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ABSTRACT: Accurate modeling of the response of molecular systems to an external
electromagnetic field is challenging on classical computers, especially in the regime of
strong electronic correlation. In this article, we develop a quantum linear response
(qLR) theory to calculate molecular response properties on near-term quantum
computers. Inspired by the recently developed variants of the quantum counterpart of
equation of motion (qEOM) theory, the qLR formalism employs “killer condition”
satisfying excitation operator manifolds that offer a number of theoretical advantages
along with reduced quantum resource requirements. We also used the qEOM
framework in this work to calculate the state-specific response properties. Further,
through noiseless quantum simulations, we show that response properties calculated
using the qLR approach are more accurate than the ones obtained from the classical
coupled-cluster-based linear response models due to the improved quality of the
ground-state wave function obtained using the ADAPT-VQE algorithm.

■ INTRODUCTION
The field of quantum chemistry has made significant progress
in recent decades in the accurate numerical simulation of
electronic properties of a wide range of molecules and
materials.1−5 However, a number of challenges still remain.
The computational complexity of accurate electronic structure
methods continues to be quite high, especially when strong
electron correlation effects are involved, where the numerical
evaluation of the ground and low-lying excited states of the
molecular Hamiltonian may scale factorially with respect to the
system size.6 With the advent of quantum devices that exploit
the quantum properties of superposition and entanglement,
one can map the exponentially increasing Hilbert space to a
linearly scaling number of qubits.7 The quantum hardware in
the NISQ era, however, suffers from a number of challenges
like limited qubit connectivity, significant gate-error rates,
short coherence times, etc., which prevent us from realizing the
promised “quantum advantage”. The variational eigensolver
(VQE) method8 attempts to overcome some of these
limitations by ensuring shallow quantum circuits through a
variational optimization of the quantum circuit parameters.
This has allowed for the development of a number of quantum
algorithms for the simulation of molecular ground8−24 and
excited states.25−34 Aside from the VQE method, algorithms
based on quantum phase estimation,35,36 adiabatic state
preparation,37,38 and Krylov subspace generation39−41 have
also been developed for molecular simulations. These

techniques are more suitable for the era of fault-tolerant
quantum computing.
Most of the quantum computing applications in chemistry

have been focused on the estimation of ground- and excited-
state energies with limited attention to molecular response
properties. As the name suggests, these properties capture the
response of the electric dipole moment of a molecule to an
external field. For example, the molecular polarizability is
defined as the first-order response of the electronic charge
distribution to an external electric field. Polarizabilities are at
the origin of many chemical phenomena including electron
scattering,42 electronegativity,43 and softness and hardness,44

and they play an important role in biological processes such as
protein−ligand binding.45 When strong electric fields are
involved, as in the case of lasers, higher-order response
properties such as hyperpolarizabilities (second-order) also
become significant. These quantities, for example, define the
suitability of materials for nonlinear optical applications.46

Chiroptical properties are another class of response properties
that have found several applications in the pharmaceutical
industry. More than half of the drugs currently in use are
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chiral,47 i.e., the molecular structure of these drugs has a
unique three-dimensional handedness and thus exists in the
form of left- and right-hand stereoisomers, also known as
enantiomers. Within a chiral environment, the chemical
properties of the enantiomers can be drastically different.
This underscores the importance of understanding the
structure−activity relationship of these compounds.48 Optical
rotation, which refers to the rotation of the plane of plane-
polarized light as it passes through a chiral medium, is a useful
tool for determining the absolute configuration of chiral
molecular systems. Just like polarizabilities, optical rotation can
be characterized as the first-order response of the electric
dipole moment but with respect to an external magnetic field.
The exact treatment of these response properties can be

carried out by the sum-over-states (SoS) formalism,49 which
involves explicit evaluation of all the excited states associated
with the molecular Hamiltonian. Consequently, implementing
the SoS approach for even medium-sized molecular systems
can be challenging. An alternative approach is built on the idea
of expanding the perturbed wave functions in a determinantal
basis rather,49−52 thus avoiding the explicit determination of
the excited states. In classical quantum chemistry, coupled-
cluster (CC) response theory (RT), developed extensively by
Koch, Jörgensen, and co-workers,49,51,52 is one of the most
promising approaches in this regard. Another popular
approach is through the use of equation of motion coupled
cluster (EOM-CC) theory introduced by Stanton and
Bartlett.53 Unlike the CC-RT formalism, this method attempts
to calculate response properties within the SoS framework
based on excited states computed using EOM-CC. Green’s
function-based approaches54,55 are yet another class of
methods that are frequently used to calculate the molecular
response properties. It should be noted that excitation energies
(EEs) and transition moments generally also come under the
purview of the response properties. Since both of these
properties are state-specific, they can be calculated efficiently
by both CC-RT- and EOM-CC-based approaches.
Important recent developments have been made in

computing response properties on a quantum computer.56−62

The variational quantum response (VQR) algorithm devel-
oped by Huang and co-workers56 is notable in this regard. The
VQR approach transforms the response formalism into an
optimization problem that minimizes a cost function using a
parameterized quantum circuit to calculate dipole polar-
izabilities and absorption spectra. A number of recently
developed quantum excited-state methods like subspace-search
VQE (SS-VQE),25 the orthogonal state reduction variational
eigensolver (OSRVE),26 and variational quantum deflation
(VQD)27,28 operate on similar principles with appropriately
designed cost functions for excited-state energies. Although
these methods are promising, they suffer from challenges like
increased circuit complexity, and there may be additional
challenges finding the global minimum in different cost-
function optimization landscapes.63 Alternatively, excited states
can also be obtained by diagonalizing the Hamiltonian in a
subspace, just like the classical EOM-CC-based approaches.
Quantum equation of motion (qEOM)33 and quantum
subspace expansion (QSE)29−32 methods are popular examples
in this regard. These methods have the same circuit complexity
as the ground state but feature an increase in the number of
measurements and higher body reduced density matrix (RDM)
requirements. However, the qEOM approach does not
necessarily satisfy the important “killer” or vacuum annihilation

condition (VAC),64,65 while the QSE approach does not
guarantee the correct scaling (size-intensivity66,67) of energy
differences. The q-sc-EOM approach developed by us
recently34 satisfies the “killer” condition by making use of
the self-consistent excitation manifold64 of Mukherjee. Further,
it transforms the generalized non-Hermitian eigenvalue
problem of qEOM into a Hermitian eigenvalue problem,
provides size-intensive energy differences, and is expected to be
more noise-resilient compared to other diagonalization-based
excited state approaches.
In this work, we propose a new formalism, namely, quantum

