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Abstract

Motivation: metal-binding proteins have a central role in maintaining life processes. Nearly one-third of known
protein structures contain metal ions that are used for a variety of needs, such as catalysis, DNA/RNA binding,
protein structure stability, etc. Identifying metal-binding proteins is thus crucial for understanding the mechanisms
of cellular activity. However, experimental annotation of protein metal-binding potential is severely lacking, while
computational techniques are often imprecise and of limited applicability.

Results: we developed a novel machine learning-based method, mebipred, for identifying metal-binding proteins
from sequence-derived features. This method is over 80% accurate in recognizing proteins that bind metal ion-
containing ligands; the specific identity of 11 ubiquitously present metal ions can also be annotated. mebipred is
reference-free, i.e. no sequence alignments are involved, and is thus faster than alignment-based methods; it is also
more accurate than other sequence-based prediction methods. Additionally, mebipred can identify protein metal-
binding capabilities from short sequence stretches, e.g. translated sequencing reads, and, thus, may be useful for
the annotation of metal requirements of metagenomic samples. We performed an analysis of available microbiome
data and found that ocean, hot spring sediments and soil microbiomes use a more diverse set of metals than human
host-related ones. For human microbiomes, physiological conditions explain the observed metal preferences.
Similarly, subtle changes in ocean sample ion concentration affect the abundance of relevant metal-binding
proteins. These results highlight mebipred’s utility in analyzing microbiome metal requirements.

Availability and implementation: mebipred is available as a web server at services.bromberglab.org/mebipred and
as a standalone package at https://pypi.org/project/mymetal/.

Contact: arielaptekmann@gmail.com or yana@bromberglab.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins bind a diverse set of metal ion-containing cofactors to sus-
tain the functional requirements of life. Metal ions, e.g. iron, magne-
sium, copper, etc., and metal-containing ligands, e.g. heme and
iron–sulfur clusters, participate in protein folding/stability (Arnold
and Zhang, 1994), DNA replication (Batra et al., 2006), catalysis
(Bennett, 1973), redox chemistry (Bennett, 1973) and many other
cellular activities. Proteins could thus be described as sophisticated

electron transfer nanomachines that depend on transition metal ions
to perform their functions (Falkowski, 2015). Of the proteins whose
3D structure is available in the Protein DataBank (PDB) (Bernstein
et al., 1977), roughly a third (49 996 of 152 346) are metal-binding
proteins, an observation which may, but does not necessarily, reflect
their high abundance in nature. Overall, it appears that only a small
fraction of metal-binding protein sequences have been identified.
The Swiss-Prot (2021) database, for example, contains over half a
million manually curated protein sequences, of which �14%
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(94 720) are annotated as metal-binding; specific of the binding ac-
tivity of only a few of these (<1%, 4251 proteins) has thus far been
experimentally verified (Feb 2020). Furthermore, of the nearly 180
million proteins in TrEMBL, generated via translation of sequenced
genome open reading frames (ORFs) and having no experimental
annotations, only about 5 million sequences, i.e. <3%, are predicted
to be metal-binding (UniProt Consortium, 2019).

Different levels of protein redundancy in distinct databases may
be an underlying cause for this difference in fractions of metal-bind-
ing proteins. However, another major reason is that we are still un-
able to accurately identify metal-binding proteins directly from their
sequences and, in some cases, even from their high-resolution struc-
tures (Whittaker, 2003). Experiments, e.g. mass spectrometry (Deng
et al., 2010) and crystallography (Handing et al., 2018), can detect
protein–metal interactions, but these analyses are expensive and
time-consuming, as well as error-prone for both technical and bio-
logical reasons. For example, cambialistic proteins can use metal
cofactors interchangeably (Lancaster et al., 2004) and thus are likely
to be misclassified when experimentally assessed for binding of spe-
cific metals. Similarly, some experiments use non-native metals for
technical and/or crystallization purposes (Laganowsky et al., 2011),
lose record of metal ion-binding ability/specificity in the process of
protein purification (Goto et al., 2000) or even simply incorrectly
identify the bound metals due to low experimental resolution
(Chaudhuri et al., 1999). Thus, only a small portion of extant metal-
binding protein sequences have likely been identified.

There is no simple way to establish from sequence whether a
protein binds a metal or not, but there have been multiple attempts
to predict binding of single ion ligands (including metals) from pro-
tein 3D structure. While a complete account of all relevant methods
present in the literature is beyond the scope of this work [for a re-
view see Lavecchia and Di Giovanni (2013)], here we highlight
some trends in method development.

metal-binding sites in proteins frequently comprise a shell of
hydrophilic residues that can be identified in protein structure
(Yamashita et al., 1990). For example, one algorithm (Nayal and Di
Cera, 1994) detects Ca2þ binding via identification of Ca2þ ion co-
ordination by a layer of oxygen atoms supported by an outer shell of
carbon atoms. Available structure-based methods thus use the
knowledge of hydrophilic shell residues to make predictions (Babor
et al., 2008; Lin et al., 2016; Nayal and Di Cera, 1994; Un et al.,
2004; Yamashita et al., 1990). The main disadvantage of these
approaches is that many such hydrophilic shells do not bind metals
(Gregory et al., 1993). Additionally, structure-based methods are
limited by the relatively small number of experimentally determined
protein structures available for analysis (Bernstein et al., 1977).
When a protein structure is available, however, these methods often
attain better performance than ones based on sequence alone.

