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Abstract—Body Mass Index (BMI) is a commonly used mea-
sure of body fat based on an individual’s height and weight.
Public health authorities and organizations monitor BMI at a
population level to assess the prevalence and trends of under-
weight and obesity within communities. This helps identify at-
risk populations, evaluate the effectiveness of interventions, and
develop targeted strategies to promote healthy weight and prevent
associated health problems. However, there is a lack of BMI
monitoring methods that do not require active cooperation or
cause privacy concerns to human subjects. This paper introduces
a BMI classification approach based on passive WiFi sensing. Our
proposed approach is inspired by the observation that different
body shapes cause dissimilar impacts on WiFi signal propagation,
which can be reflected by Channel State Information (CSI) read-
ings. Leveraging state-of-the-art machine learning algorithms,
we developed a BMI sensing system that classifies the BMI of
human subjects when they move in a WiFi range. Our evaluation
results show that our approach could be an effective tool for
public-health-oriented BMI monitoring, yielding a precision rate
of 70.86%, a recall rate of 71.21%, and an F1 score of 73.66%.

Index Terms—Channel State Information (CSI), WiFi Sensing,
Machine Learning, BMI Classification, Public Health

I. INTRODUCTION

The Body Mass Index (BMI), calculated based on an
individual’s weight and height, has been found to significantly
correlate with body fat levels [1f]. In light of the widespread
obesity epidemic, community-based monitoring of BMI has
emerged as an effective public health tool that is employed
extensively on a global scale [2]. It helps identify at-risk
populations and neighborhoods, evaluate the effectiveness
of interventions, and develop targeted strategies to promote
healthy weight and prevent associated health problems.

Existing methods for BMI monitoring can be categorized
into three main approaches: 1) obtaining patients’ records
from health care systems [3|], which incurs no additional
cost but may fail to provide fine-grained data while raising
privacy concerns; 2) recruiting participants and relying on
self-reported height and weight information is a resource-
intensive approach [4], making it impractical for long-term
monitoring; 3) capturing images of individuals and utilizing
image processing and machine learning techniques to esti-
mate BMI has shown promise [5], [6]], but it also raises
privacy concerns. Considering the significant impact of BMI
monitoring on public health, there is a pressing need for a
monitoring approach that is fine-grained, cost-effective and

respects privacy. Such an approach would allow for detailed
data collection at a more localized level, be feasible for
long-term implementation, and not compromise the privacy
of individuals.

To solve this problem, we introduce a novel WiFi-sensing-
based BMI classification approach, which is inspired by the
observation that a moving person of different shapes may
cause different impacts on the reflection and refraction of a
WiFi signal. Our approach requires a human subject to pass
a sensing region formed by commodity WiFi devices, collects
time series of WiFi Channel State Information (CSI) signals to
capture the impacts, and applies machine learning techniques
for BMI classification.
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Fig. 1: Illustration of CSI-based BMI classification
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Fig. [1| demonstrates the workflow of our approach. When
a human subject moves in a region covered by WiFi, WiFi
signals sent from the transmitter to the receiver are distorted
by the human. Such minor disruptions can be captured by the
time series of CSI and analyzed by machine learning algo-
rithms to determine the characteristics of the objects causing
disruptions [7]]. By collecting CSI from human subjects with
varied BMI walking across a certain region, a classification
model is trained for estimating the BMI of an unknown subject
based on his CSI data.
The key contributions of our work are summarized below:
o We introduce a novel BMI monitoring approach based on
WiFi sensing. With the rapid advancements in collecting
and processing CSI, WiFi sensing is being integrated into



emerging WiFi standards like WiFi 7 [8]]. Our approach
offers a fine-grained, affordable, and privacy-friendly
solution for monitoring BMI, which holds significant po-
tential for enhancing public health when WiFi 7 becomes
more widely adopted.

e We set up a WiFi sensing system using off-the-shelf
devices to collect CSI. Using our system, we collected
CSI data for 30 human subjects with varied BMI. We
release our collected data for public access [ﬂ

o We employ state-of-the-art machine learning algorithms
to train BMI classification models and report their evalu-
ation results. Our ResNet-based model achieved a preci-
sion rate of 70.86%, a recall rate of 71.21%, and an F1
score of 73.66%.

