is easy to see that the negative distances wi j associated to such a planar tree satisfy the

positive tropical Plücker relations.

Now as in [Brandt et al. 2021, Example 5.2.3], we note that for a valuated matroid µ whose underlying

matroid is the uniform matroid U2,4, the tropical linear spaces trop(µ) and trop(µ∗) associated to

µ and its dual µ∗ are translates of each other. This allows us to identify points µ = (µ1, µ2, µ3)

of TrFl>0
4 with planar trees on the vertices {1, 2, 3, 4, 5, 5′} such that the vertices {1, 2, 3, 4, 5} and

separately the vertices {1, 2, 3, 4, 5′} appear in counterclockwise order. To see this, note that (using

the same idea as Construction 1 from Section 7) we can identify (µ1, µ2), with Plücker coordinates

(w1, . . . , w4; w12, . . . , w34), with an element (wab) of TrGr>0
2,5: we simply set wa5 := wa for 1 f a f 4.
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Figure 2. The fan structure (ii)=(iii) of TrFl>0
4 .

Similarly, we identify (µ2, µ3), where µ3 has Plücker coordinates (w123, . . . , w234), with an element of

TrGr>0
2,5: we simply set wd5′ := wabc, where {a, b, c} := [4] \ {d}.

This gives us the Plücker fan structure (i)=(iv) with thirteen maximal cones, as shown in Figure 2. To

get the Gröbner fan structure (iii) we subdivide one of the cones into two, along the squiggly line shown

in Figure 2. This squiggly line occurs when dist(x1, blue) = dist(x2, red), where x1 and x2 are the two

black trivalent nodes in the tree on [4]. To obtain the fan structure (v), instead of the squiggly line, the

square face is subdivided along the other diagonal.
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Using the computation of TrFl5 in [Bossinger et al. 2017], which can be found on github at

https://github.com/Saralamboglia/Toric-Degenerations/blob/master/Flag5.rtf and Corollary 3.12, we

further computed that TrFl+5 with (iii) has 938 maximal cones (906 of which are simplicial) and that (iv)

has 406 maximal cones. According to [Speyer and Williams 2005, Conjecture 8.1], the (v) fan structure

for TrFl+5 has 672 maximal cones.

8.2. Coherent subdivisions. We next discuss coherent subdivisions coming from the positive tropical

Grassmannian and positive tropical complete flag variety. When Flr;n is the Grassmannian Grd,n and the

support µ is the uniform matroid, Theorem A gives rise to the following corollary (which was first proved

in [Lukowski et al. 2023] and [Arkani-Hamed et al. 2021b]).

Corollary 8.2. Let µ = (µd) ∈ P(T([n]
d )), and suppose it has no ∞ coordinates. Then the following

statements are equivalent:

• µ ∈ TrGr>0
d,n , that is, µ lies in the strictly positive tropical Grassmannian.

• Every face in the coherent subdivision Dµ of the hypersimplex 1d,n induced by µ is a positroid

polytope.

The coherent subdivisions above (called positroidal subdivisions) were further studied in [Speyer and

Williams 2021], where the finest positroidal subdivisions were characterized in terms of series-parallel

matroids. Furthermore, all finest positroidal subdivisions of 1d,n achieve equality in Speyer’s f -vector

theorem; in particular, they all consist of
(

n−2
d−1

)
facets [Speyer and Williams 2021, Corollary 6.7].

When Flr;n is the complete flag variety Fln , and the support µ is the uniform flag matroid, Theorem A

gives rise to the following corollary, which appeared in [Joswig et al. 2023, Theorem 20].

Corollary 8.3. Let µ = (µ1, . . . , µn) ∈
∏b

i=a P(T([n]
i )), and suppose it has no ∞ coordinates. Then the

following statements are equivalent.

• µ ∈ TrFl>0
n , that is, µ lies in the strictly positive tropical flag variety.

• Every face in the coherent subdivision Dµ of the permutohedron Permn induced by µ is a Bruhat

interval polytope.

