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P1CO+: Contrastive Label Disambiguation for Robust
Partial Label Learning

Haobo Wang“?, Ruixuan Xiao

Gang Chen

Abstract—Partial label learning (PLL) is an important problem
that allows each training example to be labeled with a coarse
candidate set with the ground-truth label included. However, in
a more practical but challenging scenario, the annotator may miss
the ground-truth and provide a wrong candidate set, which is
known as the noisy PLL problem. To remedy this problem, we
propose the PiCO+ framework that simultaneously disambiguates
the candidate sets and mitigates label noise. Core to PiCO+, we
develop a novel label disambiguation algorithm PiCO that con-
sists of a contrastive learning module along with a novel class
prototype-based disambiguation method. Theoretically, we show
that these two components are mutually beneficial, and can be
rigorously justified from an expectation-maximization (EM) algo-
rithm perspective. To handle label noise, we extend PiCO to PiCO+,
which further performs distance-based clean sample selection, and
learns robust classifiers by a semi-supervised contrastive learning
algorithm. Beyond this, we further investigate the robustness of
PiCO+ in the context of out-of-distribution noise and incorporate
a novel energy-based rejection method for improved robustness.
Extensive experiments demonstrate that our proposed methods
significantly outperform the current state-of-the-art approaches in
standard and noisy PLL tasks and even achieve comparable results
to fully supervised learning.

Index Terms—Contrastive learning, noisy label learning, partial
label learning, prototype-based disambiguation.
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I. INTRODUCTION

HE training of modern deep neural networks typically
T requires massive labeled data, which imposes formidable
obstacles in data collection. Of a particular challenge, data
annotation in the real-world can naturally be subject to inherent
label ambiguity and noise. For example, as shown in Fig. 1,
identifying an Alaskan Malamute from a Siberian Husky can be
difficult for a human annotator. The issue of labeling ambiguity is
prevalent yet often overlooked in many applications, such as web
mining [1] and automatic image annotation [2]. This gives rise
to the importance of partial label learning (PLL) [3], [4], where
each training example is equipped with a set of candidate labels
instead of the exact ground-truth label. This stands in contrast
to its supervised counterpart where one label must be chosen as
the “gold”. Arguably, the PLL problem is deemed more common
and practical in various situations due to its relatively lower cost
to annotations.

The standard PLL setup ideally assumes that the ground-truth
label is guaranteed to be included in the candidate set. However,
lacking domain knowledge, it is likely the annotators take the
wrong set of labels as the candidates and dismiss the true one.
Lv et al. [5] formalize this problem as noisy partial label learn-
ing (noisy PLL). But, they focus on analyzing the theoretical
robustness of existing PLL methods instead of providing new
solutions. Experimentally, we find that current best-performing
PLL algorithms, including PiCO, display degenerated perfor-
mance in the noisy PLL setup (Section IV-C), e.g., the accuracy
of PRODEN drops —10.62% on CIFAR-10 with 20% wrong
candidate sets. The main reason is that the label disambiguation
procedure of current PLL methods is restricted to the candidate
labels, which causes severe overfitting on wrong labels. Notably,
in amore general setup, the data sources may further contain out-
of-distribution (OOD) noise, which significantly challenges the
robustness of existing PLL algorithms. Fig. 1 illustrates the noisy
PLL problems with in-distribution noise and out-of-distribution
noise.

There are two challenging issues to handling the noisy PLL
problem. The first is label disambiguation, i.e., identifying the
ground-truth label from the candidate label set, which comes
from the nature of partial labeling. The second is to prevent the
model from overfitting on the wrong candidate sets. Notably,
existing PLL methods [6], [7], [8] mostly focus on the label
disambiguation issue and operate under the assumption that data
points closer in the feature space are more likely to share the

0162-8828 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 25,2024 at 18:20:50 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-8586-3048
https://orcid.org/0000-0002-9535-4009
https://orcid.org/0000-0003-3479-4323
https://orcid.org/0000-0003-2839-5799
https://orcid.org/0000-0002-7353-5079
https://orcid.org/0000-0002-7483-0045
https://orcid.org/0000-0002-3637-2936
mailto:wanghaobo@zju.edu.cn
mailto:xiaoruixuan@zju.edu.cn
mailto:cg@zju.edu.cn
mailto:j.zhao@zju.edu.cn
mailto:sharonli@cs.wisc.edu
mailto:lfeng@cqu.edu.cn
mailto:gang.niu.ml@gmail.com
https://doi.org/10.1109/TPAMI.2023.3342650

3184

Label Space

Image True Labels Candidates
(Dogs)
— Husky
Y Malamute Malamute
Malamute
Samoyed Samoyed
!. j* Samoyed M Hluskyt
OOD Labels = M alamute
Wolf
Husky
i Wolf
© Malamute
Fig. 1. Top: (Standard PLL) A Malamute image with three candidate labels.

Middle: (PLL with in-distribution noise) A Samoyed image with the candidate
set missing the Samoyed label. Bottom: (PLL with out-of-distribution noise) A
Wolf image with the wrong dog species as candidate labels.

same ground-truth label. However, this strategy largely relies on
an off-the-shelf good feature representation. When training deep
networks from scratch, it leads to a non-trivial dilemma—the
inherent label uncertainty and noise can undesirably manifest
in the representation learning process—the quality of which
may, in turn, prevent effective label disambiguation. To date,
few efforts have been made to resolve this.

This paper bridges the gap by reconciling the intrinsic tension
between the three highly dependent problems—representation
learning, label disambiguation, and denoising—in one coherent
and synergistic framework. Core to our PiCO+ framework is
a Partial label learning with COntrastive label disambiguation
(dubbed PiCO) algorithm that produces closely aligned repre-
sentations for examples from the same classes and facilitates
label disambiguation. Specifically, PiCO is tailored for the stan-
dard PLL problem, which encapsulates two key components.
First, we leverage contrastive learning (CL) [9] to partial label
learning, which is unexplored in previous PLL literature. To
mitigate the key challenge of constructing positive pairs, we em-
ploy the classifier’s output and generate pseudo positive pairs for
contrastive comparison (Section III-A1). Second, based on the
learned embeddings, we propose a novel prototype-based label
disambiguation strategy (Section I11-A2). Key to our method, we
gradually update the pseudo target for classification, based on
the closest class prototype. By alternating the two steps above,
PiCO converges to a solution with a highly distinguishable rep-
resentation for accurate classification. On standard PLL bench-
marks, PiCO establishes state-of-the-art performance on three
benchmark datasets, outperforming the baselines by a significant
margin (Section IV) and obtains results that are competitive with
fully supervised learning.

To handle the noisy PLL problem, we then extend PiCO
to PiCO+ which additionally incorporates two mechanisms.
First, we present a novel distance-based clean sample detec-
tion technique that chooses near-prototype examples as clean.
Second, to handle the remaining noisy examples, we develop a
semi-supervised contrastive learning framework that generalizes
the two PiCO components by (i)-contrastive learning: construct
the positive set by noisy prediction and nearest neighbor em-
beddings; (ii)-label disambiguation: guess the prototype-based
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soft target for noisy samples. More interestingly, we show that
PiCO+ can be robust to out-of-distribution noise as well, and can
be further improved via an energy-based rejection mechanism.
Through extensive experiments, PICO+ exhibits significant im-
provement to state-of-the-art PLL approaches on noisy PLL
benchmarks.

Theoretically, we demonstrate that our contrastive represen-
tation learning and prototype-based label disambiguation are
mutually beneficial, and can be rigorously interpreted from an
Expectation-Maximization (EM) algorithm perspective (Sec-
tion V). First, the refined pseudo labeling improves contrastive
learning by selecting pseudo positive examples accurately. This
can be analogous to the E-step, where we utilize the classifier’s
output to assign each data example to one label-specific cluster.
Second, better contrastive performance in turn improves the
quality of representations and thus the effectiveness of label dis-
ambiguation. This can be reasoned from an M-step perspective,
where the contrastive loss partially maximizes the likelihood by
clustering similar data examples. Finally, the training data will be
mapped to a mixture of von Mises-Fisher distributions on the unit
hypersphere, which facilitates label disambiguation by using
the component-specific label. With proper sample selection,
our theoretical results also interpret the semi-supervised PLL
procedure that proves the robustness of PICO+ under label noise.

We have presented preliminary results of this work in [10].
In this paper, we further present a robust extension. Our main
contributions are summarized as follows:

1) (Methodology): To the best of our knowledge, our paper
pioneers the exploration of contrastive learning for partial
label learning via PiCO and PiCO+.

