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Polymatroids are combinatorial abstractions of subspace arrangements in the same way
that matroids are combinatorial abstractions of hyperplane arrangements. By intro-
ducing augmented Chow rings of polymatroids, modeled after augmented wonderful
varieties of subspace arrangements, we generalize several algebro-geometric techniques
developed in recent years to study matroids. We show that intersection numbers in the
augmented Chow ring of a polymatroid are determined by a matching property known

as the Hall-Rado condition, which is new even in the case of matroids.

1 Introduction

Let E = {1,...,m} be a finite set, and let a = (a,,...,a,,) be a sequence of nonnegative

integers.

Definition 1.1. A polymatroid P on E with cage a is a function rky: 28 — Z_ satisfying
(Submodularity) rkp(S;) +1kp(Sy) > rkp(S;NSy)+1kp(S;US,) forany S;, S, C E,
(Monotonicity) rkp(S;) < rkp(S,) forany S; €S, CE,

(Normalization) rky(@) = 0, and

oW N =

(Cage) rkp(i) < a;forany i € E.
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4208 C. Eur and M. Larson

We say that rkp is the rank function of the polymatroid P, and that P has rank
r =1kp(E).

A polymatroid with cage (1,...,1) is a matroid. For the fundamentals of matroid
theory we point to [35]. Introduced as generalizations of matroids [16], and also known as
generalized permutohedra, polymatroids are the central objects in the polyhedral study
of combinatorial structures related to the symmetric group [2, 34]. In those works, two
polytopes associated to a polymatroid P = (E, rkp) are the independence polytope I(P),
defined by

I(P) = {X e Rgoz in <r1kp(S) forall S C E},

ieS

and the base polytope B(P), which is the face of I(P) defined by

B(P) =I(P)N {x eRF: > x, = rkP(E)}.
i€E
Both polytopes are re-encodings of the polymatroid P as follows [16]: The polytope B(P)
determines I(P) by I(P) = {x € ]Rgo: y—XE€ ]Rgo for some y € B(P)}, and the rank function
of P is recovered by rkp(S) = max{> ;. ¢X;: x € I(P)} = max{> ;. ¢X;: X € B(P)}.

We connect polyhedral properties of polymatroids to algebro-geometric proper-
ties arising from the intersection theory of varieties associated to their realizations by
linear subspaces. Let V,, ..., V,, be vector spaces of dimensions a,...,a,, respectively
over a field k, and let V = @,z V;. A subspace L C V defines a polymatroid P on E with

cagea = (a;,...,a,,) whose rank function is

rkp(S) = dim (image of L under the projection V — @ Vi) for any S C E.
ieS
We say that L C V is a realization of the polymatroid P in this case. A realization L C V
defines a subspace arrangement on L that consists of subspaces {L;};.y where L, =
ker(L — V;).In terms of the subspace arrangement, the rank function of P is equivalently

described as

rkp(S) = codim;, (ﬂ Li) forany S C E.

ieS

The key geometric object for us is the following compactification of L C V.
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Intersection Theory of Polymatroids 4209

Definition 1.2. The augmented wonderful variety W; of a subspace L C V = @, V;

is

W, = the closure of the image of L in H }P’(@ vV, ® ]k),
@CSCE  ieS

where the map L — P(,.5 V; ® k) is the composition of the projection L — P, s V; with
the projective completion @, s V; — P(P;cs V; ® k).

In the context of matroids and hyperplane arrangements, the augmented won-
derful variety was introduced in [10], and it played a central role in the proof of Dowling-
Wilson top-heavy conjecture [9]. Augmented wonderful varieties are closely related to the
wonderful compactifications of subspace arrangement complements introduced in [14].

A special role is played by the boolean arrangement L = ;g V; with cage a,
whose augmented wonderful variety is called the polystellahedral variety with cage a,
denoted X,. Let A®*(X,) be the Chow cohomology ring of X, which in Corollary 2.5 we

show has the presentation

Zlxg,y;: 9 S SCE, i€E]
(x5,Xg,: S1,S, incomparable) + (xsyfi: LES)+(y; — 2syiXsi 1€ E)

A*(X,) =

Its grading satisfies A*(X,) = @5 %" A¥(X,), and it is equipped with the degree map,

which is an isomorphism
degy, : AT Hem(x ) > 7 determined by the property degy (vi'---ya") = 1.

The Chow homology group 4, (X,) is the graded group @) " A;(X,) where A;(X,) =
Aa1+~--+am—k(Xa).

For a polymatroid P = (E, rkp) with cage a and rank r, we define a homology class
[Xp] € A.(X,) called the augmented Bergman class of P (Definition 3.12). We define the
augmented Chow ring A®(P) of P by

A*(P) = A*(X,)/ ann([Xp]), whereann([X;]) = {x € A*(X,): x - [Xp] = O}

See Corollary 3.19 for an explicit presentation of A®(P). Its grading satisfies A*(P) =
@ZZOA"(P), and it is equipped with the degree map, which is an isomorphism
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4210 C. Eur and M. Larson
degp: A™(P) — Z defined by
degp(§) = degy, (¢’ - [Zp]) for any lift &' € A*(X,) of £ € A*(P).

When a subspace L C V realizes P, one has an embedding W; < X, by the construction
of the augmented wonderful variety. The resulting homology class [W;] € A,.(X,) equals
[2p] (Proposition 3.20), and the Chow ring A*(W;) of the augmented wonderful variety
W, coincides with the augmented Chow ring A®(P) (Remark 3.21).

The embedding X, — [[ycscr P(D;cs V; © k) provides the following useful set
of generators for the Chow ring of+Xa. For each nonempty subset S C E, let hg € A} (X))
be the pullback of the hyperplane class on P(;.s V; ® k) along the map induced by
the embedding X, < [[5cscr P(@;cs V; © k). We show that {hg: @ C S C E} generates
A*(X,), and that the mon;mials in these generators are all of the form [Xp] for some
polymatroid P with cage a. For a polymatroid P, we define hg € A!(P) to be image of hg
under the quotient map A®(X,) — A*(P). We call these the simplicial generators of A*(P),
motivated by similar terminology in the case of matroids [6, 26]. These generators were
also considered in [36].

We show that the intersection numbers of the simplicial generators are described
by the Hall-Rado condition: A sequence Sy, ...,S, of nonempty subsets of E is said to
satisfy the Hall-Rado condition (with respect to a polymatroid P = (E, rkp)) if

rkP(USj)z|J| forall J<{1,...,r}.
jeJ

See Lemma 5.2 for an interpretation of this condition in terms of a matching problem.

Theorem 1.3. Let P be a polymatroid of rank r, and let S;,...,S, be a sequence of

nonempty subsets of E. Then

1 S,,...,S, satisfies the Hall-Rado condition,

0 otherwise.

At least when P is realizable, the fact that degP(hS1 .- ‘hsr) =0ifS,,...,S, does

not satisfy the Hall-Rado condition has a simple geometric explanation. If rkp(S; U---U

S;) < k, then the degree k element hsi1 S hSik is zero because it is pulled back from the

image of W} in P(@iesil Viek) x---x P(@iesik V; ® k), which has dimension rkp(S; U
~US;) <k
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Intersection Theory of Polymatroids 4211

We highlight here the following corollary of Theorem 1.3.

Corollary 1.4. Let P be a polymatroid on E of rank r. Then 3 degp (X ez tihy;)"), the
volume polynomial of A®*(P) with respect to {h{i}: i € E} ¢ AY(P), equals the basis

exponential generating function of P, which is the polynomial in Q[¢;: i € E] given by

tu

u _ Ul u —

E a’ where t" =" .-t and ul = uy! - uy,!.
ueB(®P)NZE

Our results here generalize several previous results in the literature.

e When P is realizable and has cage (1,...,1), Corollary 1.4 specializes to [3,
Theorem 1.3(c)].

e When P is realizable, Theorem 1.3 specializes to [11, Proposition 7.15] and the
first statement of [27, Theorem 1.1].

e When P has cage (1,...,1), Theorem 6.4 (a variant of Theorem 1.3) specializes
to [6, Theorem 5.2.4]. When P is also boolean, it further specializes to [34,
Theorem 9.3] because intersection numbers on toric varieties can be inter-

preted as mixed volumes.

Many invariants of matroids behave well with respect to matroid polytope
decompositions. This leads to the study of the valuative group of matroids [5, 7, 15],
which gives a powerful tool to study invariants of matroids. We consider the following

notion of valuativity for polymatroids with cage a.

Definition 1.5. For a polytope Q C RE, let 1,: RE — 7Z be its indicator function defined
by 1,(x) = 1if x € Q and 1,(x) = 0 otherwise. The valuative group Val.(a) of rank r
polymatroids with cage a is the subgroup of Z® generated by 1pp) for P a polymatroid

of rank r and with cage a.

We show that the valuative group is isomorphic to the homology groups of the

polystellahedral variety, generalizing [18, Theorem 1.5].

Theorem 1.6. Forany O <r < a; +---+ a,,, the map that sends a polymatroid P with

cage a and rank r to [Xp] induces an isomorphism Val.(a) = A (X,).

To prove Theorem 1.6, we show that a choice of isomorphism V; >~ k% for each

i € E realizes X, as a toric variety (Proposition 2.3). This gives a description of the
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4212 C. Eur and M. Larson

Grothendieck ring of vector bundles K(X,) in terms of certain polytopes in R#++dm
(Section 4.1). We relate €D, Val.(a) to this polytopal description. We then prove an
exceptional Hirzebruch-Riemann-Roch-type theorem (Theorem 4.8) that leads to the
proofs of both Theorems 1.3 and 1.6.