In light of the results of [Speyer and Williams 2021], it is natural to ask if one can characterize the

finest coherent subdivisions of the permutohedron Permn into Bruhat interval polytopes. Furthermore, do

they all have the same f -vector?

Explicit computations for TrFl4 show that the answer to the second question is no. We find that TrFl4

with the fan structure (iii) (which agrees with (ii) by [Joswig et al. 2023, Section 5]) has 78 maximal

cones. We choose a point in the relative interior of each of the 78 cones to use as a height function

(thinking of points in TrFl4 as weights on the vertices of Perm4 as in (c) of Theorem A), then use Sage to

compute the corresponding coherent subdivision of Perm4. As expected, precisely 14 of the 78 cones

induce subdivisions of Perm4 into Bruhat interval polytopes, see Table 1.
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height function (P1, P2, P3, P4; P12, P13,
Bruhat interval polytopes in subdivision f -vector

P14, P23, P24, P34; P123, P124, P134, P234)

(15, −1, −7, −7; 4, −2, −2, P3214,4321, P3124,4231, P2314,3421,

−2, −2, 4; −7, −7, −1, 15) P2134,3241, P1324,2431, P1234,2341

(15, 3, −9, −9; 4, −8, −8, P2413,4321, P3124,4231, P2314,4231,

−4, −4, 20; −1, −1, −1, 3) P2134,3241, P1324,2431, P1234,2341

(15, −7, −1, −7; −2, 4, −2, P3142,4321, P3124,4312, P2143,3421,

−2, 4, −2; −7, −1, −7, 15) P2134,3412, P1243,2431, P1234,2413

(−1, −1, −1, 3; 4, −8, −4, P2413,4321, P1423,4231, P1342,4231,

−8, −4, 20; 15, 3, −9, −9) P1324,4213, P1243,4132, P1234,4123

(−7, −7, −1, 15; 4, −2, −2, P1432,4321, P1423,4312, P1342,4231,

−2, −2, 4; 15, −1, −7, −7) P1324,4213, P1243,4132, P1234,4123

(−1, −7, −7, 15; −2, −2, 4, P3142,4321, P2143,4312, P2134,4213,

4, −2, −2; 15, −7, −7, −1) P1342,3421, P1243,3412, P1234,2413
(24, 46, 29, 6)

(−9, −9, 3, 15; 20, −4, −8, P1432,4321, P1423,4312, P1342,4231,

−4, −8, 4; 3, −1, −1, −1) P1324,4213, P1324,4132, P1234,3142

(11, −7, −7, 3; −6, −6, 4, P3142,4321, P2143,4312, P2134,4213,

4, 2, 2; 11, −7, −7, 3) P2143,3421, P1243,2431, P1234,2413

(3, 3, −3, −3; 20, −10, −10, P2413,4321, P3124,4231, P2314,4231,

−10, −10, 20; −3, −3, 3, 3) P1324,2431, P1324,3241, P1234,3142

(3, −1, −1, −1; 20, −4, −4, P3214,4321, P3124,4231, P2314,3421,

−8, −8, 4; −9, −9, 3, 15) P1324,3241, P1324,2431, P1234,3142

(−3, −3, 3, 3; 20, −10, −10, P2413,4321, P1423,4231, P1342,4231,

−10, −10, 20; 3, 3, −3, −3) P1324,4132, P1324,4213, P1234,3142

(3, −7, −7, 11; 2, 2, 4, P3142,4321, P3124,4312, P1342,3421,

4, −6, −6; 3, −7, −7, 11) P2134,3412, P1243,3412, P1234,2413

(11, −1, −7, −3; −2, −8, −4, P2413,4321, P2143,4231, P2134,4213,

−4, 0, 18; 11, −1, −7, −3) P1243,2431, P1234,2413
(24, 45, 27, 5)

(−3, −7, −1, 11; 18, 0, −4, P3142,4321, P3124,4312, P1342,3421

−4, −8, −2; −3, −7, −1, 11) P1324,3412, P1234,3142

Table 1. Table documenting the 14 finest coherent subdivisions of Perm4 into Bruhat

interval polytopes. There are two possible f -vectors, each of which can be realized in

multiple ways.