2) (Practicality): Additionally, we propose PiCO+, an exten-
sion of PiCO, that targets to mitigate overfitting on noisy
candidate sets. We also provide a primary investigation
of the OOD noise and show the robustness of PiCO+ to
such noise. We believe our work makes a serious attempt
at improving the practicality of PLL in open-world envi-
ronments.

3) (Experiments): Empirically, our proposed PiCO+ frame-
work establishes the state-of-the-art performance on vari-
ous PLL tasks, showing its robustness to label ambiguity,
label noise, and out-of-distribution data.

4) (Theory): We theoretically interpret our framework from
the expectation-maximization perspective. Our derivation
is also generalizable to other contrastive learning methods
and shows the alignment property in contrastive learn-
ing [11] mathematically equals the M-step in center-based
clustering algorithms.

II. BACKGROUND

In this section, we describe our problem setups.

Standard Partial Label Learning: Let X' be the input space,
and Y = {1,2,...,C} be the output label space. We consider a
training dataset D = {(«;, ;) }/_,, where each tuple comprises
of an image x; € X and a candidate label set Y; C ). Identical
to the supervised learning setup, the goal of PLL is to obtain a
functional mapping that predicts the one true label associated
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with the input. Yet differently, the PLL setup bears significantly
more uncertainty in the label space. A basic assumption of PLL
is that the ground-truth label y; is concealed in its candidate set,
ie., y; € Y;, and is invisible to the learner. For this reason, the
learning process can suffer from inherent ambiguity, compared
with the supervised learning task with explicit ground-truth.

Noisy Partial Label Learning: In this paper, our main focus
is a more practical setup called noisy partial label learning [5],
where the true label potentially lies outside the candidate set,
i.e.,y; ¢ Y;. We further consider a more challenging task where
the collected datasets contain out-of-distribution noise [12]. In
this case, the samples can come from different data distributions
and the ground-truth labels are not even in the whole label space,
Le.yi¢ Y.

Learning Goals: The uniqueness of PLL is to identify the
ground-truth label from the candidate label set. For the noisy
PLL problem, it is also required to filter out those out-of-
distribution samples and find the correct labels of remaining
in-distribution (ID) samples. To achieve these goals, we assign
each image x; a normalized vector s; € [0, 1]¢ as the pseudo
target during training, whose entries denote the probability of
labels being the ground-truth. The total probability mass of 1
is allocated among candidate labels in Y;. Note that s; will be
updated during the training procedure. Ideally, s; should put
more probability mass on the (unknown) ground-truth label y;
over the course of training. We train a classifier f : X — [0,1]¢
using cross-entropy loss, with s; being the target prediction. The
per-sample loss is given by:

C
Las(fii,Yi) = Y s log(f/ (x:))
j=1
S.t. Z Sij = 1 and Sij = O,Vj §é Y;, (1)

JeY;

where j denotes the indices of labels. s; ; denotes the jth pseudo
target of ;. Here f is the softmax output of the networks and
we denote f7 as its jth entry. In the remainder of this paper, we
omit the sample index ¢ when the context is clear. We proceed
by describing our proposed framework.

III. THE PICO+ FRAMEWORK

In this section, we describe our novel PiCO+ framework in
detail. In Section III-A, we introduce our core component—
Partial label learning with COntrastive label disambiguation
(PiCO) algorithm, which encapsulates two key components for
improved representation quality and high label disambiguation
ability. Next, in Section III-B, we present the PiCO+ algo-
rithm to handle label noise by wrapping PiCO into a semi-
supervised contrastive partial label learning framework that
performs distance-based clean sample selection for robust train-
ing. Lastly, in Section III-C, we further equip PiCO+ with an
energy-based rejection mechanism to improve its robustness to
out-of-distribution noise.
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Algorithm 1: Pseudo-Code of PiCO (One Epoch).

1 Input: Training dataset D, classifier f, query network g,
key network ¢’, momentum queue, uniform
pseudo-labels s; associated with @; in D, class
prototypes p; (1 < j < O).

2 foriter =1,2,..., do

3 sample a mini-batch B from D

// query and key embeddings generation

4 | By ={q: = g(Aug (x:))|=: € B}
5 | Br={ki=g'(Aug,(z:))|z: € B}
6 A = B, U By, U queue
7 for x; € B do
// classifier prediction
8 i = argmaxjey, f’(Aug, (x:))
// momentum prototype updating
9 pe = Normalize(yue + (1 —v)q:), if ;i = ¢
// positive set generation
10 P(@) = {K'|k' € A(z:),§ = 5}
11 end
// prototype-based label disambiguation
12 for q; € B, do
13 z; = OneHot(arg maxjey; q;' ;)
14 si=¢si +(1— )z
15 end
// network updating
16 minimize loss Lpico = Leis + ALcont
// update the key network and momentum
queue
17 momentum update ¢’ by using g
18 enqueue By, and classifier predictions and dequeue
19 end

A. PiCO Algorithm for Label Disambiguation

1) Contrastive Representation Learning for PLL: The un-
certainty in the label space posits a unique obstacle to learning
effective representations. In PiCO, we couple the classification
loss in (1) with a contrastive term that facilitates a clustering
effect in the embedding space. While contrastive learning has
been extensively studied in recent literature, it remains untapped
in the domain of PLL. The main challenge lies in the construction
of a positive sample set. In conventional supervised contrastive
learning frameworks [9], the positive sample pairs can be easily
drawn according to the ground-truth labels. However, this is not
straightforward in the setting of PLL.

Training Objective: To begin with, we describe the standard
contrastive loss term. We adopt the most popular setups by
closely following MoCo [13] and SupCon [9]. Given each
sample (x,Y’), we generate two views—a query view and a
key view—by way of randomized data augmentation Aug(x).
The two images are then fed into a query network ¢(-) and a
key network ¢'(-), yielding a pair of Ly-normalized embeddings
q = g(Aug,(z)) and k = g'(Aug,(zx)). In implementations,
the query network shares the same convolutional blocks as the
classifier, followed by a prediction head (see Fig. 2). Following
MoCo, the key network uses a momentum update with the
query network. We additionally maintain a queue storing the
most current key embeddings k, and we update the queue
chronologically. To this end, we have the following contrastive
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lustration of PiCO. The classifier’s output is used to determine the positive peers for contrastive learning. The contrastive prototypes are then used to

gradually update the pseudo target. The momentum embeddings are maintained by a queue structure. ‘//” means stop gradient.

embedding pool:

A = B, U By, U queue, 2)

where B, and B, are vectorial embeddings corresponding to the
query and key views of the current mini-batch. Given an example
x, the per-sample contrastive loss is defined by contrasting its
query embedding with the remainder of the pool A,

Leoni(g; 2,7, A)

1
= @), &

kicP(x)

exp(q ki /7)
D wea() exp(q'k /)’

3)

where P(x) is the positive setand A(x) = A\{q}. 7 > Ois the
temperature.

Positive Set Selection: As mentioned earlier, the crucial chal-
lenge is how to construct the positive set P(x). We propose uti-
lizing the predicted label § = arg max; ey f7 (Aug,(z)) from
the classifier. Note that we restrict the predicted label to be in
the candidate set Y. The positive examples are then selected as
follows,

P(x) = {K'|K' € A(z),7 = 7} “
where 7 is the predicted label for the corresponding training
example of k’. For computational efficiency, we also maintain
a label queue to store past predictions. In other words, we
define the positive set of  to be those examples carrying the
same approximated label prediction y. Despite its simplicity,
we show that our selection strategy can be theoretically justified
(Section V) and also lead to superior empirical results (Sec-
tion IV). Note that more sophisticated selection strategies can
be explored, for which we discuss in Appendix B.5, available
online. Putting it all together, we jointly train the classifier as
well as the contrastive network. The overall loss function is:

Epico = £cls + )\‘Cconb (5)

Still, our goal of learning high-quality representation by con-
trastive learning relies on accurate classifier prediction for pos-
itive set selection, which remains unsolved in the presence of
label ambiguity. To this end, we further propose a novel label
disambiguation mechanism based on contrastive embeddings
and show that these two components are mutually beneficial.

2) Prototype-Based Label Disambiguation: As we men-
tioned (and later theoretically prove in Section V), the con-
trastive loss poses a clustering effect in the embedding space.
As a collaborative algorithm, we introduce our novel prototype-
based label disambiguation strategy. Importantly, we keep a
prototype embedding vector u. corresponding to each class
c € {1,2,...,C}, whichcanbe deemed as a set of representative
embedding vectors. Categorically, a naive version of the pseudo
target assignment is to find the nearest prototype of the current
embedding vector. Notably this primitive resembles a clustering
step. We additionally soften this hard label assignment version
by using a moving-average style formula. To this end, we may
posit intuitively that the employment of the prototype builds a
connection with the clustering effect in the embedding space
brought by the contrastive term (Section III-A1). We provide a
more rigorous justification in Section V.