The paper is organized as follows. In Section 2, we discuss polystellahedral
varieties from the point of view of toric geometry. In Section 3, we construct the
augmented Bergman fan of a polymatroid and develop its basic properties. In Section
4, we study the K-ring of the polystellahedral variety. In Section 5, we prove Theorem 1.3
and 1.6. In Section 6, we prove analogs of Theorem 1.3 and 1.6 for the polypermutohedral

variety.

Notations

All varieties are over an algebraically closed field k. For a subset S C {1,...,¢}, let
eg = > ;.s€; be the sum of standard basis vectors in R‘. Denote by (-,-) the standard
inner product. For polyhedra and toric varieties, we follow conventions of [12, 22]. For a

rational polyhedral fan X, we let X5, be the toric variety associated to X.

2 The Toric Geometry of Polystellahedral Varieties

We introduce the polystellahedral fan (with cage a) and study the properties of the
associated toric variety. This amounts to developing basic properties of the polystel-
lahedral variety X,, since we will show that any choice of isomorphisms V; >~ k% for
all i € E induces an isomorphism between X, and the toric variety associated to the

polystellahedral fan.

2.1 Polystellahedral fans

Setn=a; +---+a,, and let E be a set of cardinality n. A map n: E — E, which defines

a partition E = | |;_z 7 ~1(i), is said to have cage a if |71 (i)| = a; for all i € E.

Definition 2.1. A compatible pair with respect to a map n: E — E is a pairI < F
consisting of a subset I C E and a chain 7 = {F; CF, C --- C F C F;,, = E} of proper
subsets of E such that if #71(S) C I for a subset S C E, then S C F,.

The polystellahedral fan ¥ is the fan in RE whose cones are in bijection with

compatible pairs, with a compatible pair I < F corresponding to the cone

Op<F = Cone(—€g -1(g,)/ - - - —€g\r-1(,)) + Cone(e;: i € I).
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Intersection Theory of Polymatroids 4213

Its rays are denoted p; = R_qe; fori € E and py =R.o(—eg ;1) for d S F C E.

Note that the fan ¥ depends only on the map E — n(E), not the codomain E of .
Apolystellahedral fan ¥, with cage a is a fan ¥ where 7 has cage a. We note two extreme

cases:

e  When r has cage (n), the fan X is the inner normal fan of the n-dimensional
standard simplex conv({0} U {e;: j € E}) in RE. We denote this fan by =,

e When 7 has cage (1,...,1), the fan ¥ _ is the stellahedral fan on E in [18]. We
denote this fan by .

A general polystellahedral fan in RE is both a refinement of ¥, and a coarsening of Xg
in the following way. For two maps n: E — E and n': E — E/, let us say = refines n’/,
denoted 7 > =/, if the corresponding partitions form a refinement, that is, for every
i € E one has 771(i) C 7'~ for some i’ € E'. Recall that for a simplicial fan ¥ and
a vector v in its support, the stellar subdivision of ¥ by v is the new fan whose set of
rays are {rays of X} U {p, = R v} and the set of cones are {oc € Z: v ¢ o}U{oUp,:0 €

¥ such that v ¢ o and v € ¢’ for some o C 0’ € T}.

Proposition 2.2. For a refinement = > 7/, let (S;,...,S;) be a sequence consisting of
the subsets S C E such that 771(S) # 7'~ }(S) for any S’ C E’, ordered in a way that
IS;| = --- > |Sk|. Then the fan X is the result of the sequence of stellar subdivisions of
the fan ¥, by the sequence of vectors (—€g\,-1(s,)/ - - -+ —€g\-1(s;))- Moreover, at each step
of the sequence of stellar subdivisions, the resulting fan is projective and unimodular

with respect to the lattice ZE.

We prove the proposition using building sets, which were introduced in [14] and
studied in [20, 21]. We first review the special case of building sets on a boolean lattice
here following [34, Section 7], which is simpler than the general case. We will discuss
building sets in a more general context in Section 3.2. A building set on E is a collection
G C 2F of subsets of E such that G contains E and {i} for each i € E, and if S and S’ are in
G and SNS’ # @, then SUS’ € G. A nested set of G is a collection {X;,...,X;} € G such that
for every subcollection {X; , ..., X; } with £ > 2 consisting only of pairwise incomparable
elements, one has Ule Xij ¢ G. The fan associated to G is the fan g in ]RE/ReE whose

cones are

{the image in ]RE/ReE of conefey , ... ey} C RE: {X;,..., X} anested set of G}.
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4214 C. Eur and M. Larson

Proof. Let E U {0} be the disjoint union of E with an extra element 0. We have an
isomorphism RFV%)/Reg o) ~ RF induced by e; > e; fori € E and ey — — 3, ce;.
It is straightforward to verify that, under this isomorphism, the fan ¥_ equals the fan
¥g, in REY0/R1 associated to the building set G, ={{i}:ie E}U{x"1(S)U0: @ CSCE}on
the boolean lattice of EU{0}. If 7 > =/, then we have G 2 G_,, and the desired statements

in the proposition are now special cases of [19, Theorem 4.2] and [21, Proposition 2]. W

2.2 Polystellahedral varieties

Let us fix the following notation for the rest of a paper.

Notation. Let Ebe a set of sizen :=a; +---+a,,, andlet 7: E — E be a map with
cage a.

Let X, be the toric variety associated to the polystellahedral fan ¥ _. We record
some properties of X arising from the properties of the fan ¥_, starting with the fact
that X is isomorphic to the polystellahedral variety X, with cage a.

As before, let V = @, V; be the direct sum of vector spaces where dim V; = a; =
|7 ~1(1)| for all i € E. Denote by GL, the group [];.; GL(V;). Recall that X, is the closure of
the image of the map V — H@gng P(@;cs V; ® k). Because this map is GL,-equivariant,
the group GL, acts naturally on the variety X,.

Proposition 2.3. Any choice of isomorphisms V; ~ k™ '@ for each i € E, which gives a
natural embedding of the torus (k*)€ < GL,, identifies X, with the toric variety X, of
the fan X_.

Thus, from this point on, we will identify X, with the toric variety X, , although

the identification depends on the choices of isomorphisms V; >~ k7 '@ forall i  E.

Proof. With the isomorphisms V; ~ k™ '@ foralli € E, the projective space PE = P(kE @
k) ~ P(V @ k) with the obvious action of (k*)E is the toric variety of the fan %, Fora
subset S C E, let Lg = k™ B\ g0 c k* B\ gk If S is a proper subset, then P(Lg) is
the hyperplane at infinity of the coordinate subspace P(k™ ' E\S @ k) ~ P(@icr\s Vi ® k)
of PE. Note the complementation, and note that P(Lg) is GL,-invariant for any @ C S C E.

We apply Proposition 2.2 with 7’ being the map from E to a singleton set, which
describes the fan X as a sequence of stellar subdivisions of the fan ¥,. Translated
into toric geometry terms, it states that the toric variety X of the fan X_ is obtained
from PE via a sequence of blow-ups as follows: Order the proper subsets of E so that

their cardinalities are non-strictly decreasing, then sequentially blow-up the (strict
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transforms of) the loci P(Ls) in that order. This sequential blow-up is also the description
of the wonderful compactification of the complement of the subspace arrangement
{PLyy: i € E} in PE, introduced in [14]. Reference [14, §1.6 Proposition (2)] moreover
states that this wonderful compactification is also the closure of the image of the rational
map PE --» Hzgsg: IP’((]kE @ k)/Lg), which, when restricted to V ~ kE c PE, is exactly the
map V = [[gcscr P(@ies Vi @ ). u

Remark 2.4. Let I', be the product [[;.g 6,-1;, of permutation groups. Because I', acts
naturally on the fan ¥ by permuting the coordinates of RRE, the group I, acts on the
variety X,. Under the identification X, ~ X_, this action agrees with the action of T,
embedded in GL, via the isomorphism @,z V; >~ P,;.x KT O,

We record the following presentation of the Chow ring of X,. For a proper subset
S of E and an element j € E, let x5 and ?j denote the toric divisors of X, corresponding

to the rays pg and p; of X,, respectively.

Corollary 2.5. For eachi € E, the divisors in the set {?J-: j € m71(i)} are all equal to each
other as divisor classes in A! (X,). Denote this divisor class by y;. The Chow ring A*(X,)
of X, equals

Zlxg,y;: 9 S SCE, i€E]
(x5,Xs,: S1, S, incomparable) + (Xsyfi: LES)+(y; — 2syiXsi L€ E)

A (X,) =

Proof. For a unimodular and projective fan ¥ in RF with rays £(1) and primitive ray
vectors {u, € ZE: p € £(1)},122,85.2 Proposition] states that the Chow ring of the smooth

projective toric variety X5 equals

Zlx, :p € ()]
(I1,es X, {pi}ies do not form a cone in ) + (3 ,cx(1)(U, V)X, 1 v e ZE)

A*'(Xy) =

where (u, v) here denotes the standard inner product on RE and x, represents the toric
divisor of X5, corresponding to the ray p. We apply this with ¥ = X_.

Setting v. = e; —e;, forany i € E and j,,j, € n~1(i), the linear relations
2 pex)(U,, V)X, = 0 imply the first statement that {y;};c,-1(; are all equal as elements in
AN(X,). Setting v = e; for any i € E and j € 7~ (i) then gives the relations {y; — > g ; X5 =

0 : i € E}. The rest of the corollary follows when one notes that the minimal non-faces
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of ¥, are the following: the sets of the form {pg , ps,} for incomparable proper subsets
S, and S, of E, or the sets of the form {pg}U {p; :j € m71(i)} for a proper subset S of E and
i€E\S. (]

2.3 Nef divisors, deformations, and expansions

For a fan ¥ in RE, a (lattice) polytope @ c RE is a (lattice) deformation of % if
its inner normal fan X, coarsens the fan X. We describe the deformations of the
polystellahedral fan.

