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Polymatroids are combinatorial abstractions of subspace arrangements in the same way

that matroids are combinatorial abstractions of hyperplane arrangements. By intro-

ducing augmented Chow rings of polymatroids, modeled after augmented wonderful

varieties of subspace arrangements,we generalize several algebro-geometric techniques

developed in recent years to study matroids. We show that intersection numbers in the

augmented Chow ring of a polymatroid are determined by a matching property known

as the Hall–Rado condition, which is new even in the case of matroids.

1 Introduction

Let E = {1, . . . ,m} be a onite set, and let a = (a1, . . . ,am) be a sequence of nonnegative

integers.

Deonition 1.1. A polymatroid P on E with cage a is a function rkP : 2
E → Z≥0 satisfying

1. (Submodularity) rkP(S1)+rkP(S2) ≥ rkP(S1+S2)+rkP(S1,S2) for any S1,S2 ⊆ E,

2. (Monotonicity) rkP(S1) ≤ rkP(S2) for any S1 ⊆ S2 ⊆ E,

3. (Normalization) rkP(∅) = 0, and

4. (Cage) rkP(i) ≤ ai for any i ∈ E.
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We say that rkP is the rank function of the polymatroid P, and that P has rank

r = rkP(E).

A polymatroid with cage (1, . . . , 1) is amatroid. For the fundamentals of matroid

theory we point to [35]. Introduced as generalizations of matroids [16], and also known as

generalized permutohedra, polymatroids are the central objects in the polyhedral study

of combinatorial structures related to the symmetric group [2, 34]. In those works, two

polytopes associated to a polymatroid P = (E, rkP) are the independence polytope I(P),

deoned by

I(P) =
{
x ∈ RE

≥0 :
∑

i∈S

xi ≤ rkP(S) for all S ⊆ E
}
,

and the base polytope B(P), which is the face of I(P) deoned by

B(P) = I(P) +
{
x ∈ RE :

∑

i∈E

xi = rkP(E)
}
.

Both polytopes are re-encodings of the polymatroid P as follows [16]: The polytope B(P)

determines I(P) by I(P) = {x ∈ RE
≥0 : y−x ∈ RE

≥0 for some y ∈ B(P)}, and the rank function

of P is recovered by rkP(S) = max{
∑

i∈S xi : x ∈ I(P)} = max{
∑

i∈S xi : x ∈ B(P)}.

We connect polyhedral properties of polymatroids to algebro-geometric proper-

ties arising from the intersection theory of varieties associated to their realizations by

linear subspaces. Let V1, . . . ,Vm be vector spaces of dimensions a1, . . . ,am respectively

over a oeld k, and let V =
⊕

i∈E Vi. A subspace L ⊆ V deones a polymatroid P on E with

cage a = (a1, . . . ,am) whose rank function is

rkP(S) = dim
(
image of L under the projection V →

⊕

i∈S

Vi

)
for any S ⊆ E.

We say that L ⊆ V is a realization of the polymatroid P in this case. A realization L ⊆ V

deones a subspace arrangement on L that consists of subspaces {Li}i∈E where Li =

ker(L → Vi). In terms of the subspace arrangement, the rank function of P is equivalently

described as

rkP(S) = codimL

( ⋂

i∈S

Li

)
for any S ⊆ E.

The key geometric object for us is the following compactiocation of L ⊆ V.
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Deonition 1.2. The augmented wonderful variety WL of a subspace L ⊆ V =
⊕

i∈E Vi

is

WL = the closure of the image of L in
∏

∅�S⊆E

P
( ⊕

i∈S

Vi ⊕ k

)
,

where the map L → P(
⊕

i∈S Vi ⊕k) is the composition of the projection L →
⊕

i∈S Vi with

the projective completion
⊕

i∈S Vi ↪→ P(
⊕

i∈S Vi ⊕ k).

In the context of matroids and hyperplane arrangements, the augmented won-

derful variety was introduced in [10], and it played a central role in the proof of Dowling–

Wilson top-heavy conjecture [9]. Augmentedwonderful varieties are closely related to the

wonderful compactiocations of subspace arrangement complements introduced in [14].

A special role is played by the boolean arrangement L =
⊕

i∈E Vi with cage a,

whose augmented wonderful variety is called the polystellahedral variety with cage a,

denoted Xa. Let A
•(Xa) be the Chow cohomology ring of Xa, which in Corollary 2.5 we

show has the presentation

A•(Xa) =
Z[xS,yi : ∅ ⊆ S � E, i ∈ E]

〈xS1xS2 : S1,S2 incomparable〉 + 〈xSy
ai
i
: i 
∈ S〉 + 〈yi −

∑
S 
�i xS : i ∈ E〉

.

Its grading satisoes A•(Xa) =
⊕a1+···+am

k=0
Ak(Xa), and it is equipped with the degree map,

which is an isomorphism

degXa
: Aa1+···+am(Xa)

∼
→ Z determined by the property degXa

(
y
a1
1 · · · yamm

)
= 1.

The Chow homology group A•(Xa) is the graded group
⊕a1+···+am

k=0
Ak(Xa) where Ak(Xa) =

Aa1+···+am−k(Xa).

For a polymatroid P = (E, rkP) with cage a and rank r, we deone a homology class

[�P] ∈ Ar(Xa) called the augmented Bergman class of P (Deonition 3.12). We deone the

augmented Chow ring A•(P) of P by

A•(P) = A•(Xa)/ann([�P]), where ann([�P]) = {x ∈ A•(Xa) : x · [�P] = 0}.

See Corollary 3.19 for an explicit presentation of A•(P). Its grading satisoes A•(P) =
⊕r

k=0 A
k(P), and it is equipped with the degree map, which is an isomorphism
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degP : A
r(P)

∼
→ Z deoned by

degP(ξ) = degXa
(ξ ′ · [�P]) for any lift ξ ′ ∈ A•(Xa) of ξ ∈ A•(P).

When a subspace L ⊆ V realizes P, one has an embedding WL ↪→ Xa by the construction

of the augmented wonderful variety. The resulting homology class [WL] ∈ Ar(Xa) equals

[�P] (Proposition 3.20), and the Chow ring A•(WL) of the augmented wonderful variety

WL coincides with the augmented Chow ring A•(P) (Remark 3.21).

The embedding Xa ↪→
∏

∅�S⊆E P(
⊕

i∈S Vi ⊕ k) provides the following useful set

of generators for the Chow ring of Xa. For each nonempty subset S ⊆ E, let hS ∈ A1(Xa)

be the pullback of the hyperplane class on P(
⊕

i∈S Vi ⊕ k) along the map induced by

the embedding Xa ↪→
∏

∅�S⊆E P(
⊕

i∈S Vi ⊕ k). We show that {hS : ∅ � S ⊆ E} generates

A•(Xa), and that the monomials in these generators are all of the form [�P] for some

polymatroid P with cage a. For a polymatroid P, we deone hS ∈ A1(P) to be image of hS

under the quotient map A•(Xa) → A•(P). We call these the simplicial generators of A•(P),

motivated by similar terminology in the case of matroids [6, 26]. These generators were

also considered in [36].

We show that the intersection numbers of the simplicial generators are described

by the Hall–Rado condition: A sequence S1, . . . ,Sr of nonempty subsets of E is said to

satisfy the Hall–Rado condition (with respect to a polymatroid P = (E, rkP)) if

rkP

( ⋃

j∈J

Sj

)
≥ |J| for all J ⊆ {1, . . . , r}.

See Lemma 5.2 for an interpretation of this condition in terms of a matching problem.

Theorem 1.3. Let P be a polymatroid of rank r, and let S1, . . . ,Sr be a sequence of

nonempty subsets of E. Then

degP(hS1 · · ·hSr ) =

§
¨
©
1 S1, . . . ,Sr satisoes the Hall–Rado condition,

0 otherwise.

At least when P is realizable, the fact that degP(hS1 · · ·hSr ) = 0 if S1, . . . ,Sr does

not satisfy the Hall–Rado condition has a simple geometric explanation. If rkP(Si1 , · · · ,

Sik) < k, then the degree k element hSi1
· · ·hSik

is zero because it is pulled back from the

image of WL in P(
⊕

i∈Si1
Vi ⊕ k) × · · · × P(

⊕
i∈Sik

Vi ⊕ k), which has dimension rkP(Si1 ,

· · · , Sik) < k.
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We highlight here the following corollary of Theorem 1.3.

Corollary 1.4. Let P be a polymatroid on E of rank r. Then 1
r! degP

(
(
∑

i∈E tih{i})
r
)
, the

volume polynomial of A•(P) with respect to {h{i} : i ∈ E} ⊂ A1(P), equals the basis

exponential generating function of P, which is the polynomial in Q[ti : i ∈ E] given by

∑

u∈B(P)+ZE

tu

u!
, where tu = t

u1
1 · · · tumm and u!= u1! · · ·um! .

Our results here generalize several previous results in the literature.

• When P is realizable and has cage (1, . . . , 1), Corollary 1.4 specializes to [3,

Theorem 1.3(c)].

• When P is realizable, Theorem 1.3 specializes to [11, Proposition 7.15] and the

orst statement of [27, Theorem 1.1].

• When P has cage (1, . . . , 1), Theorem 6.4 (a variant of Theorem 1.3) specializes

to [6, Theorem 5.2.4]. When P is also boolean, it further specializes to [34,

Theorem 9.3] because intersection numbers on toric varieties can be inter-

preted as mixed volumes.

Many invariants of matroids behave well with respect to matroid polytope

decompositions. This leads to the study of the valuative group of matroids [5, 7, 15],

which gives a powerful tool to study invariants of matroids. We consider the following

notion of valuativity for polymatroids with cage a.