linear response (qLR) theory to simulate molecular response
properties such as polarizabilities, optical rotation, etc., on
near-term quantum computers.68 The ground-state wave
function in qLR theory can be obtained from any VQE-
based algorithm, which makes this approach NISQ compatible.
Consistent with the classical linear RT, in the qLR approach,
one needs to solve a perturbation-dependent linear system of
equations to evaluate the response properties. The difference
lies in the fact that all of the elements of the matrices and
vectors appearing in the equations are now measured on a
quantum computer instead. To the best of our knowledge,
there has been no implementation of UCC-based linear RT in
the field of classical quantum chemistry to date for calculating
higher-order response properties. This can be attributed to a
series of intricate approximations that need to be developed
due to the nontruncating nature of the Hausdorff expansion for
UCC-based methods.69 Of course, no such approximations are
needed for a quantum simulation, and hence, the qLR theory
can help shed some light toward the practical development of
such approaches in classical quantum chemistry as well. We
also make use of the “killer condition” satisfying operator
manifolds in this work, which ensure that accurate response
properties are obtained with reduced quantum resource
requirements. Furthermore, the quantum equation-of-motion
framework developed in refs 34 and 70 was utilized for the
quantum simulation of state-specific response properties like
transition moments and EEs. This article is structured as
follows: The Theory section discusses the theoretical formal-
ism for the qLR theory. The Vacuum Annihilation or “Killer”
Condition section introduces the “killer condition” and
operator manifolds that ensure that this condition is always
satisfied, which is then used to derive the final qLR working
equations. The proposed implementation steps are shown in
the Proposed Implementation section, while the computational
details for all the calculations in this paper are reported in the
Computational Details section. The Results section discusses
the results obtained for H2, LiH, H2O, chiral (H2)2, and linear
H6 molecular systems. The key findings of this article are
summarized in the Conclusions section. For completeness, the
Appendix sections presents some aspects of linear RT and the
theoretical framework of the qEOM method.

■ THEORY
Linear Response Theory. Molecular RT captures the

interaction of a molecule with an external electromagnetic field
based on the time-dependent perturbation theory framework,
starting from the time-dependent Schrödinger equation

H t
t

t( ) i
d
d

( )0 0| = |
(1)

Using perturbation theory, the Hamiltonian is partitioned
into a zeroth-order component, which describes the molecule
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in the absence of any time-dependent field, and a first-order
component, which is the semiclassical interaction between the
molecule and an external dynamic field

H t H H t( ) ( )
(0) (1)= + (2)

There are two principal formalisms for calculating response
properties. The first involves the expansion of the time-
dependent wave function and the corresponding expectation-
value properties, such as the electric dipole moment, in orders
of the perturbation, followed by Fourier transformation to the
frequency domain, yielding order-by-order property tensors
such as the polarizability, optical activity tensor, etc.49 (see the
Appendix for details.) The second approach identifies response
functions as derivatives of the time-averaged quasi-energy with
respect to external field strength parameters.51,71 We make use
of the latter formalism in this work. The quasi-energy
formalism was first introduced by Sasagane71 and later refined
by Haẗtig, Christiansen, and Jörgensen.51

We can express the first-order perturbation component of
the Hamiltonian in eq 2 as a discrete sum of periodic
perturbations as

H t e H H Y( ) ( ), ( ) ( )
j N

j N
t

j j
Y

Y j
(1) i (1) (1)

j= =
=

=

(3)

where Y is a frequency-independent operator describing the
interaction between the external field and the molecular system
and ϵY is the frequency-dependent strength parameter
associated with the given external field (see ref 51), while N
refers to the total number of monochromatic periodic
perturbations. For example, Y corresponds to the dipole
moment operator ( ) when the perturbation is an oscillating
electric field and is associated with the magnetic moment
operator m( ) in the case of an external magnetic field. This can
be expressed in the second quantized formalism as

Y Y a aq
p

p q= †
(4)

where Yqp refers to p i q| | with i ∈ {x, y, z} in the case of an
external electric field and mp i q| | for a magnetic field. The
indices p and q denote the molecular orbitals and the operators
ap† and aq are the usual Fermionic creation and annihilation
operators. It should be noted that ri i= and

m r p( )i i
1
2

= × , where r and p refer to the position and
momentum vectors, respectively. Thus, the summation over in
eq 3 covers all the possible interactions of the molecular

system with a given external field. To ensure that H t( )
(1)

stays
Hermitian, the operator Ŷ should be Hermitian as well, along
with other necessary conditions such as ω−j = −ωj and εY*(ωj)
= εY(−ωj).
The central quantity in this quasi-energy formalism is the

time-dependent quasi-energy defined as

i
k
jjj y

{
zzzQ t t H H t

t
t( ) ( ) ( ) i

d
d

( )0
(0) (1)

0= | + |
(5)

The quasi-energy can be seen as an analogue of energy in the
time-dependent domain. By invoking the time-averaged time-
dependent Hellmann−Feynman theorem,51 one can obtain
response functions by taking the derivatives of the time-

averaged quasi-energy with respect to external field strength
parameters.
In order to derive the response equations, we consider the

following time-dependent ansatz of the wave function in the
presence of an external field

t e( ) R t
0

( )
0| = | (6)

where the R(t) is linear cluster operator of the following form

R t R t R t R t( ) ( ) ( ) ( ) . . .1 2 3= + + + (7)

The ground-state |Ψ0⟩ here is the optimized ground-state
wave function obtained by a VQE algorithm on a quantum
computer. We define the operators Ri (i ∈ {1, 2, 3, ..}) using
second-quantized excitation and de-excitation operators of the
ith rank as

R t A t G A t G( ) ( ) ( )i i i i i
= [ + * ]† †

(8)

where G
i
and G

i
† refer to an excitation and de-excitation

operator of rank i with the corresponding response amplitudes
Aμi(t) and A

i
*† (t), respectively. The value of i can, of course,

range from 1 to N, where N is the number of electrons in the
system. The action of these operators on the reference wave
function |0⟩�Hartree−Fock (HF) in our case�can be
illustrated mathematically as

G 0 ii
| = |

G0 ii
| = |† (9)

where |μi⟩ denotes an “excited” Slater determinant of rank i.
One can expand the Fourier components of these response
amplitudes in successive orders of the perturbation, just like in
eq A.2 in the Appendix. It can be shown that solving the time-
dependent Schrödinger equation is equivalent to the varia-
tional minimization of the time-averaged quasi-energy, which is

defined as L t t Q t( ) d ( )T T

T1
0

{ } = .51 After expanding the
quasi-energy in different orders of the perturbation (L(t) =
L(0)(t) + L(1)(t) + L(2)(t) + ...), the equations for solving
frequency-dependent response amplitudes of different orders
can be obtained through the following equations