The remainder of this paper is organized as follows: Section
provides a review of work in the related domain. Section
I1I| introduces our methodology, and Section reports how
we evaluated the effectiveness of our approach. Section [V]
discusses the inferences that can be deduced from the results.
Finally, we conclude this paper with Section

II. RELATED WORKS

A. Channel State Information (CSI)

Fine-grained CSI is frequently used to characterize the
propagation of a WiFi signal as it comes in contact with
obstacles [9]. All WiFi standards use OFDM modulation,
which distributes available bandwidth across multiple sub-
carriers [10]. While RSSI (Received Signal Strength Indica-
tor) averages the signal strength across all sub-carriers and
provides one reading for a received WiFi signal, CSI catches
changes occurring at each sub-carrier and provides more fine-
grained measurements. CSI is characteristically described as
a 3-way channel tensor for ¢ transmitting and r receiving
antennas:
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, where H, , is a vector that includes complex pairs for each
sub-carrier, as given in Eq. (2).

Ht,r = [ht,r,la ce ht,'r',m] 2
The number of sub-carriers differs based on the hard-
ware and the channel bandwidth. For m data sub-carrier,
H,, is expressed as complex number h,,, containing both
amplitude(|h,,|) and phase(/h,,) of the CSI. Due to multi-
path effects such as phase shift and amplitude attenuation,
the CSI amplitude and phase values are affected by human
movements [[11]], which is often used to accurately sense the
behavior and location of the human subject.

Thttps://github.com/kiran-collab/CSIKit-BMI

B. BMI Classification

BMI estimates the body fat of a person by his mass and
height: BMI = Weight(lb) / [Height(in)]?> x 703. It helps
ascertain risk factors for health conditions. Adults can be
classified into four categories, namely “Obese”, “Overweight”,
“Normal Weight”, and “Underweight” based on their BMISs.
Fig. 2] shows how weight and height impact BMI classification.
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Fig. 2: BMI Chart for Adults

Sec. [] presents an array of methods for BMI monitoring.
Recent attention has gravitated towards computer-vision-based
BMI assessment, a method that avoids the need for participant
recruitment or retrieval of patient records. This method’s
potential for seamless integration into everyday living and
working environments is notable. However, it triggers privacy
concerns [12].

C. WiFi Sensing

Bio-electromagnetic studies for WiFi [[13]], specifically for
2.4G WiFi and 5G WiFi show that feature traits/gestures
are efficiently captured when an electromagnetic radiation
wave propagates at specific frequencies(e.g., 2.45GHz). The
observation builds the foundation for WiFi sensing. In the last
decade, there have been many applications [|14] that leverage
wireless channels to build applications in human-computer
interaction [15]], healthcare [[16]], and surveillance [[17].

Inspired by the concept of unique pattern generation for
active motion in the sensing region [18]], body characterization
research focuses on pose, person, gait, and activity recognition
using statistical features extracted from CSI sequences [19]-
[21]. Deep learning (DL) methods have been explored to
enhance feature extraction from CSI data, thereby enhancing
the robustness of CSI-based body characterization [10], [22].
Challenges such as overfitting and limited datasets persist,
requiring dedicated layers for specific datasets. DL has shown
success in sensorless body characterization and human activity
recognition by applying transformation methods, with appli-
cations ranging from activity detection frameworks to small-
scale recognition systems that address signal variations caused
by movement speeds and body shapes [23].

III. METHODOLOGY
A. Overview

Figure [3| presents an overview of our system, illustrating the
process of collecting and processing Channel State Informa-
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Fig. 3: General Workflow of BMEye

tion (CSI) data for BMI prediction in practical scenarios. In
order to design a system that is applicable and deployable in
real-world settings, we collected extensive data from subjects
participating in various trials. This dataset encompasses a
diverse range of body shapes, walking speeds, and move-
ments, including rotation, walking backward, sideways, and
more. This approach ensures the system’s effectiveness and
robustness in categorizing body mass in real-world scenarios.
To facilitate BMI classification, we generated heatmaps in the
form of 2D images. The numerical CSI is represented on a
two-dimensional grid using color gradients, where the color
intensity corresponds to the data value. These heatmaps serve
as input for training traditional as well as advanced machine
learning architectures.