As before, let 7: E — E be a map with cage a. Define a linear map

Dyt RE — RE by e;— €(i)

Definition 2.6. Let P = (E, rkp) be a polymatroid on E with arbitrary cage. The expan-
sion (with respect to 7) of P is the polymatroid =*(P) on E whose rank function is given
by rkp o. Equivalently, the polymatroid =*(P) is defined by setting its independence
polytope to be

I(7*(P)) = p;* I(P)) NRE,,.

Proposition 2.7. A lattice polytope Q in RF is a deformation of ¥, if and only if Q is a
translate of I(w*(P)) for a polymatroid P on E.

We deduce the proposition by using a standard result in toric geometry that
identifies deformations with nef toric divisors. We prepare with the following lemma.
Note that, by the linear relations for the Chow ring A®(X,) in Corollary 2.5, the set of

divisor classes {xg: @ € S C E} is a basis of Al(Xa).

Lemma 2.8. A divisor class D < Al(Xa) is nef if and only if, when we write D =

ng £ AsXg, the function S — ag, s is the rank function of a polymatroid on E.

Proof. Let ¢, be the piecewise linear function corresponding to the divisor D =
2_scE @sXs, which satisfies ¢p(e;) = 0 for all j € E and ¢p(—eg\,-1(5) = —ag for S C E.
We use a criterion for the nefness of a line bundle on a smooth projective toric variety
from [12, Theorem 6.4.9], which states that D is nef if and only if the support function
¢p satisfies an inequality for each minimal non-face of the fan. This gives the following

inequalities:
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e ForS,S' C E incomparable, the minimal non-face spanned by pg and pg gives

the inequality

¢p(—€E\r-1(5) — €E\r-1(s)) = ¥p(—€E\z-1(5)) + ¥p(—€E\1-1(5))-

Because _eE\n—l(S) - eE\JTfl(S/) = _eE\n—l(sms/) - eE\JTfl(SUS/) and QDD iS linear on

the cone spanned by —eg, ,-1(5ns) and —eg, ,-1sus), We get that

aSms/ + aSUs/ S aS + asl.

e ForS C Eandi ¢ S, the minimal non-face spanned by pg U {o; jen @)

gives the inequality

QOD( - eE\ﬂ_l(S) + Z e]) > ¢D(_eE\n_1(S)) + Z (pD(eJ)

jer—13) jen @)

As —ep\,-15) + Djen-1) € = —©p\o-1sui and ¢p(e;) = O, this gives the
inequality

gy = As-

These two inequalities are equivalent to the statement that S — agg is a

polymatroid. |

Proof of Proposition 2.7. The standard correspondence between nef toric divisors and
deformations [12, Theorems 6.1.5-6.1.7], when applied to the fan X, states that a nef

divisor D = » ¢~y agxXg on X, corresponds to the lattice deformation Qj, of X, defined by
Qp = {y € RE: (y, e;) > Oforallje Eand (y,—eg,1(5) > —agforall @ C S C E},

which is exactly the independence polytope of the expansion of the polymatroid with
rank function S + apg. Moreover, the correspondence implies that every lattice

deformation of X, arises as a translate of the polytope corresponding to a nef divisor

We distinguish the following set of nef divisors on X, arising from the standard
simplices in RE. Note that, for each nonempty subset S C E, the simplex A2 = conv({0} U

{e; : i € S})) c RF is the independence polytope of the polymatroid on E whose rank
1
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function is

1 fTNS#0o
rk(T) = fora CTCE,

0 otherwise
or equivalently, rk(E \ T) = 1 exactly when T 2 S.

Definition 2.9. For each nonempty subset S C E, we define hg € Al(Xa) to be the nef

divisor

hg = Z Xr

@CTCE
T23

corresponding to the simplex AJ. We call the divisor classes {hg@ C S € E} the simplicial

generators of X,.

Proposition 2.10. The simplicial generators of X, form a basis of A!(X,). In particular,

their monomials span A®(X,) as an abelian group.

Proof. By Mobius inversion, every divisor class in the basis {x; : @ € T C E} of A1(X),)

is a linear combination of the simplicial generators. |

Remark 2.11. The definition of kg here agrees with its definition in the introduction as
the pullback of the hyperplane class of P(D; s V; @ k) along the map

Xa = Hocsce P@ies Vi@ k) > P(Des V; @ k).

To see this, one notes that the independence polytope of the expansion of the polymatroid

of Ag is the simplex Ag = conv({0} U {e; : jen XS} c RE. The lattice points of

—1s)
Ag,l(s), considered as global sections of the corresponding line bundle, induce the map

Xa — P(@ies Vi ® k).

We conclude by discussing the behavior of Chow rings under refinements.

Proposition 2.2 implies that X is a coarsening of the stellahedral fan . Thus, we have

202 UoJel\ 80 U0 1s8nB Aq LOY19Z./L021/S/y20Z/2101E/uiwl/woo" dno-olwapese/:sdpy woly papeojumod



Intersection Theory of Polymatroids 4219
a toric birational map
u: Xg — X, induced by the refinement of fans g > X _.

We record the following properties of u for future use.

Lemma 2.12. The pullback map u*: A®*(X,) — A®(Xg) satisfies the following.

1. u* is a split injection, with the splitting given by the pushforward map
u,: A*(Xg) — A*(X,).

2. If D € A'(X,) is a nef divisor class corresponding to a deformation Q of X,,
then the pullback u*D € A!(Xg) is a nef divisor class corresponding to Q
considered as a deformation of Z.

3. For a nonempty subset S C E, the simplicial generator hg € Al(X,) pulls back
to the simplicial generator u*hg = h, 15 € Al (Xp).

Proof. The first statement is a standard consequence of the birationality of u and the
projection formula. The second statement follows from [12, Proposition 6.2.7]. The third
statement follows from the second, since the independence polytope of the expansion of

the polymatroid of AJ is the simplex A? = conv({0} U {e; : j € 7" 1(S)}) C RE. [ |

)

Remark 2.13. Let the polystellahedron with cage a be the polytope IT, in RE defined by

1, = I(7*(P)), where P is the polymatroid on E with B(P) = conv{w - (1,...,m): w € Sg}.

The face B(z*(P)) of I, was introduced as the polypermutohedron with cage a in [13].
Using the results in this subsection, one can verify that the polystellahedral fan X, is the
normal fan of the polystellahedron IT,. Alternatively, using the building set associated
to a polystellahedral fan given in the proof of Proposition 2.2, one can verify that IT, is

the corresponding nestohedron [34, Section 7].

3 Augmented Geometry of Polymatroids

For a polymatroid P with cage a and rank r, we define its augmented Bergman fan X, as
a subfan of the polystellahedral fan with cage a, and we use its properties to define the
augmented Bergman class [Zp] € A,.(X,). We then record some geometric properties of

the augmented Bergman fan and the augmented Bergman class.
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3.1 Multisymmetric lifts and duality

We begin with a construction of a matroid from a polymatroid P with cage a which has
appeared many times in the literature [8, 25, 28, 29, 32] under different names, such as

the “free expansion” and “natural matroid.” Here, we use the terminology of [13].

Definition 3.1. The multisymmetric lift of a polymatroid P on E with cage a is the

matroid M_ (P) on E whose rank function is given by

rky; () (S) = min{rkp(4) + S\ 7' (4)| : A C E}.

Alternatively, the multisymmetric lift can be described via polytopes as follows.

Lemma 3.2. Let [0, 1]E be the unit cube in RE. Then, we have IM,, (P)) = I(zx*(P))NIO, 1]E.

Proof. We need to show that a subset S € E is independent in the matroid M_ (P) if
and only if eg € I(w*(P)). By the definition of I(z*(P)), we have that e € I(z*(P)) if and
only if, for all U C E, one has |SN U| < rkp(7(U)). It suffices to check whether this holds
when U is a fiber of =, so this condition becomes |[SN7~1(4)| < rkp(A), or, equivalently,
rkp(A) +[S\ 7 1(A)| = rkp(A) +|S| — SNz~ (A4)| > |S|, for all A C E. That is, the condition

is equivalent to rky; p)(S) = |S]. |

The lemma and its proof implies that I(M, (P)) maps onto I(P) under the linear
projection p_ : RE — RE. Equivalently, a polymatroid P with cage a is recovered from
M, (P) via the formula rkp(S) = rky;_p, (771 (S)).

When P is realized by a subspace arrangement L C €, V;, the multisymmetric
lift M, (P) is realized by the hyperplane arrangement L C kF obtained by a general choice
of isomorphisms V; ~ k'@ for all i € E. In particular, the subspaces {L; : i € E} in
the arrangement appear as subspaces arising as intersections of the hyperplanes in the
arrangement L C kE.

For a polymatroid P = (E,rkp) with cage a, a subset F C E is a flat of P if
rkp(FUa) > rkp(F) for all a € E \ F. The flats of P form a lattice, denoted L;. The loops of
a polymatroid are the elements of the minimal flat. We say that a polymatroid is loopless
if the empty set is a flat, or equivalently, if rkp (i) > 0 for all i € E. Given a flat F of P,
the subset 7 ~1(F) C E is a flat of the multisymmetric lift M (P). Flats of M, (P) of this
form are called geometric flats of M, (P). The key property of geometric flats is the

following.
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Proposition 3.3. [13, Lemma 2.8] Every flat F of M_(P) contains a unique maximal
geometric flat F&°. We have that rky ) (F8°) = rkp(z(F8*)), and rky_p)(F) =
rky (p) (F8°) + |F \ F&°|.

Remark 3.4. Asin Remark 2.4, let I'y be the product [[;.g &,-1; of permutation groups.
The terminology “multisymmetric” is justified by the fact that the obvious action of the
group I', on E preserves the rank function of M_ (P). In fact, this property characterizes
multisymmetric lifts: [13, Theorem 2.9] states that a matroid M, on E such that the action
of T', preserves the rank function is of the form M, (P) for a polymatroid P with cage a.
(In the proof of this theorem, the authors of [13] make the additional assumption that
rkp(i) = a;, but this assumption is never used.) Moreover, the map F + 7 ~!(F) induces
an isomorphism from the lattice £, of flats of P to the lattice of I',-fixed flats of M, (P)
[13, Corollary 2.7].