A
L t

A
L t

( )
( ) 0

( )
( ) 0

m
j

n
T

m
j

n
T

( )
( )

( )
( )

i

i

{ } =

*
{ } =

(10)

where m ≤ n. It should be noted that the response amplitudes
satisfy the 2n + 1 rule, which states that for calculating a
molecular property of perturbation order 2n + 1, one needs
only up to order n wave function parameters. Thus, first-order
response amplitudes can provide up to third-order properties,
such as hyperpolarizabilities. Putting m = 1, n = 2 in eq 10, one
obtains the following secular equation for first-order response
amplitudes associated with the perturbation operator Ŷ at
frequency ωj
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M Q

Q M

V W

W V

A
B

Z

Z

( )
( )j

Y j

Y j

Y

Y

(1)

(1)* * * * =
*

(11)

where B A( )Y Y
(1) (1)= † and the elements of matrices M, Q, V, W,

and vector GY are defined as

G H G

G G

G H G

G G

Z G

M , ,

V ,

Q , ,

W ,

( ) Y,Y i

, 0 0

, 0 0

, 0 0

, 0 0

0 0

i j i j

i j i j

i j i j

i j i j

i

= |[ [ ]]|

= |[ ]|

= |[ [ ]]|

= |[ ]|

= |[ ]|

†

†

† †

† †

(12)

Finally, the response functions can be obtained by taking the
derivative of the time-averaged quasi-energy of an appropriate
order with respect to field strengths. For example, the linear
response function can be obtained as

X Y
L t

Z A Z B

;
( )

( ) ( )

( ) ( )

T

X j Y j

Y j Y jX X

2 (2)

j
= { }

= · + *· (13)

where Z X G( ) ,X i 0 0i
= |[ ]| and · refers to the dot product

operation. For exact electronic states, the linear response
function can also be written as a SoS expression49

X Y
X Y

Y X

;
k

k k

j k

k

k k

j k

0

0 0

0

0 0

j
=

| | | |

| | | |
+

>

> (14)

where ⟨Ψk| refers to the wave function of the kth excited state
with the EE of ωk. Calculation of properties like specific
rotation using the SoS formalism can be computationally
prohibitive as thousands of electronic excited states may need
to be evaluated to ensure the convergence of eq 14.72

However, the SoS approach has its own advantages as well,
especially for resonant and near-resonant responses, where one
just needs only excited states within a desired spectral window.
The linear response approach avoids the explicit calculation of
all excited states by parameterizing the perturbation of the
ground-state wave function in the presence of an external field
through response amplitudes, which are solved through a linear
system of equations. Furthermore, one can also get the values
of EEs and transition moments for a given excited state by
identifying the poles and evaluating the residues of the linear
response function at poles, respectively.49 It should be noted
that the values of EEs, ionization potentials (IPs), and
electronic affinities (EAs) calculated using the qLR approach
should be identical to the ones obtained from the qEOM
approach.49 Please refer to the Appendix (section) for a
detailed theoretical background of the qEOM method. In an
earlier work,34 we have shown that the qEOM method does
not necessarily satisfy the “killer condition”, leading to large
errors for IPs and EAs even for small molecular systems. Thus,
one needs to make sure that the qLR approach also complies

with the “killer condition” in order to obtain accurate
molecular response properties.

Vacuum Annihilation or “Killer” Condition. The VAC
states that the ground state cannot be de-excited since it is the
lowest-energy eigenstate, i.e.

0k 0| =†
(15)

where k is a state-transfer operator such that its action on the
ground state leads to the kth excited state

k k0| = | (16)

It is easy to see that the VAC is satisfied for an exact state-
transfer operator64,65,73−76 by writing it in a projector form as

k k 0= | | (17)

The application of the adjoint of the exact state-transfer
operator on the ground-state wave function produces null, i.e.,

k0k k0 0 0| = | | =†
(18)

since the ground- and excited-state wave functions are always
orthogonal to each other. However, the VAC may not be
satisfied for approximate state-transfer operators. For instance,
the VAC is not necessarily satisfied for a general state-transfer
operator defined in the qEOM formalism (see eq B.2), i.e.,

A G B G( ) ( ) 0k
i

0
k k

0

i
i i i i

| = [ * + * ]|†
† †

(19)

This can lead to nonorthogonal ground- and excited-state
wave functions and produce large errors in charged excitation
energies.34 Two distinct methods were proposed to satisfy the
VAC for approximate state-transfer operators, namely, self-
consistent operators64 and projection-based approaches65

(both discussed below) leading to two different formalisms
for estimating excited-state properties.

Self-Consistent Operators. One way to ensure that the
VAC is always satisfied is through the use of a self-consistent
operator manifold instead of the manifold defined by using HF
as the reference. This approach was originally introduced by
Prasad and Mukherjee64 for methods with unitary parameter-
ization of the ground-state wave function. The self-consistent
manifold can be defined using the primitive excitation manifold
G G( )

i i
† as

S U U( )G ( )
i i
= †

(20)

where U(θ) refers to the unitary operator used to obtain the
ground-state wave function (|Ψ0⟩).
It can be seen that the application of the action of the

adjoint of a general-state transfer operator, defined using the
operators from the self-consistent operator manifold, on the
ground-state wave function is zero, i.e.,

A G U

A G

( ) U( ) ( )U( ) 0

( ) U( ) 0

0

k
k

k

0

i
i i

i
i i

| = * |

= * |

=

† †
† †

† †

(21)

as the regular de-excitation operator acting on the reference
wave function yields zero. It should be noted that this
formalism is general and applies to any wave function ansatz
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where the ground state is obtained through an action of a
unitary operator acting on a starting state such as HF. Similar
approaches have been developed for excited-state methods
using unitary coupled-cluster (UCC) theory.69

Use of the self-consistent operator manifold in qEOM gives
rise to the following simplified working equation

EM A Ak k
sc

0k= (22)

where

G U HU GM 0 ( ) ( ) 0 E,
sc

, 0i j i j i j
= | | ·†

† (23)

For more details, please refer to ref 34.
Using the self-consistent operator manifold, the response

equations obtained in eq 11 are also simplified and can now be
separated into two equations