Of the 14 coherent subdivisions coming from maximal cones of TrFl>0
4 , 12 of them contain 6 facets,

while the other 2 contain 5 facets. Table 1 lists the facets and f -vectors of each of these 14 subdivisions.

Note that each Bruhat interval polytope Pv,w which appears as a facet satisfies ℓ(w)−ℓ(v) = 3. Thus, any



Polyhedral and tropical geometry of flag positroids 1371

height function (P1, P2, P3, P4; P12, P13, Bruhat interval polytopes
f -vector

P14, P23, P24, P34; P123, P124, P134, P234) in subdivision

(−1, −1, −1, 0; −1, −1, 0, −1, 0, 0; 0, 0, 0, 0) P1243,4321, P1234,4213

(−1, −1, −1, 0; 0, 0, 0, 0, 0, 0; 0, 0, 0, 0) P1342,4321, P1234,4312
(24, 39, 18, 2)

(1, 0, 0, 0; 0, 0, 0, 0, 0, 0; 0, 0, 0, 0) P2134,4321, P1234,2431

(1, 0, 0, 0; 0, 0, 0, 1, 1, 1; 0, 0, 0, 0) P3124,4321, P1234,3421

(0, 0, 0, 0; −1, −1, −1, −1, −1, 0; 0, 0, 0, 0) P2413,4321, P1234,4231
(24, 40, 19, 2)

(0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 0, 0, 0, 0) P1324,4321, P1234,3142

(−1, −1, 0, 0; −1, −1, −1, −1, −1, 0; 0, 0, 0, 0)
P1423,4321, P1342,4231,

P1324,4213, P1234,4132

(0, −1, −1, 0; 0, 0, 1, 0, 0, 0; 0, 0, 0, 0)
P3142,4321, P1243,3421,

(24, 42, 23, 4)
P2134,4312, P1234,2413

(1, 1, 0, 0; 1, 0, 0, 0, 0, 0; 0, 0, 0, 0)
P2314,4321, P1324,2431,

P3124,4231, P1234,3241

Table 2. Table documenting the 9 coarsest coherent subdivisions of Perm4 into Bruhat

interval polytopes. There are three possible f -vectors, each of which can be realized in

multiple ways.

Bruhat interval polytope Pv′,w properly contained inside Pv,w would have the property that ℓ(w′)−ℓ(v′)f

2, and hence dim(Pv′,w′) f 2. Since Perm4 is 3-dimensional, all 14 of these subdivisions are finest

subdivisions.

We note that the 12 finest subdivisions whose f -vector is (24, 46, 29, 6) are subdivisions of the

permutohedron into cubes. Subdivisions of the permutohedron into Bruhat interval polytopes which are

cubes have been previously studied in [Harada et al. 2019, Sections 5 and 6; Lee et al. 2021; Nadeau

and Tewari 2023, Section 6]. In particular, there is a subdivision of Permn into (n−1)! Bruhat interval

polytopes

{Pu,v | u = (u1 . . . , un) with un = n, and v = (v1, . . . , vn) with vi = ui + 1 modulo n}.

The first subdivision in Table 1 has this form.