We now discuss polymatroid duality; see, for example, [29]. Our main conclusion

is that taking multisymmetric lift commutes with polymatroid duality.

Definition 3.5. For a polymatroid P on E with cage a and rank r, its dual polymatroid

P! is a polymatroid on E with cage a and rank n — r whose rank function is

rkp1 (S) = Z a; +Tk(E\S) — 1.

ieS

Alternatively, duality can also be described via polytopes as follows. See Figure 1

for an illustration. The rank function description for P+ above implies that
B(P) = —B(P) +a,
or, equivalently, since I(P) = {x € [[;z[0,q;] : y —x € R’io for some y € B(P)}, we have
—IPH +a={xe[[;pl0a)l:x-ye Rgo for some y € B(P)}.
When P is realized by L € V = @, V;, its dual P+ is realized by (V/L)" € @5 V)’

obtained by dualizing the surjection V — V/L. When a = (1,..., 1), polymatroid duality

agrees with the usual notion of matroid duality.

Proposition 3.6. For a polymatroid P on E with cage a, one has M_(P+) = M_(P)*.
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Fig. 1. Polytopes associated to a polymatroid and its dual.

Proof. This follows from Lemma 3.2 since B(P1) = —B(P) + a and D, (ZjeE e)=a N

3.2 Augmented Bergman fans of polymatroids

Let P be a polymatroid on E with cage a. We now introduce the augmented Bergman fan

¥p of a polymatroid.

Definition 3.7. The augmented Bergman fan Xp of P is the subfan of X, consisting of
cones og_r, where S is a subset of E and F = {F; C --- C Fy C F;,, = E} is a chain of
proper flats of P satisfying

1. Forall T € S, one has rky(w(T)) > |T|, and
2. forall F € F and all nonempty T € S\ 7~ !(F), one has rkp(FUn (T)) > rkp(F)+
IT|.

Whena = (1,...,1), that is, when P is a matroid M on E, the augmented Bergman
fan of P coincides with the augmented Bergman fan X,; introduced in [10]. Explicitly, the
fan ¥y is the subfan of the stellahedral fan X5 consisting of cones o;_r where I C E is
an independent set of M and F = {F; C --- C F; C F;,; = E} is a chain of proper flats of
M such that I C F;.

Theorem 3.8. The augmented Bergman fan X, of P is the subfan of ¥, whose support
is equal to the support of the augmented Bergman fan ¥y; p, of the multisymmetric lift

of P. More precisely, ¥p is the coarsening of the fan ¥y p) such that it is a subfan of Z,.

This is the key property of ¥, that we will repeatedly use. The rest of this

subsection is dedicated to the proof of the theorem.
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We now review building sets on the lattice of flats of a matroid; for proofs and
details we point to [14, 20]. A building set on a loopless matroid M on ground set E is a
collection G of nonempty flats of M such that, for all nonempty flats of F of M, the natural

map of lattices

[ lec-lenR
Gemax G-y

is an isomorphism. Here, max§_r denotes the maximal elements of G contained in the
interval [@,F] € L. All building sets that we consider will contain the maximal flat
E. A nested set is a subset N' C G that does not contain E such that, for all pairwise
incomparable subsets {F;,...,F;} € N with k > 2, the join \/leFi of {F;,...,F;} is not
in G. Nested sets form a simplicial complex, which is realized as a simplicial fan X ¢
in RE/ReE whose cones are {image in ]RE/ReE of conefe;: i e N} C RE : NV a nested set).
We call Xy, g the Bergman fan of M with respect to the building set G. The support of
Zy g does not depend on the choice of building set [21, Theorem 4], and Xy, s is always
a unimodular fan [21, Proposition 2].

We prove Theorem 3.8 by identifying the fan ¥, with a Bergman fan of a matroid
closely related to the multisymmetric lift M (P). Let M (P) x0 denote the free coextension
of the multisymmetric lift M (P), which is a matroid on the ground set E L {0} with flats

{FUO:F C Eflatof M_(P)} U{I € E:Iindependent in M_(P)}.

Note that M_ (P) x 0 is always loopless. We now define a building set on M_(P) x 0 whose

Bergman fan will be the augmented Bergman fan of P.

Lemma 3.9. Let G be the set of all flats of M (P) x O of the form F U0 for F a geometric
flat of M, (P), or {j} for j € E not a loop of M, (P). Then G is a building set.

Proof. Consider aflat of M, (P) x0 of the form HUO for H a flat of M, (P). By Lemma 3.3, H
contains a unique maximal geometric flat H8%°, and, for any subset S with H8%° C S C H,
we have that rkp(S) = rkp (H8°)+|S\H&|. This identifies the interval [, HUOl in Ly p)x0
with [&, H8*° U 0] x [, H \ H8®°]. The second factor splits as [&, H \ H8®°] = HieH\ngO[Q, il,
which gives the desired decomposition for HUO. If we have a flat of M (P) x O of the form

I for I C E independent, then the desired decomposition is automatic. |

Before computing the nested sets of G, we need a preparatory lemma.
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Lemma 3.10. Let F be a geometric flat of a multisymmetric matroid M (P), and let S
be a nonempty subset of F such that [S| > rky;_p(F) or |S| > rky;_p)(F). Then there is a
geometric flat G of M, (P) and a nonempty subset S' € SN G such that [S'| > rky; p)(G)
(respectively |S'| > rky; (p)(G)) and S’ spans G.

Proof. We first do the case when |S| > rky ) (F). We induct on the rank of F; if
rky p)(F) = O then the claim is obvious. Let H be the closure of S. Using Lemma 3.3,

we have that
rky p)(H) = 1kyy_(p) (HE®®) + [H \ HE®®| > rkyyy_(p) (HE®) +|S| — |S N HE®|.

On the other hand, we have that rky; p)(H) < rky_p)(F) < [S|,sorky_p) (H&®°) < |SNH8®°|.
Either H8%° = F and we are done, or we conclude by induction.

In the case when [S| > rky ;) (F), if we set H to be the closure of S then
the argument above shows that |S N H&°| > rky ;) (H8), so we are done unless
rkyy (p) (H8?) = O (when SN H8% may be empty). In this case, we have that rky ) (H) >
|S| > ran(P) (F) by Lemma 3.3, so H = F is geometric. [ |

Lemma 3.11. With G as in Lemma 3.9, the nested sets of G are given by chains of flats
F={F, C---CF,CFy,, =E}of Pand a subset S of the non-loops of M, (P) such that:

1. Forall T € S, rkp(w(T)) > |T|, and
2. for all F € F and all nonempty T C S\n_l(F), rkp(FU(T)) > rkp(F) + |T|.

Proof. LetSand F ={F} C --- C F; C F;,, = E} be a pair satisfying the two condition
of the lemma. We check that the corresponding set is nested. The incomparable subsets
are either given by a collection T C S,oraflat Fe F and T C S\ 7~ (F).

The closure of T € Sin M, (P) x 0 is T if T is independent, and it is can @ (MU0
if T is dependent. In the first case, T is not in G if |T| > 1. If T is dependent, then (1)
guarantees that rkMﬂ(P)(T) < rkp(n(T)), so the closure is not in G. Similarly, if we have
T € S\ n~!(F), then the closure of 7 ! (F) U T cannot be geometric.

Now let \ be a nested set, which consists of a subset S of the non-loops of M (P)
and flats of the form 7 ~!(F) U 0 for F a flat of P. As the join of two geometric flats is a
geometric flat, the flats of P such that 7 ~!(F) U0 lies in V must form a chain F.

Suppose there is a nonempty subset T C S with rkp (7 (T)) < |T|. Let F = clp (7 (T))
be the closure of 7 (T), which is a flat of P of rank less than |T| with 7 ~!(F) containing T.
By Lemma 3.10, there is T/ € T and a geometric flat G such that T’ spans G and
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|T'| > rky; ) (G). Then the closure of T' in M (P) x 0 is G U 0, contradicting that N is
nested.

Now suppose that there is F € F and T € S\ 7~} (F) with rkp(FU 7 (T)) < rkp(F) +
IT|. Let G = 7~ (clp(n(T) U F)). Applying Lemma 3.10 to the contraction M_(P)/x~1(F),
we find a geometric flat H > 71 (F) and T’ € T N H such that 7" U 7 ~1(F) spans H. This
contradicts that A is nested. |

Proof of Theorem 3.8. Let G be the building set on the lattice of flats of M (P) x 0 given
by Lemma 3.9. Let H be the building set on the lattice of flats of M (P) x 0 given by FUO
for F aflat of M (P) and {j} forj € Enot a loop of M, (P). That this is a building set follows
from Lemma 3.9 by viewing M_ (P) as a polymatroid with cage (1,...,1). By [21, Theorem
4] the support of Xy p).o,g coincides with the support of Xy p).o - By [18, Lemma
5.14], under the isomorphism RE — REY0/R obtained by sending e; to e, the support of
o, pyx0,4 coincides with the support of Xy ). Under this isomorphism, Xy p)o,g 18

identified with X, by Lemma 3.11. |

3.3 Augmented Bergman classes of polymatroids

We begin by reviewing briefly balanced fans and their Chow homology classes; for details
and proofs we point to [23] and [1, Section 5].

