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Abstract

Motivation: The rapid drop in sequencing costs has produced many more (predicted) protein
sequences than can feasibly be functionally annotated with wet-lab experiments. Thus, many com-
putational methods have been developed for this purpose. Most of these methods employ
homology-based inference, approximated via sequence alignments, to transfer functional annota-
tions between proteins. The increase in the number of available sequences, however, has drastical-
ly increased the search space, thus significantly slowing down alignment methods.

Results: Here we describe homology-derived functional similarity of proteins (HFSP), a novel com-
putational method that uses results of a high-speed alignment algorithm, MMseqgs2, to infer func-
tional similarity of proteins on the basis of their alignment length and sequence identity. We show
that our method is accurate (85% precision) and fast (more than 40-fold speed increase over state-
of-the-art). HFSP can help correct at least a 16% error in legacy curations, even for a resource of as
high quality as Swiss-Prot. These findings suggest HFSP as an ideal resource for large-scale func-

tional annotation efforts.

Contact: ymahlich@bromberglab.org or yanab@rci.rutgers.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The recent rapid drop in the cost of DNA-sequencing has produced
a large number of fully sequenced genomes. For prokaryotes, for ex-
ample, this represents a more than 6-fold growth (1400-9000 in
GenBank (Benson er al., 2013)) in the last Syears alone. While
this increase in data enables many types of research, experimental
annotation lags far behind. In particular, the speed (or lack thereof)
of experimental evaluation and validation of protein molecular
functionality clearly necessitates computational approaches. In fact,
many methods (Jiang et al., 2016; Radivojac et al., 2013) have al-
ready been developed for this purpose, the vast majority of which
rely on transfer of functional annotation by homology (Loewenstein
et al., 2009). Mistakes in available annotations (Schnoes et al.,
2009), inconsistencies in experiments as well as simply missing or
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yet unknown functions make these sequence similarity-based
methods error-prone (Clark and Radivojac, 2011). Furthermore,
organism-focused research interests result in more detailed annota-
tions for a non-random subset of proteins, where homologous pro-
teins of identical functionality in another species are often annotated
significantly less thoroughly. Evaluating the performance of compu-
tational annotation methods is complicated by the absence of large,
well curated and ‘evenly’ functionally annotated protein sets, repre-
senting the entire breadth of available biomolecular functionality.
Protein sets that are used as benchmarks of prediction employ an-
notation ontologies, i.e. standardized terms and their relationships.
One such benchmark set is enzymes with Enzyme Commission
(Bairoch, 2000) (EC) numbers. EC numbers reflect a four level hier-
archy, where each consecutive level is a more precise specification of
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the annotation on the previous level. For example, enzymes classified
as EC: 1.1.1.- are oxidoreductases (first level), acting on the CH-OH
group of electron donors (second level), with NAD* or NADP™ as an
electron acceptor (third level). The fourth and most specific level
might then annotate an enzyme as alcohol dehydrogenase (EC:
1.1.1.1), i.e. reducing the aldehyde group of the molecule. Note that
dashes (‘-’) in EC numbers indicate lack of specificity of functional an-
notation at that level. While EC numbers facilitate comparison of
functions across enzymes, the annotation specificity at the same EC
level varies; e.g. the class of serine/threonine protein kinases (EC:
2.7.11.-) contains a category EC: 2.7.11.1 (fourth level
annotation = 1) that collects all kinases that are non-specific or whose
specificity has not been analyzed to date. On the other hand, serine/
threonine protein kinases with the fourth level annotations between 2
and 32 are very specifically annotated, with each category limited to
proteins that act on a particular substrate. Using EC annotations as a
benchmark, thus, comes at the expense of variability in annotations
even at the same level of the hierarchy. This, in turn, complicates
establishing functional similarity of two proteins in a precise and bal-
anced manner across the entire enzymatic activity spectrum.

By definition, using EC annotations also means missing out on
non-enzymatic functionality. Other ontologies, like the molecular
function branch of Gene ontology (Ashburner et al., 2000) (GO) do
not have this limitation. GO, however, employs a different, even
more detailed, strategy in defining function than EC. The number of
GO annotation levels varies by ontology sub-branch. Moreover, one
protein can (and likely does) have multiple functional GO terms
assigned to it (e.g. both copper ion binding and DNA binding terms
describe the function of P53; AmiGo 2.4.6; PMID: 15358771,
PMID: 7824276). Thus, comparing GO annotations may lead to
much stronger distortions of similarity than skewed or even incom-
plete EC numbers. Note that moonlighting (Khan ez al., 2014) pro-
teins, i.e. proteins that can be assigned multiple specific functions,
further confuse functional similarity metrics.

