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Abstract

The past two decades of analytical efforts have highlighted how much more
remains to be learned about the human genome and, particularly, its com-
plex involvement in promoting disease development and progression. While
numerous computational tools exist for the assessment of the functional and
pathogenic effects of genome variants, their precision is far from satisfac-
tory, particularly for clinical use. Accumulating evidence also suggests that
the human microbiome’s interaction with the human genome plays a criti-
cal role in determining health and disease states. While numerous microbial
taxonomic groups and molecular functions of the human microbiome have
been associated with disease, the reproducibility of these findings is lacking.
The human microbiome—genome interaction in healthy individuals is even
less well understood. This review summarizes the available computational
methods built to analyze the effect of variation in the human genome and
microbiome. We address the applicability and precision of these methods
across their possible uses. We also briefly discuss the exciting, necessary, and
now possible integration of the two types of data to improve the understand-
ing of pathogenicity mechanisms.
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We propose that those with limited knowledge in a domain suffer a dual burden: Not only do they reach
mistaken conclusions and make regrettable errors, but their incompetence robs them of the ability to
realize it.

—]J. Kruger & D. Dunning (1)

THE BEGINNING

With every new and exciting discovery relevant to human health comes the realization that
science is still very far away from a broad understanding of how to diagnose, prevent, and treat
diseases. By April 2003, the Human Genome Project (HGP) created, at a cost around $2.7 billion,
a reference sequence from a compilation of the genomes of several individuals (2). The first
completely sequenced individual-specific genomes of J. Craig Venter (3) and James D. Watson
(4) were 1,000-fold less expensive but still cost roughly $1 million each. Since then, sequencing
prices have dropped sufficiently to allow for large-scale studies designed to understand how
human genetic variation, initially mainly single-nucleotide variants (SNVs), contribute to human
complex traits. [In the scientific literature, SN'Vs that are frequent in the population (e.g., >1%)
are termed single-nucleotide polymorphisms (SNPs; see Figure 1 for the potential biological
effects of SNPs). However, since this threshold is arbitrary and constantly moving, in this review
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Figure 1

Mechanisms of variant impact on biological function. SNPs may affect (#) transcription factor binding,

(b) pre-mRNA splicing, () mRNA secondary structure and stability, and (d) translational efficiency (i.e.,
quantity of transcripts), as well as the structure and stability of the protein products. Note that both
synonymous and nonsynonymous SNPs can affect the amount, structure, and stability of the resulting gene
product (RNA or protein). Also note that other types of variants, e.g., insertions and deletions, are not shown
in this image but are responsible for at least as much impact. Abbreviations: mRINA, messenger RINA;
pre-mRNA, precursor mRNA; SNP, single-nucleotide polymorphism; WT, wild-type sequence.
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we use the term “SNP” without regard for frequency differences.] This price drop was due
to advances in both sequencing techniques and analytical methods. According to the National
Human Genome Research Institute (NHGRI), the cost of reagents and instrument time nec-
essary for sequencing a complete genome is now around $1,000 (5), with some companies as
of October 2019 performing whole-genome sequencing for $600 or even at no cost (Veritas
and Nebula, respectively), and whole-exome sequencing can be performed even more cheaply
(6). The technical feasibility of using patient genetic data in real clinical settings has thus made
obvious the need for fast, accurate, and reliable analytical methods.

Among a multitude of HGP-related efforts, scientists have annotated genome components
into ENCODE (Encyclopedia of DNA Elements; 7) and listed their common and not-so-
common variants via the International HapMap Project (8), the 1000 Genomes Project (9), ExXAC
(Exome Aggregation Consortium; 10), and gnomAD (Genome Aggregation Database; 11). They
have surveyed the structure and function of the encoded proteins via the Structural Genomics
Initiative (12, 13); described gene expression across tissues and conditions via GTEx (Genotype
Tissue Expression; 14), GEO (Gene Expression Omnibus; 15), and Allen Brain Atlas (16);
and are exploring the genome’s three-dimensional organization (17-20) via, e.g., the Roadmap
Epigenomics Program (21). Current efforts aim to combine newly gained genomic knowledge
with other advances to further understanding of basic biological mechanisms [e.g., the BRAIN
(Brain Research through Advancing Innovative Neurotechnologies) Initiative (22)] and pursue
better diagnostics and treatments [e.g., Cancer Moonshot (23)]. Progress in genetic counseling
[e.g., CFTR gene analysis for assessing the incidence of cystic fibrosis among newborns (24) and a
cost-effective web-based platform for genetic counseling (25)], diagnostics [e.g., rapid, automated
diagnosis of monogenic diseases for newborns (26) and diagnosis of congenital anomalies from
peripheral blood (27)], and precision medicine [e.g., predictions of 7P53 variant impact on
response to chemotherapy (28), recommendations of medication dosage on the basis of genotype
data (29), and genotype-based algorithmic warfarin dosing strategies (30)] are all contributing to
improved disease outcomes and increased span and quality of life.