Deonition 1.5. For a polytope Q ⊂ RE , let 1Q : RE → Z be its indicator function deoned

by 1Q(x) = 1 if x ∈ Q and 1Q(x) = 0 otherwise. The valuative group Valr(a) of rank r

polymatroids with cage a is the subgroup of Z(RE) generated by 1B(P) for P a polymatroid

of rank r and with cage a.

We show that the valuative group is isomorphic to the homology groups of the

polystellahedral variety, generalizing [18, Theorem 1.5].

Theorem 1.6. For any 0 ≤ r ≤ a1 + · · · + am, the map that sends a polymatroid P with

cage a and rank r to [�P] induces an isomorphism Valr(a)
∼
→ Ar(Xa).

To prove Theorem 1.6, we show that a choice of isomorphism Vi � k
ai for each

i ∈ E realizes Xa as a toric variety (Proposition 2.3). This gives a description of the
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Grothendieck ring of vector bundles K(Xa) in terms of certain polytopes in Ra1+···+am

(Section 4.1). We relate
⊕

r Valr(a) to this polytopal description. We then prove an

exceptional Hirzebruch–Riemann–Roch-type theorem (Theorem 4.8) that leads to the

proofs of both Theorems 1.3 and 1.6.

The paper is organized as follows. In Section 2, we discuss polystellahedral

varieties from the point of view of toric geometry. In Section 3, we construct the

augmented Bergman fan of a polymatroid and develop its basic properties. In Section

4, we study the K-ring of the polystellahedral variety. In Section 5, we prove Theorem 1.3

and 1.6. In Section 6,we prove analogs of Theorem 1.3 and 1.6 for the polypermutohedral

variety.

Notations

All varieties are over an algebraically closed oeld k. For a subset S ⊆ {1, . . . , �}, let

eS =
∑

i∈S ei be the sum of standard basis vectors in R�. Denote by (·, ·) the standard

inner product. For polyhedra and toric varieties, we follow conventions of [12, 22]. For a

rational polyhedral fan �, we let X� be the toric variety associated to �.

2 The Toric Geometry of Polystellahedral Varieties

We introduce the polystellahedral fan (with cage a) and study the properties of the

associated toric variety. This amounts to developing basic properties of the polystel-

lahedral variety Xa, since we will show that any choice of isomorphisms Vi � k
ai for

all i ∈ E induces an isomorphism between Xa and the toric variety associated to the

polystellahedral fan.

2.1 Polystellahedral fans

Set n = a1 + · · · + am, and let E be a set of cardinality n. A map π : E → E, which deones

a partition E =
⊔

i∈E π−1(i), is said to have cage a if |π−1(i)| = ai for all i ∈ E.

Deonition 2.1. A compatible pair with respect to a map π : E → E is a pair I ≤ F

consisting of a subset I ⊆ E and a chain F = {F1 � F2 � · · · � Fk � Fk+1 = E} of proper

subsets of E such that if π−1(S) ⊆ I for a subset S ⊆ E, then S ⊆ F1.

The polystellahedral fan �π is the fan in RE whose cones are in bijection with

compatible pairs, with a compatible pair I ≤ F corresponding to the cone

σI≤F = cone(−e
E\π−1(F1)

, . . . ,−e
E\π−1(Fk)

) + cone(ei : i ∈ I).
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Its rays are denoted ρi = R≥0ei for i ∈ E and ρF = R≥0(−e
E\π−1(F)) for ∅ ⊆ F � E.

Note that the fan �π depends only on the map E → π(E), not the codomain E of π .

A polystellahedral fan�a with cage a is a fan�π where π has cage a.We note two extreme

cases:

• When π has cage (n), the fan �π is the inner normal fan of the n-dimensional

standard simplex conv({0} , {ej : j ∈ E}) in RE. We denote this fan by �n.

• When π has cage (1, . . . , 1), the fan �π is the stellahedral fan on E in [18]. We

denote this fan by �
E
.

A general polystellahedral fan in RE is both a reonement of �n and a coarsening of �
E

in the following way. For two maps π : E → E and π ′ : E → E′, let us say π reones π ′,

denoted π � π ′, if the corresponding partitions form a reonement, that is, for every

i ∈ E one has π−1(i) ⊆ π ′−1
(i′) for some i′ ∈ E′. Recall that for a simplicial fan � and

a vector v in its support, the stellar subdivision of � by v is the new fan whose set of

rays are {rays of �} , {ρv = R≥0v} and the set of cones are {σ ∈ � : v /∈ σ } , {σ , ρv : σ ∈

� such that v /∈ σ and v ∈ σ ′ for some σ ⊂ σ ′ ∈ �}.

Proposition 2.2. For a reonement π � π ′, let (S1, . . . ,Sk) be a sequence consisting of

the subsets S ⊆ E such that π−1(S) 
= π ′−1
(S′) for any S′ ⊆ E′, ordered in a way that

|S1| ≥ · · · ≥ |Sk|. Then the fan �π is the result of the sequence of stellar subdivisions of

the fan�π ′ by the sequence of vectors (−e
E\π−1(S1)

, . . . ,−e
E\π−1(Sk)

).Moreover, at each step

of the sequence of stellar subdivisions, the resulting fan is projective and unimodular

with respect to the lattice ZE.

We prove the proposition using building sets, which were introduced in [14] and

studied in [20, 21]. We orst review the special case of building sets on a boolean lattice

here following [34, Section 7], which is simpler than the general case. We will discuss

building sets in a more general context in Section 3.2. A building set on E is a collection

G ⊆ 2E of subsets of E such that G contains E and {i} for each i ∈ E, and if S and S′ are in

G and S+S′ 
= ∅, then S,S′ ∈ G. A nested set of G is a collection {X1, . . . ,Xk} ⊆ G such that

for every subcollection {Xi1 , . . . ,Xi�} with � ≥ 2 consisting only of pairwise incomparable

elements, one has
⋃�

j=1 Xij /∈ G. The fan associated to G is the fan �G in RE/ReE whose

cones are

{the image in RE/ReE of cone{eX1
, . . . ,eXk} ⊂ RE : {X1, . . . ,Xk} a nested set of G}.
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Proof. Let E , {0} be the disjoint union of E with an extra element 0. We have an

isomorphism RE,{0}/Re
E,{0} � RE induced by ei �→ ei for i ∈ E and e0 �→ −

∑
i∈E ei.

It is straightforward to verify that, under this isomorphism, the fan �π equals the fan

�Gπ
inRE,0/R1 associated to the building set Gπ = {{i} : i ∈ E},{π−1(S),0 : ∅ ⊆ S ⊆ E} on

the boolean lattice of E,{0}. If π � π ′, then we have Gπ ⊇ Gπ ′ , and the desired statements

in the proposition are now special cases of [19, Theorem 4.2] and [21, Proposition 2]. �

2.2 Polystellahedral varieties

Let us ox the following notation for the rest of a paper.

Notation. Let E be a set of size n := a1 +· · ·+am, and let π : E → E be a map with

cage a.

Let Xπ be the toric variety associated to the polystellahedral fan �π . We record

some properties of Xπ arising from the properties of the fan �π , starting with the fact

that Xπ is isomorphic to the polystellahedral variety Xa with cage a.

As before, let V =
⊕

i∈E Vi be the direct sum of vector spaces where dimVi = ai =

|π−1(i)| for all i ∈ E. Denote by GLa the group
∏

i∈E GL(Vi). Recall that Xa is the closure of

the image of the map V →
∏

∅�S⊆E P(
⊕

i∈S Vi ⊕ k). Because this map is GLa-equivariant,

the group GLa acts naturally on the variety Xa.

Proposition 2.3. Any choice of isomorphisms Vi � k
π−1(i) for each i ∈ E, which gives a

natural embedding of the torus (k∗)E ↪→ GLa, identioes Xa with the toric variety Xπ of

the fan �π .

Thus, from this point on, we will identify Xa with the toric variety Xπ , although

the identiocation depends on the choices of isomorphisms Vi � k
π−1(i) for all i ∈ E.

Proof. With the isomorphisms Vi � k
π−1(i) for all i ∈ E, the projective space PE = P(kE⊕

k) � P(V ⊕ k) with the obvious action of (k∗)E is the toric variety of the fan �n. For a

subset S ⊆ E, let LS = k
π−1(E\S) ⊕ 0 ⊂ k

π−1(E\S) ⊕ k. If S is a proper subset, then P(LS) is

the hyperplane at inonity of the coordinate subspace P(kπ−1(E\S) ⊕ k) � P(
⊕

i∈E\S Vi ⊕ k)

of PE. Note the complementation, and note that P(LS) is GLa-invariant for any ∅ ⊆ S � E.

We apply Proposition 2.2 with π ′ being the map from E to a singleton set, which

describes the fan �π as a sequence of stellar subdivisions of the fan �n. Translated

into toric geometry terms, it states that the toric variety Xπ of the fan �π is obtained

from PE via a sequence of blow-ups as follows: Order the proper subsets of E so that

their cardinalities are non-strictly decreasing, then sequentially blow-up the (strict
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transforms of) the loci P(LS) in that order. This sequential blow-up is also the description

of the wonderful compactiocation of the complement of the subspace arrangement

{P(L{i}) : i ∈ E} in PE, introduced in [14]. Reference [14, §1.6 Proposition (2)] moreover

states that thiswonderful compactiocation is also the closure of the image of the rational

map PE
���

∏
∅�S⊆E P

(
(kE ⊕k)/LS

)
, which, when restricted to V � k

E ⊂ PE, is exactly the

map V →
∏

∅�S⊆E P(
⊕

i∈S Vi ⊕ k). �

Remark 2.4. Let 	a be the product
∏

i∈E Sπ−1(i) of permutation groups. Because 	a acts

naturally on the fan �π by permuting the coordinates of RE, the group 	a acts on the

variety Xπ . Under the identiocation Xa � Xπ , this action agrees with the action of 	a

embedded in GLa via the isomorphism
⊕

i∈E Vi �
⊕

i∈E k
π−1(i).