A pure-dimensional simplicial rational fan ¥ of dimension d is balanced if for
any cone v € ¥ of codimension 1, one has ZGQT U\, € T,where u,,, denotes the primitive
vector of the unique ray in o that is not in . Suppose a balanced fan ¥ is a subfan of
a complete unimodular fan ¥. Let A%(X5) be the d-th graded piece of the Chow ring of
the toric variety X5, which is spanned by {[Z,]: cad-dimensional cone in ¥}, where Z, is
the torus-orbit closure in X5 corresponding to o. One then obtains a linear functional
Wy, € Hom(Ad(Xg),Z) determined by wy ([Z,]) = 1 if 0 € £ and wy ([Z,]) = 0 otherwise.
By the Poincaré duality property of the Chow ring A*(Xs), the functional wy, defines an
element [X] € A;(X).

Returning to polymatroids, let P be a polymatroid on E with cage a and rank r. As
the support of the augmented Bergman fan X coincides with the support of a Bergman
fan, [24, Theorem 3.8] implies that ¥, is a balanced subfan of the polystellahedral fan

with cage a.

Definition 3.12. The augmented Bergman class of P is the Chow homology class [Z;] €
A,(X,) obtained by considering ¥, as a balanced subfan of the polystellahedral fan with

cage a.
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We will repeatedly use the following relation between the classes associated to a
polymatroid and its multisymmetric lift. Recall the birational map u: Xg — X, induced

by refinement of respective fans (Proposition 2.2).

Lemma 3.13. The pullback u*[%¥;] is equal to the augmented Bergman class [Zy )] of

the multisymmetric lift.

Proof. The lemma follows from applying the formula [23, Corollary 3.7] for computing

pullbacks in terms of Minkowski weights to Proposition 2.2 and Theorem 3.8. |

We use the lemma to compute how augmented Bergman classes of polymatroids
multiply as elements in the Chow ring A®(X,). We will need the following combinatorial
notions.

Given two polymatroids P, and P, on E with cage a, we define the polymatroid
union P, v P, to be the polymatroid with cage a whose independence polytope is (I(P;) +
I(Py))N[];c£[0, a;]. That this is indeed the independence polytope of a polymatroid follows
from [16, (35)]. Define the polymatroid intersection of P, and P, to be P; A P, := (P{ V
Py)L. If we view M, (P;) as a polymatroid with cage (1,...,1), by Lemma 3.2 we have
that M, (P;) v M, (P,) = M, (P; Vv P,). Therefore, M (P;) A M, (P,) = M_ (P; A P,) by

Proposition 3.6.

Theorem 3.14. Let P; and P, be polymatroids with cage a and ranks r; and r,,

respectively. Then, we have

[Z 1 ifn—r)+m—-ry,) =n—rank(P,; AP,)
[Sp,] - [Sp,] = P1AP; 1 2 1 2
0 otherwise.

When a = (1,...,1), the above theorem is [18, Theorem 1.6]. Our proof is a

reduction to this case.

Proof. Applying Lemma 3.13 and using that M (P,) AM, (P,) = M_(P; AP,), one obtains
from [18, Theorem 1.6] that

u*[z ] ifm-r))+n—-r,) =n—rank(P; AP
USp,]- u(Sy,] = Pep BT ’ 1P
otherwise.

The result now follows from the injectivity of u* (Lemma 2.12). |
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Corollary 3.15. The augmented Bergman classes of polymatroids with cage a span

A*(X,) as an abelian group.

Proof. Recall that A®(X,) is generated as a ring by the simplicial generators {hg}, and in
particular, the monomials in the {hg} span A®(X,) as an abelian group. By Theorem 3.14,
we are done once we show that each simplicial generator i is an augmented Bergman
class.

For each nonempty subset S C E, let Hg be the polymatroid on E with cage a
whose dual polymatroid has the simplex Ag as its independence polytope. By Proposition
3.6, the multisymmetric lift M, (Hg) is the matroid on E whose unique circuit is 77 1(S).
In [18, Section 7.2],it is shown that the augmented Bergman class of this matroid is equal
to h,-1g € A'(Xg). We thus conclude that [Sy ] = hg by Lemma 2.12 and Lemma 3.13. 1

Remark 3.16. Arguing as in [18, Section 7.2], one can show that the set of monomials
(hgl - hgt @ CF C-- CFR CE, dy <|n (7))
and d; < |7~ (F;\ F;_;)| forall 2 <i < k}
form a Z-basis for A*(X,). Moreover, combining with Theorem 3.14, one can further show
that these monomials are equal to the augmented Bergman classes of polymatroids
whose multisymmetric lifts are I',-fixed Schubert matroids on ground set E. In partic-

ular, A®(X,) is generated by the augmented Bergman classes of realizable polymatroids

with cage a. This basis can also be obtained from the techniques of [15] and Theorem 1.6.

3.4 Augmented Chow rings of polymatroids

This subsection records the properties of the augmented Chow ring of a polymatroid,
but is not logically necessary for subsequent sections of this paper. The non-augmented

version of the following theorem appeared in [13, 33]:

Theorem 3.17. Let ¢ € AI(X):P) be an element corresponding to a strictly convex

piecewise linear function on X. Then the following hold:
1. (Poincaré duality) There is an isomorphism degp A"(Xy,) — Z such that, for
0 < k <r/2, the pairing
ARXs ) x ATRXg ) > Z, (x,y) — degp(xy)

is unimodular.
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2. (Hard Lefschetz) For every O < k < r/2, the map
AXp) ©Q— AT X)) ©Q, x> 0%

is an isomorphism.

3. (Hodge-Riemann) For every O < k < r/2, the bilinear form
AFXs ) ®Q x A¥X5,) ®Q — Q, (x,y) > (-1)Fdegp (™ Hxy)

is positive definite on the kernel of multiplication by ¢"—2k+1,

Proof. The support of ¥ is the same at the support of the Bergman fan of M_(P) x 0.
The result then follows from [4, Theorem 1.6] and [1]. For more details, see [13, Proof of
Corollary 4.7]. |

As Xy, is a subvariety of X, there is a restriction map A*(X,) — A®*(Xy,). We often
extend the degree map of Theorem 3.17 to the whole Chow ring degp: A*(Xy,) — Z by
declaring it to be zero on the lower-degree graded components. The degree map satisfies
the following version of the projection formula: for any x € A®*(X,), the degree of the

image of x in A*(Xy,) is equal to the degree in A*(X,) of x - [Ep].

Corollary 3.18. The kernel of A*(X,) — A®*(Xy,) is ann([Xp]), so we may identify A®(P)
with A*(Xy,).

Proof. By Poincaré duality, an element x € Ak (X,) is in the kernel of the map to A*(Xy,)
if and only if, for all y € A" 77%(X,), deg(x - [£p] - y) = 0. By Poincaré duality on A*(X,),
we see that x - [Xp] = 0. Therefore, the kernel of A*(X,) — A*(Xy,) is ann([Zp]). ]

Corollary 3.19. We have that

Zlxg,y; : F flat, i € E non-loop]
L+ + I, +1,

A*(P) = , Where

T, = (xp X, : F1, F, incomparable flats), 7, = <Hyfi ra; > O,Zai > rkP(S)>,

ieS

I, = <HygiXF; TNF=2,a;>0,71kp(FUT) < rkp(F) + Zai>, and 7, = <yl- —~ ZXF>.
ieT Fi
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Proof. As Xy, is a toric variety, its Chow ring is generated by classes corresponding to
rays of Xp, with monomial relations coming from minimal non-faces of the simplicial
complex given by the faces of X, and a linear relation for each element of E. The rays of
¥p correspond to non-loops of E and flats of P. For j;, j, non-loops in E with 7 (j;) = 7 (j,),
the relation e; — e;, implies that the corresponding divisor classes are equal.

Every non-face of the complex of cones in ¥, contains either {F,,F,} for F,, F,
incomparable, {j;,...,j} with rkp(z(G;,....Jp)) < k, or {j;,...,j,, F} for 7~ 1(F) disjoint
from {j,,...,j,} and rkp(F U n({j;,...,J,})) < rkp(F) + €. Putting this all together implies
the result. |

3.5 Augmented wonderful varieties of polymatroids

We sketch the geometric origins of the notions introduced in this section. Recall that,
given a realization L € V = ),z V; of a polymatroid P, its augmented wonderful
variety Wy, is the closure of L in [ cgcp P(Djes V; @ k). In the proof of Proposition 2.3,
we described X, as a sequence of blow-ups from P(V & k) along centers disjoint from
V c P(V @ k). Hence, we have a natural inclusion of V into X, and the variety W; is

equivalently the closure of L C V in X,.

Proposition 3.20. Let L € ;.5 V; be a realization of a polymatroid P with cage a. Then
the homology class [W;] is equal to [Zp].

Proof. Because GL, =[],z GL(V;) is connected, its action on A, (X,) is trivial, so for any
g € GL,, we have that [W;] = [g- W] = [W,;]. If we choose a general g € GL,, then since k
is infinite, g - L is general with respect to the (fixed) choice of isomorphisms V; Sk,
so g - L C kE is a realization of M, (P).

By [18, Corollary 5.11(3)], the homology class of the closure of g-L in Xg is [Zy;_p)].
As u: Xg — X, is an isomorphism over g- L, we have u, [Zy_p)] = [W,]. By Lemma 3.13,

[Zm, py] = u*[Zp], so the result follows because u,u* is the identity (Lemma 2.12). n

Remark 3.21. The closure of L in Xy, C X, is W, and the restriction map A*(Xy,) —
A*(Wp) is an isomorphism. Indeed, the iterated blow-up description of W; implies that
A*(W);) is generated as a ring by the restriction of h; and the classes of strict transforms
of exceptional divisors on W;, so the restriction map A*(X,) — A*(W;) is surjective.
As W; is the union of strict transforms of exceptional divisors and L, the inclusion
W, — X, factors through Xy, . Therefore the restriction map A®*(X,) — A*(W,) factors
through A*(Xy,), s0 A*(Xy,) — A*(Wp) is surjective. By [24, Proposition 3.5], A*(W})
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satisfies Poincaré duality. A surjective map between Poincaré duality algebras of the

same dimension is an isomorphism, so we conclude by Theorem 3.17(1).

