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Abstract

We introduce Optimal Eye Surgeon (OES), a
framework for pruning and training deep image
generator networks. Typically, untrained deep
convolutional networks, which include image
sampling operations, serve as effective image pri-
ors (Ulyanov et al., 2018). However, they tend
to overfit to noise in image restoration tasks due
to being overparameterized. OES addresses this
by adaptively pruning networks at random initial-
ization to a level of underparameterization. This
process effectively captures low-frequency image
components even without training, by just mask-
ing. When trained to fit noisy image, these pruned
subnetworks, which we term Sparse-DIP, resist
overfitting to noise. This benefit arises from un-
derparameterization and the regularization effect
of masking, constraining them in the manifold of
image priors (Figure-3). We demonstrate that sub-
networks pruned through OES surpass other lead-
ing pruning methods, such as the Lottery Ticket
Hypothesis, which is known to be suboptimal
for image recovery tasks (Wu et al., 2023). Our
extensive experiments demonstrate the transfer-
ability of OES-masks and the characteristics of
sparse-subnetworks for image generation. Code
is available at https://github.com/Avra98/Optimal-
Eye-Surgeon.git.

1. Introduction

Overparameterization has been central to the success of deep
learning especially in image classification tasks. Empiri-
cally it is observed that bigger models (at scale) generalize
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better. Eventually, it was found that sufficiently sparse sub-
networks can be found within these deep dense networks
that can reach as high test accuracy as their dense counter-
parts. These sparse networks are called matching subnet-
works. This led researchers to further study neural network
pruning. However, the impact of overparameterization in
deep convolutional neural networks (CNNs) hasn’t been
thoroughly studied for image reconstruction and inversion
tasks although overparameterization is important in many
image recovery tasks. Jin et al. (2017) empirically showed
that trained deep CNNs are better substitutes to regularized
iterative algorithms and direct inversion (Katsaggelos, 1989).
The initial works further led to deploying deep convolutional
networks inside the typical iterative image reconstruction
framework, where it is fused with the physics or the forward
model of the image generation problem (Venkatakrishnan
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etal., 2013).

Going one step ahead, Ulyanov et al. (2018) showed that
untrained deep convolutional networks can recover images
directly from corrupted measurements. Hourglass architec-
tures like Unet/Skipnet having downsampling, upsampling
and convolutional operations are natural image priors, as
they bias the output towards the prior distribution of natural
images. These networks are known as Deep Image Prior
(DIP). When trained to reconstruct a corrupted image, DIPs
first learn the natural image component of the corrupted
image and then overfit to the noise as they are highly over-
parameterized. This phenomenon is known as spectral bias
(Chakrabarty & Maji, 2019). Hence, some early stopping
time criteria need to be adopted before these models overfit
to the noise or artifacts in the image. Finding an estimate
of early stopping time typically requires knowledge of the
clean image and noise-corruption level, which are usually
unknown, making this an active area of research (Wang
et al., 2021).

Underparameterized models' emerged as a good substitute
to deep Unets as means to prevent overfitting. Heckel &
Hand (2018) proposed deep decoder which consists of only
upsampling layers and convolutional layers with kernel size
1 x 1. Deep decoders prevent overfitting to a large extent
but as they are sufficiently underparameterized, they are
not rich image priors. They fail to capture detailed image
information (Wu et al., 2023).

In this work, we bridge this gap between overparameterized
models like deep image prior and underparameterized mod-
els like deep decoder. We aim to find a sparse sub-network
within a dense DIP network that can act as an image prior
and doesn’t overfit to noise because of underparameteriza-
tion. Our main contributions are as follows:

1. We propose a principled approach of pruning a deep
image prior network at random initialization with only
the corrupted measurement for a single image and train
the pruned network till convergence (Figure-1).

2. We show that the masked subnetwork output gives a
low frequency approximation of the clean image by
just masking at random network initialization. Further
training these subnetworks to convergence alleviates
overfitting.