We can further study the f -vectors of subdivisions of TrFl>0
4 which are coarsest (without being trivial),

rather than finest. In this case, we observe three different f -vectors, each of which occurs in multiple

subdivisions. The detailed results of our explicit computations on coarsest subdivisions can be found in

Table 2.
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[Gelfand and Serganova 1987] I. M. Gelfand and V. V. Serganova, “Combinatorial geometries and the strata of a torus on

homogeneous compact manifolds”, Uspekhi Mat. Nauk 42:2(254) (1987), 107–134, 287. MR Zbl

[Gelfand et al. 1987] I. M. Gelfand, R. M. Goresky, R. D. MacPherson, and V. V. Serganova, “Combinatorial geometries, convex

polyhedra, and Schubert cells”, Adv. in Math. 63:3 (1987), 301–316. MR Zbl

[Gunn 2019] T. Gunn, “A Newton polygon rule for formally-real valued fields and multiplicities over the signed tropical

hyperfield”, preprint, 2019. Zbl arXiv 1911.12274

[Harada et al. 2019] M. Harada, T. Horiguchi, M. Masuda, and S. Park, “The volume polynomial of regular semisimple

Hessenberg varieties and the Gelfand–Tsetlin polytope”, Tr. Mat. Inst. Steklova 305 (2019), 344–373. MR Zbl

[Herrmann et al. 2009] S. Herrmann, A. Jensen, M. Joswig, and B. Sturmfels, “How to draw tropical planes”, Electron. J.

Combin. 16:2 (2009), art. id. 6. MR Zbl

[Herrmann et al. 2014] S. Herrmann, M. Joswig, and D. E. Speyer, “Dressians, tropical Grassmannians, and their rays”, Forum

Math. 26:6 (2014), 1853–1881. MR Zbl

[Jahn et al. 2021] D. Jahn, R. Löwe, and C. Stump, “Minkowski decompositions for generalized associahedra of acyclic type”,

Algebr. Comb. 4:5 (2021), 757–775. MR Zbl

[Jarra and Lorscheid 2024] M. Jarra and O. Lorscheid, “Flag matroids with coefficients”, Adv. Math. 436 (2024), art. id. 109396.

MR Zbl

[Joswig et al. 2023] M. Joswig, G. Loho, D. Luber, and J. A. Olarte, “Generalized permutahedra and positive flag dressians”, Int.

Math. Res. Not. 2023:19 (2023), 16748–16777. MR Zbl

[Kodama and Williams 2015] Y. Kodama and L. Williams, “The full Kostant–Toda hierarchy on the positive flag variety”,

Comm. Math. Phys. 335:1 (2015), 247–283. MR Zbl

[Kung 1986] J. P. S. Kung, “Strong maps”, pp. 224–253 in Theory of matroids, edited by N. White, Encyclopedia Math. Appl.

26, Cambridge University Press, 1986. MR Zbl

[Le and Fraser 2019] I. Le and C. Fraser, “Tropicalization of positive Grassmannians”, Selecta Math. (N.S.) 25:5 (2019),

art. id. 75. MR Zbl

[Lee et al. 2021] E. Lee, M. Masuda, and S. Park, “Toric Bruhat interval polytopes”, J. Combin. Theory Ser. A 179 (2021),

art. id. 105387. MR Zbl

[Lukowski et al. 2023] T. Lukowski, M. Parisi, and L. K. Williams, “The positive tropical Grassmannian, the hypersimplex, and

the m = 2 amplituhedron”, Int. Math. Res. Not. 2023:19 (2023), 16778–16836. MR Zbl

[Lusztig 1994] G. Lusztig, “Total positivity in reductive groups”, pp. 531–568 in Lie theory and geometry, edited by J.-L.

Brylinski et al., Progr. Math. 123, Birkhäuser, Boston, 1994. MR Zbl

[Maclagan and Sturmfels 2015] D. Maclagan and B. Sturmfels, Introduction to tropical geometry, Graduate Studies in Mathe-

matics 161, American Mathematical Society, Providence, RI, 2015. MR Zbl

[Markwig 2010] T. Markwig, “A field of generalised Puiseux series for tropical geometry”, Rend. Semin. Mat. Univ. Politec.

Torino 68:1 (2010), 79–92. MR Zbl

[Marsh and Rietsch 2004] R. J. Marsh and K. Rietsch, “Parametrizations of flag varieties”, Represent. Theory 8 (2004), 212–242.