4 The Exceptional Isomorphism

In this section, we deduce the isomorphism P,.,Val.(a) =~ P,.q4,(X,) of graded
abelian groups in Theorem 1.6. An intermediary object is the Grothendieck ring
K(X,) of vector bundles on X, which admits a polyhedral description as a polytope
algebra.

4.1 The polytope algebra

Let us review the polytope algebra [30] and its relationship to the K-ring of a smooth
projective toric variety [31], following [18, Appendix Al.

For a subset S C RY, recall that Ig: RY — 7 denotes its indicator function. Let ¥
be a projective fan in R’ that is unimodular over Z¢. It defines a projective toric variety
Xs. A (lattice) polytope Q C R’ is said to be a (lattice) deformation of ¥ if its normal fan

X coarsens X.

Definition 4.1. Let I(X) be the subgroup of Z®) generated by {1, | Q
a lattice deformation of X}, and let transl(X) be the subgroup of I(X) generated by
{(1g—1g,y luc 7%}. We define the polytope algebra to be the quotient

I(2) = I(T)/ transl(%).

For a lattice deformation Q, denote by [Q] its class in the polytope algebra I(Z).
The multiplication in the polytope algebra is induced by Minkowski sum, that is, by
[Q,]-[Q,] = [Q; + Q,]. As mentioned in Section 2.3, a correspondence between lattice
deformations of ¥ and nef toric divisors on Xy, [12, Chapter 6] associates to each lattice
deformation Q a nef divisor D,. This identifies the polytope algebra with the K-ring as

follows.

Theorem 4.2. [18, Theorem A.10] There is an isomorphism I(X) > K(Xy) defined by
[A] = [Ox, (Do)l

This isomorphism implies that a refinement of fans induces an injection of

polytope algebras.
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Proposition 4.3. Let T and X’ be projective unimodular fans such that X refines ¥/, so a
lattice deformation Q of ¥’ is also a lattice deformation of . Then, the map I(X') — (%)
that sends [Q] € I(Z') to [Q] € I(¥) is injective.

Proof. Letf: Xy — X5, be the corresponding toric birational map of the toric varieties
induced by the map of fans ¥ — ¥’. The given map I(¥’) — I(X), under the isomorphism
of Theorem 4.2, is the pullback map f*: K(Xy/) - K(Xy). Its injectivity now follows from
[12, Theorem 9.2.5] and the projection formula. |

Applying Theorem 4.2 to the polystellahedral variety X, noting that defor-
mations of the polystellahedral fan X, are exactly expansions of polymatroids on E

(Proposition 2.7), we have the following.

Corollary 4.4. The map sending an expanded polymatroid 7*(P) on E to [Ox, (D «p))]

defines an isomorphism E(Ea) ~ K(X,).

We will thus use these two notions, the polytope algebra and the K-ring, inter-
changeably for the polystellahedral varieties. We will use Proposition 4.3 in conjunction
with the following method of “breaking up” a K-class on a polystellahedral variety into

smaller pieces when considered as a K-class on the stellahedral variety.

Proposition 4.5. Let P be a polymatroid on E of rank r < n, and let P’ be the polymatroid
with cage a defined by I(P") = I(P) N [];.£[0, a;]. Then, the class [I(=*(P))] € ﬁ(EE) is equal
to a linear combination [I(M,, (P"))]+ > a;[I(M;)] where the M; are matroids on E of rank

strictly less than r.

That P’ is a polymatroid is explained above Theorem 3.14. We will need the

following lemma.

Lemma 4.6. [18, Lemma 7.3] An intersection of the independence polytope I(P) C R¥
with an integral translate of the unit cube [0, 11, if nonempty, is an integral translate of
I(M) for some matroid M on E.

Proof of Proposition 4.5. By tiling RE by integral translates of the unit cube [0, 1],
we obtain a polyhedral subdivision of I(w*(P)), with every cell of the subdivision being
integral translates of I(M) for some matroid M on E by Lemma 4.6. By Lemma 3.2, the

polytope I(M_ (P')) is one of the maximal interior cells of this subdivision. All other

202 UoJel\ 80 U0 1s8nB Aq LOY19Z./L021/S/y20Z/2101E/uiwl/woo" dno-olwapese/:sdpy woly papeojumod



4232 C.Eur and M. Larson

interior cells of the subdivision are of the form I(M) + v for 0 £ v € Z;O, which implies

that such matroids M are of rank strictly less than r since 7*(P) has rank r. |

4.2 The exceptional isomorphism

We now use the map u: Xg — X, to construct an exceptional ring isomorphism
¢, K(X) = A*(X,). Its “exceptional” nature is that it differs from the Chern character
map, which is an isomorphism ch: K(X) ® Q — A*(X) ® Q for any smooth projective
variety X. Similar exceptional isomorphisms appeared in [7, 18, 26]. We prepare by

recalling the case of a = (1,...,1) established in [18].

Theorem 4.7. [18, Theorem 1.8] There is a unique ring isomorphism ¢g: K(Xg) — A*(Xg)
such that ¢E([(9XE (hg)]) = 1 + hg for all nonempty S € E. Moreover, for any matroid M on
E of rank r, the map ¢¢ satisfies

pe(IQDD) =&+ &, +--- +&,
where £; € AY(Xg) for all i and &, = [Ey1].

The generalization to cage a is as follows. Recall that we have a birational toric

map u: Xg — X, induced by the fact that the fan ¥, is a coarsening of X.

Theorem 4.8. There exists a (necessarily unique) isomorphism ¢, : K(X,) — A*(X,) such

that we have a commuting diagram

K(X,) —2y a%(x,)

K(Xg) —2 A*(Xp).

Moreover, for any polymatroid P on E with cage a and rank r, the map ¢, satisfies

G (I(T*PD]) =&y + & + - +&,

where §; € AY(X,) for all i and &, = [Zp.].

Proof. That the two vertical maps are injections follows from Lemma 2.12 and Propo-

sition 4.3. With these injections, we now need to show that the map ¢g restricts to give a
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well-defined map ¢, that is surjective. Recall that the Chow ring A*(X,) is generated by
the simplicial generators hg. We claim that K(X,) is also generated as a ring by the line
bundles [Oy, (hg)]. Both the well-definedness and the surjectivity of ¢, would then follow
from Theorem 4.7 since u*hg = h, 15 by Lemma 2.12.

For the claim, one notes that for any deformation Q of a projective unimodular
fan ¥, the inverse [Q]~! of the class [Q] E(E) is a polynomial in [Q]. See for instance [18,
Proof of Lemma A.12]. The claim thus follows because the simplicial generators form a
basis of A1(X,).

For the second statement about ¢, (II(z*(P))l), consider [I(z*(P))] as an element
of K(Xg) via the injection u*. Proposition 4.5 and Theorem 4.7 imply that ¢g([I(*(P))]) =
£+ -+ &, where §; € Al(Xg) and &, = [¥y, p)+]- Lastly, Lemma 3.13 and Proposition 3.6
imply that [Zy_p)L] = u*[ZpL]. ]

Remark 4.9. Let x: K(X;) — Z be the sheaf Euler characteristic map. We sketch how

one can show, arguing similarly to [18, Section 8.1], that the isomorphism ¢, satisfies

x(&) = degy, (¢2®  [J +yp%) forall e K(X,).
icE
By conjugating the isomorphism ¢, with the map that sends the K-class of a vector
bundle to its dual and the map that is multiplication by (—1)* on Ak(Xa), one obtains an
isomorphism ¢, such that £, ([Oy, ]) = [W;] for any realization L C V of a polymatroid with
cage a. Combining Proposition 3.20 with Remark 3.16, one shows that A*(X,) is spanned
as an abelian group by {[W;]: L C V}, and hence ¢, satisfies x (§) = degy, (;a(s) -(1+hg+
.-+ h})). One then computes that the anti-canonical divisor of X, is hy + ;.5 a;y;, and

by Serre duality concludes the desired formula.

5 Proofs of Main Theorems

We now use Theorem 4.8 to prove Theorem 1.6 and Theorem 1.3.

5.1 The valuative group is isomorphic to the Chow homology group

Proof of Theorem 1.6. Since B(P) = —B(P)+aand I(x*(P)) = (p;! (B(P))+R§O)0R§0,the
assignment lpp) > 17 p1y) gives a well-defined map ®;_, Val,(a) — I(Z,), because all
the operations—negation, translation, inverse image, Minkowski sum, and restriction—
behave well with respect to indicator functions. Hence, we have a map of abelian groups
@fzo Val,.(a) - K(X,) defined by lpp) — [I(*(P1))]. Let ¢ be the composition of this
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map with the map ¢,: K(X,) — A*(X,) in Theorem 4.8. Note that  is upper-triangular
with respect to the gradings on @;_, Val,(a) and A,(X,).

Corollary 3.15, stating that A,(X,) is spanned by {[X;]: P a polymatroid with
cage a}, implies surjectivity of . For injectivity, suppose we have polymatroids P, ..., Py
with cage a and integers cy, ..., c; such that Z};l Cj[EPj] = 0. Then by Lemma 3.13, the
validity of Theorem 1.6 whena = (1,...,1), established in [18, Theorem 1.5], implies that
Z]- ¢ilpa, ®) = 0. Since each P; has cage a, and since the image under the projection p,
of the unit cube [0, 1]F is the box [];.5[0, @;] C R, Lemma 3.2 implies that p,, (B(M,, (P)) =
B(Pj). We thus conclude Z]- ¢l B®) = 0, proving the injectivity of . Therefore, v is an

isomorphism, and so the map that sends 1) to [£p] is an isomorphism. |

Let ¢ be the map as constructed in the proof above. Noting that polymatroid
duality induces an involution of €}, Val.(a), by composing ¢ with the inverse ¢, Lof

the isomorphism in Theorem 4.8, we conclude the following.