As a consequence of the drastic increase in genomic and protein
sequences in need of annotation, the search space for all computa-
tional function assignment methods has also increased. A center-
piece of much of sequence analysis efforts is the Basic Local
Alignment Search Tool (BLAST) (Altschul et al., 1990; Altschul
et al., 1997) family. We note that with the quasi exponential growth
in search space, while PSI-BLAST (Altschul et al., 1997) may still re-
main viable for the analysis of a single protein, large scale evalua-
tions are not time-feasible. Many methods that reduce runtime
while retaining or increasing alignment accuracy have been devel-
oped over the last years, including caBLASTp (Daniels et al., 2013),
HHblits (Remmert et al., 2012) and MMseqs2 (Steinegger and
Soding, 2017). However, replacing (PSI-) BLAST in any bioinfor-
matics pipeline with another alignment method requires parameter
re-optimization or even a complete method overhaul.

Existing function prediction methods are very sophisticated,
using a variety of inputs (e.g. structure and literature mining) and
computational techniques (e.g. machine learning). However, here
we focused on Homology-derived Secondary Structure of Proteins
(HSSP) (Rost, 1999; Rost, 2002; Sander and Schneider, 1991)—a
simple distance metric that infers protein function and structure
similarity from sequence identity and alignment length. We opti-
mized HSSP parameters to classify protein pairs as functionally iden-
tical or different using the results of MMseqs2, a lightning-fast
alignment method. We found that our newly developed Homology-
derived Functional Similarity of Proteins (HFSP) method is 40-fold
faster than HSSP, while retaining HSSP precision in annotating en-
zymatic functionality of proteins (85% precision; Fig. 1).

Analyzing existing protein databases with our method, we
showed that currently available computationally determined anno-
tations in even the manually curated Swiss-Prot (The UniProt, 2017)
database are incorrect for at least a sixth of the cases. We suggest
that these errors are likely due to loosely defined rules of homology-
based propagation of functional annotations. With the number of
protein sequences in public databases bordering on 100 million and
growing, HFSP is well suited to help improve the quality of existing
and newly assigned functional annotations.

2 Materials and methods

2.1 Extraction of datasets

We extracted a set of reviewed proteins from Swiss-Prot with only
one, EC (Bairoch, 2000) annotation per protein (complete at all four
levels; 214 000 proteins; Swiss-Prot set). The 2002 (latest) formula
for computing the HSSP (Rost, 1999; Rost, 2002) distances was
developed on a combined set of Swiss-Prot (The UniProt, 2017) and
Protein Data Bank (Berman et al., 2002) proteins. To validate the
performance of HSSP reported in Rost (1999) and Rost (2002), we
extracted proteins from the Swiss-Prot set that had experimental evi-
dence of protein existence (e.g. crystal structure, protein detection
by antibodies, etc.) and an EC annotation in BRENDA (Placzek
et al., 2017). The resulting proteins (Swiss-Prot 2017 set; 7022 pro-
teins) were further filtered to retain entries appearing in the database
before January 2002 (Swiss-Prot 2002, 3, 908 proteins). Both Swiss-
Prot 2017 and 2002 datasets were extracted in October 2017
(Uniprot release 2017_09) and redundancy reduced to 98% se-
quence similarity and 98% target sequence coverage with CD-HIT
(Fu et al., 2012; Li and Godzik, 2006). Swiss-Prot 2002 contained
3801 proteins with 1481 unique EC annotations and Swiss-Prot
2017 containing 6835 proteins with 2552 unique EC annotations
(Supplementary Material).

Swiss-Prot 2017 was further split into sets containing only pro-
karyotic (Swiss-Prot,,, 2017, 2572 proteins) or eukaryotic (Swiss-
Prot,,, 2017, 4263 proteins) proteins. Finally, we extracted two
more Swiss-Prot subsets from: (i) proteins that did not have an EC
annotation (293058 proteins) and (ii) proteins with incomplete or
multiple EC annotations (48 536 proteins).