Pseudo Target Updating: We propose a softened and moving-
average style strategy to update the pseudo targets. Specifically,
we first initialize the pseudo targets with a uniform distribution,
55 = ﬁﬂ (j € Y). We then iteratively update it by the following
moving-average mechanism,

1 if ¢ = arg max;cy unj7
0 else

s=¢s+(1—9¢)z, zC:{
(6)

where ¢ € (0, 1) is a positive constant, and p; is a prototype cor-
responding to the jth class. The intuition is that fitting uniform
pseudo targets results in a good initialization for the classifier
since the contrastive embeddings are less distinguishable at the
beginning. The moving-average style strategy then smoothly
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updates the pseudo targets toward the correct ones, and mean-
while ensures stable dynamics of training. This is supported
by our quantitative results on the confidence curves as shown in
Appendix B.1.4, available online. With more rigorous validation
provided later in Section V, we provide an explanation for the
prototype as follows: (i)-for a given input x, the closest prototype
is indicative of its ground-truth class label. At each step, s has
the tendency to slightly move toward the one-hot distribution
defined by z based on (6); (ii)-if an example consistently points
to one prototype, the pseudo target s can converge (almost) to a
one-hot vector with the least ambiguity.

Prototype Updating: The most canonical way to update the
prototype embeddings is to compute it in every iteration of
training. However, this would extract a heavy computational
toll and in turn cause unbearable training latency. As a result,
we update the class-conditional prototype vector similarly in a
moving-average style:

e = Normalize(yp. + (1 —7)q),
if c = argmax;cy fj (Augq(x)))’ ™)

where the momentum prototype p. of class c is defined by the
moving-average of the normalized query embeddings g whose
predicted class conforms to c. 7y is a tunable hyperparameter.

3) Synergy Between Contrastive Learning and Label Dis-
ambiguation: While seemingly separated from each other, the
two key components of PiCO work in a collaborative fashion.
First, as the contrastive term favorably manifests a clustering
effect in the embedding space, the label disambiguation module
further leverages via setting more precise prototypes. Second, a
set of well-polished label disambiguation results may, in turn,
reciprocate the positive set construction which serves as a crucial
part in the contrastive learning stage. The entire training process
converges when the two components perform satisfactorily. We
further rigorously draw a resemblance of PiCO with a classical
EM-style clustering algorithm in Section V. Our experiments,
particularly the ablation study displayed in Section IV-B2, fur-
ther justify the mutual dependency of the synergy between the
two components. The pseudo-code of our complete algorithm is
shown in Algorithm 1.

B. PiCO+ for Handling Noisy Candidate Sets

In this section, our aim is to handle the more practical noisy
PLL setup [5] where the annotators may produce wrong candi-
date sets. Empirically, we observe that the current PLL methods,
including PiCO, exhibit a significant performance drop in such
a setup (Section IV-C). One main reason is that these methods
mostly rely on a within-set pseudo-label updating step, but the
noisy candidate sets can mislead them toward overfitting on a
wrong label. To this end, we propose PiCO+, an extension of
PiCO, which learns robust classifiers from noisy partial labels.
First, we introduce a distance-based sample selection mecha-
nism that detects clean examples whose candidate sets contain
the ground-truth labels. Then, we develop a semi-supervised
contrastive PLL framework to handle data with noisy candidates.
In what follows, we elaborate on our novel PiCO+ framework
in detail. A visualized illustration of PiCO+ is shown in Fig. 3.
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Fig. 3. Illustration of the semi-supervised contrastive learning procedure. A
set of clean samples are selected for running PiCO. While the remaining noisy
samples are optimized by semi-supervised objectives like neighbor-augmented
contrastive learning and label-guessing training. We also incorporate mixup for
improved robustness.

1) Distance-Based Clean Example Detection: To remedy
overfitting on noisy candidates, we would like to select those
reliable candidates, which contain the true labels, to run the PiCO
method. In the noisy label learning regime, a widely-adopted
strategy is to employ the small-loss selection criterion [14],
which is based on the observation that noisy examples typically
demonstrate a large loss. However, in the noisy PLL problem,
the loss values are less informative since examples with more
candidate labels can also incur a larger loss, even if the candidate
sets are reliable.

To address this problem, we propose a distance-based selec-
tion mechanism as follows,

Delean = {(xu}/z)‘qj:u’ﬂl > ﬁ5}’ ®)

where j; = arg max;cy, f7(Aug,(x;))) is the classifier predic-
tion. k; is the (100 — §)-percentile of the consine similarity be-
tween the query embedding and the ;th prototype. For example,
when § = 60, it means 60% of examples are above the threshold.
Our motivation is that the clustering effect of contrastive learning
makes the clean examples dominate the prototype calculation
and thus they are distributed close to at least one prototype inside
the candidate set. On the other hand, the noisy candidates mostly
deviate from all candidate prototypes as their true labels are not
contained in their candidate sets.

2) Semi-Supervised Contrastive Learning: While leveraging
the clean examples to run a PiCO model is straightforward,
the low data utility restricts it from better performance. Conse-
quently, we regard noisy examples as unlabeled ones and develop
asemi-supervised learning framework to learn from the two sets.
On clean datasets, we assume the true labels are included in the
candidate sets and run our PiCO method. It should be particularly
noted that we also restrict the positive set construction and pro-
totype updating procedures to merely employ clean examples.
But, the pseudo-target updating is performed over all data points.

On the noisy dataset, which is denoted by Dyisy = D\Deieans
we follow our design patterns in PiCO to synergetically train the
contrastive branch as well as the classifier. It is achieved by the
following components:

Neighbor-Augmented Contrastive Learning: Recall that the
crucial step for designing contrastive loss is to construct the
positive set, which is challenging for noisy samples as their
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Algorithm 2: Pseudo-Code of PiCO+.

1 Input: Training dataset D, selection ratio §, number of
nearest neighbors k, beta distribution shape parameter
s, loss weighting factors «, 3.

2 warm up by running PiCO on D

3 for epoch =1,2,...,do

4 split a clean set by Dgean = { (4, Yi)la g, > kst
5 set Dnoisy = D\Dclean
6 for iter = 1,2,...,do
7 sample a mini-batch B from D
8 Bclean =BnN Dcleanr Bnoisy =BnN Dnoisy
9 run PiCO on Bean to get loss Lejean
10 for x; € B do
// label-driven positive set
11 Pnoisy(a?i) = {k/|k, € A(mz)ﬁg; =i}
12 end
13 for x; € Biyisy do
// neighbors-based positive set
14 PkNN(mi) = {k/|k/ S A(acl) ﬁ./\/'k(:c,)}
// label guessing
/ exp(g; pj/7) .
15 Sz‘j—m, vlS]SC
16 end
17 for (z;,z;) € B do
18 o ~ Beta(s,¢)
// mixup samples and pseudo-targets
19 xjj = oAug, (zi) + (1 — 0)Aug, ()
20 sii =08+ (1 —0)8;
21 end
2 if With OOD Samples then
// energy-based OOD rejection
23 calculate energy scores £(x) by Eq. (14)
24 fit a GMM model on energy scores
25 reject OOD samples by p(G|€(x)) < 0.5
26 end
27 calculate Ln-cont, LkNN, Lnoclss Lmix
28 minimize loss
»Cpico+ - ['mix +a£clean+ﬁ(ﬁn-cont+[kaN +[’n—cls)
29 end
30 end

candidate sets are unreliable. To this end, we first propose a
label-driven construction approach. By regarding noisy samples
as unlabeled data, it is intuitive to treat all labels as candidates.
This gives rise to the following noisy positive set,

Pnoisy(w) = {kllk/ € A(w)@/ = g}v

j - .
arg 1@2@]‘ (Aug,(x))) if & € Dnoisy, o)

where § = arg max f7(Aug,(xz))) else.
jey

That is, we choose the within-set classifier prediction for clean
examples and choose the full-label prediction for the remaining.
We apply this noisy positive set to all data in D and calculate
a noisy contrastive loss L con by (3). This objective serves as
our ultimate goal of semi-supervised training that recovers the
PiCO algorithm on clean PLL data and noisy unlabeled data.
Nevertheless, as we are less knowledgeable of noisy ex-
amples, our estimation on Pnoisy(:c) can be inaccurate and
assigns wrong cluster centers. To this end, we incorporate a
data-driven technique to regularize the noisy contrastive loss. In
specific, we collect the nearest neighbors of noisy samples to be
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positive peers,
PkNN(iL') = {k/|kl € A(ZL') ﬂNk(iL’)},

where Ny (x) is the embedding set of «’s k-nearest neighbors
in the embedding space. Then, we calculate the £KNN-based
contrastive loss Ly on noisy examples. Note that the original
contrastive learning objective naturally encourages the exam-
ples to be locally smooth by aligning augmented copies. Our
neighbor-augmented loss further enhances this effect to ensure
the examples in a local region share the same label. By then, the
noisy examples are aligned with their local neighbors, which
promotes their clustering effect toward the right labels.