We record the following presentation of the Chow ring of Xa. For a proper subset

S of E and an element j ∈ E, let xS and ỹj denote the toric divisors of Xa corresponding

to the rays ρS and ρj of �a, respectively.

Corollary 2.5. For each i ∈ E, the divisors in the set {̃yj : j ∈ π−1(i)} are all equal to each

other as divisor classes in A1(Xa). Denote this divisor class by yi. The Chow ring A•(Xa)

of Xπ equals

A•(Xπ ) =
Z[xS,yi : ∅ ⊆ S � E, i ∈ E]

〈xS1xS2 : S1,S2 incomparable〉 + 〈xSy
ai
i
: i 
∈ S〉 + 〈yi −

∑
S 
�i xS : i ∈ E〉

.

Proof. For a unimodular and projective fan � in RE with rays �(1) and primitive ray

vectors {uρ ∈ ZE : ρ ∈ �(1)}, [22, §5.2 Proposition] states that the Chow ring of the smooth

projective toric variety X� equals

A•(X�) =
Z[xρ : ρ ∈ �(1)]

〈
∏

ρ∈S xρ : {ρi}i∈S do not form a cone in �〉 + 〈
∑

ρ∈�(1)(uρ ,v)xρ : v ∈ ZE〉

where (u,v) here denotes the standard inner product on RE and xρ represents the toric

divisor of X� corresponding to the ray ρ. We apply this with � = �π .

Setting v = ej1 − ej2 for any i ∈ E and j1, j2 ∈ π−1(i), the linear relations
∑

ρ∈�(1)(uρ ,v)xρ = 0 imply the orst statement that {̃yj}j∈π−1(i) are all equal as elements in

A1(Xπ ). Setting v = ej for any i ∈ E and j ∈ π−1(i) then gives the relations {yi −
∑

S 
�i xS =

0 : i ∈ E}. The rest of the corollary follows when one notes that the minimal non-faces
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of �π are the following: the sets of the form {ρS1 , ρS2} for incomparable proper subsets

S1 and S2 of E, or the sets of the form {ρS} , {ρj : j ∈ π−1(i)} for a proper subset S of E and

i ∈ E \ S. �

2.3 Nef divisors, deformations, and expansions

For a fan � in RE, a (lattice) polytope Q ⊂ RE is a (lattice) deformation of � if

its inner normal fan �Q coarsens the fan �. We describe the deformations of the

polystellahedral fan.

As before, let π : E → E be a map with cage a. Deone a linear map

pπ : RE → RE by ei �→ eπ(i).

Deonition 2.6. Let P = (E, rkP) be a polymatroid on E with arbitrary cage. The expan-

sion (with respect to π ) of P is the polymatroid π∗(P) on E whose rank function is given

by rkP ◦π . Equivalently, the polymatroid π∗(P) is deoned by setting its independence

polytope to be

I(π∗(P)) = p−1
π (I(P)) + RE

≥0.

Proposition 2.7. A lattice polytope Q in RE is a deformation of �a if and only if Q is a

translate of I(π∗(P)) for a polymatroid P on E.

We deduce the proposition by using a standard result in toric geometry that

identioes deformations with nef toric divisors. We prepare with the following lemma.

Note that, by the linear relations for the Chow ring A•(Xa) in Corollary 2.5, the set of

divisor classes {xS : ∅ ⊆ S � E} is a basis of A1(Xa).

Lemma 2.8. A divisor class D ∈ A1(Xa) is nef if and only if, when we write D =
∑

S�E aSxS, the function S �→ aE\S is the rank function of a polymatroid on E.

Proof. Let ϕD be the piecewise linear function corresponding to the divisor D =
∑

S�E aSxS, which satisoes ϕD(ej) = 0 for all j ∈ E and ϕD(−e
E\π−1(S)) = −aS for S � E.

We use a criterion for the nefness of a line bundle on a smooth projective toric variety

from [12, Theorem 6.4.9], which states that D is nef if and only if the support function

ϕD satisoes an inequality for each minimal non-face of the fan. This gives the following

inequalities:
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• For S,S′ � E incomparable, the minimal non-face spanned by ρS and ρS′ gives

the inequality

ϕD(−e
E\π−1(S) − e

E\π−1(S′)) ≥ ϕD(−e
E\π−1(S)) + ϕD(−e

E\π−1(S′)).

Because −e
E\π−1(S) −e

E\π−1(S′) = −e
E\π−1(S+S′) −e

E\π−1(S,S′) and ϕD is linear on

the cone spanned by −e
E\π−1(S+S′) and −e

E\π−1(S,S′), we get that

aS+S′ + aS,S′ ≤ aS + aS′ .

• For S � E and i 
∈ S, the minimal non-face spanned by ρS , {ρj : j ∈ π−1(i)}

gives the inequality

ϕD

(
− e

E\π−1(S) +
∑

j∈π−1(i)

ej

)
≥ ϕD(−e

E\π−1(S)) +
∑

j∈π−1(i)

ϕD(ej).

As −e
E\π−1(S) +

∑
j∈π−1(i) ej = −e

E\π−1(S,i) and ϕD(ej) = 0, this gives the

inequality

aS,i ≤ aS.

These two inequalities are equivalent to the statement that S �→ aE\S is a

polymatroid. �

Proof of Proposition 2.7. The standard correspondence between nef toric divisors and

deformations [12, Theorems 6.1.5–6.1.7], when applied to the fan �a, states that a nef

divisor D =
∑

S�E aSxS on Xa corresponds to the lattice deformation QD of �a deoned by

QD = {y ∈ RE : (y,ej) ≥ 0 for all j ∈ E and (y,−e
E\π−1(S)) ≥ −aS for all ∅ ⊆ S � E},

which is exactly the independence polytope of the expansion of the polymatroid with

rank function S �→ aE\S. Moreover, the correspondence implies that every lattice

deformation of �a arises as a translate of the polytope corresponding to a nef divisor

D =
∑

S�E aSxS. �

We distinguish the following set of nef divisors on Xa arising from the standard

simplices in RE . Note that, for each nonempty subset S ⊆ E, the simplex �0
S = conv({0} ,

{ei : i ∈ S}) ⊂ RE is the independence polytope of the polymatroid on E whose rank
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function is

rk(T) =

§
¨
©
1 if T + S 
= ∅

0 otherwise
for ∅ ⊆ T ⊆ E,

or equivalently, rk(E \ T) = 1 exactly when T 
⊇ S.

Deonition 2.9. For each nonempty subset S ⊆ E, we deone hS ∈ A1(Xa) to be the nef

divisor

hS =
∑

∅⊆T�E
T 
⊇S

xT

corresponding to the simplex �0
S.We call the divisor classes {hS∅ � S ⊆ E} the simplicial

generators of Xa.

Proposition 2.10. The simplicial generators of Xa form a basis of A1(Xa). In particular,

their monomials span A•(Xa) as an abelian group.

Proof. By Möbius inversion, every divisor class in the basis {xT : ∅ ⊆ T � E} of A1(Xa)

is a linear combination of the simplicial generators. �

Remark 2.11. The deonition of hS here agrees with its deonition in the introduction as

the pullback of the hyperplane class of P(
⊕

i∈S Vi ⊕ k) along the map

Xa ↪→
∏

∅�S⊆E P(
⊕

i∈S Vi ⊕ k) → P(
⊕

i∈S Vi ⊕ k).

To see this, one notes that the independence polytope of the expansion of the polymatroid

of �0
S is the simplex �0

π−1(S)
= conv({0} , {ej : j ∈ π−1(S)}) ⊂ RE. The lattice points of

�0
π−1(S)

, considered as global sections of the corresponding line bundle, induce the map

Xa → P(
⊕

i∈S Vi ⊕ k).

We conclude by discussing the behavior of Chow rings under reonements.

Proposition 2.2 implies that �π is a coarsening of the stellahedral fan �
E
. Thus, we have
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a toric birational map

u : X
E

→ Xa induced by the reonement of fans �
E

� �π .

We record the following properties of u for future use.

Lemma 2.12. The pullback map u∗ : A•(Xa) → A•(X
E
) satisoes the following.

1. u∗ is a split injection, with the splitting given by the pushforward map

u∗ : A
•(X

E
) → A•(Xa).

2. If D ∈ A1(Xa) is a nef divisor class corresponding to a deformation Q of �a,

then the pullback u∗D ∈ A1(X
E
) is a nef divisor class corresponding to Q

considered as a deformation of �
E
.

3. For a nonempty subset S ⊆ E, the simplicial generator hS ∈ A1(Xa) pulls back

to the simplicial generator u∗hS = hπ−1(S) ∈ A1(X
E
).

Proof. The orst statement is a standard consequence of the birationality of u and the

projection formula. The second statement follows from [12, Proposition 6.2.7]. The third

statement follows from the second, since the independence polytope of the expansion of

the polymatroid of �0
S is the simplex �0

π−1(S)
= conv({0} , {ej : j ∈ π−1(S)}) ⊂ RE. �

Remark 2.13. Let the polystellahedron with cage a be the polytope �a in RE deoned by

�a = I(π∗(P)), where P is the polymatroid on E with B(P) = conv{w · (1, . . . ,m) : w ∈ SE}.

The face B(π∗(P)) of �a was introduced as the polypermutohedron with cage a in [13].

Using the results in this subsection, one can verify that the polystellahedral fan �a is the

normal fan of the polystellahedron �a. Alternatively, using the building set associated

to a polystellahedral fan given in the proof of Proposition 2.2, one can verify that �a is

the corresponding nestohedron [34, Section 7].

3 Augmented Geometry of Polymatroids

For a polymatroid P with cage a and rank r, we deone its augmented Bergman fan �P as

a subfan of the polystellahedral fan with cage a, and we use its properties to deone the

augmented Bergman class [�P] ∈ Ar(Xa). We then record some geometric properties of

the augmented Bergman fan and the augmented Bergman class.