2.2 Aligning proteins

To augment the homology profiles used in alignments [by both PSI-
BLAST (Altschul et al., 1997) and MMseqs2], we computed align-
ments of all proteins in our datasets (Swiss-Prot 2002, Swiss-Prot
2017, Swiss-Prot,,, 2017 and Swiss-Prote, 2017) against proteins
in the full (non-reduced) Swiss-Prot (Uniprot release 2017_09). For
each specific dataset, we then extracted only those alignments,
where both proteins were present in that set (e.g. both query and tar-
get protein in Swiss-Prot 2002).

PSI-BLAST alignments where created with NCBI-BLAST version
2.2.29+. We ran three iterations of PSI-BLAST (-num_iterations 3).
In each iteration, the top 500 hits (E-value 107, -inclusion_ethresh
1e-10) were included into the profile. After the third round all align-
ments that satisfied the E-value <1073 threshold (-evalue 1e-3) were
considered for evaluation of performance.

MMseqs2 (Steinegger and Soding, 2017) parameters were chosen
to mirror the PSI-BLAST runs. The alignment-mode (——alignment-
mode 3) was set to calculate sequence identity between query and tar-
get over the full alignment length, i.e. analogous to BLAST. We ran
three iterations (—nume-iterations 3) of alignments including hits with
an E-value <107'° into the generated profile (—e-profile 1e-10).
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Fig. 1. HFSP precisely predicts functional identity. All Swiss-Prot 2002 protein pairwise alignments were mapped into the sequence identity versus ungapped
alignment length space. In (A) protein pairs were differentiated according to identity of their EC level 3 (same EC annotation are green circles; different annota-
tions are red triangles). The HFSP curve (HFSP =0, light blue solid line) is shown relative to the HSSP curve (black dashed line). Protein pairs above the curve are
predicted to be of same function, pairs below the curve of different function. In (B, C) precision (circles) and recall (triangles) in predicting functional identity, at
third (blue, solid curve) and fourth (red, dashed curve) EC level for Swiss-Prot 2002. Arrows indicate performance at default cutoff of HFSP = 0. In (B) prediction
was done using the highest HFSP scoring alignment per protein. In (C) all alignments were used, resulting in significantly worse performance

Only alignments of protein pairs with and E-value <107 were
reported in the final result (-e 1e-3). The sensitivity (-s) cutoff for
MMseqs2 prefiltering step was set to 5.6 (default value).

It had taken MMseqs2 1228 CPU hours to complete the align-
ment of our Swiss-Prot enzyme set (214000 proteins) to the full
(non-reduced) Swiss-Prot (555594 proteins). Although MMSeqs2
was exceedingly fast for this set, note that it has been optimized to
deal with much larger databases and, thus, it did not reach its full
potential in speed. In earlier testing (Zhu et al., 2015; Zhu et al.,
2018) with a dataset of ~4.2 million proteins, the all-to-all protein
alignment time for the MMseqs2 was ~30 000 CPU hours
(4.2e6 x 4.2e6 = ~1.8¢13 comparisons in roughly 4 days on 12
compute nodes with 24 CPUs each). In comparison, creating the
same PSI-BLAST alignments took ~1.3 million CPU hours
(~3 months on 78 compute nodes with 8 CPUs each). From these
numbers, the HFSP speed-up (using MMseqs2) over HSSP (using
PSI-BLAST) was estimated at over 40-fold and expected to grow sig-
nificantly with database size.

2.3 Defining functional identity

Proteins sharing the same EC annotation at chosen (third or fourth
level) were assigned functional identity. For example, L-lactate de-
hydrogenase and D-lactate dehydrogenase have EC assignments

1.1.1.27 and 1.1.1.28, respectively. Thus, at EC level 4, the proteins
are different, but at EC level 3 they are the same, 1.1.1.

2.4 Retraining HSSP curve with MMseqs2

We used the Swiss-Prot 2002 proteins and their third EC level anno-
tations to develop the HFSP measure. Investigating the protein dis-
tribution of EC categories at the third EC level, we realized a strong
distortion toward a few EC categories with exceptionally many
associated proteins (Fig. 2C). This is in addition to other differences
between EC categories (Fig. 2A and B). To compensate for this cat-
egory bias, we limited the size of EC categories to no more than 50
chosen for the 19
Supplementary Table S1). We then extracted all MMseqs2 align-

proteins  (randomly larger categories,
ments for all Swiss-Prot 2002 protein pairs in our set.