Prototype-Based Label Guessing: Similarly, we would also
like to identify the true labels on noisy examples to enhance
the classifier training. Although the noisy examples are treated
as unlabeled, it is not appropriate to directly set their labels to
uniform labels % as in PiCO, since the data separation procedure
dynamically changes during training. To this end, we leverage
the class prototypes to guess their pseudo-targets s’ by,

(10)

g - exp(q’ p;/7)
TS exp(aT /7))
We calculate the cross-entropy loss on Dyisy as defined in (1),
which is term as £_cs.

Mixup Training: Recently, the mixup regularization technique
has been widely adopted to improve the robustness of weakly-
supervised learning algorithms [15], [16]. Therefore, we also
incorporate it into PiCO+ for boosted performance. Formally,
given a pair of images x; and x;, we create a virtual training
example by linearly interpolating both,

vi<j<C. (11)

2™ = oAug,(z,) + (1 - o) Aug, (),

szaéi—i-(l—O')éj, (12)

where o ~ Beta(c, <) and ¢ is a hyperparameter. Here, we take
the pseudo-target of PiCO on clean examples, and the guessed
label on noisy examples, i.e., § = s if © € Dgjean €lse § = 5.
We define the mixup loss Lp;x as the cross-entropy on ™ and
s,

Finally, we aggregate the above losses together,

== ﬁmix + Oé‘cclean + ﬂ(‘cn—cont + EkNN + En-cls)a (13)

Epico+

where L jeay is the PiCO loss on clean examples. Note that over-
trusting the guessed labels and positive sets on noisy samples
may cause confirmation bias [17] and make the model overfit
on wrong labels. Empirically, we set a larger « and a smaller 3
(e.g.,a = 2,3 = 0.1), and thus, the clean samples dominate the
learning procedure to ensure favorable noisy example detection
ability.

C. Mitigating Out-of-Distribution Noise

Lastly, we investigate the out-of-distribution robustness of
PiCO+. In real-world applications, it is possible that some train-
ing samples come from different domains but are assigned candi-
date labels from the predefined label space ). With proper sam-
ple selection, we believe PiCO+ can still be robust to OOD noise.
However, the semi-supervised learning procedure is inevitably
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subject to OOD samples since it encourages all samples to be
pushed toward the prototypes. In that case, the distance-based
measures can be inappropriate for detecting OOD samples.

To address this problem, we equip PiCO+ with an energy-
based rejection mechanism since OOD samples are known to
hold larger energy [18]. Formally, we first calculate the energy
score on the classifier by,

C

E(x) = —7'log Y exp(f'(Aug,(@))/7")

i=1

(14)

where f is the network output prior to the softmax layer and
7' = 1is the energy temperature. One may use a validation set
to determine a threshold that separates OOD data, but this can
be annoying in practice. Motivated by the noisy label learning
literature [16], we fit a two-component Gaussian Mixture Model
(GMM) to £(x). For each sample, it is considered to be OOD if
its GMM posterior probability p(G|E(x)) < 0.5, where G is the
Gaussian component with a smaller mean, i.e. smaller energy.
Then, we reject these OOD data and use the remaining samples
for running PiCO+.

IV. EXPERIMENTS

In this section, we present our main results and part of the
ablation results to show the effectiveness of PiCO and PiCO+
methods. In Section IV-B, we first examine the effectiveness of
PiCO and its extension PiCO+ in standard PLL datasets. Then,
we report the results on noisy PLL setups in Section IV-C.
We refer readers to Appendix B, available online for more
experimental results and analysis. Code and data are available
at: https://github.com/hbzju/PiCO.

A. Setup

Datasets: First, we evaluate PiCO on two commonly used
benchmarks — CIFAR-10 and CIFAR-100 [19]. Adopting the
identical experimental settings in previous work [20], [21],
we generate conventional partially labeled datasets by flipping
negative labels § # y to false positive labels with a probabil-
ity ¢ = P(y € Y|y # y). In other words, all C'— 1 negative
labels have a uniform probability to be false positive and we
aggregate the flipped ones with the ground-truth to form the
candidate set. We consider ¢ € {0.1,0.3,0.5} for CIFAR-10
and ¢ € {0.01,0.05, 0.1} for CIFAR-100. In Section IV-D1, we
further evaluate our method on fine-grained classification tasks,
where label disambiguation can be more challenging.

For the noisy PLL task, we introduce a noise-controlling
parameter n = 1 — P(y € Y'|y) that controls the probability of
the ground-truth label not being selected as a candidate. As it
is possible that some instances are not assigned any candidate
and we simply re-generate the candidate set until it has at least
one candidate label. We select ) € {0.1, 0.2} for both datasets;
results with stronger noisy ratios are shown in Section IV-C3.

Baselines: We choose the five best-performed partial label
learning algorithms to date: 1) LWS [21] weights the risk
function by means of a trade-off between losses on candidate
labels and the remaining; 2) PRODEN [20] iteratively updates
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the latent label distribution in a self-training style; 3) CC [22]
is a classifier-consistent method that assumes set-level uniform
data generation process; 4) MSE and EXP [23] are two simple
baselines that adopt mean square error and exponential loss as
the risks. For the noisy PLL task, we additionally incorporate one
baseline method GCE [5], [24] that generalizes the cross-entropy
loss via negative Box-Cox transformation. We report the com-
parisons with the remaining baselines from [5] in Appendix B.8,
available online. The hyperparameters are tuned according to the
original methods. For all experiments, we report the mean and
standard deviation based on 5 independent runs (with different
random seeds).

Implementation Details: Following the standard experimental
setup in PLL [21], [22], we split a clean validation set (10% of
training data) from the training set to select the hyperparameters.
After that, we transform the validation set back to its original
PLL form and incorporate it into the training set to accomplish
the final model training. We use an 18-layer ResNet as the
backbone for feature extraction. Most of experimental setups
for the contrastive network follow previous works [9], [13]. The
projection head of the contrastive network is a 2-layer MLP
that outputs 128-dimensional embeddings. We use two data
augmentation modules SimAugment [9] and RandAugment [25]
for query and key data augmentation respectively. Empirically,
we find that even weak augmentation for key embeddings also
leads to good results. The size of the queue that stores key
embeddings is fixed to be 8192. The momentum coefficients are
set as 0.999 for contrastive network updating and v = 0.99 for
prototype calculation. For pseudo target updating, we linearly
ramp down ¢ from 0.95 to 0.8. The temperature parameter is
setas 7 = 0.07. The loss weighting factor is set as A = 0.5. The
model is trained by a standard SGD optimizer with a momentum
of 0.9 and the batch size is 256. We train the model for 800 epochs
with cosine learning rate scheduling. We also empirically find
that classifier warm-up leads to better performance when there
are many candidates. Hence, we disable contrastive learning in
the first 100 epoch for CIFAR-100 with ¢ = 0.1 and 1 epoch for
the remaining experiments.

For PiCO+, we basically follow the original PiCO method.
The clean sample selection ratio parameter 9 is set as 0.8/0.6 for
noisy ratio 0.1/0.2, respectively. For neighbor augmentation, we
set k = 16 for CIFAR-10 and a smaller k¥ = 5 for CIFAR-100. In
the beginning, the embeddings can be less meaningful and thus,
we enable kNN augmentation after the first 100 epochs. We fix
the shape parameter of the Beta distribution to ¢ = 4 for mixup
training. We set the loss weighting factor « = 2 and 5 = 0.1.
Similar to the standard PLL setup, we warm up the model by
fitting uniform targets for 5 and 50 epochs on CIFAR-10 and
CIFAR-100 datasets respectively.