While work on interpreting the genome continues, more recent findings have highlighted
the importance of variation in human microbiomes as well. The human microbiome, i.e., the
community of microorganisms living in and on the human body, consists of roughly 10 times
more cells than the human body (excluding red blood cells) (31) and at least 400 times more
unique genes than the human genome (32). The microbiome metagenome, our so-called second
genome, is thus a significant additional source of genetic variation, contributing to phenotypes
and playing an important role in disease development, progression, and treatment possibilities
(33). New treatment strategies involving the microbiome are already being used in the clinic. For
example, fecal microbiome transplantation treats recurrent Clostridium difficile infection at >90%
success rate (34, 35) and has been recommended for other diseases such as inflammatory bowel
disease (IBD) and obesity (36). However, our understanding of what defines a healthy microbiome,
or how microbiomes can be manipulated to improve health, remains limited.

Historically, and in large part due to the cost of sequencing, 16S ribosomal RNA (rRNA) gene
surveys (amplicon sequencing) were used to assess the microbiome composition, i.e., its taxo-
nomic makeup. However, as recent findings have shown, 16S rRNA sequence identity does not
precisely identify microbial species (37, 38). Moreover, the microbiome molecular contributions
to the functioning of the body are not easily inferred by answering the question “Who is there?”
(39-42). One recent study, for example, found that the enrichment/depletion of genes across mi-
crobial strains of the same species was associated with host BMI (body mass index) and cholesterol
level (43). Shotgun metagenome sequencing (i.e., sequencing all the DNA in a sample) has allowed
for deeper exploration of the microbiome. Numerous tools have been developed for the analysis
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of such data, either by first using microbial genome assembly (44—47) or by making inferences di-
rectly from reads (41,48-51). This new source of data now demands new, and vastly more efficient,
methods for the joint analysis of human and microbial genetic data.

Recently there have been many efforts to interpret the human genome (variant association-
and effect-based) and metagenome (amplicon- and shotgun-based) data in relation to disease.
These efforts have borne major advances in diagnoses and precise stratification of certain diseases,
as well as in treatment selection, such as in pharmacogenomics (52) and pharmacomicrobiomics
(53). For example, one diagnostic platform that automatically analyzes electronic health record
and genome sequencing data was able to successfully (with 97% recall and 99% precision) and
rapidly (under 24 h) diagnose genetic diseases for severely ill children in intensive care units (54).
A previous study had shown that a dietary intervention induced significant weight loss and con-
comitant structural changes of the gut microbiota in children affected by Prader-Willi syndrome
and simple obesity (55). Our lab revisited these data and revealed further individual-specific
responses to the dietary intervention (41). In spite of these advances, however, three limitations of
the current state of the art are salient: (#) In most cases work remains in the realm of the research
labs and is removed from clinical applications; (b) easily generalizable methods for performing
these types of analyses are missing; and (c) there are, to the best of our knowledge, no methods that
incorporate both genome and microbiome variation into a single predictive measure. Looking
forward to the near future where data availability is no longer a limiting factor for method de-
velopment, holistic and reproducible approaches that consider both the microbiome and genome
factors to reach conclusions about disease are necessary to move science and clinical applications
forward.

THE GENOME

Human Genome Variation Drives Functional Changes
and Disease Development

Only about 0.1% of human DNA (about 3 million of 3 billion base pairs) is different between
two randomly selected human genomes (56). This difference, however, accounts for population
diversity, individuality, susceptibility to disease, etc. By definition, heritable diseases are solely due
to genomic variation, but in reality the contributions of environmental factors, epigenomics, and
other features of specific disease types vary. Some diseases are monogenic; for example, sickle cell
anemia is caused by a homozygous SNP resulting in a valine to glutamic acid substitution in the
hemoglobin beta-subunit. As of November 2019, there are 5,472 single-gene disorders and traits
reported in the Online Mendelian Inheritance in Man (OMIM) (57) database, and we suspect that
there are at least as many such rare diseases affecting only a small fraction of the population and
thus not yet molecularly specified. Most other known diseases are polygenic and thus display a
less clear genetic signal.

In an attempt to understand the genetic architecture of common heritable disease, many
genome-wide association studies (GWAS) were carried out in the early years of genome explo-
ration (58). GWAS aim to identify a set of common genomic variants that are associated with
a specific phenotypic trait, such as a disease, in a given population. Using SNP arrays (59) (i.e.,
DNA microarrays used to identify specific SNPs in individual genomes), large-scale GWAS
bypass the need to sequence genomes in their entirety, focusing instead on variants common in
specific populations. Note that since SNP arrays require the explicit knowledge of the possible
SNP at a given position, they are not able to identify new variants. While SNP arrays can be
specifically designed to target any variant, they are usually limited to tagging common variants.
GWAS take advantage of linkage disequilibrium to tag entire haplotypes with a much smaller set

Zhu et al.