It has been previously shown that using class-balanced training
sets is beneficial in the development of data driven classification mod-
els (Rost and Sander, 1993; Wei and Dunbrack, 2013). We therefore
balanced the results in training to contain equal numbers of protein
pairs with the same versus different third level EC annotations.

We first used cross-validation for training/testing our method; i.e.
we split the data into 10 sets such that no sequence in one set shared
more than 40% identity with a sequence in another set (CD-HIT clus-
ters). In each of in 10 rounds of training, 1 set was retained for testing
and the other 9 were used for training. Note that in each round of
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Fig. 2. Strong bias in EC distribution. Different EC categories contain different numbers of proteins with both general (A) EC level 1 and (B) more specific EC anno-
tations. (C) This bias is particularly obvious for third level EC categories, with 2.7.11.-, 2.7.10.- and 1.1.1.- being the most prominent (first three bars from right; all

ECs with more than 50 proteins are red)

cross-validation, we reintroduced into the testing set those proteins,
which were originally removed for class balancing purposes. We opti-
mized the parameters [originally factor = 480 and exponent = —0.32;
Equation. (1), Supplementary Table S2] of the 2002 HSSP formula
(Rost, 2002) to fit a new curve separating protein pairs of identical
function from those of different functions in the two-dimensional
space of sequence identity (y-axis) and ungapped alignment length
(alignment length—number of gaps; x-axis). Pairs of same function
proteins (identical annotation for EC) and a given threshold distance
away from the curve along the y-axis were true positives (TP). Pairs
that did not have the same function but were also above the threshold
were false positives (FP). False negatives (FN) were pairs of same
function but scoring below the threshold. We optimized for F; score
[Equation (3)] using R’s implementation of the Nelder-Mead method
(Nelder and Mead, 1965), searching for a local optimal F; score,
using combinations of exponents from —0.3 to —0.9 in steps of 0.05,
and factor from 300 to 1500 in steps of 50.

100, for L<11
L
~032 x| 1+e 1000

480-L
19.5,

HSSP=PIDE —
, for 11 <L <450

for L>450
(1)

PIDE = Percent sequence identity of the alignment

L = ungapped alignment length

.. TP - TP
precision = TP + FP’ recall = TP + FN
2 % precision X recall

Fy score = T —
precision + recall

HFSP values for protein pairs were calculated using MMseqs2
results; Pearson correlation coefficient of HFSP to the HSSP values
computed using PSI-BLAST results for same pairs. For each dataset, we
calculated precision (i.e. how often a prediction of identical function is
correct), recall (i.e. how many identical function pairs were correctly
identified) and the F; score [Equations (2) and (3)] using HSSP and
HFSP distance thresholds to determine true/false positives/negatives.

After evaluation was completed, we retrained as described
above, but without testing, one HFSP curve on the complete bal-
anced set of Swiss-Prot 2002 protein pairs for all further use.

2.5 Using HFSP to make function predictions

We used the 6835 experimentally annotated proteins with 2552
unique EC annotations of Swiss-Prot 2017 as the reference database
for all further function predictions. For every protein, only the high-
est HFSP-scoring protein match (>0; excluding self-matches) was
used to annotate function. We thus predicted functions of proteins
in the complete Swiss-Prot set of enzymes. Curiously, some EC num-
bers used in Swiss-Prot protein annotation did not have any mem-
bers in the experimentally annotated Swiss-Prot 2017 reference set.
The proteins annotated with these EC numbers (32201 proteins at
fourth and 381 proteins at third EC level, respectively) were consid-
ered false positives by default. Note that we are still unclear about
the origins and experimental support of these annotations.
Additionally, some proteins did not produce any alignments, and for
others the highest hits did not reach our HFSP cutoff = 0. For these,
no functional assignment could be made.