B. Hardware Selection

For our experimental setup, we utilized Raspberry Pi (RPi),
a readily available commodity device. An alternative choice
is the Intel 5300 Network Interface Card (NIC) [24], which
has become less prevalent due to its limited availability in the
current market. On the contrary, RPis has emerged as a more
suitable option for WiFi-based healthcare monitoring in com-
mercial and smart home environments due to its affordability
and potential capabilities. To enable the necessary monitoring
capabilities, we utilized the Nexmon tool, which supports the
monitoring of specific frames, up to 80 MHz bandwidth, and
256 sub-carriers [25]].

C. Data Collection

Class

Age Distribution  Gender Ratio  Weight Range  Height Range

BMI Category D(u;:lrtul:;tull;n (in yrs) (Male:Female) (in kg) (in m)
Underweight 0.133 19-25 4:0 50.4-57.0 1.67-1.78
Normal 0.6 23-40 13:5 538-755 1.63-1.86
Overweight 0.133 19-40 31 69.3-87.4 1.57-1.69
Obese 0.133 30-50 4:0 87.7-119.9 1.62-1.81

TABLE I: Participants Distribution

We randomly recruited 30 participants from the CIS depart-
ment at UMDearborn. Their body weights and heights were
measured and utilized to calculate their respective BMIs. We
also documented each participant’s gender and age. Additional
details about our participants can be found in Table [I}

We asked the participants to walk in an indoor lab room
(6m x 6m) on specified trails and recorded the CSI samples
when they walked, as depicted in Fig. fi] The first two trails
involved walking (0.3 - 0.8 m/s) from the start to the end of
the defined paths. The paths were of length 3m each, for which

Fig. 4: CSI Collection System Setup

25 and 10 samples were collected respectively. The third trial
involves rotating(turning 90 degrees every 2 secs) at the center
of the Line of Sight(LoS), 5 times each.

System Settings

Tx-Rx Height 0.5m
Tx-Rx Distance 2.1m
# of subjects 30
Subject Movements/  Walking,
Activity Rotation
# of trails 3
Sampling duration 4-8 sec
Sampling rate 200 Hz
CSI samples 1050
Channel Frequency 80 MHz

TABLE II: System Settings

The layout of the ensemble lies approximately in the center
of the room. An RPi, acting as a passive observer (Rx),
measured the CSI of WiFi signals sent by an Access Point (Tx)
positioned approximately 2m away. A computer connected to
the router generates traffic by sending 8000 ping packets to
the Tx, and the RPi worked in monitor mode to capture data
for each pong packet. We experimentally choose the number
of packets generated according to the movement duration. The
CSI sampling rate was set to 200 Hz, which is fast enough
to capture the movement of subjects. CSI data was captured
using Nexmon and rendered with tcpdump, which produces
a .pcap file. This file is then interpreted using CSIKit which
generates 256 x 1 numpy matrices, which can then be used in
Tensorflow. From these, the CSI amplitude is derived. The raw
amplitude values are then windowed using a sliding window
of 1 second at 100Hz, with an overlap of 1 second. Table
summarizes the settings of our data collection system.



D. Data Processing

The heatmaps in Fig[T] (in Sec. [) were generated using
CSIKit [26]. They are pseudo colormaps that interpret sig-
nal variation across time, sub-carriers, and amplitude into
3-channel(RGB) color intensities. The x-axis represents the
timeline, the y-axis represents sub-carriers, and the z-axis
(color intensity) represents CSI amplitude. To mitigate noise in
the collected CSI data from the Raspberry Pi while preserving
the waveform, a Least-square smoothing filter [27] was applied
using a sample window of size 51.

OFDM technology utilizes null, pilot, and data sub-carriers
[28]]. Null sub-carriers protect against interference, pilot sub-
carriers aid in synchronization, and data sub-carriers carry
modulated data. After removing null and pilot sub-carriers,
complex numbers representing CSI phase and amplitude are
extracted. Each sub-carrier is crucial for accurate recognition
due to variations caused by human reflections. Having a
higher proportion of sub-carriers provides more information
and improves feature detection for analysis.

E. Training for BMI Classification

We collected a total of 1050 sampled 2D CSI images,
and we randomly choose 900 samples for training and the
remaining 150 for testing, as depicted in Table [IIIl In the
training set, we chose 20% samples as the validation set.