Annu. Rev. Biomed. Data Sci. 2020.3:411-432. Downloaded from www.annualreviews.org

Access provided by 72.88.209.230 on 07/31/20. For personal use only.

of these common genomic markers. For example, as few as 500,000 common SNPs are estimated
to be sufficient to tag more than 10 million variants common to non-African populations (60).
The NHGRI-EBI (European Bioinformatics Institute) GWAS Catalog currently contains
5,687 curated GWAS comprising 71,673 statistically significant (p-value < 5 x 107®) variant—trait
associations from 3,567 studies. The variants identified in GWAS, however, are too common
in the population to be causal for the observed traits, hampering the use of GWAS results
for biologically meaningful conclusions or clinically relevant diagnoses. A workgroup of clinical
laboratory directors and clinicians from the American College of Medical Genetics and Genomics
(ACMG), the Association for Molecular Pathology, and the College of American Pathologists
recommended guidelines (ACMG guidelines) for the interpretation of sequence variants. The
guidelines recommend classifying variants using standardized terminology (“pathogenic,” “likely

” @

pathogenic,” “uncertain significance,” “likely benign,” and “benign”) based on different types of
variant evidence, such as population frequency, computational predictions, and functional anno-
tations (61). Incidental findings of common variants (frequency annotated in population-wide
databases such as gnomAD, ExAC, and dbSNP) do not, by these guidelines, indicate presence of
disease but rather designate the variant as probably benign (61). The term “pathogenic” is not
used even when a GWAS-based association with disease exists; rather, these variants are deemed
risk alleles (61). In contrast, the frequency of variants in disease-specific databases, such as the
Catalogue of Somatic Mutations in Cancer (COSMIC) (62), may indicate disease involvement.

In determining the cause and effect relationships between genetic variation and disease it is
important to consider the pathogenicity mechanisms, i.e., variant-caused failures in the normal
functioning of molecular pathways. Variants in noncoding regions of the genome may have an ef-
fect on overall genome structure, gene regulation, splicing, etc. Some noncoding variants directly
mediate Mendelian disease (63), while others play a role in cancer development (64). Noncoding
variants mainly affect functional changes by modifying gene expression via mechanisms such as
changes to DNA accessibility (65), transcription factor binding (66), and histone modifications
(67). A specific coding variant may lead to changes in mRNA stability or speed of translation, and
thus protein quantity (68-70), altered protein structure or stability (71), posttranslational mod-
ifications (72), subcellular localization (73), ligand binding (74), interaction with other proteins
(75), etc. Broadly, a variant may result in enhanced or depleted functionality of the gene that it
affects—or produce no change to an assumed wild-type functionality at all. In humans specifi-
cally, diploidy also contributes to the complexity: Some genes are haplosufficient, meaning that
one nonmutant copy of the gene is enough to carry on normal functioning, while others require
the presence of both functional alleles (76). Furthermore, functionality of the nonmutant allele
product (protein or RNA) may be additionally disrupted by the presence of a specific mutant al-
lele of the same gene, e.g., via formation of inactive protein multimers (77) or competition for the
same ligand (78). Finally, the specific combination of the altered gene functions may lead to disease
(79, 80).

Computational Tools Predict SNP Effects, but Often Fail to Define “Effect”

To date, researchers have developed hundreds of computational tools to predict the functional
effects of variants (SNPs, as well as structural and insertion/deletion variants). While some
methods address effects of all SNPs [e.g., CADD (81), DANN (82), FATHMM-MKL (83),
MutationTaster2 (84)], others are more focused on noncoding variants [e.g., GWAVA (85),
LINSIGHT (86), ARVIN (87), SIFT Indel (88)] or synonymous variants [e.g., SilVA (89),
regSNPs-splicing (90), DDIG-SN (91), IDSV (92)], and most available methods attempt to
predict effects of nonsynonymous variants. In addition to the increasing need for appropriate
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benchmarking data (93), it is a challenge to define what exactly constitutes an effect for a given
tool. Some tools aim to find cancer drivers [e.g., FATHMM-cancer (94), VEST (95), CScape
(96)], while others look for function, structure, or stability changes [e.g., SNAP (97), PoPMuSiC
(98), I-Mutant2.0 (99), I-Mutant3.0 (100)] or variant pathogenicity [e.g., PolyPhen-2 (101),
PON-P (102), PON-P2 (103), REVEL (104)]. With the advent of deep mutational scanning
(DMS) (105), tools have also been developed to recognize differences in the specific functionality
defined by each experiment [e.g., Envision (106)], although their applications to new data may
be limited (107). Notably, a method that predicts pathogenicity of variant combinations in gene
pairs was recently published (108), suggesting an interesting future direction.