4220 C. Eur and M. Larson

3.1 Multisymmetric lifts and duality

We begin with a construction of a matroid from a polymatroid P with cage a which has

appeared many times in the literature [8, 25, 28, 29, 32] under different names, such as

the <free expansion= and <natural matroid.= Here, we use the terminology of [13].

Deonition 3.1. The multisymmetric lift of a polymatroid P on E with cage a is the

matroid Mπ (P) on E whose rank function is given by

rkMπ (P)(S) = min{rkP(A) + |S \ π−1(A)| : A ⊆ E}.

Alternatively, the multisymmetric lift can be described via polytopes as follows.

Lemma 3.2. Let [0, 1]E be the unit cube in RE. Then,we have I(Mπ (P)) = I(π∗(P))+ [0, 1]E.

Proof. We need to show that a subset S ⊆ E is independent in the matroid Mπ (P) if

and only if eS ∈ I(π∗(P)). By the deonition of I(π∗(P)), we have that eS ∈ I(π∗(P)) if and

only if, for all U ⊆ E, one has |S + U| ≤ rkP(π(U)). It sufoces to check whether this holds

when U is a ober of π , so this condition becomes |S + π−1(A)| ≤ rkP(A), or, equivalently,

rkP(A)+|S \π−1(A)| = rkP(A)+|S|− |S+π−1(A)| ≥ |S|, for all A ⊆ E. That is, the condition

is equivalent to rkMπ (P)(S) = |S|. �

The lemma and its proof implies that I(Mπ (P)) maps onto I(P) under the linear

projection pπ : RE → RE . Equivalently, a polymatroid P with cage a is recovered from

Mπ (P) via the formula rkP(S) = rkMπ (P)(π
−1(S)).

When P is realized by a subspace arrangement L ⊆
⊕

i∈E Vi, the multisymmetric

lift Mπ (P) is realized by the hyperplane arrangement L ⊆ k
E obtained by a general choice

of isomorphisms Vi � k
π−1(i) for all i ∈ E. In particular, the subspaces {Li : i ∈ E} in

the arrangement appear as subspaces arising as intersections of the hyperplanes in the

arrangement L ⊆ k
E.

For a polymatroid P = (E, rkP) with cage a, a subset F ⊆ E is a nat of P if

rkP(F , a) > rkP(F) for all a ∈ E \ F. The nats of P form a lattice, denoted LP. The loops of

a polymatroid are the elements of the minimal nat.We say that a polymatroid is loopless

if the empty set is a nat, or equivalently, if rkP(i) > 0 for all i ∈ E. Given a nat F of P,

the subset π−1(F) ⊆ E is a nat of the multisymmetric lift Mπ (P). Flats of Mπ (P) of this

form are called geometric nats of Mπ (P). The key property of geometric nats is the

following.
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Proposition 3.3. [13, Lemma 2.8] Every nat F of Mπ (P) contains a unique maximal

geometric nat Fgeo. We have that rkMπ (P)(F
geo) = rkP(π(Fgeo)), and rkMπ (P)(F) =

rkMπ (P)(F
geo) + |F \ Fgeo|.

Remark 3.4. As in Remark 2.4, let 	a be the product
∏

i∈E Sπ−1(i) of permutation groups.

The terminology <multisymmetric= is justioed by the fact that the obvious action of the

group 	a on E preserves the rank function of Mπ (P). In fact, this property characterizes

multisymmetric lifts: [13,Theorem 2.9] states that amatroidMπ on E such that the action

of 	a preserves the rank function is of the form Mπ (P) for a polymatroid P with cage a.

(In the proof of this theorem, the authors of [13] make the additional assumption that

rkP(i) = ai, but this assumption is never used.) Moreover, the map F �→ π−1(F) induces

an isomorphism from the lattice LP of nats of P to the lattice of 	a-oxed nats of Mπ (P)

[13, Corollary 2.7].

We now discuss polymatroid duality; see, for example, [29]. Our main conclusion

is that taking multisymmetric lift commutes with polymatroid duality.

Deonition 3.5. For a polymatroid P on E with cage a and rank r, its dual polymatroid

P⊥ is a polymatroid on E with cage a and rank n− r whose rank function is

rkP⊥(S) =
∑

i∈S

ai + rk(E \ S) − r.

Alternatively, duality can also be described via polytopes as follows. See Figure 1

for an illustration. The rank function description for P⊥ above implies that

B(P⊥) = −B(P) + a,

or, equivalently, since I(P) = {x ∈
∏

i∈E [0,ai] : y − x ∈ RE
≥0 for some y ∈ B(P)}, we have

− I(P⊥) + a =
{
x ∈

∏
i∈E [0,ai] : x − y ∈ RE

≥0 for some y ∈ B(P)
}
.

When P is realized by L ⊆ V =
⊕

i∈E Vi, its dual P
⊥ is realized by (V/L)∨ ⊆

⊕
i∈E V

∨
i

obtained by dualizing the surjection V � V/L. When a = (1, . . . , 1), polymatroid duality

agrees with the usual notion of matroid duality.

Proposition 3.6. For a polymatroid P on E with cage a, one has Mπ (P⊥) = Mπ (P)⊥.
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Fig. 1. Polytopes associated to a polymatroid and its dual.

Proof. This follows from Lemma 3.2 since B(P⊥) = −B(P) + a and pπ (
∑

j∈E ej) = a. �

3.2 Augmented Bergman fans of polymatroids

Let P be a polymatroid on E with cage a. We now introduce the augmented Bergman fan

�P of a polymatroid.

Deonition 3.7. The augmented Bergman fan �P of P is the subfan of �a consisting of

cones σS≤F , where S is a subset of E and F = {F1 � · · · � Fk � Fk+1 = E} is a chain of

proper nats of P satisfying

1. For all T ⊆ S, one has rkP(π(T)) ≥ |T|, and

2. for all F ∈ F and all nonempty T ⊆ S\π−1(F), one has rkP(F,π(T)) > rkP(F)+

|T|.

When a = (1, . . . , 1), that is, when P is a matroid M on E, the augmented Bergman

fan of P coincides with the augmented Bergman fan �M introduced in [10]. Explicitly, the

fan �M is the subfan of the stellahedral fan �E consisting of cones σI≤F where I ⊆ E is

an independent set of M and F = {F1 � · · · � Fk � Fk+1 = E} is a chain of proper nats of

M such that I ⊆ F1.

Theorem 3.8. The augmented Bergman fan �P of P is the subfan of �a whose support

is equal to the support of the augmented Bergman fan �Mπ (P) of the multisymmetric lift

of P. More precisely, �P is the coarsening of the fan �Mπ (P) such that it is a subfan of �a.

This is the key property of �P that we will repeatedly use. The rest of this

subsection is dedicated to the proof of the theorem.
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We now review building sets on the lattice of nats of a matroid; for proofs and

details we point to [14, 20]. A building set on a loopless matroid M on ground set E is a

collection G of nonempty nats of M such that, for all nonempty nats of F of M, the natural

map of lattices

∏

G∈maxG≤F

[∅,G] → [∅,F]

is an isomorphism. Here, maxG≤F denotes the maximal elements of G contained in the

interval [∅,F] ⊆ LM. All building sets that we consider will contain the maximal nat

E. A nested set is a subset N ⊆ G that does not contain E such that, for all pairwise

incomparable subsets {F1, . . . ,Fk} ⊆ N with k ≥ 2, the join
∨k

i=1 Fi of {F1, . . . ,Fk} is not

in G. Nested sets form a simplicial complex, which is realized as a simplicial fan �M,G

in RE/ReE whose cones are {image in RE/ReE of cone{ei : i ∈ N } ⊂ RE : N a nested set}.

We call �M,G the Bergman fan of M with respect to the building set G. The support of

�M,G does not depend on the choice of building set [21, Theorem 4], and �M,G is always

a unimodular fan [21, Proposition 2].

We prove Theorem 3.8 by identifying the fan �P with a Bergman fan of a matroid

closely related to themultisymmetric liftMπ (P). LetMπ (P)×0 denote the free coextension

of the multisymmetric lift Mπ (P), which is a matroid on the ground set E� {0} with nats

{F , 0 : F ⊆ E nat of Mπ (P)} , {I ⊆ E : I independent in Mπ (P)}.

Note that Mπ (P)×0 is always loopless.We now deone a building set on Mπ (P)×0 whose

Bergman fan will be the augmented Bergman fan of P.

Lemma 3.9. Let G be the set of all nats of Mπ (P) × 0 of the form F , 0 for F a geometric

nat of Mπ (P), or {j} for j ∈ E not a loop of Mπ (P). Then G is a building set.

Proof. Consider a nat ofMπ (P)×0 of the formH,0 forH a nat ofMπ (P). By Lemma 3.3,H

contains a unique maximal geometric nat Hgeo, and, for any subset S with Hgeo ⊆ S ⊆ H,

we have that rkP(S) = rkP(Hgeo)+|S\Hgeo|. This identioes the interval [∅,H,0] inLMπ (P)×0

with [∅,Hgeo , 0]× [∅,H \Hgeo]. The second factor splits as [∅,H \Hgeo] =
∏

i∈H\Hgeo [∅, i],

which gives the desired decomposition for H,0. If we have a nat of Mπ (P)×0 of the form

I for I ⊆ E independent, then the desired decomposition is automatic. �

Before computing the nested sets of G, we need a preparatory lemma.
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Lemma 3.10. Let F be a geometric nat of a multisymmetric matroid Mπ (P), and let S

be a nonempty subset of F such that |S| ≥ rkMπ (P)(F) or |S| > rkMπ (P)(F). Then there is a

geometric nat G of Mπ (P) and a nonempty subset S′ ⊆ S + G such that |S′| ≥ rkMπ (P)(G)

(respectively |S′| > rkMπ (P)(G)) and S′ spans G.