Table [ reveals an imbalanced distribution of collected
samples across different classes. To address this bias, class
weights were calculated by dividing the number of samples
per class by the total number of samples and taking the
reciprocal. The resulting class weights for the four classes
are: 0.0082, 0.0018, 0.0079, and 0.0090. Notably, the Normal
Weight class contains significantly more samples, causing the
bias, which is mitigated during training using a weighted
random sampler and the calculated class weights. Gender bias
was not considered due to the gender-neutral BMI ranges [29].
Fig. ] illustrates the feature extraction process in the training
pipeline of the learning architectures which was implemented
using PyTorch.

ResNet-50 & EffNet. The training and test datasets were
preprocessed with random resizing, cropping, horizontal flip-
ping, and normalization. The models were initialized with
pre-trained weights from ImageNet and had their last fully
connected layer replaced with a linear layer for the spe-
cific classification task. During training, ResNet is optimized
using stochastic gradient descent (SGD) while the EffNet
was optimized with Adam optimizer. Both the backbones
were tuned with a learning rate of 0.001 and momentum of
0.9. The models were trained for 15 epochs. Both models
were trained for 15 epochs with a mini-batch size of 32,
updating parameters based on the cross-entropy loss function.
Validation accuracy was calculated after each epoch to monitor
performance on unseen data.

IV. EVALUATION

This section reports the evaluation results of the trained
networks, as well as the insight we gained into CSI-based BMI

Fully Connected
Layer

|
4l u
BMI Category 1

gl

] 4
BMI Category
2

BMI Category 3

I

Output

Fully Connected

Conv2D + RelLU Maxpooling

|
gty

BMI Category

Fig. 5: Training Neural Networks with Heatmaps as Input

classficiation through visualization and data variation analysis.

A. BMI Classification Accuracy

Architecture TI:ain T‘?St
/Data Split (0.9k images) (0.15k images)
Accuracy F1 Precision ~ Recall
(Train & Validation)
ResNet-50 0.6844 0.6625 0.7366 0.7086 0.7121
EffNet-B0 0.4484 0.4199 0.3999 0.6040 0.4305

TABLE III: Model Performances

Referring to Table [l we see ResNet-50 performs better
than EffNet-B0 in terms of test precision. For each model, Fig.
[6] compares the predicted class labels against the actual class
labels overall data instances. For ResNet-50, we observe that
1) It obtains the highest True Positives (TP) for the Normal
Weight category, resulting in a high F1 score (0.7366); 2) It
scores similarly on Precision and Recall for the other cate-
gories, demonstrating balanced performance. EffNet-B0, on the
other hand, seems to have difficulties with the Normal Weight
category, leading to a low Fl score and recall. However,
EffNet generally exhibits computational efficiency and faster
inference time. Assuming its accuracy can be improved, EffNet
could be well-suited for deployment on resource-limited IoT
devices like RPis.
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B. Data Visualization and Variation Analysis

In this subsection, we perform two crucial analyses, namely
t-SNE visualization and data variation analysis, to gain deeper
insights into the CSI heatmap data. The t-SNE visualization
allows us to visually explore the high-dimensional CSI data by
reducing its dimensions into a 2D or 3D representation. This
visual exploration aids in uncovering potential patterns, rela-
tionships, or anomalies that may not be immediately apparent

BMI Categories



in the original dataset. On the other hand, the data variation
analysis focuses on quantifying the extent of variability and
changes within the CSI data.

1) T-SNE. To visualize the high-dimensional data in a
consistent manner, we used t-SNE ((t-Distributed Stochastic
Neighbor Embedding)) [30]], which was used in Python. t-
SNE transforms similarities among data points into joint prob-
abilities, minimizing the Kullback-Leibler divergence. The
resulting scatterplot (Fig. was created using matplotlib
library, where each point represents a data point’s primary
features. The t-SNE dimensions are nonlinear combinations
of the original dimensions, and reflect the projection of the
data into a lower-dimensional space, preserving relationships
between data points in the two spaces.