M I A Z

M I B Z

( ) ( )

( ) ( )

Y

Y

sc
Y Y Y

sc

sc
Y Y Y

sc

=

+ = *
(24)

where Z U G( ) ( )YU( )Y i
sc

0 0i
= | |† . However, one can

combine the above two equations into one single equation in
order to lower the computational costs involved. For example,
if we consider the perturbation to be electric-dipole based, ZY

sc

is identical to ZY
sc* and we arrive at the following equation

M I A B M Z(( ) )( ( ) ( )) 2Y Y Y
sc 2

Y
2

Y Y
sc sc= · (25)

and the linear response function can be reformulated as

X Y Z M A B,
1

( ( ( ) ( ))X
Y

sc sc
Y Y Y YY

= ·
(26)

Projection Operators. Surjaán and co-workers developed
the projection operator technique65 to ensure that the VAC is
always satisfied while calculating molecular IPs. The projected
excitation operator S( )

i
can be written as

S G 0 0i i
= | | (27)

For non-number-conserving operators (which appear in IP
or electron affinity calculations), it can be easily seen that the
action of the projected de-excitation operator on the ground-
state wave function vanishes, i.e.,

S G( ) 00 0 0 0i i
| = | | | =†

† (28)

Fan and co-workers70,77 recently made use of these operator
manifolds within the framework of equation of motion theory
to calculate band structures on a quantum computer. To
ensure that eq 28 also holds true for number-conserving
operators, we shift all the operators by their expectation values

G G G0 0i i i
= | | (29)

This can also be seen as a form of a normal ordering of the
operators with respect to a general reference wave function.78

Just like the self-consistent formalism, this approach is quite
general and can be used with any wave function ansatz. Using
the shifted projected operators in eq B.5 (see the Appendix),
one gets a generalized Hermitian eigenvalue equation

EM A V Ak k k
proj

0
proj= (30)

where

M G G

V G G

H,
proj

0 0

,
proj

0 0

i j i j

i j i j

= | |

= | |

†

† (31)

Equation 30 looks very similar to the one obtained in the
QSE approach, except that the identity operator is not involved
in the operator pool. Stated differently, unlike the QSE
approach, the ground-state wave function does not participate
in the diagonalization procedure, which ensures size-intensive
excitation energies. However, the evaluation of the overlap
matrix makes it more susceptible to noise,34 compared to the
self-consistent operator approach.
The equations for calculating the response amplitudes are

simplified as well when we make use of these shifted projection
operators. Equation 12 now can be decoupled into two
separate equations

M V A Z

M V B Z

( ) ( )

( ) ( )

Y Y Y Y

Y Y Y Y

proj proj proj

proj proj proj

=

+ = * (32)

where Z G( ) YY i
proj

0 0i
= | | . Of course, one can combine

the two equations into a single one and obtain equations
similar to the self-consistent approach [eq 25] with the identity
matrix I replaced by the overlap matrix Vproj.

■ PROPOSED IMPLEMENTATION
The qLR forms making use of the self-consistent and projected
operator manifolds are referred to as qLR(sc) and qLR(proj),
respectively. Here, we discuss the proposed implementation of
qLR(sc) and qLR(proj) methods on near-term quantum
computers. The working equations of the qLR(sc) method are
given in eq 25, which requires the evaluation of matrices Msc

and ZY
sc on a quantum computer, after which the resulting

equation is solved classically. The creation of matrix Msc

requires the creation of diagonal and off-diagonal terms
defined by eq 23. The evaluation of matrix Msc can be carried
out by the methods discussed in ref 34 without the use of any
ancilla qubits. To summarize, the diagonal elements can be
evaluated as the expectation value of using the preoptimized
circuit obtained during the VQE procedure for estimating the
ground-state wave function. However, instead of the HF state,
singly and doubly excited Slater determinants are now used as
the reference, e.g.,

M G U HU G0 ( ) ( ) 0,
sc

i i i i
= | |†

† (33)

The off-diagonal elements, for which popular algorithms use
the Hadamard test for evaluation, can be evaluated in a much
simpler fashion using the relationship

M M
M M

Re
2 2, ,

, ,

i j i j i j

i i j j[ ] = + + (34)

where the term M ,i j i j+ + is given by

M G G U HU

G G

0
1
2

( ) ( ) ( )
1
2

( ) 0

,i j i j i j

i j

= | +

+ |

+ +
† †

(35)

The creation of entanglement G G( ) 0
i j
+ | can be simply

achieved by using a Hadamard gate along with a few CNOTs
(maximum of seven CNOTs required).
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The matrix elements of vector ZY can be similarly computed.
All elements of this matrix are analogous to the off-diagonal
elements of matrix M. It can be computed using the
relationship

Z Z
Z Z

( ) (0 )
( )

2
(0)
2i i

i Y
Y
sc

Y
Y= +

(36)

where

Z I G U U I G

Z G U U G

Z U U

(0 ) 0
1
2

( ) ( )Y ( )
1
2

( ) 0

( ) 0 ( )Y ( ) 0

(0) 0 ( )Y ( ) 0

i

Y i

Y

Y i i

i i

+ = | + + |

= | |

= | |

† †

†

†

†

(37)

The element ZY′(0) can be computed once using the ground-
state circuit, while the other two elements of ZY′ needed for
ZY(μi) can be evaluated separately for each element of the ZY
vector. The elements ZY′(μi) and ZY′(0) can be computed by
measuring the expectation value of operator Ŷ using states
|Ψμi⟩ (see Figure 1a for an example) and |Ψ0⟩, respectively,

where U G( ) 0X X| = | . The element ZY′(0 + μi) can be
evaluated by measuring the expectation value of operator using
state |Ψ0+μi⟩, which is prepared using a superposition of states |
0⟩ and |Ψμi⟩ (see Figure 1b for an example).

In the case of qLR(proj), the matrices Mproj, Vproj, and the
vector ZY

proj in eq 32 can be computed using an estimate of
RDMs using the prepared ground state. Evaluation of Mproj,
Vproj, and ZY will involve the estimation of up to six-, four-, and
three-body RDMs, respectively.
The scaling of the shot count is dominated by the estimation

of the matrix M, which scales as O(N12) for both qLR(sc) and
qLR(proj) approaches, where N is some measure of the system
size. However, we can achieve a scaling reduction through
making use of Hamiltonian factorization techniques,79 and
identifying the commuting products of Pauli operators
appearing in the product of the Hamiltonian and excitation
operators, and measure them simultaneously.80 These require-
ments can be further reduced by utilizing commutators which
lead to the cancellations of uncontracted terms,81 approx-
imations for higher-body RDMs, and taking advantage of the
high symmetry of the M matrix (such as by the use of Krylov-
subspace-based algorithms like the Davidson method). The
pathways to reduce computational complexity will be a topic of
later studies.