MR Zbl

[Murota and Shioura 2018] K. Murota and A. Shioura, “On equivalence of Mp-concavity of a set function and submodularity of

its conjugate”, J. Oper. Res. Soc. Japan 61:2 (2018), 163–171. MR Zbl

[Nadeau and Tewari 2023] P. Nadeau and V. Tewari, “Remixed Eulerian numbers”, Forum Math. Sigma 11 (2023), art. id. e65.

MR Zbl



1374 Jonathan Boretsky, Christopher Eur and Lauren Williams

[Oh 2008] S. Oh, “Contraction and restriction of positroids in terms of decorated permutations”, preprint, 2008. Zbl arXiv

0804.0882

[Olarte et al. 2019] J. A. Olarte, M. Panizzut, and B. Schröter, “On local Dressians of matroids”, pp. 309–329 in Algebraic and

geometric combinatorics on lattice polytopes, edited by T. Hibi and A. Tsuchiya, World Sci. Publ., Hackensack, NJ, 2019. MR

Zbl

[Oxley 2011] J. Oxley, Matroid theory, 2nd ed., Oxford Graduate Texts in Mathematics 21, Oxford University Press, 2011. MR

Zbl

[Pachter and Sturmfels 2004] L. Pachter and B. Sturmfels, “Tropical geometry of statistical models”, Proc. Natl. Acad. Sci. USA

101:46 (2004), 16132–16137. MR Zbl

[Poonen 1993] B. Poonen, “Maximally complete fields”, Enseign. Math. (2) 39:1-2 (1993), 87–106. MR Zbl

[Postnikov 2007] A. Postnikov, “Total positivity, Grassmannians, and networks”, 2007, available at http://math.mit.edu/~apost/

papers/tpgrass.pdf. Zbl

[Rietsch 1998] K. C. Rietsch, Total positivity and real flag varieties, Ph.D. thesis, Massachusetts Institute of Technology, 1998,

available at https://www.proquest.com/docview/304473828. Zbl

[Rietsch 2006] K. Rietsch, “Closure relations for totally nonnegative cells in G/P”, Math. Res. Lett. 13:5-6 (2006), 775–786.

MR Zbl

[Rietsch and Williams 2008] K. Rietsch and L. Williams, “The totally nonnegative part of G/P is a CW complex”, Transform.

Groups 13:3-4 (2008), 839–853. MR Zbl

[Rietsch and Williams 2019] K. Rietsch and L. Williams, “Newton–Okounkov bodies, cluster duality, and mirror symmetry for

Grassmannians”, Duke Math. J. 168:18 (2019), 3437–3527. MR Zbl

[da Silva 1987] I. P. da Silva, Quelques propriétés des matroides orientés, Ph.D. thesis, Université Paris VI, 1987.

[Speyer 2008] D. E. Speyer, “Tropical linear spaces”, SIAM J. Discrete Math. 22:4 (2008), 1527–1558. MR Zbl

[Speyer and Sturmfels 2004] D. Speyer and B. Sturmfels, “The tropical Grassmannian”, Adv. Geom. 4:3 (2004), 389–411. MR

Zbl

[Speyer and Williams 2005] D. Speyer and L. Williams, “The tropical totally positive Grassmannian”, J. Algebraic Combin.

22:2 (2005), 189–210. MR Zbl

[Speyer and Williams 2021] D. Speyer and L. K. Williams, “The positive Dressian equals the positive tropical Grassmannian”,

Trans. Amer. Math. Soc. Ser. B 8 (2021), 330–353. MR Zbl

[Talaska and Williams 2013] K. Talaska and L. Williams, “Network parametrizations for the Grassmannian”, Algebra Number

Theory 7:9 (2013), 2275–2311. MR Zbl

[Tsukerman and Williams 2015] E. Tsukerman and L. Williams, “Bruhat interval polytopes”, Adv. Math. 285 (2015), 766–810.