Utilizing virtualization techniques, our analysis uncovers
distinctive clustering patterns within the CSI data. Each dis-
tinct color in the visual representation corresponds to a specific
BMI class. Remarkably, our observations indicate a notable
inclination for obese samples to form clusters in close proxim-
ity to overweight samples, as evidenced by the isolated upper
cluster. Conversely, underweight samples exhibit a propensity
to cluster alongside normal weight samples, as illustrated
in the rightmost bottom and central regions of the figure.
This visualization corroborates the classification performance
depicted in Figure [f] wherein the model exhibited a consistent
pattern of misclassifying samples. As a result, these findings
suggest the potential for future enhancements in the model,
contingent upon addressing the presence of noise within the
collected CSI data.

® Obese
. Over Weight
20 ®  Normal Weight
®  Under Weight

t-SNE Dimension 2

Fig. 7: Data visualization using t-SNE

2) Variation Analysis. Further, we find semantic variations
in the mappings of distinct classes. We evaluate Average Dis-
tance(AD), Degree of Intersection(Dol) for the (Underweight
& Normal Weight) and (Underweight & Obese) label sets.
For each method, we calculate the metric value for three
different image pairs and compute its mean (mAD, mDol).
This process is repeated for three sets of class pairs (ref.
IV), ensuring generalization across the entire data range. The
following techniques were employed to compute the features
and calculate the aforementioned metrics:

Scale Invariant Feature Transform. SIFT extracts key
features and descriptors from the images. The descriptors of
one image are matched from each descriptor of the other
in terms of distance. The match values are then sorted by
distance. The Average Distance is calculated by the total
distance over all the matches.

Mean Avg. Distance  Mean Degree of Intersection

Metric/Classes/Setup

(SIFT) (Histogram Analysis)
Under Weight &
Normal Weight (Set 1) 137.59 0.8055
Under Weight &
Obese (Set 2) 165.57 0.6899
Normal Weight & 139.50 0713

Obese (Set 3)

TABLE IV: Data Variations for Different Classes

Histogram Comparison. Histogram comparison measures
the intersection between normalized histograms to analyze
pattern dissimilarity. The method calculates the sum of the
minimum values for each bin in the two histograms. This sum
represents the intersection between the histograms.

Although the computed measures depend on various factors,
such as the presence of noise, and distortions, we can infer
from Table that mAD for all the sets of label pairs is
high. For similar images, the values must be relatively low.
Also, there is a considerable difference in the values for the
corresponding class pairs. We see similar traits for the other
metric. In the case of the first set, mDol is high as the classes
are immediate, whereas mDol for Set 2 is contrastively lesser,
showing the variation of data from the three classes.

Overall, the t-SNE visualization analysis and the data vari-
ation analysis provide complementary perspectives on under-
standing the underlying patterns and relationships within the
dataset. We adopted t-SNE to visually explore and identify
clusters. On the other hand, our data variation analysis focuses
on quantifying the extent of variability and changes within the
CSI data across different classes. By analyzing the designed
metrics, our data variation analysis presents the degree of
separability between the classes in the CSI data. Together,
these analyses contribute to a comprehensive understanding
of our collected CSI dataset, combining visual exploration and
quantitative assessment to gain insights into the data.

V. DISCUSSION AND FUTURE WORK

When conducting the experiments, we observed a few
factors that could potentially alter the heatmap, thereby in-
fluencing the accuracy of BMI classification:

o Environmental factors, such as room layout and the
number of people in the room, airflow of air conditioner,
and interfering signals from electronic devices.

o Human body factors, such as hand positions and clothing.

« Movement factors, such as speed and patterns of move-
ment. In particular, we observed that data for a per-
son near the transmitter exhibited greater robustness
compared to that at the receiver end. We also noticed
that for a person with very slow movement, the body
characteristics can be easily deciphered vide sub-carrier
variation where there is a sudden shift in pixel intensities.
For regular or speed movement, time-wise variation with
displacement(via spatial inference) can be employed.

o Location of WiFi devices. For instance, when the receiver
and transmitter were placed on opposite sides of the
subject, but at different height levels (one at head level
and one at foot level), the heatmap readings significantly



varied from our setup. An additional future direction
involves experimenting with different configurations to
identify the most optimal setting for the proposed system.

For our experiment, we controlled all variables such as the
subjects’ movement speeds, clothing styles, walking patterns
(e.g., no hand waving), and their paths. However, due to the
impact of these factors and the limited dataset we collected,
the performance of our models can still be improved. Moving
forward, we plan to compile a more extensive dataset and
design custom neural networks for body mass estimation.