B. Main Empirical Results on Standard PLL

1) Main Results: PiCO achieves SOTA results on standard
PLL task: As shown in Table I, PiCO significantly outperforms
all the rivals by a significant margin on all datasets. Specifically,
on CIFAR-10 dataset, we improve upon the best baseline by
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TABLE I

ACCURACY COMPARISONS ON STANDARD PLL DATASETS

Dataset ‘

Method ‘

qg=0.1

q=20.3

q=0.5

CIFAR-10

PiCO+ (ours)
PiCO (ours)
LWS
PRODEN
CC
MSE
EXP

95.99 + 0.03%
94.39 + 0.18%
90.30 + 0.60%
90.24 £+ 0.32%
82.30 + 0.21%
79.97 £+ 0.45%
79.23 £ 0.10%

95.73 £ 0.10%
94.18 + 0.12%
88.99 + 1.43%
89.38 £+ 0.31%
79.08 £ 0.07%
75.64 £ 0.28%
75.79 £ 0.21%

95.33 + 0.06%
93.58 £ 0.06%
86.16 + 0.85%
87.78 + 0.07%
74.05 £ 0.35%
67.09 £+ 0.66%
70.34 £ 1.32%

Dataset ‘

Method ‘

q=0.01

q=10.05

q=0.1

CIFAR-100

PiCO+ (ours)
PiCO (ours)
LWS
PRODEN
CC
MSE
EXP

76.29 + 0.42%
73.09 + 0.34%
65.78 + 0.02%
62.60 £ 0.02%
49.76 £+ 0.45%
49.17 £ 0.05%
44.45 + 1.50%

76.17 £ 0.18%
72.74 £+ 0.30%
59.56 + 0.33%
60.73 4= 0.03%
47.62 £+ 0.08%
46.02 + 1.82%
41.05 + 1.40%

75.55 £ 0.21%
69.91 + 0.24%
53.53 £ 0.08%
56.80 + 0.29%
35.72 + 0.47%
43.81 £ 0.49%
29.27 + 2.81%

Bold indicates superior results. On standard PLL datasets, PiCO+ can be regarded as a PiCO algorithm
equipped with mixup training.

TABLE II

ABLATION STUDY OF PICO ON STANDARD PARTIAL LABEL LEARNING DATASETS CIFAR-10 (¢ = 0.5) AND CIFAR-100 (¢ = 0.05)

Ablation ‘ Lcont Label Disambiguation ‘ CIFAR-10  CIFAR-100
PiCO v Ours 93.58 72.74
PiCO w/o Disambiguation v Uniform Pseudo Target 84.50 64.11
PiCO w/0 Leont X Uniform Pseudo Target 76.46 56.87
PiCO with ¢ =0 v Soft Prototype Probs 91.60 71.07
PiCO with ¢ =0 v One-hot Prototype 91.41 70.10
PiCO v MA Soft Prototype Probs 81.67 63.75
Fully-Supervised w/o mixup v N/A 94.91 73.56

4.09%, 4.80%, and 5.80% where ¢ is set t0 0.1,0.3,0.5 respec-
tively. Moreover, PiCO consistently achieves superior results
as the size of the candidate set increases, while the baselines
demonstrate a significant performance drop. Besides, it is worth
pointing out that previous works [20], [21] are typically eval-
uated on datasets with a small label space (C' = 10). We chal-
lenge this by showing additional results on CIFAR-100. When
q = 0.1, all the baselines fail to obtain satisfactory performance,
whereas PiCO remains competitive. Moreover, we observe that
PiCO achieves results that are comparable to the fully super-
vised contrastive learning model (in Table II), showing that
disambiguation is sufficiently accomplished. The comparison
highlights the superiority of our label disambiguation strategy.
Lastly, we evaluated the PiCO+ method in the standard PLL
setup, which equals a PiCO model with mixup training. It can be
shown that PiCO+ further improves PiCO by a notable margin,
validating the importance of the mixup technique.

PiCO learns more distinguishable representations: We visu-
alize the image representation produced by the feature encoder
using t-SNE [26] in Fig. 4. Different colors represent different
ground-truth class labels. We use the CIFAR-10 dataset with
q = 0.5. We contrast the t-SNE embeddings of three approaches:
(a) amodel trained with uniform pseudo targets, i.e., s; = 1/|Y|
(7 €Y), (b) the best baseline PRODEN, and (c) our method

PiCO. We can observe that the representation of the uniform
model is indistinguishable since its supervision signals suffer
from high uncertainty. The features of PRODEN are improved,
yet with some class overlapping (e.g., blue and purple). In
contrast, PiCO produces well-separated clusters and more dis-
tinguishable representations, which validates its effectiveness in
learning high-quality representation.

2) Ablation Studies of PiCO: Effect of L on; and label disam-
biguation: We ablate the contributions of two key components
of PiCO: contrastive learning and prototype-based label disam-
biguation. In particular, we compare PiCO with two variants:
1) PiCO w/o disambiguation which keeps the pseudo target as
uniform 1/|Y’|; and 2) PiCO w/o L., which further removes
the contrastive learning and only trains a classifier with uniform
pseudo targets. From Table II, we can observe that variant 1
substantially outperforms variant 2 (e.g., +8.04% on CIFAR-
10), which signifies the importance of contrastive learning for
producing better representations. Moreover, with label disam-
biguation, PiCO obtains results close to fully supervised setting,
which verifies the ability of PiCO in identifying the ground-truth.

Different Disambiguation Strategy: Based on the contrastive
prototypes, various strategies can be used to disambiguate the la-
bels, which corresponds to the E-step in our theoretical analysis.
We choose the following variants: 1) One-hot Prototype always
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T-SNE visualization of the PiCO representation on CIFAR-10 (¢ = 0.5). Different colors represent the corresponding classes.
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(a) Performance of PiCO with varying moving-average factor ¢ on CIFAR-100 (¢ = 0.05). (b) Performance of PiCO+ with varying neighbor number

k on CIFAR-10 (¢ = 0.5, = 0.2) and CIFAR-100 (¢ = 0.05,7 = 0.2). (c) Performance of PiCO+ with varying semi-supervised loss weighting factor S on

CIFAR-10 (g = 0.5, = 0.2).

assigns a one-hot pseudo target s = z by using the nearest
prototype (¢ = 0); 2) Soft Prototype Probs follows [27] and uses

il . __exp(q pi/7)
a soft class probability s; = Sy expla /) & the pseudo

target (¢ = 0); 3) MA Soft Prototype Probs gradually updates
pseudo target from uniform by using the soft probabilities in a
moving-average style. From Table II, we can see that directly
using either soft or hard prototype-based label assignment leads
to competitive results. This corroborates our theoretical analysis
in Section V, since center-based class probability estimation is
common in clustering algorithms. However, MA Soft Prototype
Probs displays degenerated performance, suggesting soft label
assignment is less reliable in identifying the ground-truth. Fi-
nally, PiCO outperforms the best variant by ~ 2% in accuracy
on both datasets, showing the superiority of our label disam-
biguation strategy.

Effect of Moving-Average Factor ¢: We then explore the
effect of pseudo target updating factor ¢ on PiCO performance.
Fig. 5(a) shows the learning curves of PiCO on CIFAR-100
(¢ = 0.05). We can see that the best result is achieved at ¢ = 0.9
and the performance drops when ¢ takes a smaller value, partic-
ularly on the early stage. When ¢ = 0, PiCO obtains a compet-
itive result but is much lower than ¢ = 0.9. This confirms that
trusting the uniform pseudo targets at the early stage is crucial
in obtaining superior performance. At the other extreme value

¢ = 1, uniform pseudo targets are used, and PiCO demonstrates
a degenerated performance and severe overfitting phenomena.
In general, PiCO performs well when ¢ ~ 0.9.

C. Main Empirical Results on Noisy PLL

1) Main Results: PiCO+ achieves SOTA results on noisy
PLL task: In Table III, we compare PiCO+ with competitive
PLL methods on CIFAR datasets, where PiCO+ significantly
outperforms baselines. In specific, on CIFAR-10 dataset with
q = 0.5, PiCO+ improves upon the best competitor by 6.66%
and 12.52% when 7 is set to 0.1,0.2 respectively. Notably, under
the noisy PLL setup, even when only 10% examples have wrong
candidate sets, the baseline algorithms (including PiCO) exhibit
severe performance degradation. This is further aggravated on
CIFAR-100 with a larger label space, while PiCO+ consistently
retains its great robustness.