■ COMPUTATIONAL DETAILS
All of the calculations in this work employ the STO-3G basis
set. The second-quantized Hamiltonian is generated by the
PySCF82 software package and transformed into the Pauli
representation using the Jordon−Wigner mapping function of
the OpenFermion83 program. We use a state-vector simulator
to test the accuracy of the methods developed in this work.
The Fermionic ADAPT-VQE method9 is employed to
calculate the ground-state wave function using an operator
pool composed of generalized singles and doubles excitation
operators. Two classes of operator manifolds (self-consistent
and projection operators that ensure that the VAC is always
satisfied) are referred to in shorthand notation as sc and proj.
Thus, the qEOM framework utilizing these operator manifolds
is named as q-sc-EOM and q-proj-EOM. Similarly, we name
the quantum formulation of linear response theory (qLR)
using these operator manifolds as qLR(sc) and qLR(proj). In
this work, the state-specific properties like excitation energies,
oscillator strengths, and rotational strengths are evaluated

Figure 1. Proposed quantum circuit for the estimation of a
representative element of the ZY′ vector element for using (a) an
excited Slater determinant as the reference state and (b) an entangled
state involving the HF state and excited Slater determinants as the
reference state.

Figure 2. (a) Excitation energies (Eh) of the H2 molecule calculated using the q-sc-EOM and q-proj-EOM approaches as a function of the
interhydrogen distance and (b) isotropic dynamic electric-dipole polarizability of the H2 molecule calculated at 589 nm using the qLR(sc) and
qLR(proj) approaches as a function of the interhydrogen distance. The reference SoS(FCI) values are plotted in gray, and the deviations from the
reference are shown in the upper panels, where the shaded region indicates errors below 0.1 eV in (a) and below 1% in (b).
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using the qEOM approaches (q-sc-EOM and q-proj-EOM),
while dipole polarizabilities and specific rotation are calculated
using the qLR theory [qLR(sc) and qLR(proj)]. It should be
noted that all these approaches utilize the ground-state wave
function obtained from the ADAPT-VQE algorithm with
gradient convergence criteria set to 10−3 Eh. The code used for
generating the data in this work can be found in ref 84.

■ RESULTS
H2. The excitation energies (EEs) of the three excited states

of the H2 molecule using the STO-3G basis set are plotted in
Figure 2a for both q-sc-EOM and q-proj-EOM approaches as a
function of the interhydrogen distance. The reference full
configuration interaction (FCI) EE values are plotted in gray,
and the deviations in the EE values from the reference for both
q-sc-EOM and q-proj-EOM methods are shown in the upper
panel. It can be seen that the errors are less than 10−12 Eh
across the entire potential energy curve. This is not surprising
since the excitation manifold of singles and doubles used in
this work spans a complete space for the H2 molecule, and
hence, both the methods are exact for a given basis set. Table 1
shows the excitation energy (E0k), overlap between the ground
and excited states (⟨0|k⟩) and the transition dipole moment in
the z direction (⟨0|μz|k⟩) of the H2 molecule at a bond length
of 0.7 Å, obtained using FCI, q-sc-EOM, q-proj-EOM and
qEOM approaches. One can see that q-sc-EOM and q-proj-
EOM approaches yield identical results to FCI but the qEOM
method produces an incorrect value of the dipole transition
moment for the S2 excited state. The overlap between the
ground state and the S2 excited state is nonzero in the qEOM
formalism, leading to the spurious value of the dipole transition
moment. Rizzo and co-workers have also talked about the issue
of nonorthogonality of ground and excited states in the qEOM
approach in their work.60 It should be noted that both q-sc-
EOM and q-proj-EOM approaches satisfy the killer condition,
which ensures that the ground and excited states are always
orthogonal to each other, leading to a reliable and accurate
simulation of the excited state properties. Figure 2b plots the
dynamic isotropic electric dipole polarizability of the H2
molecule calculated at 589 nm using the qLR(sc) and
qLR(proj) approaches as a function of the interhydrogen
distance. The reference values obtained using the SoS
approach utilizing the FCI wave function are denoted as
SoS(FCI) and are plotted in gray. The absolute percent errors
of both approaches with respect to the reference SoS(FCI)
values are shown in a log plot in the upper panel of the figure
where the shaded region indicates errors below 1%. The
isotropic polarizability is defined as the negative of one-third of
the trace of the electric-dipole polarizability tensor. It can be
easily seen that both qLR(sc) and qLR(proj) approaches
produce essentially identical results, with errors always less
than 10−6%.

LiH. Figure 3a displays the dynamic electric-dipole polar-
izability of the LiH molecule calculated at 589 nm using the

SoS(FCI) approach as a function of the Li−H bond distance.
One can see the onset of the resonance when the Li−H
distance is close to 2.7 and 3.4 Å. Unsurprisingly, the
polarizability values approach infinity from positive and
negative directions at these two points since the denominator
in eq 14 becomes an infinitesimal quantity with both positive
and negative signs around the point of resonance. One can
verify this from Figure 3b where the excitation energies of the
two lowest-lying excited states of the LiH molecule are plotted
as a function of the Li−H distance. It can be seen that the
excitation energy of the first singlet excited state (S1) is equal
to the frequency of light (589 nm) at around 2.7 and 3.4 Å. Of
course, the triplet excited state is optically forbidden and does
not contribute to the polarizability as the ground state is a
singlet, resulting in a zero dipole transition moment. One can
describe response properties in near-resonance regions through
the help of damped RT.85 However, this is beyond the scope of
the current work where we are mostly concerned with
calculation of response properties in nonresonant regions.
Figure 4 plots the dynamic electric-dipole polarizability of the
LiH molecule calculated at 589 nm using the qLR(sc) and
qLR(proj) approaches as a function of the Li−H distance in

Table 1. Excitation Energy (E0k in Eh), Overlap between the Ground and Excited States (⟨0|k⟩) and the Transition Dipole
Moment in the z Direction (⟨0|μz|k⟩, e a0) for the Excited States of the H2 Molecule at the Bond Length of 0.7 Å Obtained
Using FCI, Q-sc-EOM, Q-proj-EOM, and qEOM Approaches with the STO-3G Basis Set