3. We show that these sparse networks are transferable,
i.e., masks learned on one image are transferable for
recovering a different image (Figure-2).

'In image restoration, underparameterized models are defined
as networks with fewer parameters than the number of image
pixels. So, the image fit loss |G(8, z) — y||3 may not be zero at
convergence.

2. Image reconstruction with DIP

The general framework for image reconstruction involves
corrupted measurements y produced from a clean image
x undergoing a corruption process y = A(x) + €, where
A () represents the corruption operation and e is a noise vec-
tor drawn from any standard normalized distribution (e.g.,
Gaussian). The objective is to determine x given y. Image
reconstruction entails finding the MAP (Maximum A Poste-
riori) solution, which maximizes the posterior distribution
p(x]y) x p(y|x)p(x). Assuming Gaussian noise, the like-
lihood term p(y|x) focuses on minimizing ||y — A(x)||3
to identify the optimal fit. However, since the forward op-
erator A(.) typically has a large null space, making the
inverse problem ill-posed, additional insight into the prior
distribution p(x) is required.

Deep image prior proposed by Ulyanov et al. (2018) showed
that by reparameterizing the reconstruction variable x as the
output of an untrained deep Unet x = G(0, z), we can reg-
ularize the solution-space of the output to look like natural
images. For example, G(.) denotes the hourglass convolu-
tional architecture, 8 are the model parameters and z is a
random input to the network. Here, the image prior is im-
plicit, as the output space of G(0, z) inherently encapsulates
the unique characteristics of a natural image. For image de-
noising, we minimize the loss ||y — G(0,z)||3 w.r.t network
parameters 0, the target of the network being the corrupted
image y. Early in the training, the deep Unet architecture
regularizes solutions towards natural images, giving an esti-
mate of the clean image. However, as the model is highly
overparameterized, the training loss ||y — G(0, z)||3 will be
driven to 0, essentially ensuring G(6, z) fits the noisy image
y. Hence, some early-stopping strategy is required to obtain
the clean image, which is difficult without the knowledge of
the ground-truth clean image x.

Several works in recent years have approached the challenge
of finding the early-stopping time or preventing overfitting
to noise, which broadly falls into two classes as discussed
next.

2.1. Through regularization

Cheng et al. (2019) considers a Bayesian approach to in-
ference, by conducting posterior inference using stochastic
gradient Langevin dynamics which delays overfitting. Jo
et al. (2021); Shi et al. (2022); Metzler et al. (2018) control
the deep network capacity by regularizing the layer-weights
or the Jacobian of the network. These methods incur an ad-
ditional computational and backpropagation cost. Liu et al.
(2019); Mataev et al. (2019); Sun et al. (2020); Cascarano
et al. (2021); Bell et al. (2023) use additional regularizers
on the deep, dense models such as the total-variation norm
or trained denoiser or external guidance. These methods
require the right regularization level which depends on the
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noise-type, level, and image class to avoid overfitting. You
et al. (2020) model sparse additive noise as an explicit term
in the optimization. Ding et al. (2021) explore subgradient
methods with diminishing step size schedules for impulse
noise with ¢; loss. These methods are limited to the types
and the levels of noise they target. Finally, Wang et al.
(2021) develop a general-purpose early-stopping detection
criterion for all of the above methods. Their approach to
detecting the transition from clean to noisy reconstruction
is by estimating the running variance of the reconstructed
image over the iteration window. However, in certain cases,
their detection peak is sometimes off by certain iterations, as
acknowledged by the authors. All of these works attempt to
avoid overfitting while optimizing overparameterized dense
models which incurs additional cost on storage and compu-
tational time.