To circumvent the limitation in the number of 3D structures,
methods using homology modeling of proteins were developed.
Early attempts at this type of prediction, e.g. MetSite (Sodhi et al.,
2004), had poor performance (58% precision at 28% recall).
Overall, methods based on homology modeling tend to perform
poorly when predicting sequences modeled with structural templates
of <40% sequence identity; e.g. 42% precision at 65% recall as per
Levy et al. (2009). Moreover, these methods attain a better perform-
ance when focusing on a single metal ion than when trying to de-
scribe binding of multiple ions, e.g. Liu et al. calcium-binding site
predictor (99% precision at 75% recall) (Liu and Altman, 2009)
and Zhao et al. zinc-binding predictor (90% precision at 72% re-
call) (Zhao et al., 2011).

The computational prediction of metal-binding can be similar in
essence to the prediction of other functional characteristics of pro-
teins from sequence, e.g. mutation effects (Bromberg and Rost,
2007), residue importance (Miller et al., 2019) or subcellular local-
ization (Goldberg et al., 2014). Here, evolutionary profiles, pre-
dicted structure, physicochemical properties and sequence
descriptors are combined as features for machine learning. One such
approach to the prediction of metal-binding (Lu et al., 2006) has
attained fairly high accuracy (70% overall accuracy). Other meth-
ods combine structural and sequence features, e.g. Lin et al. (2016)

report accuracies above 92%. Combining sequence, structure and
residue contact features in a random forest framework, the tool
MetalExplorer (Song et al., 2017) predicts the binding of eight metal
ions. Performance across ions is varied, with a precision of 60% for
recalls ranging from 59% to 88%.

There are also structure-independent (purely sequence-based)
methods to predict metal-binding. Function transfer by homology,
i.e. the assumption that similar sequences perform similar functions,
is one of the simplest ways to infer metal-binding for protein sequen-
ces. Similarity is easily established by alignment methods. However,
a well-defined alignment score cutoff for identifying functionally
similar proteins has yet to be established (Mahlich et al., 2018).
Moreover, sequence similarity, or even well-characterized hom-
ology, may be misleading as homologs can evolve to bind different
metals due to changing environmental pressures (Capdevila et al.,
2017). It is also possible to predict metal-binding using sequence
conservation of residues near those directly interacting with Zn2þ,
Cu2þ, Fe2þ, Fe3þ and Co2þ ions with a high accuracy (Cao et al.,
2017); proteins binding other ions were not identified using this
method. Pattern recognition [e.g. hidden Markov models, HMMs
(Bateman et al., 2002) and regular expressions, e.g. Andreini et al.
(2004)] can also be used to expand the suspected set of metal-bind-
ing sequences on the basis of remote homology. Unfortunately
HMMs, designed to identify evolutionary conserved sequence pat-
terns, are too specific and, thus, not well-suited for de novo metal-
binding prediction.

More complicated sequence-based metal-binding predictors
often use machine learning techniques [e.g. neural networks
(Nakata, 1995), support vector machines (Passerini et al., 2006,
2007) and random forests (Kumar, 2017)]. The performance of
these methods varies; e.g. Lin et al. (2005) reported high precision
for all ions, albeit at recall as low as 35%. Combining different
methods to identify specific residues involved in metal-binding, e.g.
Zn-binding cysteines and histidines, also produced high accuracy
(Passerini et al., 2006). Note that while all the above methods report
good performance, we were unable to validate these reports using
our own data as the webserver/standalone versions (where applic-
able) were non-functional and downloadable scripts were absent.

Here we present mebipred (metal-binding predictor), a computa-
tional method for the prediction of protein metal-binding potential
based on sequence information alone. Our method is widely applic-
able because it does not depend on the existence of a high-resolution
structure, has a better performance (area under the precision/recall
curve¼0.91) and is faster (17 000 sequences/minute) than existing
alignment-based tools, and can be used to predict metal-binding
using whole protein sequences as well as short peptide fragments.
The latter ability makes it potentially suitable for annotation of
shotgun-sequenced unassembled metagenomic data/reads. mebipred
is also alignment-free and, thus, useful for the analysis of newly
identified proteins with no known homologs. Finally, as mentioned
previously, mebipred is the only currently publicly available method
for sequence-based prediction of metal-binding.

2 Materials and methods

2.1 Datasets
We explored proteins binding Na, K, Ca, Mg, Mn, Fe, Cu, Ni and
Zn metal-containing ligands, regardless of their oxidation state (e.g.
Fe2þ and Fe3þ are both in the Fe class) or context (e.g. Fe-containing
hemes are in the same class as Fe ions). We retrieved all protein
structures with these metal-containing ligands from the PDB (July
2019) and parsed them using the BioPython PDB module
(Hamelryck and Manderick, 2003). One naive approach to identify
a set of metal-binding proteins is to compile all structures that have
a metal ion. However, in the case of heteromers, i.e. protein com-
plexes that contain multiple non-identical chains, it is possible that
only one of the chains binds the metal. We thus considered as metal-
binding only the amino acid sequences/chains with at least one
heavy atom within 5 Å of the metal ion (METAL set). All other
chains were included in the NO_METAL set, along with all PDB
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structures that contained no metals at all. Note that this criterion for
the differentiation of metal-binding/non-binding chains could lead
to disagreement with existing metal-binding annotations
(Supplementary Data: PDB_chain_MB_5.0A).