PiCO+ learns compact and distinguishable features: In
Fig. 6, we visualize the feature representations of PiCO+ on the
noisy PLL CIFAR-10 dataset with ¢ = 0.5,7 = 0.2. It can be
shown that PiCO generates compact representations even with
noisy candidate sets, which further supports the clustering effect
of contrastive learning. However, both PiCO and PRODEN
exhibit severe overfitting on wrong labels. Instead, the features
of our PiCO+ are both compact and distinguishable.
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TABLE III
ACCURACY COMPARISONS ON NOISY PLL DATASETS
Dataset ‘ Method ‘ ¢=03 =05
‘ ‘ n=20.1 n=20.2 n=0.1 n=20.2

PiCO+ (ours) 95.11 + 0.13% 93.98 + 0.39% 94.45 + 0.27% 92.59 + 0.22%

PiCO (ours) 89.47 + 0.37% 84.13 £+ 0.53% 87.79 £ 0.09% 80.07 £ 0.60%

LWS 84.51 + 0.13% 77.98 + 0.09% 71.02 £ 7.27% 61.96 + 3.22%

CIFAR-10 PRODEN 84.56 + 0.16% 79.35 £+ 0.12% 81.97 £+ 0.59% 77.15 £ 0.08%

CcC 72.16 + 0.93% 68.42 + 0.37% 65.61 + 0.43% 51.82 4+ 4.13%

MSE 53.77 + 1.44% 49.73 4+ 2.94% 46.56 + 0.18% 39.80 4+ 2.82%

EXP 75.81 + 0.09% 69.97 + 0.39% 64.26 + 1.02% 5493 + 1.11%

GCE 74.32 + 1.04% 69.90 + 0.80% 70.38 + 7.63% 50.57 4+ 0.95%

Dataset ‘ Method ‘ g =0.05 ¢=01
‘ ‘ n=20.1 n=0.2 n=0.1 n=20.2

PiCO+ (ours) 74.68 + 0.15% 72.98 + 0.22% 67.58 + 1.05% 62.24 + 0.97%

PiCO (ours) 66.29 + 0.10% 59.81 + 0.24% 66.15 + 0.03% 45.32 4+ 0.89%

LWS 52.20 + 1.47% 42.31 4+ 1.05% 20.54 +4.77% 17.76 + 4.47%

CIFAR-100 PRODEN 53.40 + 0.61% 46.11 + 0.38% 47.34 + 1.39% 38.03 + 1.79%

CC 42.06 + 0.67% 37.90 + 3.27% 32.11 4+ 3.95% 22.28 + 6.18%

MSE 31.06 + 2.46% 27.36 + 0.40% 25.86 + 1.87% 2298 + 1.74%

EXP 23.98 + 4.25% 22.37 £+ 5.45% 23.78 £ 4.59% 22.27 4+ 3.38%

GCE 35.85 + 1.37% 31.65 £ 0.71% 27.79 £ 2.80% 2421 +1.67%

Bold indicates superior results.
N B O T e dmensions 0 T e dimensony ™
(a) PRODEN features (b) PiCO features (c) PiCO+ features (ours)
Fig. 6. T-SNE visualization of the PiCO+ representation on noisy PLL version of CIFAR-10 (¢ = 0.5, = 0.2). Different colors represent the corresponding
classes.

2) Ablation Studies of PiCO+: Effect of sample selection:
We first study the effectiveness of our distance-based selection
mechanism by comparing PiCO+ with two variants: 1) PiCO+
with SL-Sel selects clean examples by sorting cross-entropy
losses; 2) PiCO+ with Only Clean employs the clean samples to
run a simple PiCO method. As reported in Table IV, PiCO+ with
only clean data exhibits better performance than the vanilla PiCO
method (e.g., +7.56%) on CIFAR-10, indicates the selected
examples enjoy high purity. Moreover, PiCO+ with SL-Sel
underperforms PiCO+, which verifies that the loss values are
indeed less informative in the presence of candidate labels and
that our strategy is a better alternative.

Effect of semi-supervised contrastive training: Next, we ex-
plore the effect of each component in SSL training. We compare

PiCO+ with three variants: 1) PiCO+ w/o L,_.; removes the
label guessing technique; 2) PiCO+ w/o L, con; removes the
label-driven contrastive loss; 3) PiCO+ w/o kNN disables the
neighbor-augmented contrastive loss; 4) PiCO+ w/o Mixup
disables the mixup training. From Table IV, we can see that
all the components of our SSL framework contribute to the
performance improvements. In particular, £, .oy has a stronger
positive effect on CIFAR-10, and the label guessing component
brings extra performance improvements for both datasets. The
mixup and neighbor augmentation are the most crucial to the fi-
nal performance. We note that the mixup training technique also
improves the fully-supervised model (e.g., +1.05% on CIFAR-
10). But the performance improvement is more substantial on
the noisy PLL tasks (e.g., +2.92% on CIFAR-10), indicating its
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TABLE IV
ABLATION STUDY OF PICO+ ON NOISY PARTIAL LABEL LEARNING DATASETS CIFAR-10 (¢ = 0.5, = 0.2) AND CIFAR-100 (¢ = 0.05,n = 0.2)

Ablation | Locs  Locone kNN Mixup | CIFAR-10  CIFAR-100
PiCO+ v v v All Data 92.59 72.98
PiCO+ with SL-Sel v v v All Data 91.22 72.54
PiCO+ with Only Clean X X X Only Clean 87.63 70.72
PiCO+ w/o0 Ln.ds X v v All Data 91.14 71.98
PiCO+ w/0 Licont v X v All Data 90.87 72.89
PiCO+ w/0 ENN v v X All Data 87.43 71.19
PiCO+ w/o Mixup v v v No Mixup 89.67 68.51
Fully-Supervised w/ mixup’ - - - All Data 95.96" 76.36

1 These supervised results are evaluated with mixup like PiCO+ and thus are different from Table 2.
g It is slightly smaller than PiCO+ in Table 1 (¢ = 0.1) because of randomized running, but they have no statistically

significant difference.

TABLE V
ACCURACY COMPARISONS ON NOISY PLL DATASETS WITH MORE NOISY SAMPLES

Method | CIFAR-10 (¢ = 0.5)

CIFAR-100 (¢ = 0.05)

| n=03 n=0.4

n=20.3 n=204 n=20.5

PiCO+ (ours) | 90.12 + 0.51% 76.09 £ 3.62%
PiCO (ours) 64.79 + 2.08% 34.59 + 7.26%

PRODEN 50.32 £ 1.07%  29.68 £+ 13.29%

70.46 £+ 0.51%
52.18 + 0.52%
39.19 + 0.20%

66.41 + 0.58%
44.17 £ 0.08%
33.64 £ 0.82%

60.50 + 0.99%
35.51 + 1.14%
26.91 + 0.83%

Bold indicates superior results.

robustness on noisy data. Lastly, Fig. 5(b) shows the influence
of neighbor number %, where PiCO+ works well in a wide range
of k values. Nevertheless, a too large k£ may collect many noisy
positive peers and slightly drops the performance.

Effect of loss weighting factor B: Fig. 5 reports the perfor-
mance of PiCO+ with varying /3 values. On the CIFAR-10
dataset, we observe a severe performance degradation with 3
being larger. The variance becomes increasingly larger as well.
Similar trends can also be observed on CIFAR-100, though the
results are much stabler. It suggests that the usage of noisy
examples should be careful as they may result in confirmation
bias.

3) The Robustness of PiCO+ With Severe Noise: Finally, we
conduct experiments on noisy PLL datasets that contain much
more severe noise to show the robustness of our PiCO+ method.
In particular, we choose 1 € {0.3,0.4} and n € {0.3,0.4,0.5}
for CIFAR-10 and CIFAR-100 respectively. Accordingly, we ad-
justthe selectionratiotod = 0.5, 0.4 whenn = 0.4, 0.5, without
changing other setups. Table V compares PiCO+ with the two
most competitive baselines PiICO and PRODEN, where PiCO+
obtains very impressive performance. For example, the gaps
between PiCO+ and the best baseline are 41.50% and 24.99%
on CIFAR-10 with 7 = 0.4 and CIFAR-100 with n = 0.5. We
conclude that PiCO+ is indeed much more robust than existing
PLL algorithms.