Interestingly, most existing and new tools that do not rely on DMS data fail to explicitly
differentiate their target effects among the three basic overlapping but not identical classes:
function change, fitness, and pathogenicity. The responsibility for figuring out which of the many
methods to use for a particular set of predictions thus falls upon the largely unaware users. To
choose correctly, it is important to understand the details of the method training/development
data. For example, even something as seemingly well defined as recognizing polymorphisms
versus disease variants requires a more in-depth analysis even before the prediction is made: What
is a polymorphism? Is it a variant that has been definitively shown not to be disease associated
or simply one with high frequency in a population? What variants are designated as disease? Are
these only variants causing monogenic diseases or are these GWAS-significant variants associated
with, but not causing, disease? Here, it is possible that the method actually differentiates variants
by pathogenicity (disease versus no disease), by frequency in a population (e.g., monogenic
disease culprits versus common variants), or by functional effect (severe effect versus mild or no
effect). However, all of these classifications are equally likely if no detailed information about the
development data is provided or discussed. Further complicating the distinction is the significant
overlap between classes at the extremes: Observed variants that are lethal at an early age are almost
always rare and obviously disadvantageous in terms of fitness. In contrast, common variants (e.g.,
>1% frequency in a population) may be neutral polymorphisms but also pathogenic in certain
genomic contexts, or they may bear functional and phenotypic, but not disease, effects (109). In
other words, while stated method goals may vary, their predictions often overlap in extreme cases,
but not in intermediate ones (97, 107, 110). Thus, while recognizing method appropriateness for
a particular prediction task should be straightforward in principle, in practice, the use boundaries
are often vague for both tool builders and users. Table 1 (with more detail provided in Sup-
plemental Table 1) summarizes popular variant effect prediction tools along with their likely
uses.

Existing tools also differ in the biological features they use for predicting variant effect. Some,
such as SIFT (111) and PROVEAN (112), rely solely on basic biological principles, such as
biochemical amino acid similarities and evolutionary conservation information. Others, such as
SNAP/SNAP2 (97,113) and MutPred/MutPred2 (114, 115), use machine learning models trained
on biochemical, biophysical, and evolutionary features of large SNP sets with experimentally ver-
ified effects. Notably, almost all tools excessively rely on the fact that amino acid substitutions at
conserved residues more frequently have an effect than those at nonconserved positions (116).
Thus, rather than predicting mutation effect, these tools highlight site conservation, where the
threshold for what can be deemed conserved varies. In nature, there are some neutral mutations
at conserved sites as well as plenty of moderately non-neutral mutations at nonconserved sites
(110, 117). Shared features used by computational predictors, and particularly the use of conser-
vation signal, also make the consensus approach less reliable than desired: If two methods predict
the same variant to have an effect, that does not constitute a more reliable outcome if the methods
are not independent.
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Table 1 Properties of common variant effect prediction methods

Tool Year Model Features Scope?® Impacts® Predicts®
IDSV (92) 2019 Random forest SEQ sSNP Protein Path.
DeFINE (192) 2018 Deep convolutional neural SEQ SNP Regulatory | Effect, path.