2.2. Through underparameterization

On the contrary, the performance of under-parameterized
networks for image recovery is significantly less approached.
Heckel & Hand (2018) first proposed Deep-decoder, an un-
derparameterized network consisting only of the decoder
part of the Unet architecture. Underparameterization pro-
vides a barrier to overfitting, allowing the deep decoder
to denoise without much overfitting. However, due to the
same reason, deep decoders slightly underperform when
the underlying ground-truth image has fine-grained texture
details. Hence, for images with rich detail information, deep
decoders underperform. However, their ability to prevent
overfitting for most denoising problems makes them attrac-
tive for image restoration problems compared to typical DIP
networks and their variants. The recent success of under-
parameterized networks like deep decoder motivates the
question:

Q1 : Can under-parameterization prevent overfitting and
at the same time recover high-quality images? If the answer
to question Q1 is yes, then the next question is how to
build these underparameterized networks. As a first step to
this question, we start with an overparameterized Unet and
attempt to study a principled pruning strategy to obtain an
underparameterized network. Thus, we study the second
and more interesting question:

Q2 : Can we design a principled pruning method with
only the corrupted measurements'y to obtain an underpa-
rameterized network that satisfies Q1? Our answers to both
questions are positive and our findings reveal some interest-
ing phenomena on overparameterization, initialization and
their relation to capturing image priors.

3. Optimal Eye Surgeon: Pruning image
generators at initialization

Neural network weight pruning dates back to as early as
the early 90’s (LeCun et al., 1989; Hassibi et al., 1993).

Pruning can be broadly classified into three classes based on
when networks are pruned: 1) Pruning at Initialization (PAI)
methods prune deep networks at random initialization. The
resultant sparse sub-network at initialization is then trained
to convergence at inference time. Pruning at Initialization
(PAI) techniques, like SNIP (Lee et al., 2018), GraSP (Wang
et al., 2020), and SynFlow (Tanaka et al., 2020), focus on
effective weight pruning in neural networks at random ini-
tialization. SNIP removes weights minimally impacting
loss, GRASP preserves information flow, and SynFlow, a
data-free method, maintains total synaptic flow under spar-
sity constraints. Our proposed method falls under this cat-
egory. 2) Pruning while Training (PWT) takes a randomly
initialized dense network and jointly trains and prunes a neu-
ral network by updating weights and masking the weights
during training. Different strategies can be adopted for deter-
mining importance scores like random dropout, magnitude,
or back-and-forth pruning (Evci et al., 2020; Zhao et al.,
2019; He et al., 2018). The benefits of pruning early in
training were also shown in You et al. (2019). 3) Prun-
ing After Training (PAT) involves a Pretrain-Prune-Retrain
cycle and is essential for obtaining matching subnetworks
at non-trivial sparsity levels. The Lottery Ticket Hypothe-
sis (LTH) (Frankle & Carbin, 2018) advocates for Iterative
Magnitude Pruning (IMP), which removes a percentage of
weights based on the magnitude from a pretrained network,
then retrains the remaining weights from their original ini-
tialization. For complex networks and large datasets, weight
rewinding to an early-epoch state (Frankle et al., 2019) and
learning-rate rewinding (Renda et al., 2020) were deemed
essential to obtain matching subnetworks. The weight mag-
nitudes at the end of training are crucial, as highlighted in
ongoing research (Paul et al., 2022).

Overparameterization seems to be a crucial factor for finding
sparse matching subnetworks. Zhou et al. (2019); Ramanu-
jan et al. (2020) showed that when a network is sufficiently
large, even learning a mask at random initialization (termed
as supermasks) can show competitive performance like train-
ing a network. This phenomenon is termed as strong lottery
ticket hypothesis, and was recently proved by Malach et al.
(2020); da Cunha et al. (2021) under certain network as-
sumptions. Supermasks were also used to generate different
subnetworks for various tasks from the same dense network
(Wortsman et al., 2020; Mallya et al., 2018), with appli-
cations also in graph networks (Huang et al., 2022). Our
work is the first to show the existence and effectiveness of
supermasks for image reconstruction. We further highlight
the notable diffrences of pruning for image classification
and image reconstruction in Table-10.