FCI q-sc-EOM q-proj-EOM qEOM

states E0k ⟨0|k⟩ ⟨0|μz|k⟩ E0k ⟨0|k⟩ ⟨0|μz|k⟩ E0k ⟨0|k⟩ ⟨0|μz|k⟩ E0k ⟨0|k⟩ ⟨0|μz|k⟩
T0 0.6577 0 0 0.6577 0 0 0.6577 0 0 0.6577 0 0
S1 1.0157 0 1.1441 1.0157 0 1.1441 1.0157 0 1.1441 1.0157 0 1.1441
S2 1.7195 0 0 1.7195 0 0 1.7195 0 0 1.7195 0.1029 −0.1362

Figure 3. (a) Isotropic electric-dipole polarizability of the LiH
molecule calculated at 589 nm using the SoS (FCI) approach. (b)
Excitation energies of the two lowest-lying excited states of the LiH
molecule, as a function of the Li−H distance.
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the three nonresonant regions of the potential energy
spectrum. The reference SoS(FCI) values are plotted in gray,
and the deviations from the reference are shown in the upper
panel, where the shaded region indicates errors below 1%. It

can be seen that the maximal absolute percent error is less than

10−3% for both methods with the errors from the qLR(proj)

approach slightly lower in magnitude.

Figure 4. Isotropic dynamic electric-dipole polarizability of the LiH molecule calculated at 589 nm using the qLR(sc) and qLR(proj) approaches as
a function of the Li−H distance in nonresonant regions (a,b,c). The reference SoS (FCI) values are plotted in gray, and the deviations from the
reference are shown in the upper panel, where the shaded region indicates errors below 1%.

Figure 5. (a) Isotropic dynamic electric-dipole polarizability of the H2O molecule calculated at 589 nm using the qLR(sc), qLR(proj), and CCSD-
LR approaches as a function of the O−H bond distance. The reference SoS(FCI) values are plotted in gray and the deviations from the reference
are shown in the upper panel, where the shaded region indicates errors below 1%. (b) Specific rotation of the helical (H )2 2 molecule calculated at
589 nm using the qLR(sc), qLR(proj), and CCSD-LR approaches as a function of the H−H−H−H dihedral angle. The reference SoS(FCI) values
are plotted in gray and the deviations from the reference are shown in the upper panel, where the shaded region indicates errors below 1%.

Figure 6. (a) UV−vis spectra of the H2O molecule (equilibrium geometry) and (b) ECD spectra of the (H )2 2 molecular system (dihedral angle =
100°), calculated using the FCI, q-sc-EOM, and q-proj-EOM approaches.
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H2O. Figure 5a plots the dynamic electric-dipole polar-
izability of the H2O molecule calculated at 589 nm using the
quantum [qLR(sc), qLR(proj)] and classical (CCSD-LR)
approaches as a function of the O−H bond distance. The
reference values [SoS(FCI)] are plotted in gray, and the
absolute percent errors of all three approaches with respect to
the reference are shown in a log plot in the upper panel of the
figure where the shaded region indicates errors below 1%. One
can see that when the O−H bond distance is less than 1.5 Å,
the errors produced by both quantum and classical approaches
are close to 1%. This is because this region of the potential
energy curve is characterized by weak electron correlation
effects. As the O−H bond distance increases, strong
correlation effects become dominant, and errors start to
increase. For example, at an O−H bond distance of 2.1 Å, the
errors from qLR(sc), qLR(proj), and CCSD-LR methods are
close to 4, 5, and 45%, respectively. Thus, the quantum
equation-of-motion approaches result in an order of magnitude
reduction in the absolute percent error compared with the
classical CCSD-LR method. This is due to the difference in the
quality of the underlying ground-state wave function. The
ADAPT-VQE procedure produces a ground-state wave
function of similar quality to the FCI wave function, while
the CCSD-LR method utilizes a CCSD ground-state wave
function, which provides a very poor description of the
electronic structure problem in the strong-correlation domain.
It should be noted that all three approaches utilize only singles
and doubles excitation operators to describe the time evolution
of the ground-state wave function under an external time-
dependent perturbation. Thus, we can reduce the errors in the
quantum-response based approaches by including only a small
set of higher-order excitation operators in the parameterization
procedure due to the superior quality of the ground-state wave
function. The left-hand plot in Figure 6a compares the UV−vis
absorption spectra of the H2O molecule at equilibrium
geometry generated using FCI, q-sc-EOM, and q-proj-EOM
approaches. The spectra produced by q-sc-EOM and q-proj-
EOM are indistinguishable from one another and are in
qualitative agreement with the FCI results.
(H2)2. The magnitude of the optical rotation of a chiral

molecule is reflective of its detailed molecular structure and
also depends on the frequency of the incident light. Optical
rotation, when normalized for path length (dm) and
concentration (g/mL), gives the specific rotation [deg dm−1

(g/mL)−1] of the chiral medium. Figure 5b plots the specific
rotation of the (H2)2 molecular system calculated at 589 nm
using both quantum and classical methods (just like the H2O
molecule) as a function of the H−H−H−H dihedral angle.
One can see that both the classical (CCSD-LR) and quantum
methods produce results that are in qualitative agreement with
the reference SoS(FCI) values. However, the errors produced
by the classical CCSD-LR method are much larger than those
of the quantum approaches across the entire dihedral angle
curve. For example, when the dihedral angle is equal to 100°,
the errors in qLR(sc), qLR(proj), and CCSD-LR approaches
are 0.8%, 0.9%, and 170%, respectively. Furthermore, unlike
the quantum approaches, the specific rotation curve produced
by the CCSD-LR approach changes sign earlier compared to
the reference curve. For example, the values of specific rotation
at 100° calculated using SoS(FCI), qLR(sc), qLR(proj), and
CCSD-LR approaches are 13.8, 13.7, 13.6, and −9.6°,
respectively. It should be noted that the most important
criterion for a specific rotation calculation is getting the sign

correct. Thus, the quantum approaches offer a clear advantage
over their classical counterparts in this regard. Absorption
spectra (ECD and VCD) of chiral molecules can shed more
light on the relationship between the molecular structure and
the associated optical activity. Figure 6b compares the ECD
absorption spectrum of the (H )2 2 molecular system (H−H−
H−H dihedral angle = 100°) generated using FCI, q-sc-EOM,
and q-proj-EOM approaches. Just like the UV−vis spectra of
the H2O molecule, both q-sc-EOM and q-proj-EOM
approaches produce identical spectra, which are in perfect
agreement with the FCI values.