VI. CONCLUSION

This paper presents a simple yet efficient approach that
measures BMI for public health monitoring. We collected CSI
data from 30 participants using off-the-shelf WiFi devices and
converted the data to image mappings. These images were
fed with machine learning backbones for BMI classification.
Our evaluation results demonstrate the effectiveness of our
approach in practical settings.

To the best of our knowledge, this study pioneers the use
of WiFi sensing for public health-oriented BMI monitoring.
In our forthcoming research, we intend to delve deeper into
the stability of this technique when individuals exhibit more
unrestricted movements. Additionally, we aim to collect a
larger-scale, more comprehensive dataset to further improve
the accuracy of our ML models.

ACKNOWLEDGMENT

This research is supported by NSF through grants 2104337
and 2122309. We also thank Jerome Marudo for his contribu-
tion to this work, and the volunteers who participated in our
data collection.

REFERENCES

[1] S. B. Wyatt, K. P. Winters, and P. M. Dubbert, “Overweight and
obesity: prevalence, consequences, and causes of a growing public health
problem,” The American journal of the medical sciences, vol. 331, no. 4,
pp. 166-174, 2006.

[2] G. Nasser, “Fighting childhood obesity in brazil: a grassroots perspec-
tive,” European Journal of Public Health, vol. 30, no. Supplement_5,
pp. ckaal66-474, 2020.

[3] P. Anthamatten, D. S. Thomas, D. Williford, J. C. Barrow, K. A. Bol,
A. J. Davidson, S. J. Deakyne Davies, E. M. Kraus, D. C. Tabano,
and M. F. Daley, “Geospatial monitoring of body mass index: use of
electronic health record data across health care systems,” Public Health
Reports, vol. 135, no. 2, pp. 211-219, 2020.

[4] J.S. Fish, S. Ettner, A. Ang, and A. F. Brown, “Association of perceived
neighborhood safety on body mass index,” American journal of public
health, vol. 100, no. 11, pp. 2296-2303, 2010.

[5] Z. Jin, J. Huang, W. Wang, A. Xiong, and X. Tan, “Estimating human
weight from a single image,” IEEE Transactions on Multimedia, 2022.

[6] J. C. Gonzales, J. R. G. Garcia, and J. F. Villaverde, “Bmi estimation
from 2d face images using support vector machine,” in 2022 6th
International Conference on Communication and Information Systems
(ICCIS). 1EEE, 2022, pp. 118-123.

[71 Y. Ge, J. Wang, S. Li, L. Qi, S. Zhu, J. Cooper, M. Imran, and Q. H.
Abbasi, “Wifi sensing of human activity recognition using continuous
aoa-tof maps,” in 2023 IEEE Wireless Communications and Networking
Conference (WCNC), 2023, pp. 1-6.

[8] V. Frascolla, D. Cavalcanti, and R. Shah, “Wi-fi evolution: The path
towards wi-fi 7 and its impact on iiot,” Journal of Mobile Multimedia,
vol. 19, no. 01, p. 263-276, Sep. 2022. [Online]. Available:
https://journals.riverpublishers.com/index.php/JMM/article/view/18515

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

N. Zhou, W. Sun, and M. Liang, “Human activity recognition based on
wifi signal using deep neural network,” in International Conference on
Smart City and Informatization (iSCI). 1EEE, 2020, pp. 26-30.

S. Yousefi, H. Narui, S. Dayal, S. Ermon, and S. Valaee, “A survey
on behavior recognition using wifi channel state information,” IEEE
Communications Magazine, vol. 55, no. 10, pp. 98-104, 2017.

T. Xin, B. Guo, Z. Wang, P. Wang, J. C. K. Lam, V. Li, and Z. Yu,
“Freesense: A robust approach for indoor human detection using wi-fi
signals,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 2, no. 3, pp. 1-23, 2018.

J. S. Kumar and D. R. Patel, “A survey on internet of things: Security
and privacy issues,” International Journal of Computer Applications,
vol. 90, no. 11, 2014.

S. Gabriel, R. Lau, and C. Gabriel, “The dielectric properties of
biological tissues: Ii. measurements in the frequency range 10 hz to
20 ghz,” Physics in medicine & biology, vol. 41, no. 11, p. 2251, 1996.
Y. Ma, G. Zhou, and S. Wang, “Wifi sensing with channel state
information: A survey,” ACM Computing Surveys (CSUR), vol. 52, no. 3,
pp. 1-36, 2019.