net/gradient boosting
Envision (106) 2018 Stochastic gradient boosting SEQ, STR nsSNP | Protein Effect
ARVIN (87) 2018 Random forest SEQ,NET SNP Regulatory | Path.
MutPred2 (115) 2017 Neural network SEQ nsSNP Protein Path.
LINSIGHT (86) 2017 Linear, probabilistic model SEQ SNP Regulatory | Path.
DDIG-SN (91) 2017 Support vector machine SEQ sSNP Protein Path.
regSNPs-splicing (90) 2017 Random forest SEQ sSNP Protein Path.
CScape (96) 2017 Multiple kernel learning SEQ SNP Both Cancer
REVEL (104) 2016 Random forest ENS nsSNP Protein Path.
PANTHER-PSEP (193) | 2016 Phylogenetic analysis SEQ nsSNP | Protein Path.
DANN (82) 2015 Deep neural network SEQ SNP Both Effect, path.
FATHMM-MKL (83) 2015 Multiple kernel learning SEQ, KB SNP Both Path.
SNAP2 (113) 2015 Neural network SEQ nsSNP Protein Effect, path.
PON-P2 (103) 2015 Random forest SEQ, STR nsSNP Protein Path.
wKinMut2 (194) 2015 Annotation summary ENS, KB nsSNP Protein Path.
CADD (81) 2014 Support vector machine SEQ All Both Effect, path.
MutationTaster2 (84) 2014 Naive Bayes classifier SEQ, KB All Both Path.
GWAVA (85) 2014 Random forest SEQ, KB SNP Regulatory | Path.
PredictSNP (195) 2014 Consensus scoring ENS nsSNP Protein Effect, path.
FATHMM-DS (196) 2014 Hidden Markov models SEQ nsSNP Protein Path.
PolyPhen-2 (101) 2013 Naive Bayes classifier SEQ, STR nsSNP | Protein Effect
FATHMM (197) 2013 Hidden Markov models SEQ nsSNP Protein Path.
VEST (95) 2013 Random forest SEQ nsSNP Protein Path.
FATHMM-cancer (94) 2013 Hidden Markov models SEQ nsSNP Protein Cancer
Meta-SNP (198) 2013 Random forest ENS nsSNP Protein Path.
SilVA (89) 2013 Random forest SEQ sSNP Protein Path.
PROVEAN (112) 2012 Delta alignments scoring SEQ All Both Path.
SIFTIndel (88) 2012 Decision tree SEQ, KB InDel Protein Path.
PON-P (102) 2012 Random forest ENS nsSNP Protein Path.
KinMut (199) 2012 Support vector machine SEQ nsSNP Protein Path.
MutationAssessor (200) 2011 Functional impact scoring SEQ, STR nsSNP Protein Effect, path.
MutationTaster (208) 2010 Naive Bayes classifier SEQ, KB All Protein Path.
MutPred (114) 2009 Random forest SEQ nsSNP Protein Path.
PoPMuSiC2.0 (201) 2009 Energy function SEQ, STR, nsSNP Protein Stability
KB
I-Mutant3.0 (100) 2008 Support vector machine SEQ, STR nsSNP Protein Stability
SNAP (97) 2007 Neural network SEQ nsSNP Protein Effect
PhD-SNP (202) 2006 Support vector machine SEQ nsSNP | Protein Path.
Align-GVGD (203) 2006 Extended Grantham difference | SEQ, STR nsSNP Protein Effect
scoring
FoldX (204) 2005 FoldX force field STR nsSNP Protein Stability
(Continued)
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Table 1 (Continued)

Tool Year Model Features Scope? Impacts® Predicts®
I-Mutant2.0 (99) 2005 Support vector machine SEQ, STR nsSNP | Protein Stability
MAPP (205) 2005 Functional impact scoring SEQ nsSNP Protein Effect
nsSNPAnalyzer (206) 2005 Random forest SEQ, STR nsSNP Protein Path.
PolyPhen (207) 2002 Rule-based classifier SEQ, STR nsSNP Protein Effect
SIFT (111) 2001 PSSM-based probabilities SEQ nsSNP Protein Effect, path.
PoPMuSiC (98) 2000 Energy function SEQ, STR, nsSNP Protein Stability

KB

Abbreviations: ENS, ensemble predictor using output of other predictors; InDel, insertion/deletion; KB, extracted from literature or a knowledge base;

NET, extracted from a regulatory network; (n)sSNP, (non)synonymous SNP; path., pathogenicity; PSSM, position-specific scoring matrix; SEQ,

sequence-derived; SNP, single-nucleotide polymorphism; STR, structure-derived.
2“SNP” means all SNPs and “all” means both SNPs and InDels.
YThis column indicates whether the tool applies at the protein level, the regulatory level, or both.

¢This column indicates whether the tool predicts protein structure/function effects (effect); pathogenicity, possibly including cancer (path.); protein

stability; or cancer predisposition.

418

Predicting Disease Risk from Genome Data

Computational effect predictions cannot be directly interpreted as increasing disease risk. Al-
though genetic diseases are usually caused by (combinations of ) mutations with severe functional
changes, the latter cannot guarantee the former. To identify genes whose altered functionality
is responsible for increased risk of disease, studies often rely on the prior experimental/clinical
knowledge, such as curated variants from databases such as OMIM (57), ClinVar (118), COS-
MIC, and HGMD (Human Gene Mutation Database; 119), and expand this knowledge to cover
molecular pathways involved in pathogenesis via gene coexpression or protein—protein interac-
tion network analysis (79, 120-124). Statistical analysis of GWAS results also highlights potential
disease genes, but does so without evidence for functional changes in the latter (125).