3 Results

3.1 HFSP scores correlate with HSSP, but are produced
more than 40-fold faster

We trained, evaluated, and defined the HFSP [Homology-derived
Functional Similarity of Proteins; Equation (4)] as described in
Materials and Methods.
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100, for L<11
L
HFSP =PIDE — 033 x| 14 1000
770-L ,for 11<L <450
28.4, for L>450

(4)

HFSP uses MMseqs2 iterative profiles as they have three major
advantages over PSI-BLAST: (i) compositional bias correction to
suppress high scoring non-homologous alignments, (ii) profile com-
putation by only considering the 1000 most diverse sequences (PSI-
BLAST uses the 7 BEST scoring hits) and (iii) realignment to reduce
over-extension (Frith ez al., 2008); over-extension includes sequen-
ces into the profile at the edges of the alignment threshold in con-
secutive iterations. Thus, MMseqs2 alignments of smaller and more
distant proteins tend to be more compact, favoring higher sequence
identity, and thus leading to slightly higher HSSP scores calculated
using the original equation [Equation (1)]. These differences in
alignment methods, however, do not significantly affect the HSSP
scores across the entire spectrum, especially for high sequence iden-
tity alignments (Pearson correlation coefficient between BLAST-
based and MMseqs2-based HSSP scores = 0.95; Fig. 3).

3.2 HFSP precisely identifies the third, but not fourth,
level of EC annotations

In identifying pairs of proteins sharing the same function at the fourth
level of EC (Materials and Methods), HFSP attained precision of
44.1% =+ 3.6 at HFSP 0 and recall of 71.5% = 1.6 (in cross-
validation). This disappointing performance suggests that the increas-
ing resolution/fine-tuning of experimental molecular function annota-
tion is prohibitive for large-scale computational analyses of proteins;
i.e. for any given alignment scoring HFSP > 0, it is more likely that
the proteins in the alignment are not functionally identical.

In exploring this problem, we found that many highly sequence
similar protein pairs of different EC annotations contained homolo-
gous proteins that were assigned slightly different functionality in
different organisms. For example, proteins from the squalene cyclase
family (Interpro: IPR018333, Pfam: PF13243 and PF13249) were
annotated with different ECs; e.g. GERS_RHISY, a germanicol syn-
thase in the red mangrove, is assigned EC: 5.4.99.34 and has 93%
sequence identity (alignment length = 758) to BAS_BRUGY, a Beta-
amyrin synthase of the Burma mangrove, which is annotated as EC:
5.4.99.39. This combination of sequence identity and alignment
length produces an HFSP score of 64.6. At this HFSP level protein
pairs are predicted to share the same EC annotation at fourth EC
level with a precision of >99%. Note that GERS_RHISY is the only
EC 5.4.99.34 protein to date. The publication describing its catalytic
activity (Basyuni et al., 2007), suggests that GERS_RHISY activity
warrants a brand new EC number (germanicol synthase), because it
primarily catalyzes germanicol synthesis. From our perspective,
GERS_RHISY should additionally carry the beta-amyrin synthase
annotation, since beta-amyrin (and lupeol) are synthesized in add-
ition to germanicol albeit at a lower rate. Note that this example
also recalls the problem of moonlighting proteins.

The above example reflects the general problem of unbalanced
annotation detail of different EC categories at the same level of an-
notation. For example, EC: 5.4.99.- is by choice of the EC meant to
temporarily ‘house’ a collection of enzyme reactions that have yet to
be more thoroughly categorized. Many members of EC: 5.4.99.- fall
into the same PFAM families, while catalyzing the conversion of the
same reactant into similar chemical compounds; i.e. the fourth level
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Fig. 3. HSSP scores derived from MMSeqs2 and PSI-BLAST alignments
strongly correlate. HSSP scores derived from PSI-BLAST alignments (x-axis)
and MMSeqs2 (y-axis), respectively. The histograms display the number of
protein pairs in the respective ranges of HSSP scores. HSSP scores for both
methods highly correlate (Pearson correlation coefficient=0.95)

EC annotations of these proteins convey only a small amount of
functional difference. However, 5.4.99.- also contains significantly
different proteins catalyzing different reactions, where fourth level
annotations convey very large differences. Note that in this scheme,
automated protein function annotation is significantly limited by
lack of awareness of what individual EC numbers represent; i.e. it is
incorrect to assume that the fourth, most precise, level EC annota-
tions, across the entire EC system, are similarly defined in terms of
depth of functional understanding and/or functional distances be-
tween proteins of the same third level EC. Note, however, that
increasing the HFSP threshold for calling protein functions identical
leads to significantly improved precision (if at significant cost to re-
call). For example, at HFSP cutoff =20, 93% of the protein pairs
are correctly annotated to share functionality. In other words, pro-
tein pairs with higher HFSP score represent more reliable predic-
tions. This improvement is unsurprising as it is due in large part to
increasing sequence identity and is very likely reflective of closer
evolutionary relationships between proteins.