Corollary 5.1. The map of abelian groups @,_,Val.(a) — K(X,) defined by lpp) =

[I(z*(P))] is an isomorphism.

5.2 The Hall-Rado formula

We first note a reinterpretation of the Hall-Rado condition.

Lemma 5.2. [29, Theorem 2] A collection of subsets S;,...,S, of E satisfies the Hall-
Rado condition with respect to a polymatroid P = (E, rk) of rank r if and only if there
exists amap f: [r] — E with f(i) € S; such that >;_, e € B(P).

Proof of Theorem 1.3. For a nonempty subset S C E, we showed in the proof of
Corollary 3.15 that if Hg is the polymatroid whose dual polymatroid has the simplex
Ag as its independence polytope, then [Xq ] = hg. Applying this to Theorem 4.8, we have
¢a([I(n*(H§))]) = 1+hg. Thus, as the degree map degy, is zero onAi(Xa) fori < n, Theorem
4.8 implies that

degy, (¢a (TG @[I(7*(Hy,))] - [I(x* (Hg,))])) = degy, ([Zpl - hs, -+ hs,).

Let P be the polymatroid of rank n on E whose independence polytope is I(P1) +

A% + .-+ A% . Since multiplication in the polytope algebra is Minkowski sum and
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expansion commutes with Minkowski sum, we have that [I (T*(P))] equals the class
[I(n*(PL))][I(n*(Hi))]-..[I(n*(H;))] in the left-hand side of the equation above. By

Lemma 5.2 and the fact that B(PY) = —B(P) + a, we have that a € I(P) if and only if
Sy....,S, satisfies the Hall-Rado condition with respect to P. The theorem now follows
from the following Lemma 5.3. |

Lemma 5.3. For P a polymatroid of rank n on E, not necessarily with cage a, we have
that

L~ 1 ifael(®)

degy (9o (I(x™(P))]) =

0 otherwise.

Proof. Let P be the polymatroid with cage a defined by IP) = I(P) N [1;c£l0, ;1. By

Proposition 4.5 and the commuting diagram in Theorem 4.8, we have that
degy, ($a(I(x*(®)D) = degy, (Zy; 1]

which is zero unless M, (?) has rank n. When M, (F) has rank n, that is, it is the boolean
matroid on E, we have that [EM”@)L] is the class of a point in Ay(Xg) = A™(Xg), and

hence degXE (= ) = 1in this case. Now, note that M, (P') has rank n, or equivalently

M, )]

1,...,1) e I(M, (13/)), if and only if a € I(1~3/) by Lemma 3.2, and by construction a € I(1~°/)
if and only ifa € I(P). |
Proof of Corollary 1.4. Follows from Lemma 5.2 and Theorem 1.6. |

Remark 5.4. Atleastwhen Pisrealizable, Corollary 1.4 implies Theorem 1.3, as follows.
ForarealizationL € ;.5 V; of P,let Vg = P, V; for @ C S C E. Collecting the projection

maps L — P,z V; = Vs, we obtain an inclusion

which is a realization of a polymatroid P’ with ground set {S: @ C S C E}. Let {f5} denote
the set of standard basis vectors of RIS*?%5<E} 10 avoid confusion witheg = >, s €5 € RE.
A collection of subsets S;,...,S, of E satisfies fS1 + -+ fsr € B(P)) if and only if it
satisfies the Hall-Rado condition (with respect to P), so applying Corollary 1.4 recovers
Theorem 1.3.
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Remark 5.5. One can also prove Corollary 1.4 by using Theorem 1.6 to reduce to the case
of realizable polymatroids, when Corollary 1.4 is [11, Proposition 7.15] (and can also be
deduced from [27]). By Remark 3.16, in order to check that two valuative functions are
equal, it suffices to check on realizable polymatroids. The valuativity of [X;] implies
that the volume polynomial of A®(P) is valuative, and it is clear from the definition of

valuativity that the basis generating function of a polymatroid is valuative.

6 Polypermutohedra

Let 7: E — E be with cage a. The polystellahedral fan ¥_ has the distinguished ray
pgy = R.g(—eg). The star of the fan X at the ray py is the polypermutohedral fan X,
introduced in [13] as the Bergman fan of the boolean polymatroid with cage a. Explicitly,
the cones of X are in bijection with pairs S < F,where F = {0 CF; C --- CF, C Fp | =
E} is a flag of proper subsets of E and S is a subset of E containing no fiber of =. Let X,
be the associated toric variety, which we call the polypermutohedral variety with cage
a, with the embedding (: X, — X, as the toric divisor corresponding to the ray p,. We
set X, = pt.

Suppose P is a polymatroid with cage a and rank r. We note the following fact
about the pullback *[¥;] € A,_;(X,). The augmented Bergman fan ¥, contains the ray
pg if and only if P is loopless. Hence, if P has a loop, then *[X;] = 0. If P is loopless, the
star of Xp at the ray p, is the Bergman fan X, of P introduced in [13, Definition 1.6]. It
is an (r — 1)-dimensional balanced subfan of X_, and the resulting the Bergman class
[Xp] € A, (X,) equals the pullback (*[Z;].

Using Bergman fans and Bergman classes of loopless polymatroids, we establish
analogues of the main theorems Theorem 1.6 and Theorem 1.3 in the polypermutohedral

setting.
6.1 The valuative group of loopless polymatroids
Define a subgroup of Val.(a) by

Val?(a) = the subgroup generated by

{1p@): P a loopless polymatroid with cage a and rank r}.

Note that Valj(a) = 0. We have the following analogue of Theorem 1.6.

Theorem 6.1. For any 1 < r < n, the map that sends a loopless polymatroid P with cage

a and rank r to the Bergman class [Z,] induces an isomorphism Val(a) = 4, ;(X,).
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We will deduce Theorem 6.1 from Theorem 1.6 by identifying the kernel of
the map Val,(a) = A.(X) 4 A,_;(X,) with the subgroup of Val.(a) generated by
polymatroids with loops. An alternate proof that does not rely on Theorem 1.6 but
proceeds by developing the polypermutohedral analogue of Theorem 4.8 is sketched in
Remark 6.3.

Before proving Theorem 6.1, we relate the Poincaré polynomial of the polystel-
lahedral variety to the Poincaré polynomials of polypermutohedral varieties. For J C E,
let a \ J be the vector obtained by removing the entries corresponding to J. Recall that

X is a point.

Lemma 6.2. We have that

n n—|z~1(J)|-1
> rankAYX,)f = "rank A°X )+ > 7 D1 > rankAlx,, il
i=0 BCICE i=0

Proof. As the Poincaré polynomial of a smooth projective toric variety is the h-

polynomial of its fan, it is enough to show that

FEI® =A+0"+ > A+ DIFE, o),

@CICE

where f(X) is the f-polynomial of a fan ¥. We prove this bijectively. To each cone o of
some X, ; corresponding to a pair S < F, we obtain 27Dl cones of =, by adding J
to every element of the flag and then adding all 2" ¢! possible subsets of 7~1(J) to S.
When J # E and we add k elements to S, this gives a cone of dimension dimo + k + 1.

When J = E and we add k elements to S, this gives a cone of dimension k. [ |

Proof of Theorem 6.1. For any i € E, a polymatroid base polytope B(P) is always
contained in the half-space {x € RE: x; > 0}, and it is contained in the hyperplane
{x € RE: x; = 0} if and only if P has i as a loop. Thus, the claim in the proof of [7,

Lemma 5.9] implies that we have a decomposition

Val,.(a) = (P Valpa\ J)

JCE

given by sending a loopless polymatroid P of rank r on E \ J to the polymatroid on E

with rk(S) = rkp(S N J). We now induct on the size of E, where the base case |E| = 1 is
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straightforward. Comparing the decomposition of Val..(a) above with Lemma 6.2, we see
that the induction hypothesis implies rank A,_, (X,) = rank Val)(a).

By the construction of the permutohedral fan X as the star of ray p, in X_,
every ray of X is the image of a ray in ¥_ that forms a cone with p,. Hence, the
pullback *: A*(X,) - A®*(X,) is surjective because (*: Al (X,) — Al(X,) is. We thus have a
surjection (*: A,.(X,) — A,_;(X,) that satisfies (*[Zp] = [Xp] if P is loopless and (*[Zp;] = 0

otherwise. Therefore, the composition
Val(a) - A,.(X,) = A,_;(X,)

is a surjection of finite free abelian groups of the same rank, and hence is an isomor-

phism. |

Remark 6.3. We sketch an alternate proof of Theorem 6.1. First, arguing as in [17,
Proof of Theorem D], one shows an isomorphism @) , Valy(a) ~ K(X,) when a =
(1,...,1), and uses it to deduce Theorem 6.1 for the a = (1,...,1) case. Now, using
that polypermutohedral fans are coarsenings of the permutohedral fan X, just as
polystellahedral fans are coarsenings of the stellahedral fan, one similarly deduces the
polypermutohedral analogue of Theorem 4.8. Then, one deduces Theorem 6.1 the same

way that we proved Theorem 1.6 here.

6.2 The dragon Hall-Rado formula
Let X, be the polypermutohedral variety, with the embedding ¢: X, < X, as the toric
divisor corresponding to the ray p, . The following theorem generalizes [6, Theorem 5.2.4].