3.1. Suboptimality of LTH for DIP

LTH-based methods are very reliable to obtain matching
sparse subnetworks at non-trivial sparsities for various ML
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Figure 3. Subnetworks learned by OES are image generators with
good image priors. On the contrary, the range of subnetworks
learned by LTH is close to the overfitted noisy image, which is far
from being an image prior. Image adapted from (Ulyanov et al.,
2018)

tasks, a feat unachieved by other pruning methods. Given
the success of LTH on a variety of machine learning tasks,
at first-sight, it might be tempting to apply LTH on im-
age reconstruction based tasks involving deep image prior.
However, for unsupervised learning schemes like DIP which
overfit to noise at convergence, using the magnitudes at con-
vergence, to determine which weights to prune, is in fact
detrimental (Figure-3).

For image reconstruction, network output overfits
to noise at convergence. Subnetworks obtained by
LTH at convergence (without early stopping time)
perform poorly on denoising tasks.

Noisy image 3% sparse 50% sparse

TR

80% sparse

% |

Figure 4. Masking network at initialization induces image prior.
Figures show the images after masking image generator parameters
at random-initialization G(0;, o m*(y), z). The mask m* was
learned using the OES algorithm. Images corresponding to several
sparsity levels are shown. We show that Strong Lottery Ticket
Hypothesis also holds for image reconstruction.

Two possible ways to apply LTH to DIP for image recon-
struction tasks are: a) using the clean image x to train the
DIP model which will not require any early-stopping and
b) the early stopping (ES) time can be obtained from the

knowledge of x and the weight magnitude at ES can be
used to obtain the mask. Wu et al. (2023), adopted method
a) to obtain the mask, which might not be practical for
most image reconstruction problems (see Section D.3 for
detailed comparison) as we do not have knowledge of the
clean image x nor an assumption of an early-stopping time
(Figure-21). We show the effect of using LTH-based meth-
ods (with loss involving y) as the mask in Figure-7 and in
Section E (Appendix). Further, we study in detail, the ar-
chitecture of the pruned network derived from LTH pruning
in Figure-10a which sheds light on why IMP-masks may
underperform in image reconstruction tasks. In our work,
we propose Optimal Eye Surgeon (OES), a framework to
prune image generators at random initialization which is
optimal for pruning image generator networks.

3.2. Masking at initialization

Let G(0, z) be a dense and deep image generator network
with random input z. Let the random input z € R?, and
let @ be vectorized parameters of a dense Unet, 8 € R
Let x, y be the clean and noisy/corrupted RGB image such
that x,y € R3>*H*W where H and W are respectively
the height and width of the image. As DIPs are sufficiently
overparameterized, i.e., the number of parameters is much
more than the number of image pixels, it is usually the case
that d > 3HW. Let 8;,, be the random initialized neural
network, where the uniform Kaiming initialization is used.
Let m € {0,1}% be the binary mask that we aim to learn
at initialization. To learn an s-sparse mask, i.e., with only
s non-zero parameters out of d, we would have to solve an
integer problem:

m*(y) =arg min ||G(0;, om,z) —y||3

me{0,1}4
such that ||ml|p < s. (1)

Equation (1) involves discrete optimization for deep net-
works, where d is very large (in millions). To get around
this difficulty, we propose a Bayesian relaxation of (1) that
is differentiable and unconstrained and can be solved by a lo-
cal iterative algorithm such as gradient descent. We attempt
this by reformulating (1) as learning Bernoulli dropout prob-
ability parameters p with the mask m being sampled from
the Bernoulli distribution with mean p € R<.

m*(y) = C(p*) such that
p" = argmin Eum- per(p) [[|G(in 0 m, 2) — yl[3]
R(p)
+ AK L(Ber(p)||Ber(po))-

(©))
The deterministic inequality constraint ||m|lp < s is
changed into an unconstrained penalty which ensures that
the learned Bernoulli distribution Ber(p) is close to a prior
Bernoulli distribution Ber(pg), the known prior distribu-
tion depends on the desired sparsity level s. We fix pg = 3.
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For Bernoulli distributions, the distance measure between
two distributions as given by Kulbick-Luiber divergence has
a closed form and is given by K L(Ber(p)||Ber(po(s))) =