In identifying pairs of proteins sharing the same function at the
third level of EC, we found that performance improved drastically
at the default HFSP cutoff = 0. Here, our method attained precision
of 96% = 1.2 at HFSP 0 and recall of 64% = 1.6 (in cross-
validation, Fig. 1). These results suggest that in the absence of add-
itional knowledge about an aligned protein pair, it is prudent to
only accept higher scoring HFSP alignments (for fourth digit annota-
tions) or to move up in the required resolution of functional annota-
tion (i.e. to third EC level).

Finally, we tested HFSP precision and recall on proteins in Swiss-
Prot 2017 that were NOT in Swiss-Prot 2002 (which was used for
training of the HFSP curve), i.e. proteins that were added to Swiss-
Prot after January 2002. We found that performance for this subset
was similar to the expected performance at both the third and fourth
EC levels (Fig. 4), suggesting that our measure remains applicable
for newly added proteins AND enzyme classes (EC numbers).
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are similar. However, for the fourth EC level, the (B) performance on newly
added proteins (dark red) is worse than for older ones (light red)

3.3 HFSP performance differs in annotating prokaryotic
versus eukaryotic proteins

We additionally evaluated the HFSP performance in annotating the eu-
karyotic versus prokaryotic proteins of the entire Swiss-Prot 2017 set
(Methods, Fig. 5A) at the third EC level. At our default cutoff of
HFSP = 0, eukaryotic protein pairs were assigned functional similarity
correctly more often than prokaryotic ones (precision/recall 96 + 1.5/
62% versus 91 = 1.5/47%, respectively). Note that there were more eu-
karyotic proteins in our data than prokaryotic ones, which may have
contributed to this disparity during HFSP curve optimization. This
larger number of proteins can be explained by the eukaryotes (i) trend-
ing toward bigger proteomes and, perhaps more importantly, (ii) mak-
ing up a bigger fraction of model organisms, which are better studied.
Curiously, at the fourth EC level this trend was reversed, i.e. precision
was better for prokaryotes than for eukaryotes (precision/recall 62/55%
versus 42/79%, respectively, Fig. SB). This observation may potentially
be due to a smaller number of homology-confusing multi-domain pro-
teins in prokaryotes. It may also reflect a lower enzymatic diversity of
prokaryotic proteins in our set: 1522 distinct EC annotations in eukar-
yotes versus 1403 in prokaryotes. Whether this difference is due to ac-
tual diversity or a result of experimental bias remains unclear.

3.4 HFSP accurately predicts unknown protein function
at all EC levels

There is a conceptual difference between annotating functionality of
an unknown protein and measuring functional similarity of two
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Fig. 5. Differing annotation performance for prokaryotic and eukaryotic pro-
teins at third and fourth EC level. (A) For the third EC level at default cutoff of
HFSP=0, eukaryotic protein pairs are assigned functional similarity correctly
more often than prokaryotic ones. However, for high thresholds, i.e. higher
precision at the expense of recovered protein pairs, performance is similar.
(B) Performance is better for prokaryotes than eukaryotes at the fourth EC
level

proteins. That is, in assigning ONE specific protein function to a
newly obtained amino acid sequence is not the same as relying on
homology to identify proteins sharing the similar functionality in a
particular database. To use HFSP as a method of function prediction
we proposed simply relying on the ‘highest hit’; we have previously
shown that this approach is best for transferring functional annota-
tions with HSSP (Zhu er al., 2018) and suggest that similar logic
should apply here.