For the METAL set of proteins, we further identified the specific
metal ion that the protein bound. These were added as positives to the
specific ion (Na, K, Ca, Mg, Mn, Fe, Cu, Ni or Zn) -set; all other pro-
teins, metal-binding or not, were added to the negatives set for that ion
(Supplementary Data: PDB_chain_<METAL>_5.0A).

We clustered all (metal-binding and non-binding) sequences at
70% identity using CD-HIT (Fu et al., 2012) (Supplementary Table
S1). We decided to use 70% sequence identity as a threshold for
clustering because sequence functionality quickly diverges below
this threshold (Devos and Valencia, 2000), while protein families
can be defined at around this sequence identity as well (Todd et al.,
2001). Note that earlier studies have considered lower cutoffs for
defining similarity of metal-binding proteins, e.g. 30% and 50%, re-
spectively, for Cao et al. (2017) and Kumar (2017). However,
whether a specific level of sequence identity constitutes a good
proxy for homology (Pearson, 2013) is debatable and beyond the
scope of this study. We further considered clusters containing more
than 98% of sequences from the METAL set to be positive (5333
clusters), and those containing 98% of sequences from the
NO_METAL set to be negative (28 578 clusters). Thus, most of the
clusters (�81%; 33 911 of 42 085) were either in the METAL or
NO_METAL set (Supplementary Fig. S1). We retained the MIXED
sequence clusters not used in training for testing purposes. We simi-
larly defined the specific ion-binding clusters using the 98% content
cutoff, e.g. K-binding positives if 98% of the sequences in the cluster
are K-binding and not K-binding negatives if 98% of the sequences
in the cluster are not K-binding.

2.2 Feature extraction
To describe the proteins in our METAL and NO_METAL sets, we used
only sequence-based features: (i) amino acid composition, (ii) amino
acid physicochemical properties and (iii) a count of the metal-binding
amino acid 5mers (220 features total; Supplementary Figs. S2 and S3).

2.3 Machine Learning
Using the above features, we trained a feed-forward multi-layer per-
ceptron with back-propagation using the Keras (Chollet, 2017) im-
plementation in the machine learning framework Tensorflow
(Abadi et al., 2016). Our model is a sequential network with the
RMSprop (Dauphin et al., 2015) optimizer and a learning rate
(lr)¼0.000005. For the optimization of the learning rate parameter,
we started with an lr¼0.5, reduced it by an order of magnitude in
each iteration of training and set the value to the one that minimizes
the loss (calculated as binary cross-entropy). We only optimized the
learning rate (on the training set). All other parameters were set at
default values according to the Keras manual (Chollet, 2017). Each
model was trained for 1000 epochs (stopping time selected based on
previous experience with similar datasets). The input layer consisted
of 219 nodes—one node per feature. There were two hidden layers,
as these are sufficient to approximate most partition problems and
require less computational power than more hidden layers (Huang,
2003). Each layer had 219 nodes with a rectified linear unit activa-
tion function (or “ReLU”) and a dropout of 0.2. Finally, there was a
single-node output layer, using the sigmoid activation function and
a default prediction (yes/no) cutoff set at 0.5.

We trained and tested our model for identifying metal-binding
proteins using 10-fold cross-validation as follows: (i) we split our set
of METAL (positive) and NO_METAL (negative) sequence clusters
to create 10 equally sized groups, with 50% positive and negative
sequences, each; (ii) we then built 10 models by rotating through the
10 splits, using one group for testing while training with the other
nine groups. This cross-validation was used to estimate the perform-
ance of the method; the final mebipred model was constructed using
all positive sequences and an equal number of negatives.

We followed the same protocol for each metal ion model using
the respective positive and negative data (Supplementary Data:

Positives). For these, we added one more feature to out input set—
the score of the general metal-binding model above.

2.4 Performance metrics
To measure the performance of our method we calculated overall
accuracy, as well as positive precision, recall and F-measure
(Equation 1). True positives (TP) are metal-binding proteins pre-
dicted as metal-binding, false positives (FP) are metal non-binding
proteins predicted as metal-binding, false negatives (FN) are metal-
binding proteins predicted as metal non-binding, and true negatives
(TN) are metal non-binding proteins predicted non-binding.