Proof. We orst do the case when |S| > rkMπ (P)(F). We induct on the rank of F; if

rkMπ (P)(F) = 0 then the claim is obvious. Let H be the closure of S. Using Lemma 3.3,

we have that

rkMπ (P)(H) = rkMπ (P)(H
geo) + |H \ Hgeo| ≥ rkMπ (P)(H

geo) + |S| − |S + Hgeo|.

On the other hand,we have that rkMπ (P)(H) ≤ rkMπ (P)(F) < |S|, so rkMπ (P)(H
geo) < |S+Hgeo|.

Either Hgeo = F and we are done, or we conclude by induction.

In the case when |S| ≥ rkMπ (P)(F), if we set H to be the closure of S then

the argument above shows that |S + Hgeo| ≥ rkMπ (P)(H
geo), so we are done unless

rkMπ (P)(H
geo) = 0 (when S + Hgeo may be empty). In this case, we have that rkMπ (P)(H) ≥

|S| ≥ rkMπ (P)(F) by Lemma 3.3, so H = F is geometric. �

Lemma 3.11. With G as in Lemma 3.9, the nested sets of G are given by chains of nats

F = {F1 � · · · � Fk � Fk+1 = E} of P and a subset S of the non-loops of Mπ (P) such that:

1. For all T ⊆ S, rkP(π(T)) ≥ |T|, and

2. for all F ∈ F and all nonempty T ⊆ S \ π−1(F), rkP(F , π(T)) > rkP(F) + |T|.

Proof. Let S and F = {F1 � · · · � Fk � Fk+1 = E} be a pair satisfying the two condition

of the lemma. We check that the corresponding set is nested. The incomparable subsets

are either given by a collection T ⊆ S, or a nat F ∈ F and T ⊆ S \ π−1(F).

The closure of T ⊆ S in Mπ (P) × 0 is T if T is independent, and it is clMπ (P)(T) , 0

if T is dependent. In the orst case, T is not in G if |T| > 1. If T is dependent, then (1)

guarantees that rkMπ (P)(T) < rkP(π(T)), so the closure is not in G. Similarly, if we have

T ⊆ S \ π−1(F), then the closure of π−1(F) , T cannot be geometric.

Now letN be a nested set, which consists of a subset S of the non-loops of Mπ (P)

and nats of the form π−1(F) , 0 for F a nat of P. As the join of two geometric nats is a

geometric nat, the nats of P such that π−1(F) , 0 lies in N must form a chain F .

Suppose there is a nonempty subset T ⊆ S with rkP(π(T)) < |T|. Let F = clP(π(T))

be the closure of π(T), which is a nat of P of rank less than |T| with π−1(F) containing T.

By Lemma 3.10, there is T ′ ⊆ T and a geometric nat G such that T ′ spans G and
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|T ′| > rkMπ (P)(G). Then the closure of T ′ in Mπ (P) × 0 is G , 0, contradicting that N is

nested.

Now suppose that there is F ∈ F and T ⊆ S \π−1(F) with rkP(F ,π(T)) ≤ rkP(F)+

|T|. Let G = π−1(clP(π(T) , F)). Applying Lemma 3.10 to the contraction Mπ (P)/π−1(F),

we ond a geometric nat H ⊃ π−1(F) and T ′ ⊆ T + H such that T ′ , π−1(F) spans H. This

contradicts that N is nested. �

Proof of Theorem 3.8. Let G be the building set on the lattice of nats of Mπ (P)×0 given

by Lemma 3.9. Let H be the building set on the lattice of nats of Mπ (P) × 0 given by F , 0

for F a nat of Mπ (P) and {j} for j ∈ E not a loop ofMπ (P). That this is a building set follows

from Lemma 3.9 by viewing Mπ (P) as a polymatroid with cage (1, . . . , 1). By [21, Theorem

4] the support of �Mπ (P)×0,G coincides with the support of �Mπ (P)×0,H. By [18, Lemma

5.14], under the isomorphism RE → RE,0/R obtained by sending ej to ej, the support of

�Mπ (P)×0,H coincides with the support of �Mπ (P). Under this isomorphism, �Mπ (P)×0,G is

identioed with �P by Lemma 3.11. �

3.3 Augmented Bergman classes of polymatroids

Webegin by reviewing brieny balanced fans and their Chowhomology classes; for details

and proofs we point to [23] and [1, Section 5].

A pure-dimensional simplicial rational fan � of dimension d is balanced if for

any cone τ ∈ � of codimension 1, one has
∑

σ�τ uσ\τ ∈ τ ,whereuσ\τ denotes the primitive

vector of the unique ray in σ that is not in τ . Suppose a balanced fan � is a subfan of

a complete unimodular fan �̃. Let Ad(X�̃) be the d-th graded piece of the Chow ring of

the toric variety X�̃ , which is spanned by {[Zσ ] : σad-dimensional cone in �̃}, where Zσ is

the torus-orbit closure in X�̃ corresponding to σ . One then obtains a linear functional

w� ∈ Hom(Ad(X�̃),Z) determined by w�([Zσ ]) = 1 if σ ∈ � and w�([Zσ ]) = 0 otherwise.

By the Poincaré duality property of the Chow ring A•(X�̃), the functional w� deones an

element [�] ∈ Ad(X�).

Returning to polymatroids, let P be a polymatroid on E with cage a and rank r. As

the support of the augmented Bergman fan �P coincides with the support of a Bergman

fan, [24, Theorem 3.8] implies that �P is a balanced subfan of the polystellahedral fan

with cage a.

Deonition 3.12. The augmented Bergman class of P is the Chow homology class [�P] ∈

Ar(Xa) obtained by considering �P as a balanced subfan of the polystellahedral fan with

cage a.
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Wewill repeatedly use the following relation between the classes associated to a

polymatroid and its multisymmetric lift. Recall the birational map u : X
E

→ Xa induced

by reonement of respective fans (Proposition 2.2).

Lemma 3.13. The pullback u∗[�P] is equal to the augmented Bergman class [�Mπ (P)] of

the multisymmetric lift.

Proof. The lemma follows from applying the formula [23, Corollary 3.7] for computing

pullbacks in terms of Minkowski weights to Proposition 2.2 and Theorem 3.8. �

We use the lemma to compute how augmented Bergman classes of polymatroids

multiply as elements in the Chow ring A•(Xa). We will need the following combinatorial

notions.

Given two polymatroids P1 and P2 on E with cage a, we deone the polymatroid

union P1∨P2 to be the polymatroid with cage awhose independence polytope is (I(P1)+

I(P2))+
∏

i∈E [0,ai]. That this is indeed the independence polytope of a polymatroid follows

from [16, (35)]. Deone the polymatroid intersection of P1 and P2 to be P1 ∧ P2 := (P⊥
1 ∨

P⊥
2 )⊥. If we view Mπ (Pi) as a polymatroid with cage (1, . . . , 1), by Lemma 3.2 we have

that Mπ (P1) ∨ Mπ (P2) = Mπ (P1 ∨ P2). Therefore, Mπ (P1) ∧ Mπ (P2) = Mπ (P1 ∧ P2) by

Proposition 3.6.

Theorem 3.14. Let P1 and P2 be polymatroids with cage a and ranks r1 and r2,

respectively. Then, we have

[�P1
] · [�P2

] =

§
¨
©
[�P1∧P2

] if (n− r1) + (n− r2) = n− rank(P1 ∧ P2)

0 otherwise.

When a = (1, . . . , 1), the above theorem is [18, Theorem 1.6]. Our proof is a

reduction to this case.

Proof. Applying Lemma 3.13 and using that Mπ (P1)∧Mπ (P2) = Mπ (P1∧P2), one obtains

from [18, Theorem 1.6] that

u∗[�P1
] · u∗[�P2

] =

§
¨
©
u∗[�P1∧P2

] if (n− r1) + (n− r2) = n− rank(P1 ∧ P2)

0 otherwise.

The result now follows from the injectivity of u∗ (Lemma 2.12). �
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Corollary 3.15. The augmented Bergman classes of polymatroids with cage a span

A•(Xa) as an abelian group.

Proof. Recall that A•(Xa) is generated as a ring by the simplicial generators {hS}, and in

particular, the monomials in the {hS} span A•(Xa) as an abelian group. By Theorem 3.14,

we are done once we show that each simplicial generator hS is an augmented Bergman

class.

For each nonempty subset S ⊆ E, let HS be the polymatroid on E with cage a

whose dual polymatroid has the simplex�0
S as its independence polytope.By Proposition

3.6, the multisymmetric lift Mπ (HS) is the matroid on E whose unique circuit is π−1(S).

In [18, Section 7.2], it is shown that the augmented Bergman class of this matroid is equal

to hπ−1(S) ∈ A1(X
E
). We thus conclude that [�HS

] = hS by Lemma 2.12 and Lemma 3.13.�

Remark 3.16. Arguing as in [18, Section 7.2], one can show that the set of monomials

{h
d1
F1

· · ·h
dk
Fk

: ∅ � F1 � · · · � Fk ⊆ E, d1 ≤ |π−1(F1)|

and di < |π−1(Fi \ Fi−1)| for all 2 ≤ i ≤ k}

form a Z-basis for A•(Xa).Moreover, combining with Theorem 3.14, one can further show

that these monomials are equal to the augmented Bergman classes of polymatroids

whose multisymmetric lifts are 	a-oxed Schubert matroids on ground set E. In partic-

ular, A•(Xa) is generated by the augmented Bergman classes of realizable polymatroids

with cage a. This basis can also be obtained from the techniques of [15] and Theorem 1.6.