By mapping the highest HFSP match (at cutoff =0 and exclud-
ing self-hits) for the experimentally annotated proteins of the
Swiss-Prot 2017 set, we were able to correctly identify the fourth
level EC function of 4668 (~83% of 5647) proteins. As expected,
the numbers were higher for the third level EC (5425 of 5647 pro-
teins, 96%). Note that this performance is the upper limit of actual
HFSP performance, as Swiss-Prot 2002, on which our method was
developed, is a subset of Swiss-Prot 2017. Also note that (i) 625
proteins in our Swiss-Prot 2017 set did not reach our HFSP
cutoff =0 and (ii) 563 proteins did not align to any others in our
set. Of these, 645 proteins (291 and 354, respectively) proteins
were unique in our set; i.e. there was no other protein with the
same EC number at fourth EC level. Thus, 1188 proteins in our set
(~17% of 6835 in the set) could not be assigned function at all—
~8% due to HFSP limitations and ~9% due to the absence of
homologs.
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Fig. 6. More proteins in Swiss-Prot enzyme could not be assigned to function
than expected. Function predictions for proteins in Swiss-Prot 2017 with
unique (light purple) and non-unique (dark purple) fourth level EC annotation
and all proteins in Swiss-Prot with EC annotation complete on all four levels
that either share an EC with proteins in Reference (light teal) or not (dark teal)

3.5 Functional annotations even in manually curated
databases are often incorrect

We applied the highest HFSP hit measure to evaluate EC annota-
tions in the entire Swiss-Prot set (Materials and Methods) on the
basis of their alignment to our experimentally annotated Swiss-prot
2017 set. We estimate that 142831 of the 214000 Swiss-Prot
enzymes (67%) are correctly annotated at the fourth level of EC
(Fig. 6). Curiously, 32201 (15%) of the enzymes in Swiss-Prot had
no corresponding fourth level ECs (381 third level ECs) in Swiss-
Prot 2017, raising questions as to the accuracy of these annotations.
Another 4937 are deemed wrongly annotated (highest hit at
HFSP > 0 has a different EC number). While these proteins may in-
deed be assigned wrong functionality, this may also be due to error
in HESP assignments at this level (17% false positives at this cutoff,
as described above for the Swiss-Prot 2017 experimentally-
annotated set). A more interesting finding, however, is that 34 031
(19%) of the proteins in this set could not be annotated at all by
HFSP, whether due to lack of alignments (17 519 proteins) or HFSP
highest hits unable to reach the cutoff (16 512 proteins). These 19%
of proteins that could not be annotated represent a more than 2-fold
higher number than expected (~8% as described above for the
Swiss-Prot 2017 set). We, thus, suggest that the Swiss-Prot EC anno-
tations of many of these 34 031 proteins, a sixth of the total number
of annotations, are incorrect.

3.6 Identifying proteins of new functionality is

simplified with HFSP

One problem of function transfer by homology methods is their in-
ability to identify proteins of completely novel, i.e. not found in the
reference database, functionality. Note that sequence similar pro-
teins are also likely functionally similar, but are clearly not necessar-
ily functionally identical. To evaluate how HFSP deals with proteins
of novel functionality, we extracted a set of proteins from Swiss-
Prot 2017, where no other protein in our set had the same fourth
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Fig. 7. HFSP is robust to previously unseen enzymatic functionality. (A)
Proteins with no known homologs—approximated by investigating experi-
mentally annotated proteins which fall into a EC category unique to the pro-
tein (orange)—show on average smaller highest scoring HFSP hits than
proteins with existing homologs (green—correct predictions, blue—incorrect
predictions). Of all predictions at HFSP score >14, <10% of proteins with ‘un-
known’ and ‘known’ but falsely predicted function where observed (B, bottom
panel): highest HFSP score predictions for different protein subsets of the
non-reduced Swiss-Prot: (i) experimentally verified enzymes (reference—pur-
ple), (i) enzymes with EC annotation complete on all four levels that are not
experimentally verified (complete EC—teal), (iii) enzymes with incomplete EC
annotation or multiple EC annotations (incomplete & multiple EC—black) and
(iv) proteins that are not annotated as enzymes (no EC—red); note that for
most proteins with no EC annotation there were no matched to the reference
database (268 857 proteins, 91%; B, top panel)

EC level annotation (‘unknown’ functionality). These ‘unknown’
proteins, i.e. assigned to a fourth EC level category, which appear
just once in our set, are a minority (19%; 1317 of 6835 proteins), al-
beit a significant one. We asked if we could in advance identify these
‘unknown’ proteins, for which prediction of function could not be
made, rather than making incorrect predictions.