Precision ¼ TP

TP þ FP
Recall ¼ TP

TP þ FN

Accuracy ¼ TP þ TN

All predictions

F1 ¼ 2 � Precision � Recall

Precision þ Recall

: (1)

Comparing model performance to existing tools. To compare
our method to a simple alignment-based approach, we extracted all
sequences from the PDB. We generated a database of these sequen-
ces using the makeblastdb (-blastdb_version¼5 and no extra
parameters). We then ran BLAST (ncbi-blastþ V. 2.10.4) (Altschul
et al., 1990; Camacho et al., 2009) with default parameters (eval 1;
max_target_seqs 1000000) for all-to-all comparisons of protein
sequences in this database. We used as gold standard our METAL
set, i.e. any sequence that aligned to a protein from the METAL set
with a score better than threshold (range e-val ¼ [10�20,1] in steps
of two orders of magnitude) was considered to be metal-binding.
For each e-value threshold, we counted the number of TPs (metal-
binding proteins aligning to other metal-binding proteins), FPs
(metal non-binding proteins aligning to metal-binding proteins) and
FN (metal-binding proteins not aligning to any other metal-binding
proteins). Note that since we wanted to evaluate the use case where
an unknown sequence is being annotated, we excluded self-hits from
BLAST results but did not exclude hits to homologous sequences.

We further compared our performance to that of multiple pub-
lished tools. For MetalDetector2 (Table 2), we used a set of non-
redundant metal-binding PDB structures described as the evaluation set
of that method’s manuscript (Passerini et al., 2011) (extracted in Dec
2011; 2982 proteins, 1340 metal-binding). We also compared
mebipred to two sequence-based methods (Cao et al., 2017; Kumar,
2017) and a structure-based method (MIB) (Lin et al., 2016) using the
data from the BioLip database (Yang et al., 2013) (105 152 proteins,
23 094 metal-binding, non-redundant at 90% sequence identity).

2.5 Generating short peptides
We fragmented all �50-residue protein sequences in the PDB
(445 763 sequences) into 50-residue fragments, using a sliding win-
dow of one (101 054 024 fragments total).

2.6 Metagenomic sample processing
To analyze metagenomic samples, reads were trimmed with trimmo-
matic (Bolger et al., 2014) using default parameters. Trimmed reads
were filtered with phred (Ewing and Green, 1998) using a score cut-
off of 28. Reads were then analyzed in two ways:

1. All reads were translated into peptides within the six reading

frames using Biopython’s (Cock et al., 2009) standard bacterial

codon table. Translated reads of �15 amino acids were dis-

carded. Remaining reads were used as input to mebipred.

2. Reads were assembled using metaSPAdes (Nurk et al., 2017)

with variable kmer sizes (k ¼ 21, 33, 55, 77, 99 or 127). ORF

calling and translation for the resulting contigs was done by

Prokka (Seemann, 2014). Resulting peptide sequences were used

as input to mebipred.
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3 Results and discussion

3.1 Available metal-binding protein structures are not

very diverse
The high-resolution structure of most proteins is not yet available,
although this may change soon (Jumper et al., 2022). If a protein is
of particular interest for the scientific community, it might be over-
represented in the PDB; e.g. >1300 structures of the SARS-COV2
spike protein. Thus, whether the known protein structures are repre-
sentative of all naturally occurring proteins is debatable and outside
the scope of this work (Jaroszewski et al., 2009). However, available
structures constitute the most reliable set of metal-binding proteins
(Andreini et al., 2013; Putignano et al., 2018). A third (49 996 of
152 346) of the PDB entries contain at least one of the metal atoms
considered here; corresponding to 106 508 metal-binding sequences
of 445 763 total. Removing 100% identical sequences further
reduces this number to 30 217 metal-binding sequences of 102 479
total (Supplementary Data: Positives).

These 102K sequences can further be clustered at 70% sequence
identity (Fu et al., 2012) into 40 850 clusters (representing 39 066
structures) of which only 9% (3542 structures) have at least one se-
quence from the METAL set. Note that a single structure can bind
multiple different ligands and is likely to contain more than one
chain binding a certain ion.

3.2 mebipred attains exemplary performance
In cross-validation, the first tier model of mebipred identified non-
redundant metal-binding proteins (binary yes/no) with nearly 92%
precision at 26% recall (at 0.5 cutoff)—more than twice the preci-
sion obtained by BLAST at a similar recall on the same dataset
(Fig. 1A). We then calculated F1max ¼ 0.73 (Materials and methods;
precision ¼ 0.71 and recall ¼ 0.75; Equation 1; Table 1), defining a
new default cutoff ¼ 0.4. Note that we also evaluated using a
RandomForest classifier instead of a Neural Net, but its perform-
ance (AUPRC of 0.42 versus 0.83) was worse than that achieved by
mebipred (Supplementary Fig. S4).

Furthermore, performing the BLAST search for all sequences in
the PDB took �6 weeks (445 763 chains in 152 346 structures),
�7.25 s/sequence on average on one core of a 2.4-GHz machine
with 16G RAM. The same dataset was processed by mebipred on
the same machine in 29 min (�3.5 � 10�3 s/seq). While both BLAST
and mebipred can run on multiple cores, the difference in speed is
likely to be retained. That is, BLAST compute time is expected to
grow both with database size and the number of queries (Kent,
2002), while mebipred prediction time only reflects the number of
queries, i.e. the algorithm scales as (O)n.