MR Zbl

Communicated by Victor Reiner

Received 2022-09-16 Revised 2023-07-10 Accepted 2023-09-03

jboretsky@math.harvard.edu Department of Mathematics, Harvard University, Cambridge, MA, United States

ceur@math.harvard.edu Department of Mathematics, Harvard University, Cambridge, MA, United States

williams@math.harvard.edu Department of Mathematics, Harvard University, Cambridge, MA, United States

mathematical sciences publishers msp



Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Antoine Chambert-Loir
Université Paris-Diderot

France

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Jason P. Bell University of Waterloo, Canada

Bhargav Bhatt University of Michigan, USA

Frank Calegari University of Chicago, USA

J-L. Colliot-Thélène CNRS, Université Paris-Saclay, France

Brian D. Conrad Stanford University, USA

Samit Dasgupta Duke University, USA

Hélène Esnault Freie Universität Berlin, Germany

Gavril Farkas Humboldt Universität zu Berlin, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Wee Teck Gan National University of Singapore

Andrew Granville Université de Montréal, Canada

Ben J. Green University of Oxford, UK

Christopher Hacon University of Utah, USA

Roger Heath-Brown Oxford University, UK

János Kollár Princeton University, USA

Michael J. Larsen Indiana University Bloomington, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Martin Olsson University of California, Berkeley, USA

Irena Peeva Cornell University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Bjorn Poonen Massachusetts Institute of Technology, USA

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas SUNY Buffalo, USA

Shunsuke Takagi University of Tokyo, Japan

Pham Huu Tiep Rutgers University, USA

Ravi Vakil Stanford University, USA

Akshay Venkatesh Institute for Advanced Study, USA

Melanie Matchett Wood Harvard University, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2024 is US $525/year for the electronic version, and $770/year (+$65, if shipping outside the US) for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University
of California, Berkeley, CA 94720-3840 is published continuously online.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2024 Mathematical Sciences Publishers



Algebra & Number Theory

Volume 18 No. 7 2024

1221Serre weights for three-dimensional wildly ramified Galois representations

DANIEL LE, BAO V. LE HUNG, BRANDON LEVIN and STEFANO MORRA

1275Combining Igusa’s conjectures on exponential sums and monodromy with semicontinuity of the minimal
exponent

RAF CLUCKERS and KIEN HUU NGUYEN

1305Exceptional characters and prime numbers in sparse sets

JORI MERIKOSKI

1333Polyhedral and tropical geometry of flag positroids

JONATHAN BORETSKY, CHRISTOPHER EUR and LAUREN WILLIAMS

1375Maximal subgroups of exceptional groups and Quillen’s dimension

KEVIN I. PITERMAN


	1. Introduction
	2. Background on total positivity and Bruhat interval polytopes
	2.1. Background on total positivity
	2.2. Background on (generalized) Bruhat interval polytopes

	3. The nonnegative tropicalization
	3.1. Background on tropical geometry
	3.2. Equivalence of (a) and (b) in Theorem A

	4. Positively oriented flag matroids
	4.1. Oriented matroids and flag matroids
	4.2. From the nonnegative flag Dressian to positively oriented flag matroids

	5. Subdivisions of flag matroid polytopes
	5.1. Flag Dressian and flag matroidal subdivisions
	5.2. The proof of (b)=-9mu(c)=-9mu(d)=-9mu(e) in Theorem A

	6. Three-term incidence relations
	6.1. The proof of (e)=-9mu(b) in Theorem A

	7. Projections of positive Richardsons to positroids
	7.1. Indexing sets for cells of `3́9`42`"̇613A``45`47`"603AGrd,n0
	7.2. Projecting positive Richardsons to positroids
	7.3. Characterizing when two adjacent-rank positroids form an oriented matroid quotient

	8. Fan structures for and coherent subdivisions from `3́9`42`"̇613A``45`47`"603ATrGrd;n>0 and `3́9`42`"̇613A``45`47`"603ATrFln>0
	8.1. Fan structures
	8.2. Coherent subdivisions

	References
	
	