3.4 Augmented Chow rings of polymatroids

This subsection records the properties of the augmented Chow ring of a polymatroid,

but is not logically necessary for subsequent sections of this paper. The non-augmented

version of the following theorem appeared in [13, 33]:

Theorem 3.17. Let � ∈ A1(X�P
) be an element corresponding to a strictly convex

piecewise linear function on �P. Then the following hold:

1. (Poincaré duality) There is an isomorphism degP Ar(X�P
) → Z such that, for

0 ≤ k ≤ r/2, the pairing

Ak(X�P
) × Ar−k(X�P

) → Z, (x,y) �→ degP(xy)

is unimodular.
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2. (Hard Lefschetz) For every 0 ≤ k ≤ r/2, the map

Ak(X�P
) ⊗ Q → Ar−k(X�P

) ⊗ Q, x �→ �r−2kx

is an isomorphism.

3. (Hodge-Riemann) For every 0 ≤ k ≤ r/2, the bilinear form

Ak(X�P
) ⊗ Q × Ak(X�P

) ⊗ Q → Q, (x,y) �→ (−1)k degP(�r−2kxy)

is positive deonite on the kernel of multiplication by �r−2k+1.

Proof. The support of �P is the same at the support of the Bergman fan of Mπ (P) × 0.

The result then follows from [4, Theorem 1.6] and [1]. For more details, see [13, Proof of

Corollary 4.7]. �

AsX�P
is a subvariety ofXa, there is a restrictionmapA•(Xa) → A•(X�P

).We often

extend the degree map of Theorem 3.17 to the whole Chow ring degP : A
•(X�P

) → Z by

declaring it to be zero on the lower-degree graded components. The degree map satisoes

the following version of the projection formula: for any x ∈ A•(Xa), the degree of the

image of x in A•(X�P
) is equal to the degree in A•(Xa) of x · [�P].

Corollary 3.18. The kernel of A•(Xa) → A•(X�P
) is ann([�P]), so we may identify A•(P)

with A•(X�P
).

Proof. By Poincaré duality, an element x ∈ Ak(Xa) is in the kernel of the map to A•(X�P
)

if and only if, for all y ∈ An−r−k(Xa), deg(x · [�P] · y) = 0. By Poincaré duality on A•(Xa),

we see that x · [�P] = 0. Therefore, the kernel of A•(Xa) → A•(X�P
) is ann([�P]). �

Corollary 3.19. We have that

A•(P) =
Z[xF ,yi : F nat, i ∈ E non-loop]

I1 + I2 + I3 + I4
, where

I1 = 〈xF1xF2 : F1,F2 incomparable nats〉, I2 =
〈∏

i∈S

y
ai
i

: ai > 0,
∑

ai > rkP(S)
〉
,

I3 =
〈∏

i∈T

y
ai
i
xF : T + F = ∅,ai > 0, rkP(F , T) ≤ rkP(F) +

∑
ai

〉
, and I4 =

〈
yi −

∑

F 
�i

xF

〉
.
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Proof. As X�P
is a toric variety, its Chow ring is generated by classes corresponding to

rays of �P, with monomial relations coming from minimal non-faces of the simplicial

complex given by the faces of �P and a linear relation for each element of E. The rays of

�P correspond to non-loops of E and nats of P. For j1, j2 non-loops in Ewith π(j1) = π(j2),

the relation ej1 − ej2 implies that the corresponding divisor classes are equal.

Every non-face of the complex of cones in �P contains either {F1,F2} for F1,F2

incomparable, {j1, . . . , jk} with rkP(π(j1, . . . , jk)) < k, or {j1, . . . , j�,F} for π−1(F) disjoint

from {j1, . . . , j�} and rkP(F , π({j1, . . . , j�})) ≤ rkP(F) + �. Putting this all together implies

the result. �

3.5 Augmented wonderful varieties of polymatroids

We sketch the geometric origins of the notions introduced in this section. Recall that,

given a realization L ⊆ V =
⊕

i∈E Vi of a polymatroid P, its augmented wonderful

variety WL is the closure of L in
∏

∅�S⊆E P(
⊕

i∈S Vi ⊕ k). In the proof of Proposition 2.3,

we described Xa as a sequence of blow-ups from P(V ⊕ k) along centers disjoint from

V ⊂ P(V ⊕ k). Hence, we have a natural inclusion of V into Xa, and the variety WL is

equivalently the closure of L ⊆ V in Xa.

Proposition 3.20. Let L ⊆
⊕

i∈E Vi be a realization of a polymatroid P with cage a. Then

the homology class [WL] is equal to [�P].

Proof. Because GLa =
∏

i∈E GL(Vi) is connected, its action on A•(Xa) is trivial, so for any

g ∈ GLa, we have that [WL] = [g ·WL] = [Wg·L]. If we choose a general g ∈ GLa, then since k

is inonite, g · L is general with respect to the (oxed) choice of isomorphisms Vi
∼
→ k

π−1(i),

so g · L ⊆ k
E is a realization of Mπ (P).

By [18, Corollary 5.11(3)], the homology class of the closure of g·L in X
E
is [�Mπ (P)].

As u : X
E

→ Xa is an isomorphism over g · L, we have u∗[�Mπ (P)] = [Wg·L]. By Lemma 3.13,

[�Mπ (P)] = u∗[�P], so the result follows because u∗u
∗ is the identity (Lemma 2.12). �

Remark 3.21. The closure of L in X�P
⊂ Xa is WL, and the restriction map A•(X�P

) →

A•(WL) is an isomorphism. Indeed, the iterated blow-up description of WL implies that

A•(WL) is generated as a ring by the restriction of hE and the classes of strict transforms

of exceptional divisors on WL, so the restriction map A•(Xa) → A•(WL) is surjective.

As WL is the union of strict transforms of exceptional divisors and L, the inclusion

WL ↪→ Xa factors through X�P
. Therefore the restriction map A•(Xa) → A•(WL) factors

through A•(X�P
), so A•(X�P

) → A•(WL) is surjective. By [24, Proposition 3.5], A•(WL)
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satisoes Poincaré duality. A surjective map between Poincaré duality algebras of the

same dimension is an isomorphism, so we conclude by Theorem 3.17(1).

4 The Exceptional Isomorphism

In this section, we deduce the isomorphism
⊕

r≥0 Valr(a) �
⊕

r≥0 Ar(Xa) of graded

abelian groups in Theorem 1.6. An intermediary object is the Grothendieck ring

K(Xa) of vector bundles on Xa, which admits a polyhedral description as a polytope

algebra.

4.1 The polytope algebra

Let us review the polytope algebra [30] and its relationship to the K-ring of a smooth

projective toric variety [31], following [18, Appendix A].

For a subset S ⊆ R�, recall that 1S : R
� → Z denotes its indicator function. Let �

be a projective fan in R� that is unimodular over Z�. It deones a projective toric variety

X� . A (lattice) polytope Q ⊆ R� is said to be a (lattice) deformation of � if its normal fan

�Q coarsens �.

Deonition 4.1. Let I(�) be the subgroup of Z(R�) generated by {1Q | Q

a lattice deformation of �}, and let transl(�) be the subgroup of I(�) generated by

{1Q − 1Q+u | u ∈ Z�}. We deone the polytope algebra to be the quotient

I(�) = I(�)/ transl(�).

For a lattice deformation Q, denote by [Q] its class in the polytope algebra I(�).

The multiplication in the polytope algebra is induced by Minkowski sum, that is, by

[Q1] · [Q2] = [Q1 + Q2]. As mentioned in Section 2.3, a correspondence between lattice

deformations of � and nef toric divisors on X� [12, Chapter 6] associates to each lattice

deformation Q a nef divisor DQ. This identioes the polytope algebra with the K-ring as

follows.

Theorem 4.2. [18, Theorem A.10] There is an isomorphism I(�)
∼
→ K(X�) deoned by

[Q] �→ [OX�
(DQ)].

This isomorphism implies that a reonement of fans induces an injection of

polytope algebras.
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Proposition 4.3. Let � and �′ be projective unimodular fans such that � reones �′, so a

lattice deformation Q of �′ is also a lattice deformation of �. Then, the map I(�′) → I(�)

that sends [Q] ∈ I(�′) to [Q] ∈ I(�) is injective.

Proof. Let f : X� → X�′ be the corresponding toric birational map of the toric varieties

induced by the map of fans � → �′. The given map I(�′) → I(�), under the isomorphism

of Theorem 4.2, is the pullback map f ∗ : K(X�′) → K(X�). Its injectivity now follows from

[12, Theorem 9.2.5] and the projection formula. �

Applying Theorem 4.2 to the polystellahedral variety Xa, noting that defor-

mations of the polystellahedral fan �a are exactly expansions of polymatroids on E

(Proposition 2.7), we have the following.

Corollary 4.4. The map sending an expanded polymatroid π∗(P) on E to [OXa
(Dπ∗(P))]

deones an isomorphism I(�a) � K(Xa).

We will thus use these two notions, the polytope algebra and the K-ring, inter-

changeably for the polystellahedral varieties.We will use Proposition 4.3 in conjunction

with the following method of <breaking up= a K-class on a polystellahedral variety into

smaller pieces when considered as a K-class on the stellahedral variety.

Proposition 4.5. Let P be a polymatroid on E of rank r ≤ n, and let P′ be the polymatroid

with cage a deoned by I(P′) = I(P) +
∏

i∈E [0,ai]. Then, the class [I(π∗(P))] ∈ I(�
E
) is equal

to a linear combination [I(Mπ (P′))]+
∑

k ak[I(Mk)] where theMk are matroids on E of rank

strictly less than r.

That P′ is a polymatroid is explained above Theorem 3.14. We will need the

following lemma.

Lemma 4.6. [18, Lemma 7.3] An intersection of the independence polytope I(P) ⊂ RE

with an integral translate of the unit cube [0, 1]E , if nonempty, is an integral translate of

I(M) for some matroid M on E.