Finally, we evaluated mebipred on the NO_METAL (34 610
randomly selected from 110 140 sequences) and METAL (34 610
sequences) proteins from MIXED clusters excluded from training
(balanced set; Supplementary Fig. S5, identifiers and sequences in
Additional Data: positive/negative.txt and pdb_seqres.fasta). For
this set of previously unseen proteins, our model attained an F1max

¼ 0.74, AUPRC¼0.72 (as compared to F1max ¼ 0.73,
AUPRC¼0.83 for the cross-validation evaluation); F1max for this
set was attained at the mebipred cutoff ¼ 0.4, i.e. as previously
selected. Note that the metal-binding proteins in this set are harder
to identify because of their inherent (i.e. MIXED cluster) similarity
to non-metal-binding sequences. We also compared performance
across sequences in this set at different degrees of identity to the
training set (Supplementary Table S2). We found that mebipred pre-
dictions generalize well, with performance across the different
sequence-identity datasets varying by no more than a few AUPRC
percentage points.

The second tier of mebipred models predicts protein binding to a
ligand that contains specifically one of the 11 ions under consider-
ation. In cross-validation (Materials and methods), mebipred was
accurate in predicting ion specificity of individual proteins
(Table 1). Note that we did not build predictors for proteins binding
other biologically active metals (e.g. vanadium, molybdenum, titan-
ium, etc.), because the number of available structures binding these
was insufficient to train a model of this kind. These could be

incorporated into mebipred in the future if more metal-binding pro-
tein structures are resolved.

Note that the predictions of the second tier of mebipred do not
always match those of the first tier. A metal-binding prediction can
still be true in the absence of the specific ion prediction; i.e. a protein
can bind metals that are not part of our ion collection. A different
type of discrepancy is when the protein is predicted to not be metal-

Fig. 1. mebipred outperforms BLAST in identifying metal-binding proteins and pepti-

des. (A) At all cutoffs, mebipred (MBP; dashed line) is more precise than BLAST (solid

line). For example, at the default cutoff (score¼ 0.4; black dot) it achieves 71% preci-

sion at 75% recall, as compared to 29% precision attained by BLAST at a similar re-

call. (B) mebipred also outperforms BLAST in identifying the metal-binding

propensity of proteins from their 50 amino acid fragments. For example, for half of

the fragments, it attains 67% accuracy, as compared to 35% attained by BLAST

Table 1.mebipred performance across metals

ANN AUROC AUPRC Preca Reca F1a

metal-binding 0.91 0.83 0.71 0.75 0.73

Fe 0.95 0.95 0.96 0.91 0.94

Ca 0.86 0.91 0.91 0.77 0.83

Na 0.83 0.83 0.86 0.68 0.76

K 0.91 0.91 0.88 0.84 0.86

Mg 0.82 0.82 0.79 0.8 0.8

Mn 0.91 0.91 0.89 0.83 0.86

Cu 0.97 0.97 0.98 0.92 0.95

K 0.91 0.91 0.88 0.84 0.86

Co 0.85 0.85 0.89 0.71 0.79

Ni 0.91 0.86 0.84 0.67 0.75

Zn 0.9 0.92 0.95 0.7 0.8

aAUCs, F1, Precision, and Recall are reported at a cutoff ¼ 0.4 for the first

(metal-binding, MB) tier and at cutoff ¼ 0.5 for the second tier of per ion

mebipred predictions; in both cases, the default cutoffs are established via

F1max. At the cutoff ¼ 0.5, the first tier model attains 0.92 precision at 0.26

recall (see Supplementary Data: AUPRCTraining_folds for per-fold

performance).
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binding, while the second predictor tier identifies a specific ion pref-
erence. We evaluated the second tier’s ability to predict metal-bind-
ing by considering any positive ion binding prediction (at the default
cutoff ¼ 0.5) as an indication of metal-binding. This approach has a
precision of 0.38 and a recall of 0.8; increasing stringency to cutoff
of 0.9, improves performance (precision¼0.8, recall ¼ 0.78). For
comparison, the first tier at the default cutoff of 0.4 has the same
precision and a lower recall of 0.5 (Table 1). These observations
suggest that in cases of disagreement between the tiers, high-scoring
predictions of the second tier can be trusted to identify metal-bind-
ing proteins.

Our evaluation of mebipred performance against that of other
methods on our data was complicated by the absence of working
web servers/standalone packages. Thus, we ran our tool on the data
used for testing by the different methods. mebipred predicted metal–
ligand binding better than MetalDetector2 (Passerini et al., 2011)
(Table 2), a tool predicting metal-binding sites. It also outperformed
methods described in Cao et al. (2017) and Kumar (2017) (Table 3),
but did worse than structure-based MIB (Lin et al., 2016). We were
unable to compare mebipred performance to that of MetalExplorer
(Song et al., 2017) due to unavailability of either the method or its
benchmark dataset. Note that here we used the measure of accuracy
to describe performance (Equation 1) since it was reported in the
corresponding publications, but precision and recall might be more
relevant for imbalanced datasets (Ferri et al., 2009). We also note
that the sequence overlap between mebipred’s training data and test-
ing sets of other methods may limit this performance evaluation.
However, as the definition of metal-binding proteins differs between
methods, e.g. we only consider chains in direct contact with a metal
to be binding instead of all chains in the structure, we do not expect
that mebipred’s performance is consistently overestimated.