Various data-driven methods have been developed to assess whole human genomes (as opposed
to individual variants) to predict whether a person has (a high risk of developing) disease. For
example, Wei et al. (126) extracted nearly 179,000 SNPs from a study of 50,000 Crohn’s disease
(CD) and ulcerative colitis (UC) cases and healthy controls from the International IBD Genetics
Consortium’s data (127) to build variant-based regression models for accurate association-based
identification of CD and UC patients. The PROPS (probability pathway score) (128) method was
developed to differentiate between CD and UC patients using variants that affect genes in KEGG
pathways (129) and coincidentally identified metabolism-related pathways most discriminative
between the two diseases. Our recently published AVA,Dx (analysis of variation for association
with disease) support vector machine-based method uses vectors of gene functional changes,
as predicted from individual exonic variation, to further predict individual CD status (80). Our
method thus identified dozens of previously unreported CD genes by tracing differentially
functionally altered genes in diseased patients versus healthy controls. While these human
genome—based methods have produced exciting results, adding the human microbiome into the
picture may fill in the missing pieces toward the holy grail of precision medicine.

THE MICROBIOME
Taxonomic Annotations Reveal Composition of the Microbial Communities
Shortly after the human genome had been sequenced, two major projects were launched:

the European project Metagenomics of the Human Intestinal Tract (130) and the Human
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Microbiome Project (HMP) (131), funded by the National Institutes of Health. A major ques-
tion in microbiome analysis had initially been, “Who are they?”, that is, “What is the taxonomic
composition, i.e., the list and abundance profiles of member organisms, of the microbial commu-
nity?” Microbiome composition is often assessed by sequencing 16S rRNA, followed by compar-
ison to reference databases, such as the Ribosomal Database Project (RDP) (132), SILVA (133),
and GreenGenes (134). The most widely used computational pipelines for this type of analyses
are QIIME (Quantitative Insights into Microbial Ecology) (135) and mothur (136). Benchmark
analyses suggest that these tools generate results of comparable accuracy, but QIIME is signifi-
cantly faster (137). Notably the 2018 QIIME 2 update, which uses a naive Bayes classifier (138),
demonstrated further improved performance, albeit at the cost of increased memory use and CPU
time (139).

While 16S rRNA sequencing has been historically widely used, it suffers from limited reso-
lution/precision at lower taxonomic levels (140) and significant annotation disagreements across
different reference databases (141). Shotgun whole-metagenome sequencing, although signifi-
cantly more expensive, targets all genes in the microbiome rather than just the 16S rRNA gene.
With shotgun metagenomic data, taxonomic assignment can be done by using either signature
genes only [e.g., MetaPhlAn2 (142), mOTUs2 (143)] or all genes [e.g., Centrifuge (144), Bracken
(145), Kraken 2 (146), Kaiju (147), CLARK (148)]. While these methods are limited by the lack of
complete microbial reference genomes, and thus not as useful for taxonomically placing novel or-
ganisms as 16S rRNA-based methods, they offer higher resolution than 16S rRNA analyses. For
example, MetaPhlAn2 can accurately assign taxonomy all the way down to the strain level for rela-
tively well-studied microbiome niches. In a recent benchmark study with a variety of test datasets,
the all genes methods demonstrated better performance than the signature genes methods, mainly
due to the more comprehensive reference databases (149). Recent large-scale efforts to explore
the organismal composition of the human gut microbiome human have augmented the reference
databases by reconstructing 2,058 (150), 1,952 (151) and 4,930 (152) new/yet-uncultured bacterial
species. These results indicate that the human microbiome is far from completely explored.

Functional Annotation of the Microbiome Is Necessary but Difficult

As compared to the question “Who are they?”, an arguably more compelling question in micro-
biome analysis is “What do they do?”, that is, “What is the totality of molecular-level activities
such as catalysis or binding being carried out by the members of the microbial community?” Here
it is important to remember that although functional abilities can be inferred from taxonomic
assignments, even taxonomic neighbors can have substantially different functions due to horizon-
tal gene transfer (HGT) (38, 40). Notably, HGT is more frequent in human-associated bacteria
than in those from other environments (42). It is estimated that more than half of total genes in
human-associated bacterial genomes were obtained via HGT (42). For example, the rapid spread
of antibiotic resistance genes via HGT has caused a global medical crisis of multidrug-resistant
pathogens (153). Thus, identifying who is present in a particular microbiome, even if possible at
a high level of precision, may not be as useful as figuring out what the microbiome is doing as a
whole.

In a workflow of metagenome functional annotation, DNA sequences (either reads or assem-
bled contigs) are first subjected to gene finding (154) or simple six-frame translation to predict
corresponding peptide sequences, which are then mapped to reference sequence databases. A
benchmark analysis using artificial metagenome datasets suggested that assemblers using multiple
k-mers outperformed single-k-mer assemblers (155). However, for complex and highly diverse
microbiome samples, assembly is computationally expensive and often plagued by chimeras and
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a large fraction of unassembled reads from minor community members (155). Read-based work-
flows, in contrast, bypass the assembly step and the associated errors, but their annotation is often
hampered by short/unreliable alignments (156). Both read- and assembly-based annotation inac-
curacies are additionally compounded by the errors in functional annotations of most genes in the
reference databases (157).