Proof of Proposition 4.5. By tiling RE by integral translates of the unit cube [0, 1]E,

we obtain a polyhedral subdivision of I(π∗(P)), with every cell of the subdivision being

integral translates of I(M) for some matroid M on E by Lemma 4.6. By Lemma 3.2, the

polytope I(Mπ (P′)) is one of the maximal interior cells of this subdivision. All other
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interior cells of the subdivision are of the form I(M) + v for 0 
= v ∈ ZE

≥0, which implies

that such matroids M are of rank strictly less than r since π∗(P) has rank r. �

4.2 The exceptional isomorphism

We now use the map u : X
E

→ Xa to construct an exceptional ring isomorphism

Ça : K(Xa)
∼
→ A•(Xa). Its <exceptional= nature is that it differs from the Chern character

map, which is an isomorphism ch : K(X) ⊗ Q → A•(X) ⊗ Q for any smooth projective

variety X. Similar exceptional isomorphisms appeared in [7, 18, 26]. We prepare by

recalling the case of a = (1, . . . , 1) established in [18].

Theorem4.7. [18,Theorem 1.8] There is a unique ring isomorphism Ç
E
: K(X

E
) → A•(X

E
)

such that Ç
E
([OXE

(hS)]) = 1+ hS for all nonempty S ⊆ E. Moreover, for any matroid M on

E of rank r, the map Ç
E
satisoes

Ç
E
([I(M)]) = ξ0 + ξ1 + · · · + ξr

where ξi ∈ Ai(X
E
) for all i and ξr = [�M⊥ ].

The generalization to cage a is as follows. Recall that we have a birational toric

map u : X
E

→ Xa induced by the fact that the fan �a is a coarsening of �
E
.

Theorem4.8. There exists a (necessarily unique) isomorphism Ça : K(Xa)
∼
→ A•(Xa) such

that we have a commuting diagram

Moreover, for any polymatroid P on E with cage a and rank r, the map Ça satisoes

Ça

(
[I(π∗(P))]

)
= ξ0 + ξ1 + · · · + ξr

where ξi ∈ Ai(Xa) for all i and ξr = [�P⊥ ].

Proof. That the two vertical maps are injections follows from Lemma 2.12 and Propo-

sition 4.3.With these injections, we now need to show that the map Ç
E
restricts to give a
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well-deoned map Ça that is surjective. Recall that the Chow ring A•(Xa) is generated by

the simplicial generators hS. We claim that K(Xa) is also generated as a ring by the line

bundles [OXa
(hS)]. Both the well-deonedness and the surjectivity of Ça would then follow

from Theorem 4.7 since u∗hS = hπ−1(S) by Lemma 2.12.

For the claim, one notes that for any deformation Q of a projective unimodular

fan �, the inverse [Q]−1 of the class [Q] ∈ I(�) is a polynomial in [Q]. See for instance [18,

Proof of Lemma A.12]. The claim thus follows because the simplicial generators form a

basis of A1(Xa).

For the second statement about Ça

(
[I(π∗(P))]

)
, consider [I(π∗(P))] as an element

of K(X
E
) via the injection u∗. Proposition 4.5 and Theorem 4.7 imply that Ç

E
([I(π∗(P))]) =

ξ0 + · · · + ξr where ξi ∈ Ai(X
E
) and ξr = [�Mπ (P)⊥ ]. Lastly, Lemma 3.13 and Proposition 3.6

imply that [�Mπ (P)⊥ ] = u∗[�P⊥ ]. �

Remark 4.9. Let È : K(Xa) → Z be the sheaf Euler characteristic map. We sketch how

one can show, arguing similarly to [18, Section 8.1], that the isomorphism Ça satisoes

È(ξ) = degXa

(
Ça(ξ) ·

∏

i∈E

(1 + yi)
ai

)
for all ξ ∈ K(Xa).

By conjugating the isomorphism Ça with the map that sends the K-class of a vector

bundle to its dual and the map that is multiplication by (−1)k on Ak(Xa), one obtains an

isomorphism ζa such that ζa([OWL
]) = [WL] for any realization L ⊆ V of a polymatroidwith

cage a. Combining Proposition 3.20 with Remark 3.16, one shows that A•(Xa) is spanned

as an abelian group by {[WL] : L ⊆ V}, and hence ζa satisoes È(ξ) = degXa

(
ζa(ξ) · (1+hE +

· · · + hnE)
)
. One then computes that the anti-canonical divisor of Xa is hE +

∑
i∈E aiyi, and

by Serre duality concludes the desired formula.

5 Proofs of Main Theorems

We now use Theorem 4.8 to prove Theorem 1.6 and Theorem 1.3.

5.1 The valuative group is isomorphic to the Chow homology group

Proof of Theorem1.6. Since B(P⊥) = −B(P)+a and I(π∗(P)) =
(
p−1

π (B(P))+RE

≤0

)
+RE

≥0, the

assignment 1B(P) �→ 1I(π∗(P⊥)) gives a well-deoned map
⊕n

r=0 Valr(a) → I(�a), because all

the operations—negation, translation, inverse image, Minkowski sum, and restriction—

behave well with respect to indicator functions. Hence, we have a map of abelian groups
⊕n

r=0 Valr(a) → K(Xa) deoned by 1B(P) �→ [I(π∗(P⊥))]. Let ψ be the composition of this
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map with the map Ça : K(Xa) → A•(Xa) in Theorem 4.8. Note that ψ is upper-triangular

with respect to the gradings on
⊕n

r=0 Valr(a) and A•(Xa).

Corollary 3.15, stating that A•(Xa) is spanned by {[�P] : P a polymatroid with

cage a}, implies surjectivity of ψ . For injectivity, suppose we have polymatroids P1, . . . , Pk

with cage a and integers c1, . . . , ck such that
∑k

j=1 cj[�Pj
] = 0. Then by Lemma 3.13, the

validity of Theorem 1.6 when a = (1, . . . , 1), established in [18, Theorem 1.5], implies that
∑

j cj1B(Mπ (Pj))
= 0. Since each Pj has cage a, and since the image under the projection pπ

of the unit cube [0, 1]E is the box
∏

i∈E [0,ai] ⊂ RE , Lemma 3.2 implies that pπ

(
B(Mπ (Pj))

)
=

B(Pj). We thus conclude
∑

j cj1B(Pj)
= 0, proving the injectivity of ψ . Therefore, ψ is an

isomorphism, and so the map that sends 1B(P) to [�P] is an isomorphism. �

Let ψ be the map as constructed in the proof above. Noting that polymatroid

duality induces an involution of
⊕n

r=0 Valr(a), by composing ψ with the inverse Ç−1
a of

the isomorphism in Theorem 4.8, we conclude the following.

Corollary 5.1. The map of abelian groups
⊕n

r=0 Valr(a) → K(Xa) deoned by 1B(P) �→

[I(π∗(P))] is an isomorphism.

5.2 The Hall–Rado formula

We orst note a reinterpretation of the Hall–Rado condition.

Lemma 5.2. [29, Theorem 2] A collection of subsets S1, . . . ,Sr of E satisoes the Hall–

Rado condition with respect to a polymatroid P = (E, rk) of rank r if and only if there

exists a map f : [r] → E with f (i) ∈ Si such that
∑r

i=1 ef (i) ∈ B(P).

Proof of Theorem 1.3. For a nonempty subset S ⊆ E, we showed in the proof of

Corollary 3.15 that if HS is the polymatroid whose dual polymatroid has the simplex

�0
S as its independence polytope, then [�HS

] = hS. Applying this to Theorem 4.8, we have

Ça([I(π
∗(H⊥

S ))]) = 1+hS. Thus, as the degreemap degXa
is zero onAi(Xa) for i < n, Theorem

4.8 implies that

degXa

(
Ça([I(π

∗(P⊥))]
[
I
(
π∗

(
H⊥
S1

))]
· · ·

[
I
(
π∗

(
H⊥
Sr

))]))
= degXa

(
[�P] · hS1 · · ·hSr

)
.

Let P̃ be the polymatroid of rank n on E whose independence polytope is I(P⊥) +

�0
S1

+ · · · + �0
Sr
. Since multiplication in the polytope algebra is Minkowski sum and
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expansion commutes with Minkowski sum, we have that [I(π∗(̃P))] equals the class

[I(π∗(P⊥))][I(π∗(H⊥
S1

))] · · · [I(π∗(H⊥
Sr

))] in the left-hand side of the equation above. By

Lemma 5.2 and the fact that B(P⊥) = −B(P) + a, we have that a ∈ I (̃P) if and only if

S1, . . . ,Sr satisoes the Hall–Rado condition with respect to P. The theorem now follows

from the following Lemma 5.3. �

Lemma 5.3. For P̃ a polymatroid of rank n on E, not necessarily with cage a, we have

that

degXa
(Ça([I(π

∗(̃P))])) =

§
¨
©
1 if a ∈ I (̃P)

0 otherwise.

Proof. Let P̃
′
be the polymatroid with cage a deoned by I (̃P

′
) = I (̃P) +

∏
i∈E [0,ai]. By

Proposition 4.5 and the commuting diagram in Theorem 4.8, we have that

degXa
(Ça([I(π

∗(̃P))])) = degXE
([�

Mπ (̃P
′
)⊥
]),

which is zero unless Mπ (̃P
′
) has rank n. When Mπ (̃P

′
) has rank n, that is, it is the boolean

matroid on E, we have that [�
Mπ (̃P

′
)⊥
] is the class of a point in A0(XE

) = An(X
E
), and

hence degXE
([�

Mπ (̃P
′
)⊥
]) = 1 in this case.Now, note that Mπ (̃P

′
) has rank n, or equivalently

(1, . . . , 1) ∈ I(Mπ (̃P
′
)), if and only if a ∈ I (̃P

′
) by Lemma 3.2, and by construction a ∈ I (̃P

′
)

if and only if a ∈ I (̃P). �

Proof of Corollary 1.4. Follows from Lemma 5.2 and Theorem 1.6. �

Remark 5.4. At least when P is realizable, Corollary 1.4 implies Theorem 1.3, as follows.