We separated function predictions for the 6835 proteins in
Swiss-Prot 2017 into three subsets (i) ‘unknown’, as described
above, and (ii) correctly and (iii) incorrectly predicted ‘known’, i.e.
proteins with fourth EC level annotations containing more than one
protein. We then compared the highest hit HFSP score distributions
for all three sets (Fig. 7). HFSP scores for correctly annotated pro-
teins with known functionality appear to come from a mixture of
two distributions. These are likely to be evolutionarily distant
(peak of the distribution at HFSP = ~20) versus close (peak at
HFSP = ~65) homologs. The peak of the distribution of ‘unknown’
protein scores is obviously different from either (HFSP = ~2).
However, the distribution of incorrect predictions for ‘known’
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proteins closely follows the ‘unknowns’ (Fig. 7A and Supplementary
Fig. S2A and B). Combined, ‘known incorrect’ and ‘unknown’,
make up less than 10% of all predictions at HFSP > 14 (false dis-
cover rate, FDR = 9.6%), whereas between the default cutoff and
HFSP = 14 (0 < HFSP < 14) this fraction is nearly 40%. Despite
the fact, that at this threshold only ~6% of all predictions are of
‘unknown’ origin, these are still 30% of all ‘unknown’ proteins;
similarly ~3% of all predictions, but 29% of all ‘known incorrect’
proteins are at HFSP > 14. These observations suggest that while we
cannot differentiate incorrect predictions from missing-reference
ones, HFSP handles new protein function, as well as that which it
has already seen, with higher scores indicating more reliable/correct
annotations.

Given the vast number of proteins that yet have to be functional-
ly annotated (e.g. TrEMBL is currently approaching 109 million
proteins), the number of potential EC functionalities missing from
our reference set, as well as the understanding that the total number
of enzymes among the unannotated proteins may not mirror the
Swiss-Prot distribution (where ~47% of all proteins are annotated
enzymes including those with incomplete and multiple EC annota-
tions), we suspect that accurately estimating the HFSP cutoff at
which the FDR would fall below some threshold, e.g. 5% (currently
at HFSP > 28), is not possible. For example, given the current distri-
bution of scores, 29% of 1384 ‘unknowns’ and incorrect ‘knowns’
present at HFSP > 14 make up only 407 proteins. If we were anno-
tating tens of millions of proteins, however, this error rate can be
expected to produce hundreds of thousands of annotations. On the
other hand, given the limited size of our reference database, we can-
not necessarily expect that the true positive findings would grow
accordingly.

We further predicted EC annotation for all Swiss-Prot (555 594
proteins in October 2017, Fig. 7B). Importantly, the majority (91%)
of the non-enzymes (no EC annotations; 293 058 proteins) did not
generate any matches to our reference database. Of the remaining
non-enzymes, 21% (4987 proteins) scored at HFSP > 0, making up
3% of all predictions (false positives, 1% for all predictions at
HFSP > 14). Predictions could be made for 57% of the enzymes
with multiple or incomplete EC annotations (27717 of 48 536 pro-
teins); 53% (14 668 proteins) of these scored at HFSP > 0 and 13%
above HFSP > 14 (3653 proteins). If these proteins were like our
‘unknowns’, we would expect at least twice as many with a match
at HFSP > 14. Thus, we suspect, that the enzymes in this set are not
especially novel and can likely be annotated using HFSP and our ref-
erence dataset. This further suggests that at least 73% (43% no hits
and 30% below HFSP = 0) of proteins with incomplete or multiple
EC annotations could be proteins with no homologous sequence in
our reference database.

In light of our findings, we note that without further experimen-
tal work to elaborate on the functions of the yet-unannotated pro-
teins, even the best function prediction methods will soon reach
their limits. We suggest that using HFSP cutoffs can help in both
more accurately annotating protein function and, arguably even
more importantly, in identifying new frontiers of molecular function
exploration.

4 Conclusion

While experimental function annotation of proteins is more ac-
curate, computational methods are more readily available for the
vast amount of sequences currently in our databases. Here we
demonstrated that our newly developed HFSP is a fast an

accurate method applicable to this task. Applying HFSP to evalu-
ate existing annotations we also highlighted inconsistencies in
existing annotations of enzymatic activity reported in Swiss-Prot.
We thus suggest that HFSP provides both a way to (i) enrich func-
tional annotation analysis on a large scale, as well as to (ii) nar-
row down the space of proteins of interest for further

experimental analysis.
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