Various tools, such as MG-RAST (48), HUMAnN/HUMAnN?2 (51, 158), ShotMAP (49), and
Fun4Me (50), annotate metagenome functions by directly mapping reads to reference sequence
databases, such as SEED (159), KEGG (129), MetaCyc (160), and UniRef (161). These methods
aim to identify the specific microbial genes present in the metagenome. Our recently developed
mi-faser (41) method/database combination was optimized to extract correct functional (as op-
posed to gene sequence-specific) annotations using a manually curated collection of experimen-
tally verified protein molecular functions. Carnelian (162) followed soon after, using k-mer analysis
to map to reads to the mi-faser database. Workflows are often database centered, complicating the
conversion between annotations for method comparison. For example, MG-RAST uses SEED
data as reference, while HUMAnN?2 relies on UniRef50; HMP data were mapped by HUMAnN
to KEGG pathways. A summary of the microbiome annotation flow can be found in Figure 2.

Microbiome Impacts Human Health

It is increasingly accepted that the human microbiome plays a critical role in host health. The gut
is by far the most microbially populous niche of the human body (31), harboring different micro-
bial populations across the intestinal microniches (163), from the gut lumen to the intestinal wall
mucous layer. The human gut microbiome is critical for human development (164) and has been
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associated with a variety of diseases, including metabolic disorders such as obesity (165) and type 2
diabetes (166), autoimmune diseases such as inflammatory bowel diseases (167), and mental disor-
ders such as autism (168). Taxonomic surveys of the gastrointestinal microbiome of CD patients
have revealed microbial community features that are unique to CD patients, such as loss of micro-
bial diversity (169) and depletion/enrichment of certain bacterial taxa (170). Establishing whether
these community shifts contribute to pathogenesis, simply correlate with disease, or result from
it requires understanding not only which microbes are involved but also what they do. Studies
indicate that in CD, the microbiome molecular functionality is more consistently disturbed than
the taxonomic makeup (171). Analysis of CD occurrence in a single family had similarly shown
microbial functional differences across patients, as well as between patients and their healthy rel-
atives (41). In type 2 diabetes, dietary-fiber-promoted gut bacteria have been shown to alleviate
the symptoms of the disease (164). The steady increase in interest in microbiome shifts associated
with a wide range of diseases, from gastrointestinal to neurological, thus suggests the need for
exploring joint contributions of the human genome and microbiome to disease.

HUMAN GENOME AND MICROBIOME INTERACTION
Current Knowledge of Healthy Genome-Microbiome Interactions Is Limited

Human genome variation is known to impact the course and severity of infectious disease. As with
the sickle cell example described above, individuals heterozygous for the hemoglobin mutation
display strongly reduced plasmodium reproduction rates upon infection and thus significantly
reduced malaria risks. Incidentally, they also do not suffer from the full range of adverse effects
of sickle cell anemia, promoting positive selection for the mutation in malaria-affected regions
of the world (172). Associations between human genetic variation and increased susceptibility to
infectious diseases such as tuberculosis (173) and leprosy (174) have recently been identified.

It is thus expected that human genome variation would similarly impact the composition of the
human-associated microbiome. Microbiome GWAS (mGWAS; not to be confused with the unre-
lated metabolome GWAS) connect variation across human genomes to microbiome descriptors,
such as alpha diversity (the number of species in a microbiome; 175) and beta diversity [pairwise
distance, such as Bray—Curtis taxonomic dissimilarity (176), between microbiomes (175)], as well
as to the abundance of certain microbial taxa or functions. To date, several mGWAS have been
carried out in healthy cohorts to identify hundreds of significant associations, yet only one asso-
ciation, between Bifidobacterium and variants in the lactase gene LCT, has been validated across
different studies and cohorts (177-179). Further increasing the inconsistency in mGWAS, a re-
cent study on 1,046 healthy adults identified no significant associations between host genetics and
the microbiome (180). The study’s results suggest that the transient environment, as opposed to
the genetically defined stable determinants, is the dominant factor in determining microbiome
composition: Genetically unrelated individuals who share a household have similar microbiomes,
while relatives who have never lived together may differ microbiome-wise.