3.3 mebipred predicts protein metal-binding propensity

from short fragments
We extracted a set of 101 054 024 50-residue peptides from the
PDB protein sequences (Materials and methods); these correspond
to the typical lengths of peptides that could be generated by

translating DNA reads produced by next-generation sequencing
(Jünemann et al., 2013). We predicted metal-binding for these frag-
ments using mebipred and aligned them (via BLAST) to PDB sequen-
ces following the same procedure as for complete proteins
(Materials and methods; excluding hits to self). mebipred outper-
formed BLAST (Fig. 1B) in identifying peptides generated from
metal-binding proteins. BLAST is not designed to deal with short-se-
quence alignments (Altschul et al., 1990; Campagna et al., 2009)
and our results suggest that sequence identity may not be an accur-
ate indicator of metal-binding either. Note that it is still possible
that other alignment methods or substitution matrices, i.e. penaliz-
ing substitutions of residues often involved in metal-binding, could
yield better results.

3.4 Ion binding preferences are consistent per Pfam

family
We ran mebipred on the 607 903 Pfam proteins (8207 families)
whose structures are available in the PDB. For 61% of the families,
either all member proteins were predicted to be metal-binding or
none were (Supplementary Data: stats_with_id). Of per metal pre-
dictions, 69% were cases where no members of one family bind that
metal and 5% were cases where all of members of one family bind
it—a total of 74% agreement of per ion predictions for members in
the same family. Our results indicate that metal-binding preferences
are mostly consistent within a Pfam family. This is expected, as
Pfam domains reflect homology that often suggests similar function-
ality (Sharma et al., 2019). Specifically, as we expect Pfam domains
to be sequence similar, we also anticipate sequence-based models to
make similar predictions for all members of a given domain.
However, different ion preferences for a quarter of the families also
suggest that specific metal availability within individual environ-
ments may have driven divergent evolution of new ligand-binding
functionalities across organisms (Rausell et al., 2010). Note that
prediction error and cambialistic activity (i.e. ability to bind mul-
tiple ions) of certain proteins, which is not captured by this summary
of ion binding, could also contribute to this discrepancy in metal-
binding preferences of single family members.

3.5 mebipred predictions do not always reflect existing

annotations of metal-binding
We compared our METAL and NO_METAL datasets with Swiss-
Prot metal-binding annotations. Of the 253 377 PDB sequences
mapped to Swiss-Prot [PDBSWS (Martin, 2005); April 2021],
53 652 (�20%) had annotations that disagreed with ours. Of these
32 802 were in our METAL set, i.e. in a PDB structure with a metal
ion within 5 Å of the chain but were not described as metal-binding
by Swiss-Prot. Manual examination of 10 randomly chosen discrep-
ancies confirms that the metal ion is present in a functional pocket,
suggesting that Swiss-Prot annotations are incomplete. The remain-
ing 20 850 sequences were described in Swiss-Prot as metal-binding
but were not in our METAL set.

We ran mebipred on these 20 850 PDB–Swiss-Prot discrepancies.
Our predictions (binary metal-binding at default cutoff) agreed with
Swiss-Prot annotations two-thirds of the time (64%, 13 374 sequen-
ces, predicted metal-binding) even though this was in opposition of
the PDB-based mebipred’s training data and would thus be consid-
ered a false positive. Crystal structures of metal-binding sequences
may not contain a metal for a number of reasons, including biologic-
ally irrelevant binding, i.e. a metal can be bound by a protein, but is
not under physiological conditions (Pidugu et al., 2017), or experi-
mental/technical crystallization decisions (Laganowsky et al., 2011).
However, we expect that the 1302 (6% of 20 850) non-metal-bind-
ing chains from metal ion-containing PDB structures are most likely
to be true non-binders of that ion. In fact, mebipred predictions for
these proteins agreed with PDB 41% of the time (540 sequences pre-
dicted to be non-binding)—a somewhat better agreement (versus
36%) than that for other designated metal non-binders.

A closer inspection further informs the reasons for database an-
notation differences. For example, 32 of the 540 predicted non-
metal-binding PDB chains map to the Rieske subunit of cytochrome

Table 2.mebipred performance versus MetalDetector2

Precision(%) Recall(%)

Ligand N MetalDetector2 mebipred

Zn 817 63 90 70

Fe(Heme) 234 67 93 77

Fe(Fe-S) 202 68 97 67

Cu 87 57 96 64

Note:We report Heme and Fe-S performance separately although both

methods predict Fe binding without further specification.