D. Experiments on More Challenging Datasets

1) Fine-Grained Partial Label Learning: Recall the dog
example highlighted in Section I, where semantically similar
classes are more likely to cause label ambiguity. It begs the
question of whether PiCO is effective in challenging fine-grained

TABLE VI
ACCURACY COMPARISONS ON FINE-GRAINED CLASSIFICATION DATASETS
WITH STANDARD PLL LABELS

Method CUB-200 CIFAR-100-H | Flowers-102
(g = 0.05) (g = 0.5) (g = 0.05)

PiCO+ 72.05 £+ 0.80% | 75.38 + 0.52% | 91.31 + 0.10%
PiCO 7217 +0.72% | 72.04 £ 0.31% | 91.01 + 0.17%
LWS 39.74 + 0.47% | 57.25 + 0.02% | 48.23 £ 0.22%
PRODEN | 62.56 + 0.10% | 60.89 & 0.03% | 88.76 + 0.06%
CC 55.61 + 0.02% | 42.60 &= 0.11% | 57.59 + 0.05%
MSE 22.07 +2.36% | 39.52 +0.28% | 2.70 &+ 1.79%
EXP 9.44 +2.32% | 35.08 = 1.71% | 3.87 &+ 16.31%

classification tasks. To verify this, we conduct experiments
on three datasets: 1) CUB-200 dataset [28] contains 200 bird
species; 2) Flowers-102 [29] collects 102 flowers that commonly
occurs in the U.K.; 3) CIFAR-100 with hierarchical labels
(CIFAR-100-H), where we generate candidate labels that belong
to the same superclass.! Notably, both CUB-200/Flowers-102
datasets contain a large amount of similar-looking dog/flower
samples, and can be quite challenging to disambiguate the
candidate labels. We set ¢ = 0.05 for CUB-200/Flowers-102
and g = 0.5 for CIFAR-100-H. In Table VI, we compare PiCO
with baselines, where PiCO outperforms the best method PRO-
DEN by a large margin (+9.61% on CUB-200 and +11.15%
on CIFAR-100-H). In addition, we test the performance of
PiCO+ on both standard and noisy PLL versions of fine-grained
datasets. For the noisy version, we set the number of neighbors

ICIFAR-100 dataset consists of 20 superclasses, with 5 classes in each
superclass.
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TABLE VII
ACCURACY COMPARISONS ON FINE-GRAINED CLASSIFICATION DATASETS
WiITH NoiIsY PLL LABELS
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Method CUB-200 CIFAR-100-H | Flowers-102
(g = 0.05) (g =0.5) (g =0.05)

PiCO+ | 60.65 + 0.79% | 68.31 + 0.47% | 84.20 + 0.18%
PiCO | 53.05 4 2.03% | 59.81 + 0.25% | 80.68 + 0.33%
LWS 18.65 + 2.15% | 22.18 £ 6.12% | 35.09 + 0.36%
PRODEN | 44.74 + 2.47% | 48.03 £ 0.47% | 65.13 4+ 0.09%
CC 26.98 + 1.16% | 34.57 + 0.99% | 41.05 4+ 0.12%
MSE 20.92 + 1.20% | 35.20 + 1.03% | 2.67 + 2.03%
EXP 2.81 + 14.46% | 20.80 4+ 4.62% | 2.83 4+ 22.50%
GCE 5.13 + 38.65% | 33.21 4+ 2.03% | 0.75 4+ 43.11%

The noisy rate is set as 7= 0:2.

by k = 3 for CUB-200/Flowers-102 and n = 0.2 for all. The
results are listed in Tables VI and VII, where PiCO+ achieves
substantially better performance than all the baselines, e.g.,
improves the best PRODEN algorithm by +19.07% accuracy
on Flowers-102. Our results validate the effectiveness and ro-
bustness of our PiCO+ framework, even in the presence of strong
label ambiguity.

2) Experiments on ImageNet: Lastly, we verify the scalabil-
ity of PiCO+ on large-scale ImageNet datasets. Due to limited
computation resources, we follow previous weakly-supervised
learning literature [30], [31] and take a sub-sampled version that
contains 100 classes. The resulting dataset is still large-scale
that contains 128,545 image samples. During running, we set
the image resolution as 224 x 224. The ambiguity degree is set
as ¢ = 0.1. For the noisy PLL task, we set the noisy rate as
n = 0.2. It can be shown in Table IX that PiCO+ outperforms
the baselines by a substantial margin, e.g., improves the best CC
algorithm by +2.78% on the clean PLL and improves the best
GCE method by +3.74% on the noisy PLL setups. The results
further validate the scalability of PiCO+ on large-scale datasets.

E. Empirical Results on PLL With OOD Noise

Lastly, we investigate the robustness of PiICO+ in the presence
of OOD noise. Following [32], we use a series of auxiliary
datasets SVHN [33], Places-365 [34] and Texture [35]. We
randomly select a subset of 10,000 samples for large-scale
SVHN and Places365 datasets. These datasets are combined
with CIFAR-10 and CIFAR-100 to synthesize the PLL datasets
that contain both in-distribution (ID) noise and OOD noise. We
setq = 0.5 for CIFAR-10and ¢ = 0.05 for CIFAR-100 to gener-
ate candidate labels on all samples and use 7 = 0.2 to randomly
flip ID data to noisy candidates. Notably, all OOD samples are
noisy since their ground-truth labels are not included in the
candidate sets. The experimental results are shown in Table VIII.
We can observe that even without energy-base rejection, PiCO+
demonstrates great robustness compared with PiCO and PRO-
DEN algorithms. The main reason is that our sample selection
procedure dominates the training procedure. Equipped with the
rejection mechanism, PiCO+ is able to achieve further improved
results e.g., +35.73% accuracy compared with PRODEN on

CIFAR-10 with SVHN as OOD dataset. These findings clearly
validate the robustness of PiCO+ in open-world scenarios.

V. WHY PICO IMPROVES PARTIAL LABEL LEARNING?

In this section, we provide theoretical justification on why
the contrastive prototypes help disambiguate the ground-truth
label. We show that the alignment property in contrastive learn-
ing [11] intrinsically minimizes the intraclass covariance in the
embedding space, which coincides with the objective of classical
clustering algorithms. It motivates us to interpret PiCO through
the lens of the expectation-maximization algorithm. To see this,
we consider an ideal setting: in each training step, all data
examples are accessible and the augmentation copies are also
included in the training set, i.e., A = D. Then, the contrastive
loss is calculated as,

Econt(g; T, D)

NS

exp(qk/7)
® S wenm exp(q K/7T)

Z log

meD k:+er)
1 1 .
— -yl k
xeD ki eP(x)
(a)
1
+ Z log Z exp(q'k'/7) (15)
xeD k'cA(x)
(b)

We focus on analyzing the first term (a), which is often dubbed
as the alignment term [11]. The main functionality of this term
is to optimize the tightness of the clusters in the embedding
space. In this work, we connect it with classical clustering
algorithms. We first split the dataset to C' subsets S; € D¢
(1 < j < ), where each subset contains examples possessing
the same predicted labels. In effect, our selection strategy in (4)
constructs the positive set by selecting examples from the same
subset. Therefore, we have,

@=L Z\p S (lg— ki IP —2)/27)
k eP(x)
~ e S Y (g — g+ K
27'” SjEDC | ‘7‘ :l:,:l':’ESj
HJH + K, (16)

1

where K is a constant and gt is the mean center of S;. Here we
approximate ﬁ ~ &% = % since n is usually large. We
omitted the augmentation operation for simplicity. The unifor-
mity term (b) can benefit information-preserving, and has been

analyzed in [11].
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TABLE VIII
ACCURACY COMPARISONS ON PLL DATASETS WITH BOTH IN-DISTRIBUTION NOISE (17 = 0.2) AND OUT-OF-DISTRIBUTION NOISE
Base Dataset \ CIFAR-10 (¢ = 0.5) CIFAR-100 (g = 0.05)
OOD Dataset ‘ SVHN  Texture  Places-365 ‘ SVHN  Texture  Places-365
PiCO+ with Rejection (ours) 75.89 76.23 66.45 62.36 62.55 56.89
PiCO+ (ours) 66.39 76.01 66.07 59.51 61.11 56.22
PiCO 54.66 75.99 57.73 57.43 58.98 56.04
PRODEN 40.16 40.09 41.23 39.03 38.71 38.17
Bold indicates superior results.
TABLE IX n P(CE y ‘9)
i iy Ji
ACCURACY COMPARISONS ON IMAGENET DATASET WITH 128,545 IMAGES > argmax Z Z 7Y log = (17)

Method ‘ ImageNet (¢ = 0.1)

‘ n=0 ‘ n=0.2
PiCO+ 82.95 + 0.39% | 76.83 £ 0.34%
PiCO 81.16 = 0.73% | 71.93 £ 0.32%
PRODEN | 79.90 £ 0.81% | 69.49 £ 0.28%
CcC 80.17 = 0.14% | 64.89 £ 0.34%
GCE 79.15 £ 0.21% | 73.09 £ 0.41%

We are now ready to interpret the PiCO algorithm as an
expectation-maximization algorithm that maximizes the likeli-
hood of a generative model. At the E-step, the classifier assigns
each data example to one specific cluster. At the M-step, the
contrastive loss concentrates the embeddings to their cluster
mean direction, which is achieved by minimizing (16). Finally,
the training data will be mapped to a mixture of von Mises-Fisher
distributions on the unit hypersphere.

EM Perspective: Recall that the candidate label set is a
noisy version of the ground-truth. To estimate the likelihood
P(Y;,x;), we need to establish the relationship between the
candidate and the ground-truth label. Following [6], we make a
mild assumption,

Assumption 1: Alllabels y; in the candidate label set have the
same probability of generating Y;, but no label outside of Y; can
generate Y, i.e. P(Y;|y;) = h(Y;) if y; € Y; else 0. Here fi(+) is
some function making it a valid probability distribution.