Noise Analysis. In this subsection, we study the stability of
qLR formalism to noise. We first investigate the propagation of
errors from the ground-state VQE calculation to the isotropic
electric-dipole polarizability of the H2 molecule by introducing
an error ϵ to the ground-state parameters ( ), followed by a
perturbative noise analysis to study the robustness of the above
proposed algorithms for statistical errors (can be related to
shot noise). Errors in the ground-state amplitudes ( ) in any
physically inspired ansatz can impact the calculated response
properties. Figure 7 plots the absolute percent error in the

isotropic electric-dipole polarizability of the H2 molecule at
589 nm for different values of the errors (shown in green) in
the optimized ground-state parameter, as a function of the
interhydrogen distance for the qLR(sc) and qLR(proj)
approaches using the STO-3G basis set. It can be seen that
the percent errors in the isotropic electric-dipole polarizability
are higher for every error value (10−1 to 10−5) at larger
interhydrogen distances. For the induced error of 10−3 in the
ground-state amplitudes, the percent error is always less than
1%, while for 10−2, the percent error stays always below 10%.
In the perturbative noise analysis, we introduce an error from a
uniform distribution within an error range (x axis) to each
element of matrices Mproj, Vproj, and vector Zproj in q-proj-EOM
and Msc and Zsc in q-sc-EOM.34

Figure 8 plots the absolute percent error in the isotropic
electric-dipole polarizability as a function of the error bounds
for H4 in a square planar geometry with a bond length of 1.5 Å.
Each data point is an average over 10,000 separate calculations
with randomly selected noise within the given bounds shown
on the x-axis. One can see that the percent errors in the
qLR(proj) approach can be much larger than the ones
obtained in the qLR(sc) method. However, it cannot be

Figure 7. Percent error in isotropic electric dipole polarizability of the
H2 molecule at 589 nm for different values of errors (shown in green)
in the optimized ground-state parameter, as a function of the
interhydrogen distance for the qLR(sc) and qLR(proj) approaches.
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concluded that this trend will be true for a general molecular
system.
We also carried out a noise sensitivity analysis of state-

specific response properties such as excitation energies
computed by using the quantum equation-of-motion frame-
work and compared it with the QSE approach. In Figure 9a, we
depict the sensitivity of the excitation energies of three lowest-
lying excited states of a linear H6 molecular system with a bond
distance of 4 Å, computed using q-proj-EOM, q-sc-EOM, and
QSE approaches, employing the same perturbative noise
formalism as discussed above.
One can see that both QSE and q-proj-EOM methods are

more sensitive to the noise compared with the q-sc-EOM
formalism. Furthermore, the errors in the q-proj-EOM
approach are lower than those of the QSE approach. It should
be noted that the overlap matrix must be measured on a
quantum computer in both the QSE and q-proj-EOM
approaches. The measured overlap matrix with noise is then
inverted to form an eigenvalue equation, a process that is
sensitive to noise as discussed in ref 34. In Figure 9b, where we
artificially eliminate all the noise in the overlap matrices of
QSE and q-proj-EOM approaches, one can see very similar
noise sensitivities of all three approaches. This demonstrates
that the noise sensitivity of q-proj-EOM and QSE is a result of
measuring the noisy overlap matrix. The overlap matrix in the
q-sc-EOM approach on the other hand is exactly known
(identity matrix), making this formalism quite noise-resilient.
In future work, we plan to demonstrate the noise resilience of
the q-sc-EOM and q-LR(sc) approaches on a real quantum
device where we would like to employ quantum error

mitigation strategies developed for VQE-based algo-
rithms11,86−88 to bring down the errors even further.

■ CONCLUSIONS
In this paper, we developed a new protocol for evaluating the
molecular response properties on near-term quantum com-
puters based on the linear-response framework, named qLR
theory. Inspired by the recent work,34,70,77 we make use of
Mukherjee’s self-consistent64 (sc) and Surjaán’s projected65

(proj) excitation operator manifolds in conjunction with the
qLR formalism to make sure that the “killer condition” is
always satisfied. The two proposed formalisms, namely,
qLR(sc) and qLR(proj), have been used for the evaluation
of dipole polarizabilities and specific rotations of small
molecular systems using the ground-state wave function
obtained through the Fermionic ADAPT-VQE algorithm. We
further test the newly developed methods, along with the
analogous quantum equation-of-motion (qEOM) variants (q-
sc-EOM and q-proj-EOM) to evaluate state-specific response
properties such as excitation energies, oscillator strengths, and
rotational strengths, which were then used to generate UV−vis
and ECD spectra. Compared to the classical CCSD linear-
response (CCSD-LR) theory, we find the quantum methods
(without noise) significantly improve the accuracy of response
properties near the strong correlation regions due to the better
quality of the ground-state wave function. For example, for the
chiral (H2)2 molecular system studied in this work, the specific
rotation curve generated by the CCSD-LR theory changes sign
earlier than the reference curve. This results in the wrong sign
of the specific rotation at some geometric configurations. In
contrast, the qLR approaches obtain the correct sign of specific
rotation at every geometric configuration, with much smaller
errors compared to the reference values. Furthermore, in the
case of polarizabilities of the H2O molecule, the qLR
approaches produced an order of magnitude reduction in the
errors compared to the CCSD-LR method in strongly
correlated regions of the potential energy surface. The qLR
formalism can also provide some insights toward the future
development of UCC-based linear response approaches in
classical quantum chemistry. Since response properties can be
quite sensitive to the quality of basis sets, we also envision a
combination of the qLR approach with the transcorrelated
Hamiltonian formalism89 in the future to obtain highly
accurate properties using small basis sets. Thus, through this
work, we demonstrate that quantum simulation of response
properties using near-term quantum computers can be useful

Figure 8. Percent error in isotropic electric dipole polarizability of the
H4 molecular system at 589 nm for the qLR(sc) and qLR(proj)
approaches.

Figure 9. Sensitivity of excitation energies calculated as a function of errors in matrix elements in q-sc-EOM, q-proj-EOM, and QSE. In (a), errors
are introduced in all matrices that are expected to be measured on a quantum computer. In (b), errors in the overlap matrix were not introduced in
both the q-proj-EOM and QSE approaches.
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in chemical sciences if the effects of noise are mitigated
sufficiently.