Table 3.mebipred accuracy versus other methods

Ligand Cao et al. (2017) Kumar (2017) MIB (Lin et al., 2016) mebipred

Sequence Sequence Structure Sequence

Ca 74.8 75.4 94.1 86.7

Co 83 85.3 94.7 86.2

Cu 96.3 78.1 95.3 87.2

Fe2 91.3 75.6 95.1 89.2

Fe3 87.8 74 94.9 89.2

K 80.3 – – 74.0

Mg 75.3 74 94.6 75.6

Mn 83.2 68.8 95.0 89.7

Na 79.4 79.4 – 84.5

Ni – 90.7 94.7 79.2

Zn 83 69 94.8 82.2
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BC1—an Fe–S cluster binding protein (Swiss-Prot ID: Q5ZLR5)
(Zhang et al., 1998). None of these 32 chains, however, are com-
plete sequences of the protein and none contain the part of the struc-
ture that would bind the Fe–S cluster. In this particular case, the
annotation discrepancy arises from a technical decision not to crys-
tallize the metal-binding regions (Zhang et al., 1998). While this
level of scrutiny for every disagreement between databases is beyond
the scope of this work, we note that an annotation discrepancy does
not necessarily constitute a ‘bug’ but, rather, a feature of the
method; i.e. mebipred could be used to resolve database annotation
conflicts.

3.6 mebipred can predict metal-binding from

metagenome read translations
We compared the metal-binding profiles of the Black Sea metage-
nomic samples obtained at different depths in a water column
(Cabello-Yeves et al., 2020) (Supplementary Data: counts_sra),
extracted from NCBI-SRA (Leinonen et al., 2011) and processed as
in Materials and methods. The relative frequencies of the resulting
metal-binding protein/peptide predictions from the assembled (p)
and unassembled (q) data were very similar (Supplementary Table
S3); Euclidean distance (p, q) ¼ 0, where n 2 (Ca, Co, Cu, Fe, K,
Mg, Mn, Na, Ni, Zn) indicates identical metal-binding frequency
profiles (Equation 2). This result suggests that mebipred can reliably
predict metal-binding from translations of metagenomic reads
(Materials and methods).

Euclidean Distance ðp; qÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 � q1Þ2 þ ðp2 � q2Þ2 þ . . .þ ðp10 � q10Þ2

q
:

3.7 Diversity of metal-binding proteins highlights

environmental differences
Across a few environmental samples, we observed protein metal-
binding signatures consistent with environmental features and
subtypes.

3.7.1 Black Sea water column

From the above analysis, we observed that the percentage of reads
predicted as metal-binding was �1% for all Black Sea samples
(Supplementary Table S4). The Black Sea is a heavily stratified body
of water, where pH, oxygen and light gradients have been character-
ized (Stanev, 1990). The sea surface layers where photosynthesis can
occur, i.e. the epipelagic zone, are, by definition, up to 200 m in
depth; on the Black Sea, however, almost no photosynthetic activity
can be found below 100 m (Callieri et al., 2019). The epipelagic
zone samples in our set are slightly enriched (2% increase) in
Mg-binding proteins (Fig. 2) in line with the use of Mg in
chlorophyll (Chu, 1942).

In non-photosynthetic environments, we observed a trade-off be-
tween the enrichment of Mg and Fe binding proteins, which can be
accounted for by the lower pH increasing Fe availability and by the
abundance of iron-reducing organisms at greater depths (Canfield
et al., 1996). The maximal difference between the abundances of
predicted metal-binding proteins is observed between the samples
taken at depths of 50 and 170 m, i.e. bypassing the photosynthetic
limit; as indicated by the steep slope of the line tracing the Euclidian
distance between metal-binding protein abundance vectors of indi-
vidual samples (Fig. 2). Sample metal-binding preferences appear
more similar below 170 m (lower absolute value of slope). The dif-
ference between consecutive depths until 1000 m is in line with the
changes in the environment described by the pH chemocline,
changes in reduction potential, and reduced light (Jørgensen et al.,
1991); i.e. the deeper one goes the lower the pH, the less calcium,
and the more Fe (Lewis and Landing, 1991). The change in the sign
of the slope indicating increasingly different samples at 1000 and
2000 m likely accompanies a change in the microbial community
(Cabello-Yeves et al., 2020). This may reflect the transition from the

Mesopelagic (200–1000 m), where some light and oxygen are still
available, to the Antropelagic region (1000–4000 m), where there is
not any of either. Alternatively, this change can highlight the fact
that 2000 m is essentially the seafloor (Karatay, 2007).

3.7.2 Hot spring sediments

We further analyzed 16 metagenomic samples from hot spring sedi-
ments obtained from NCBI-SRA DB (Supplementary Data:
counts_sra) and described in Fullerton et al. (2021). The proportion
of genetically encoded proteins binding each metal was similar
(within 2%) for all samples (Supplementary Table S5). We observed
a significant correlation between the relative frequency of proteins
binding iron and the iron environmental concentrations (Pearson
r¼0.54 P¼0.03; Supplementary Tables S5 and S6); for zinc and
manganese, the correlation was positive, but not significant
(Pearson r¼0.1 and 0.18, P¼0.71 and 0.05, respectively). Copper
and nickel binding proteins, on the other hand, had a negative
correlation (not significant) with the corresponding environmental
concentrations (Pearson r ¼ �0.1/P¼0.7 and Pearson r ¼ �0.43/
P¼0.1, respectively). Note that only the abundance of iron-binding
proteins was significantly correlated with the environmental
concentrations.