Then, we show that the PiCO implicitly maximizes the like-
lihood as follows,

E-Step: First, we introduce some distributions over all ex-
amples and the candidates ﬂg >0(1<i<n,1<j<C)such
that w{ =0ifj ¢ Yiand )y, ﬂ{ = 1. Let 6 be the parameters
of g. Our goal is to maximize the likelihood below,

arg max Z log P(Y;, x;|0)

i=1
_argmax Zlog Z P(x;,y:10) +Zbg
y:€Y;
—argmaxz log Z i P(a;, yz|9
Y €Y

The last step of the derivation uses Jensen’s inequality. By using
the fact that log(+) function is concave, the inequality holds with

equality when w is some constant. Therefore,
. P(x;,y;|0 P(x;,y;|0
Y = (;Dyz| ) 5= (i y;‘ ) P(yi|z;, 0)
Yoyey, P(wiwild)  P(i|0)

(18)

which is the posterior class probability. In PiCO, it is estimated
by using the classifier’s output.

To estimate P(y;|x;,0), classical unsupervised clustering
methods intuitively assign the data examples to the cluster cen-
ters, e.g., k-means. As in the supervised learning setting, we can
directly use the ground-truth. However, under the setting of PLL,
the supervision signals are situated between the supervised and
unsupervised setups. Based on empirical findings, the candidate
labels are more reliable for posterior estimation at the beginning;
yet alongside the training process, the prototypes tend to become
more trustful. This empirical observation has motivated us to
update the pseudo targets in a moving-average style. Thereby,
we have a good initialization in estimating class posterior, and it
will be smoothly refined during the training procedure. This
is verified in our empirical studies; see Section IV-B2 and
Appendix B.1.4, available online. Finally, we take one-hot pre-
diction §; = argmaxjey f?(x;) since each example inherently
belongs to exactly one label and hence, we have 7Tg =1(g; = j).

M-Step: At this step, we aim at maximizing the likelihood
under the assumption that the posterior class probability is
known. We show that under mild assumptions, minimizing (16)
also maximizes a lower bound of likelihood in (17).

Theorem 1: Assume data from the same class in the con-
trastive output space follow a d-variate von Mises-Fisher
(VMF) distribution whose probabilistic density is given by
J(@|fai, k) = calr)e™ 9@, where f1; = /| a,]] is the mean
direction, « is the concentration parameter, and c4(k) is the
normalization factor. We further assume a uniform class prior
P(y;, = j) =1/C. Let n; = |S;|. Then, optimizing (16) and
(17) equal to maximize R; and Rs below, respectively.

nj 2 1
§ Za a2 < § DNl = Ro.
n||“J|| = nHI'l’JH 2

Sj €Dc S] €D¢c

Ry = 19)

The proof can be found in the Appendix A, available online.
Theorem 1 indicates that minimizing (16) also maximizes a
lower bound of the likelihood in (17). The lower bound is
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tight when ||t;|] is close to 1, which in effect means a strong
intraclass concentration on the hypersphere. Intuitively, when
the hypothesis space is rich enough, it is possible to achieve a low
intraclass covariance in the euclidean space, resulting in a large
norm of the mean vector ||gt;||. Then, normalized embeddings
in the hypersphere also have an intraclass concentration in a
strong sense, because a large || ;|| also results in a large  [36].
Regarding the visualized representation in Fig. 4, we note that
PiCO is indeed able to learn compact clusters. Therefore, we
have that minimizing the contrastive loss also partially maxi-
mizes the likelihood defined in (17).

The Robustness of PiCO+: Note that the above theoretical
results can also help analyze PiCO+. On one hand, the clustering
effect of PiCO encourages samples to be aligned to prototypes.
Since deep networks tend to find easy patterns in the early stage
of training [37], those clean samples can be moved faster to the
class centers, which is empirically verified in Appendix B.9,
available online. On the other hand, after sample selection, our
semi-supervised contrastive learning procedure can also be (ap-
proximately) regarded as a partial label learning problem if we
regard the noisy data are related to a candidate set of full labels.
Hence, PiCO+ also runs an EM algorithm that trains robust
classifiers with the help of the clustering effect of contrastive
learning.

VI. RELATED WORKS

Fartial Label Learning: (PLL) allows each training exam-
ple to be annotated with a candidate label set, in which the
ground-truth is guaranteed to be included. The most intuitive
solution is average-based methods [3], [4], [38], which treat
all candidates equally. However, the key and obvious drawback
is that the predictions can be severely misled by false positive
labels. To disambiguate the ground-truth from the candidates,
identification-based methods [39], which regard the ground-
truth as a latent variable, have recently attracted increasing atten-
tion; representative approaches include maximum margin-based
methods [40], [41], graph-based methods [7], [8], [42], [43], and
clustering-based approaches [6]. Recently, self-training meth-
ods [20], [21], [22] have achieved state-of-the-art results on
various benchmark datasets, which disambiguate the candidate
label sets by means of the model outputs themselves. But, few
efforts have been made to learn high-quality representations to
reciprocate label disambiguation.

Contrastive Learning: (CL) [13], [44] is a framework that
learns discriminative representations through the use of instance
similarity/dissimilarity. A plethora of works has explored the
effectiveness of contrastive learning in unsupervised represen-
tation learning [13], [44], [45]. Recently, [9] propose supervised
contrastive learning (SCL), an approach that aggregates data
from the same class as the positive set and obtains improved
performance on various supervised learning tasks. The success
of SCL has motivated a series of works to apply contrastive learn-
ing to a number of weakly supervised learning tasks, including
noisy label learning [27], [46], semi-supervised learning [47],
[48], etc. Despite promising empirical results, however, these
works, lack theoretical understanding. [11] theoretically show
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that the contrastive learning favors alignment and uniformity,
and thoroughly analyzed the properties of uniformity. But, to
date, the terminology alignment remains confusing; we show it
inherently maps data points to a mixture of vMF distributions.

Noisy Label Learning (NLL) [49] aims at mitigating overfit-
ting on mislabeled samples. One popular strategy is to design
robust risk functions, including but does not limit to robust cross-
entropy losses [24], [50], [51], sample re-weighting [52], [53],
[54] and noise transition matrix-based loss correction [55], [56],
[57]. Another active line of research relies on selecting clean
samples from noisy ones [58]. Most of them adopt the small-loss
selection criterion [14], [59] which is motivated by the fact that
deep neural networks tend to memorize easy patterns first [37].
Based on that, the state-of-the-art NLL algorithms [16], [27],
[60] regard the unchosen samples as unlabeled and incorpo-
rate semi-supervised learning (SSL) for boosted performance.
Inspired by these works, PiCO+ incorporates a new distance-
based selection criterion and extends the contrastive learning
framework to facilitate SSL training. The most related one to
our work is [5] which theoretically analyzes the robustness of
average-based loss functions for the noisy PLL task. But, [5]
does not provide a new empirically strong solution. Instead, our
PiCO+ framework establishes promising results against label
noise that makes the PLL problem more practical for open-world
applications.

Out-of-Distribution Detection: aims at detecting input sam-
ples with different characteristics and labels from the training
data [12], [32], [61]. A plethora of works has been designed to
separate the OOD samples with the pre-trained network, includ-
ing calibrated output probability [62], maximum softmax prob-
ability [63], energy function [18], Mahalanobis distance [64],
etc. The most related method to our work is the energy score
function [18] which is computed via LogSumExp and is the
soft maximum of logits. In our work, attempt to investigate the
challenges of out-of-distribution noise in the field of PLL.

VII. CONCLUSION

In this work, we propose a novel noisy partial label learning
framework PiCO+, which is mainly driven by a PiCO algorithm.
The key idea is to identify the ground-truth label from the can-
didate set by using contrastively learned embedding prototypes.
Additionally, our PiCO+ extends PiCO by sample selection
and semi-supervised training, making it able to learn robust
classifiers from noisy partial labels. Theoretical analysis shows
that PiCO can be interpreted from an EM algorithm perspective.
Empirically, we conducted extensive experiments and show
that PiICO and PiCO+ establish state-of-the-art performance
and demonstrate robustness to both in-distribution noise and
out-of-distribution noise. Our results are competitive with the
fully supervised setting, where the ground-truth label is given
explicitly. Applications of multi-class classification with am-
biguous labeling can benefit from our method, and we anticipate
further research in PLL to extend this framework to tasks beyond
image classification. We hope our work will draw more attention
from the community toward a broader view of using contrastive
prototypes for partial label learning.
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