■ APPENDIX

Expectation Value Picture of Response Functions
The first-order component of the Hamiltonian can be
decomposed into the Fourier components as

H t H e( ) d ( ) t(1) (1) i=
(A.1)

In the spirit of perturbation theory, the wavefunction can be
expanded in different orders of the perturbation as

t t t( ) ( ) ( ) . . .0 0
(0)

0
(1)

0
(2)| = | + | + | + (A.2)

where the time-dependent perturbed wavefunction of a given
order can be represented in terms of the Fourier transforms of
their frequency-dependent counterparts, just like (A.A.1)

t e( ) d ( )t
0
(1) i

0
(1)| = |

(A.3)
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1 2
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0
(2)

1 2
1 2| = |+

One can arrive at the closed expressions for response
functions of different orders by expanding the time-dependent
expectation value of a time-independent Hermitian operator X̂

in orders of the perturbation H t( )
(1)

, e.g.,

X t X X H

e X
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1
2
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where X (0)
is the expectation value of the X̂ operator with

respect to the unperturbed time-independent ground-state

wavefunction, X H; ( )
(1)

and X ; H ( ), H ( )(1)
1

(1)
2

refer to the linear and quadratic response functions,
respectively, and so on. A response function of a given order
in the presence of a given external field is associated with a
specific physical phenomenon. For example, if X̂ is the electric

dipole operator, μ⃗, and H ( )
(1)

corresponds to an oscillating
electric field, then the associated linear response function refers
to the negative of the dynamic dipole polarizability (α) of the
molecule, e.g.,

X H; ( ) ; ( ) ( )
(1) = = (A.5)

If the perturbation is a magnetic field instead, then the
imaginary part of the associated linear response function gives
the Rosenfeld tensor, the trace of which is related to the optical
rotation of the molecular system

X H m G; ( ) ; ( ) ( )
(1) = = (A.6)

where m⃗ corresponds to the magnetic moment operator.
EOM Theory
The EOM formalism90 involves explicit evaluation of the
excited states and the corresponding excitation energies and
makes use of the sum of states approach (eq 14) to calculate
the response properties. The wavefunction for the kth excited

state (|Ψk⟩) can be obtained by the action of a state-transfer
operator ( )k on the ground-state wavefunction (|Ψ0⟩)

k k 0| = | (B.1)

where k has the same basic form as the time-dependent
cluster operator (eq 7) in the linear response formalism

Rk
i

N

i
k

1

=
=

R A G B Gi
k k k

i i i i
= [ + ]† †

(B.2)

except that the coefficients A k
i
and B k

i
† are now time-

independent and state-specific. Assuming the ground-state
wavefunction and the state-transfer operator to be exact, the
excitation energy associated with the transition from ground to
kth excited state can be obtained through the application of a
commutator of the Hamiltonian and the corresponding state-
transfer operator on the ground-state wavefunction, which can
be written as

E EH, H H , ( )k k k kk 0 0 0 0 0[ ]| = | | = |
(B.3)

where E0 and Ek are the energies of the ground and the kth
excited state, respectively. Here, Ĥ refers to the molecular
Hamiltonian operator in the second-quantized form. By
projecting the above equation onto the kth excited-state
wavefunction and assuming the VAC holds true (see The
Vacuum Annihilation or “Killer” Condition section for details),
one can compute the excitation energy directly as

E
( ), H, ( )

( ), ( )
k

k k

k k
0

0 0

0 0

= |[ [ ]]|

|[ ]|

†

†
(B.4)

It can be seen that eq B.4 has a parametric dependence on
the excitation A( )k

i
and de-excitation amplitudes B( )k

i
† . By

doing a variational minimization of the equation (δE0k = 0),
one can arrive at the following secular equation to solve for
these amplitudes

i
k
jjjj

y
{
zzzz

i
k
jjjj

y
{
zzzz

i
k
jjj y

{
zzz

i
k
jjjj

y
{
zzzzQ M

A
B W V

A
B

M Q
E V Wk

k

k

k0k* * = * * (B.5)

where the expression for the matrix elements of M, Q, V, and
W are the same as of eq 12. In this work, for computational
convenience, we restrict the max rank of excitation and de-
excitation operators to two, i.e., {i, j} ∈ {1, 2}. One is able to
achieve “quantum advantage” through quantum measurements
of these matrix elements since their classical evaluations will
have a factorial scaling with respect to the system size for an
exact ground-state wavefunction.
In this formalism, the ground-state wavefunction can be

obtained in principle from any popular quantum algorithms.
However, we employ the ADAPT-VQE procedure to obtain
the ground-state wavefunction as it produces compact
quantum circuits. Ollitrault and co-workers33 developed and
implemented this formalism on a quantum computer and
named it as the “qEOM” method. Once the measurements are
done, the generalized eigenvalue equation can be solved to
obtain excitation energies, which possess the favorable
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property of size-intensivity. Furthermore, from the eigenvec-
tors of eq B.5, one can calculate transition moments, which can
be used to calculate the molecular absorption spectra. For
example, to generate the ultraviolet−visible (UV−vis) spectra
for a molecular system, one needs both excitation energies and
oscillator strengths (OS) corresponding to different excited
states where the OS gives the probability of an electric dipole
transition from the ground state to a given excited state.
Similarly, one can generate an ECD spectra for chiral
molecules by calculating rotational strengths (RS) for different
excited states. For the kth excited state, these quantities are
defined as

OS 2
3

Ek
i

k i k k i0 0 0= [ | | | |

RS mk
i

i k k i0 0= [ | | | |
(B.6)

where i ∈ {x, y, z}. Equation B.5 has a structure known as
generalized random-phase approximation. In the context of
quantum chemistry, this eigenvalue problem is frequently
solved for TDHF or TDDFT methods. Of course, in TDHF
(or TDDFT) approaches, only rank one excitations and de-
excitations are considered, and the Hartee−Fock (or Kohn−
Sham) determinant is taken as the reference wavefunction,
while the matrices M and Q are commonly denoted as A and
B.91 Just like in the case of the TDHF/TDDFT formalism, one
can encounter potential numerical issues while solving eq B.5
as it is not a generalized Hermitian eigenvalue problem.92 One
can always reformulate this equation into a generalized
Hermitian eigenvalue equation to solve for Ak ± Bk instead,
but the M − Q matrix appearing in such a formulation would
need to be strictly positive-definite, which might not be always
guaranteed. Moreover, one needs to calculate inverse of M ±
Q matrices, which could also cause potential numerical
instabilities. One possible way to avoid this problem is by
employing a Tamm−Dancoff (TDA)92 like approximation and
neglecting the de-excitation operators altogether. The QSE
method does employ the TDA approximation and also
includes identity in its operator pool, due to which the
excitation energies obtained from QSE are not size-intensive.93
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