We lack complete information about metal requirements for dif-
ferent microbial strains. There is evidence that metabolites reflect
the microbial community composition by altering the abundance of
metabolite-relevant genes (Mallick et al., 2019)—a finding only
somewhat in line with our observations. However, why did only
iron (Fe) concentrations significantly correlate with iron-binding
protein abundance? Fe is considered a major element (>1000
p.p.m.), while others (Zn, Mn, Cu, Ni) are trace elements
(<100 p.p.m.) (Scherer et al., 1983). Metabolic requirements for
each metal vary across organisms. However, iron is essential for
nearly all of them; e.g. restricting iron availability to microbial
invaders is part of the innate immune response (Ganz, 2009).
Additionally, of the five measured metals, Fe is the only one that is
present in the sampling sites at concentrations (observed:
3–400 p.p.m.) below the what is needed for growth of metal require-
ment annotated bacteria (Rouf, 1964; Scherer et al., 1983) (average
requirement: 5400 p.p.m.); in fact, bacteria aim to actively accumu-
late Fe using specialized proteins (Braun and Hantke, 2011). The
other four metals are usually required in concentrations (Rouf,
1964) below those observed in this study. Moreover, higher concen-
trations may be deleterious to organism fitness, particularly for the
anticorrelated metals. For example, nickel is required in trace quan-
tities (Chivers, 2015) and competes with Mg and Ca for binding

Fig. 2. Prediction of metal-binding in Black Sea microbiomes. The points on the

graph indicate the relative abundance of ion-binding proteins (left y-axis) predicted

from metagenomic samples collected at different depths of the Black Sea (x-axis).

The black line represents the Euclidean distance (right y-axis) between the vectors of

predicted abundances at sequential depths; line markers are placed between the

depth measurements in each comparison. Samples show a phase transition (large

Euclidean distance) at the photosynthetic limit (60–100 m) (Callieri et al., 2019;

Gorlenko et al., 2005)
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sites (Yang and Black, 1994); in high concentrations, it can also
damage DNA (Sunderman Jr, 1989). Copper is frequently toxic for
bacteria at environmental concentrations (Dupont et al., 2011) and
is thus tightly regulated. Thus, given its key role in metabolism and
limiting factor status, iron concentrations could drive microbial se-
lection and explain the abundance of genes encoding iron-binding
proteins.

3.7.3 Human-host microbiomes

We further used mebipred to analyze randomly chosen human
host and soil microbiome samples from the NCBI-SRA DB
(Supplementary Data: counts_sra). Predicted metal-binding pro-
teins (Fig. 3) are in line with the available metals in each environ-
ment. For example, few or no iron-binding proteins are predicted
in samples of human origin except for one vaginal sample, where
the occurrence may be explained by menstrual cycle bleeding. Low
concentrations of iron-binding proteins are observed in the gut
and pregnancy-associated vaginal microbiota, both of which may
be accounted for by minor bleed episodes. As mentioned above,
iron sequestering is part of normal human immune response and is
lethal to most pathogenic bacteria (Ganz, 2009); normal non-
pathogenic microbiota are likely to be adapted to low iron envir-
onment (Yilmaz and Li, 2018). metal-binding proteins predicted
to occur in the soil and in gut samples target more different metals
than do skin, mouth and vaginal samples, likely due to the meta-
bolic diversity of the former (Fierer, 2017). The predicted metal-
binding proteins in skin samples target metals (Ca, K, Mg, Mn)
that can be found in sweat in relatively high concentrations (>1
mg/l) (Robinson and Robinson, 1954). Other metals (e.g. Zn, Cu)
are present in sweat in trace concentrations (<1 mg/l) (Cohn and
Emmett, 1978; Saraymen et al., 2004) and, thus, few proteins
binding these metals are predicted (<1% of predictions).
Furthermore, the differences in metal-binding protein abundances
between vaginal samples from pregnant and non-pregnant women
could reflect the large pregnancy-associated changes in the vaginal
microbiome (Romero et al., 2014).

mebipred is an advance in the field of function prediction from
protein sequence, which we showed to be applicable to the annota-
tion of metagenomic samples. It can help resolve database annota-
tion errors and shows potential for linking function with
environmental conditions. We further expect that as more metal-
binding protein structures are resolved, our method can be improved
and expanded, for example to the detection of other metal ions. Its
capacity to annotate metal-binding informs the descriptions of
microbiome diversity and environmental conditions. Finally, since
most enzymes are metal-binding proteins, it could also help enzyme
prospecting.

4 Conclusion

Here, we compiled a gold-standard experimentally derived metal-
binding protein set and built mebipred—a sequence-based neural
network predictor of metal-binding. To the best of our knowledge,
mebipred is the only reference-free sequence-based method for iden-
tifying protein metal-binding. mebipred significantly outperforms
existing sequence-based methods for annotation of metal-binding
and can detect specific metals bound by each protein. We expect
that the growth in the number of structures of metal-binding pro-
teins will it even more powerful in the near future. mebipred is also
faster than existing tools and can predict metal-binding using short
protein fragments, making it useful in analysis of metagenomic data.
In evaluation of microbiome samples, we found that differences in
the number of predicted metal-binding proteins were related to the
concentration of metal ions in the corresponding environments.
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