K. Qian, C. Wu, Z. Zhou, Y. Zheng, Z. Yang, and Y. Liu, “Inferring
motion direction using commodity wi-fi for interactive exergames,” in
Proceedings of the 2017 CHI conference on human factors in computing
systems, 2017, pp. 1961-1972.

X. Wang, C. Yang, and S. Mao, “Tensorbeat: Tensor decomposition
for monitoring multiperson breathing beats with commodity wifi,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 9, no. 1,
pp. 1-27, 2017.

X. Zheng, J. Wang, L. Shangguan, Z. Zhou, and Y. Liu, “Smokey:
Ubiquitous smoking detection with commercial wifi infrastructures,” in
IEEE INFOCOM 2016-The 35th Annual IEEE International Conference
on Computer Communications. 1EEE, 2016, pp. 1-9.

P. E. Moshiri, H. Navidan, R. Shahbazian, S. A. Ghorashi, and D. Win-
dridge, “Using gan to enhance the accuracy of indoor human activity
recognition,” arXiv preprint arXiv:2004.11228, 2020.

T. Mabuchi, Y. Taniguchi, and K. Shirahama, “Person recognition using
wi-fi channel state information in an indoor environment,” in 2020
IEEE International Conference on Consumer Electronics-Taiwan (ICCE-
Taiwan). 1EEE, 2020, pp. 1-2.

F. Wang, S. Zhou, S. Panev, J. Han, and D. Huang, “Person-in-wifi: Fine-
grained person perception using wifi,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 5452-5461.
J. Ding, Y. Wang, and X. Fu, “Wihi: Wifi based human identity
identification using deep learning,” IEEE Access, vol. 8, 2020.

J. Zhang, F. Wu, B. Wei, Q. Zhang, H. Huang, S. W. Shah, and J. Cheng,
“Data augmentation and dense-1stm for human activity recognition using
wifi signal,” IoTJ, vol. 8, no. 6, pp. 4628-4641, 2020.

W. Qi, R. Zhang, J. Zhou, H. Zhang, Y. Xie, and X. Jing, “A resource-
efficient cross-domain sensing method for device-free gesture recog-
nition with federated transfer learning,” IEEE Transactions on Green
Communications and Networking, vol. 7, no. 1, pp. 393-400, 2023.

D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release: Gathering
802.11 n traces with channel state information,” ACM SIGCOMM
computer communication review, vol. 41, no. 1, pp. 53-53, 2011.

F. Gringoli, M. Schulz, J. Link, and M. Hollick, “Free your csi: A
channel state information extraction platform for modern wi-fi chipsets,”
in Proceedings of the 13th International Workshop on Wireless Network
Testbeds, Experimental Evaluation & Characterization, 2019, pp. 21-28.
G. Forbes. (2021) Csikit: Python csi processing and visualisation
tools for commercial off-the-shelf hardware. [Online]. Available:
https://github.com/Gi-z/CSIKit

R. W. Schafer, “What is a savitzky-golay filter? [lecture notes],” IEEE
Signal Processing Magazine, vol. 28, no. 4, pp. 111-117, 2011.

M. S. Gast, 802.11 ac: a survival guide: Wi-Fi at gigabit and beyond.
” O’Reilly Media, Inc.”, 2013.

M. E. Daley, J. C. Barrow, D. C. Tabano, L. M. Reifler, E. M. Kraus,
S. D. Davies, D. L. Williford, B. White, A. Shupe, and A. J. Davidson,
“Estimating childhood obesity prevalence in communities through multi-
institutional data sharing,” Journal of Public Health Management and
Practice, vol. 26, no. 4, pp. E1I-E10, 2020.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.


https://journals.riverpublishers.com/index.php/JMM/article/view/18515
https://github.com/Gi-z/CSIKit

	Introduction
	Related Works
	Channel State Information (CSI)
	BMI Classification
	WiFi Sensing

	Methodology
	Overview
	Hardware Selection
	Data Collection
	Data Processing
	Training for BMI Classification

	Evaluation
	BMI Classification Accuracy
	Data Visualization and Variation Analysis

	Discussion and Future Work
	Conclusion
	References