Theorem 6.4. For apolymatroid P = (E, rkp) of rank r, a collection of subsets S}, ..., S,_;

is said to satisfy the dragon Hall-Rado condition if

rk ( U S]-) > |J|+1 forall nonempty J C [r — 1]
jeJ

Then, if P is loopless, we have

1 if the dragon Hall-Rado condition is satisfied
Ae8x (s, ., [RllXal) = 0 otherwise
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Proof. Note that, in A*(X,), we have that x;, = —Y ,cgcp(—1)lhg. Then, for any
S,,...,S

r—1r

degy, (hg, - hg, | [ZplX,) =— D (=1)"S'degp(hg, ... hg_ hy). (1)
@CSCE
Suppose we have sets Sy, ..., S,_; that satisfy the dragon Hall-Rado condition. Because P
is loopless, every term in the above sum corresponds to r sets that satisfy the Hall-Rado
condition, and so each term is (—1)!S|. Because the sum is over nonempty sets, this gives
the result.

Suppose that S;,...,S,_; fails the dragon Hall-Rado condition. There is some
nonempty subset T of E such that S;,...,S,_;, T fails the Hall-Rado condition; we may
take T = S; for some i. Let T}, T, be nonempty subsets of E such that S;,...,S,_;,T; and
Sy,...,S,_1, T, both fail the Hall-Rado condition. We claim that S;,...,S,_;,T; UT, fails
the Hall-Rado condition. Indeed, if there is a function f: [r] — E as in Lemma 5.2 with
f(r) € T, UT,, then f(r) lies in T} or T,, contradicting the assumption.

This implies that the set {T : @ C T < E, S;,...,S,_;, T fails Hall-Rado} is
nonempty and has a unique maximal element. Furthermore, this set is downward closed:
if S;,...,S,_;, T fails the Hall-Rado condition and @ C T € T, then S}, ...,S,_;, T’ fails

the Hall-Rado condition. This implies that the sum in (1) is zero. ]

Remark 6.5. Theorem 6.4 can be alternatively proved along the lines of Theorem 1.3, by
using the polypermutohedral analogue of Theorem 4.8 and a reformation of the dragon

Hall-Rado condition in terms of a matching condition as in [6, Proposition 5.2.3].

Acknowledgements

We thank June Huh for many invaluable conversations related to polymatroids, including suggest-
ing the statements of Theorems 1.3 and 1.6. We thank the referees for many helpful comments. The
first author is supported by US National Science Foundation Grant DMS-2001854, and the second
author is supported by an NDSEG fellowship.

References
[1] Adiprasito, K., J. Huh, and E. Katz. “Hodge theory for combinatorial geometries.” Ann. of Math.
(2) 188, no. 2 (2018): 381-452.
[2] Aguiar, M. and F. Ardila. “Hopf monoids and generalized permutahedra.” Mem. Amer. Math.
Soc. (to appear).
[3] Ardila, F. and A. Boocher. “The closure of a linear space in a product of lines.” J. Algebraic
Combin. 43, no. 1 (2016): 199-235. https://doi.org/10.1007/s10801-015-0634-x.

202 UoJel\ 80 U0 1s8nB Aq LOY19Z./L021/S/y20Z/2101E/uiwl/woo" dno-olwapese/:sdpy woly papeojumod



4240 C. Eur and M. Larson

[4]

(5]

(6]

(71

(8]

(9l

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

Ardila, F., G. Denham, and J. Huh. “Lagrangian geometry of matroids.” J. Amer. Math. Soc. 36,
no. 3 (2023): 727-94. https://doi.org/10.1090/jams/1009.

Ardila, F., A. Fink, and F. Rincén. “Valuations for matroid polytope subdivisions.” Canad. J.
Math. 62, no. 6 (2010): 1228-45. https://doi.org/10.4153/CIJM-2010-064-9.

Backman, S., C. Eur, and C. Simpson. “Simplicial generation of chow rings of matroids.” J. Eur.
Math. Soc. (JEMS) (to appear) (2023).

Berget, A., C. Eur, H. Spink, and D. Tseng. “Tautological classes of matroids.” Invent. Math.
233 (2023): 951-1039. https://doi.org/10.1007/s00222-023-01194-5.

Bonin, J. E., C. Chun, and T. Fife. “The natural matroid of an integer polymatroid.”
arXiv:2209.03786.

Braden, T., J. Huh, J. Matherne, N. Proudfoot, and B. Wang. “Singular Hodge theory for
combinatorial geometries.” arXiv:2010.06088.

Braden, T., J. Huh, J. P. Matherne, N. Proudfoot, and B. Wang. “A semi-small decomposition of
the chow ring of a matroid.” Adv. Math. 409, paper no. 108646 (2022): 49.

Castillo, F., Y. Cid-Ruiz, F. Mohammadi, and J. Montafio. “K-polynomials of multiplicity-free
varieties.” arXiv:2212.13091.

Cox, D. A, J. B. Little, and H. K. Schenck. Toric Varieties. Vol. 124 of Graduate Studies in
Mathematics. Providence, RI: American Mathematical Society, 2011.

Crowley, C., J. Huh, M. Larson, C. Simpson, and B. Wang. The Bergman Fan of a Polymatroid.
arXiv:2207.08764.

De Concini, C. and C. Procesi. “Wonderful models of subspace arrangements.” Selecta Math.
(N.S.) 1, no. 3 (1995): 459-94. https://doi.org/10.1007/BF01589496.

Derksen, H. and A. Fink. “Valuative invariants for polymatroids.” Adv. Math. 225, no. 4 (2010):
1840-92. https://doi.org/10.1016/j.aim.2010.04.016.

Edmonds, J. “Submodular functions, matroids, and certain polyhedra.” Combinatorial Struc-
tures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), 69-87. New
York: Gordon and Breach, 1970.

Eur, C., A. Fink, M. Larson, and H. Spink. Signed permutohedra, delta-matroids, and beyond.
arXiv:2209.06752v2.

Eur, C., J. Huh, and M. Larson. Stellahedral geometry of matroids. arXiv:2207.10605v2.
Feichtner, E. M. and I. Miiller. “On the topology of nested set complexes.” Proc. Amer. Math.
Soc. 133, no. 4 (2005): 999-1006. https://doi.org/10.1090/S0002-9939-04-07731-7.

Feichtner, E. M. and B. Sturmfels. “Matroid polytopes, nested sets and Bergman fans.” Port.
Math. (N.S.) 62, no. 4 (2005): 437-68.

Feichtner, E.-M. and S. Yuzvinsky. “Chow rings of toric varieties defined by atomic lattices.’
Invent. Math. 155, no. 3 (2004): 515-36. https://doi.org/10.1007/s00222-003-0327-2.

Fulton, W. Introduction to Toric Varieties, volume 131 of Annals of Mathematics Studies.

4

Princeton, NJ: Princeton University Press, 1993. The William H. Roever Lectures in Geometry.
Fulton, W. and B. Sturmfels. “Intersection theory on toric varieties.” Topology 36, no. 2 (1997):
335-53. https://doi.org/10.1016/0040-9383(96)00016-X.

202 Yol 80 uo 3senb Aq 101192 ./L021/S/720g /o100 e/ulwl/wod dno-dlwapese//:sdpy woly papeojumoq



[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Intersection Theory of Polymatroids 4241

Gross, A. and F. Shokrieh. “Cycles, cocycles, and duality on tropical manifolds.” Proc. Amer.
Math. Soc. 149, no. 6 (2021): 2429-44. https://doi.org/10.1090/proc/15468.

Helgason, T. “Aspects of the theory of hypermatroids.” Hypergraph Seminar of Ohio State
University. Springer, 1972.

Larson, M., S. Li, S. Payne, and N. Proudfoot. “K-rings of wonderful varieties and matroids.”
arXiv:2210.03169.

Li, B. “Images of rational maps of projective spaces.” Int. Math. Res. Not. IMRN 13 (2018):
4190-228. https://doi.org/10.1093/imrn/rnx003.

Lovasz, L. “Flats in matroids and geometric graphs.” Combinatorial Surveys (Proc. Sixth
British Combinatorial Conf., Royal Holloway Coll., Egham, 1977), 45-86, 1977.

McDiarmid, C. “Rado’s theorem for polymatroids.” Math. Proc. Camb. Phil. Soc. 78, no. 263
(1975): 263-81. https://doi.org/10.1017/S0305004100051677.

McMullen, P. “The polytope algebra.” Adv. Math. 78, no. 1 (1989): 76-130. https://doi.org/10.
1016/0001-8708(89)90029-7.

Morelli, R. “The K-theory of a toric variety.” Adv. Math. 100, no. 2 (1993): 154-82. https://doi.
org/10.1006/aima.1993.1032.

Nguyen, H. Q. Submodular functions. In , N. White, ed., Theory of Matroids, chapter 10, pp.
272-297. Cambridge University Press, 1986. https://doi.org/10.1017/CB09780511629563.013.
Pagaria, R. and G. M. Pezzoli. Hodge Theory for Polymatroids. Int. Math. Res. Not., 032023.
rnad001. https://doi.org/10.1093/imrn/rnad001

Postnikov, A. “Permutohedra, associahedra, and beyond.” Int. Math. Res. Not. IMRN 2009
(2009): 1026-106. https://doi.org/10.1093/imrn/rnn153.

Welsh, D. J. A. Matroid Theory. London-New York: Academic Press [Harcourt Brace
Jovanovich, Publishers], 1976. L. M. S. Monographs, No. 8.

Yuzvinsky, S. “Small rational model of subspace complement.” Trans. Amer. Math. Soc. 354,
no. 5 (2002): 1921-45. https://doi.org/10.1090/S0002-9947-02-02924-0.

202 Yol 80 uo 3senb Aq 101192 ./L021/S/720g /o100 e/ulwl/wod dno-dlwapese//:sdpy woly papeojumoq



	 Intersection Theory of Polymatroids
	1 Introduction
	2 The Toric Geometry of Polystellahedral Varieties
	3 Augmented Geometry of Polymatroids
	4 The Exceptional Isomorphism
	5 Proofs of Main Theorems
	6 Polypermutohedra