The inconsistency in mGWAS results can be due to several factors including technical differ-
ences (batch effects) and study design differences (host genetics and prior-knowledge-based vari-
ant filtering used to increase the statistical power of the study). More specifically, microbiomes
contain hundreds of taxa and thousands of encoded functions, which requires stringent multiple
testing correction to validate the significance of findings. Researchers thus either select, somewhat
arbitrarily, only very common SNPs (181) or limit their studies to candidate genes/SNPs based
on prior knowledge (178, 179). For example, although both Bonder et al. (179) and Goodrich
et al. (177) aimed to collect a descriptive set of SNPs that guide gut microbiome composition,
including involvement in complex diseases, immune traits, metabolic traits, food metabolism, and
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food preferences, the number of SNPs collected in the former study was twice as high as that in
the latter study (76,444 versus 32,378). Furthermore, SNPs evaluated in these two studies were
selected on the basis of previous GWAS results and thus may have been subject to the limitations
of those GWAS.

Although published mGWAS have not yet been applied to cohorts of sick individuals, studies
have reported that variants known to carry higher risks of IBD (for example, affecting NOD2,
CARDY, ATG16L1, IRGM, and FUT?2 genes) alter the gut microbiome composition in healthy
individuals (182).

Exploration of Genome-Microbiome Interactions in Disease
Is Only Now Taking Off

The second phase of HMP, iHMP (integrative HMP), carried out both host whole-genome
sequencing and microbiome shotgun metagenome sequencing (as well as meta-transcriptomes,
meta-metabolomes, etc.) of its participants in three longitudinal cohort studies of pregnancy and
preterm birth (vaginal microbiomes of pregnant women), IBD (gut microbiomes), and prediabetes
(gut and nasal microbiomes) (183). The data were recently published and made publicly available
(184), offering researchers a unique chance to investigate these medical conditions in a combined
perspective of both human genome and microbiome. Machine learning models, for example,
with additional microbiome information have the potential to improve the prediction precision
to a level that can be applied in clinical settings. Technical challenges to the development of such
models, however, include the drastically increased feature space [there are over 1,000 bacterial
species that could normally live in the human gut, although any one individual may have any
combination of these (131)] and significant heterogeneity of input features in terms of type, scale,
sparsity, and weight. Advances in deep learning techniques, a class of machine learning algorithms
well suited to processing high-dimensional data, provide new means for this type of analysis
(185). Deep learning artificial neutral networks can extract features of increasing abstraction
progressively via an architecture of consecutive convolution layers. As such, they can be used to
effectively encode multidimensional data mapping to the observed signal. Other implementations
such as autoencoders [unsupervised artificial neural networks used to learn efficient data encoding
(186)] allow researchers to first compress the input dimensionality and train the network in a
lower-dimensional space. Since training these networks requires a large training dataset and sig-
nificant computational resources, deep learning has only very recently become a viable analytical
approach. Given the amount of now available and consistently generated genome/metagenome
data, deep learning models provide promising a way forward for extracting new insights.

The Future of Pharmacogenomics and -Microbiomics

After millions of years of coevolution, human metabolism has become an amalgamation of both
host and microbial attributes (187). Evidence for this abounds; for example, one metabolomics
study in germ-free mice illustrated that the gastrointestinal microbiome generates at least 10%
of all detectable metabolites in the host serum (188). Specifically, the queuine micronutrient,
which is necessary for posttranslational modification of transfer RNAs in all eukaryotes, including
humans, can only be produced by bacteria (189). We suspect that disruption of these interactions
also drives disease; for example, CD development has been shown to entail both genome-encoded
(190) and microbially driven (41) immune system activity. The connection between the genome
and the microbiome suggests that the results of pharmacomicrobiomics (53) studies focusing on
gut bacterial drug metabolism as related to efficiency and toxicity (191) are likely also picked up

Zhu et al.



Annu. Rev. Biomed. Data Sci. 2020.3:411-432. Downloaded from www.annualreviews.org
Access provided by 72.88.209.230 on 07/31/20. For personal use only.

Variant profile

Functional profile Functional profile

> % GENOMICS -«

) )

¥~ GENOMICS + MICROBIOMICS

Dy Ry

o o o 0
o s s s
v e 8 s
e e e e
e e ee

Diagnosis Prescription

Figure 3

Integration of human genome and microbiome data may improve clinical diagnosis and treatment. In recent
years, developments in pharmacogenomics and pharmacomicrobiomics have provided a platform for future
joint explorations, e.g., using advances in deep learning. The ability to functionally profile the human
genome and microbiome significantly contributes to such efforts, transforming them from statistical analyses
to possible cause assessments.

in pharmacogenomics assessments. Moreover, studies that explicitly integrate human genome
and microbiome data by looking for human-microbe joint pathways will likely reveal disease
mechanisms that have been hidden from one-sided investigations. It seems that the future of per-
sonalized medicine lies at the interface between the human genome and microbiome (Figure 3).
Integrating existing tools and building novel methods to meet the needs of this new type of analysis
are thus two of the main challenges that the computational biologists will face in the near future.
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