For a realization L ⊆
⊕

i∈E Vi of P, letVS =
⊕

i∈S Vi for∅ � S ⊆ E. Collecting the projection

maps L ↪→
⊕

i∈E Vi → VS, we obtain an inclusion

L ↪→
⊕

∅�S⊆E

VS,

which is a realization of a polymatroid P′ with ground set {S : ∅ � S ⊆ E}. Let {fS} denote

the set of standard basis vectors ofR{S:∅�S⊆E}, to avoid confusionwith eS =
∑

i∈S eS ∈ RE .

A collection of subsets S1, . . . ,Sr of E satisoes fS1 + · · · + fSr ∈ B(P′) if and only if it

satisoes the Hall–Rado condition (with respect to P), so applying Corollary 1.4 recovers

Theorem 1.3.
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Remark 5.5. One can also prove Corollary 1.4 by using Theorem 1.6 to reduce to the case

of realizable polymatroids, when Corollary 1.4 is [11, Proposition 7.15] (and can also be

deduced from [27]). By Remark 3.16, in order to check that two valuative functions are

equal, it sufoces to check on realizable polymatroids. The valuativity of [�P] implies

that the volume polynomial of A•(P) is valuative, and it is clear from the deonition of

valuativity that the basis generating function of a polymatroid is valuative.

6 Polypermutohedra

Let π : E → E be with cage a. The polystellahedral fan �π has the distinguished ray

ρ∅ = R≥0(−e
E
). The star of the fan �π at the ray ρ∅ is the polypermutohedral fan �π

introduced in [13] as the Bergman fan of the boolean polymatroid with cage a. Explicitly,

the cones of �π are in bijection with pairs S ≤ F , where F = {∅ � F1 � · · · � Fk � Fk+1 =

E} is a nag of proper subsets of E and S is a subset of E containing no ober of π . Let Xa

be the associated toric variety, which we call the polypermutohedral variety with cage

a, with the embedding ι : Xa ↪→ Xa as the toric divisor corresponding to the ray ρ∅. We

set X∅ = pt.

Suppose P is a polymatroid with cage a and rank r. We note the following fact

about the pullback ι∗[�P] ∈ Ar−1(Xa). The augmented Bergman fan �P contains the ray

ρ∅ if and only if P is loopless. Hence, if P has a loop, then ι∗[�P] = 0. If P is loopless, the

star of �P at the ray ρ∅ is the Bergman fan �P of P introduced in [13, Deonition 1.6]. It

is an (r − 1)-dimensional balanced subfan of �π , and the resulting the Bergman class

[�P] ∈ Ar−1(Xa) equals the pullback ι∗[�P].

Using Bergman fans and Bergman classes of loopless polymatroids,we establish

analogues of the main theorems Theorem 1.6 and Theorem 1.3 in the polypermutohedral

setting.

6.1 The valuative group of loopless polymatroids

Deone a subgroup of Valr(a) by

Val◦r(a) = the subgroup generated by

{1B(P) : P a loopless polymatroid with cage a and rank r}.

Note that Val◦0(a) = 0. We have the following analogue of Theorem 1.6.

Theorem 6.1. For any 1 ≤ r ≤ n, the map that sends a loopless polymatroid P with cage

a and rank r to the Bergman class [�P] induces an isomorphism Val◦r(a)
∼
→ Ar−1(Xa).
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We will deduce Theorem 6.1 from Theorem 1.6 by identifying the kernel of

the map Valr(a)
∼
→ Ar(Xa)

ι∗

→ Ar−1(Xa) with the subgroup of Valr(a) generated by

polymatroids with loops. An alternate proof that does not rely on Theorem 1.6 but

proceeds by developing the polypermutohedral analogue of Theorem 4.8 is sketched in

Remark 6.3.

Before proving Theorem 6.1, we relate the Poincaré polynomial of the polystel-

lahedral variety to the Poincaré polynomials of polypermutohedral varieties. For J ⊆ E,

let a \ J be the vector obtained by removing the entries corresponding to J. Recall that

X∅ is a point.

Lemma 6.2. We have that

n∑

i=0

rankAi(Xa)t
i = tn rankA0(X∅) +

∑

∅⊆J�E

t|π
−1(J)|

n−|π−1(J)|−1∑

i=0

rankAi(Xa\J)t
i.

Proof. As the Poincaré polynomial of a smooth projective toric variety is the h-

polynomial of its fan, it is enough to show that

f (�a)(t) = (1 + t)n +
∑

∅⊆J�E

t(1 + t)|π
−1(J)|f (�a\J)(t),

where f (�) is the f -polynomial of a fan �. We prove this bijectively. To each cone σ of

some �a\J corresponding to a pair S ≤ F , we obtain 2|π−1(J)| cones of �a by adding J

to every element of the nag and then adding all 2|π−1(J)| possible subsets of π−1(J) to S.

When J 
= E and we add k elements to S, this gives a cone of dimension dim σ + k + 1.

When J = E and we add k elements to S, this gives a cone of dimension k. �

Proof of Theorem 6.1. For any i ∈ E, a polymatroid base polytope B(P) is always

contained in the half-space {x ∈ RE : xi ≥ 0}, and it is contained in the hyperplane

{x ∈ RE : xi = 0} if and only if P has i as a loop. Thus, the claim in the proof of [7,

Lemma 5.9] implies that we have a decomposition

Valr(a) =
⊕

J⊆E

Val◦r(a \ J)

given by sending a loopless polymatroid P of rank r on E \ J to the polymatroid on E

with rk(S) = rkP(S + J). We now induct on the size of E, where the base case |E| = 1 is
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straightforward. Comparing the decomposition of Valr(a) above with Lemma 6.2, we see

that the induction hypothesis implies rankAr−1(Xa) = rankVal◦r(a).

By the construction of the permutohedral fan �π as the star of ray ρ∅ in �π ,

every ray of �π is the image of a ray in �π that forms a cone with ρ∅. Hence, the

pullback ι∗ : A•(Xa) → A•(Xa) is surjective because ι∗ : A1(Xa) → A1(Xa) is.We thus have a

surjection ι∗ : Ar(Xa) → Ar−1(Xa) that satisoes ι∗[�P] = [�P] if P is loopless and ι∗[�P] = 0

otherwise. Therefore, the composition

Val◦r(a) → Ar(Xa) → Ar−1(Xa)

is a surjection of onite free abelian groups of the same rank, and hence is an isomor-

phism. �

Remark 6.3. We sketch an alternate proof of Theorem 6.1. First, arguing as in [17,

Proof of Theorem D], one shows an isomorphism
⊕n

r=1 Val
◦
r(a) � K(Xa) when a =

(1, . . . , 1), and uses it to deduce Theorem 6.1 for the a = (1, . . . , 1) case. Now, using

that polypermutohedral fans are coarsenings of the permutohedral fan �
E
, just as

polystellahedral fans are coarsenings of the stellahedral fan, one similarly deduces the

polypermutohedral analogue of Theorem 4.8. Then, one deduces Theorem 6.1 the same

way that we proved Theorem 1.6 here.

6.2 The dragon Hall–Rado formula

Let Xa be the polypermutohedral variety, with the embedding ι : Xa ↪→ Xa as the toric

divisor corresponding to the ray ρ∅. The following theorem generalizes [6,Theorem 5.2.4].

Theorem6.4. For a polymatroid P = (E, rkP) of rank r, a collection of subsets S1, . . . ,Sr−1

is said to satisfy the dragon Hall–Rado condition if

rk
( ⋃

j∈J

Sj

)
≥ |J| + 1 for all nonempty J ⊆ [r − 1].

Then, if P is loopless, we have

degXa
(hS1 · · ·hSr−1

[�P][Xa]) =

§
¨
©
1 if the dragon Hall–Rado condition is satisoed

0 otherwise.
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Proof. Note that, in A•(Xa), we have that x∅ = −
∑

∅�S⊆E(−1)|S|hS. Then, for any

S1, . . . ,Sr−1,

degXa
(hS1 · · ·hSr−1

[�P][Xa]) = −
∑

∅�S⊆E

(−1)|S| degP(hS1 . . .hSr−1
hS). (1)

Suppose we have sets S1, . . . ,Sr−1 that satisfy the dragon Hall–Rado condition. Because P

is loopless, every term in the above sum corresponds to r sets that satisfy the Hall–Rado

condition, and so each term is (−1)|S|. Because the sum is over nonempty sets, this gives

the result.

Suppose that S1, . . . ,Sr−1 fails the dragon Hall–Rado condition. There is some

nonempty subset T of E such that S1, . . . ,Sr−1,T fails the Hall–Rado condition; we may

take T = Si for some i. Let T1,T2 be nonempty subsets of E such that S1, . . . ,Sr−1,T1 and

S1, . . . ,Sr−1,T2 both fail the Hall–Rado condition. We claim that S1, . . . ,Sr−1,T1 ,T2 fails

the Hall–Rado condition. Indeed, if there is a function f : [r] → E as in Lemma 5.2 with

f (r) ∈ T1 , T2, then f (r) lies in T1 or T2, contradicting the assumption.

This implies that the set {T : ∅ � T ⊆ E, S1, . . . ,Sr−1,T fails Hall–Rado} is

nonempty and has a unique maximal element. Furthermore, this set is downward closed:

if S1, . . . ,Sr−1,T fails the Hall–Rado condition and ∅ � T ′ ⊆ T, then S1, . . . ,Sr−1,T
′ fails

the Hall–Rado condition. This implies that the sum in (1) is zero. �

Remark 6.5. Theorem 6.4 can be alternatively proved along the lines of Theorem 1.3, by

using the polypermutohedral analogue of Theorem 4.8 and a reformation of the dragon

Hall–Rado condition in terms of a matching condition as in [6, Proposition 5.2.3].
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