5 (pilog 2 + (1 - pi)log =2
notes the Bernoulli mean probability corresponding to the
it" weight parameter of p and py. We solve this optimiza-
tion problem by learning p via the Gumbel-softmax trick.
We delay the details of the algorithm to the Appendix section
C. After obtaining the converged p, we prune the weights
based on the ranking/ordering of p to obtain the desired
sparsity level, which is denoted by the C(.) function. We
discuss the importance of KL regularization compared to L
regularization (Sreenivasan et al., 2022) or no regularization
(Zhou et al., 2019) in Section I of Appendix. Previous work
on Bernoulli mask learning and pruning on network initial-
ization only focused on image-classification tasks, whereas
our work applies it to image-reconstruction tasks and devel-
ops many new findings that might provide important insight
into new structure design for DIP.

), where p; and pg; de-
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Figure 5. Comparative Analysis of Denoising Performance on ’Ba-
boon’ and "Pepper’ Images at 0 = 25 dB.

Our proposed OES (Optimal Eye Surgeon) algorithm con-
sists of two steps:

* Solve the optimization problem in (4) to learn the mask
m*(y) using OES.

* Train the sparse subnetwork G(6 o m*(y), z) to conver-
gence to fit the corrupted image y.

We summarize the important observations from applying our
algorithm to DIP for image reconstruction. These findings
will be supported by extensive numerical experiments in the
next section and appendix.

* Finding-1: Masks learned by Step 1 of OES when
applied at initialization induce a relatively good im-
age prior (Figure-16). We term the sparse subnetwork
G(0;n,0m*(y), z) at initialization as Sparse-DIP. It gives
a good low-frequency approximation of the clean image

by just the masking network.

* Finding-2: OES effectively recovers the clean image and
exhibits minimal or no overfitting for denoising problems
(Figure-6).

* Finding-3: On image recovery tasks, the training of sub-
networks identified by OES is much more effective than
those discovered by the current best Pruning At Initial-
ization (PAI) methods. Furthermore, masks created by
methods based on the Lottery Ticket Hypothesis (LTH)
are not ideal for reconstructing images, a point we explore
in detail in Section 4.3.

* Finding-4: Sparse-DIPs are transferable across images,
datasets and corruption processes. More specifically, a
mask learned by OES from one image can be used to
successfully reconstruct other images, from completely
different datasets.

* Finding-5: The encoder part of DIP is more compressible
(prunable) than the decoder part. (Section 6)

* Finding-6 (Appendix): The irregularly pruned sparse-
DIP is better than the regular deep decoder of a similar
size. (Figure-11).

* Finding-7 (Appendix): Mask trained based on the initial
weights is more transferrable than that based on the mag-
nitude of the final trained weights like LTH. (Section-E in
Appendix).

4. Experimental support of the findings

Through extensive experiments, we confirm our findings.
We use images from three popular datasets: the Set-14
dataset (Zeyde et al., 2012), the standard image dataset
(Ulyanov et al., 2018) and the Face dataset (Bevilacqua
et al., 2012). In Finding-1 (4.1), and Figure-16, we study
the quality of images that are produced by just masking. In
Finding-2 (4.2), we compare the denoising performance of
OES with overparameterized DIP, Gaussian process DIP
(Cheng et al., 2019) and underparameterized deep decoder
(Heckel & Hand, 2018). In Finding-3 (4.3), we show results
of OES against state-of-the-art pruning methods. Finally, we
compare the transferability of OES and IMP across various
combinations of images and datasets in Finding-4 (Section
4.4).

4.1. Finding-1: Masking at initialization induces image
prior

Masking at initialization with masks learned by OES in-
herently captures low frequency components of the image.
In Figure-16, we display the results of G(0;, c m*(y), z)
alongside the original corrupted image y for images in the
Set-14 dataset. Images across three different levels of spar-
sities 3%, 50%, and 80% are shown. OES-masked images
for other datasets are shown in Figure-17 in the appendix.
We observe that OES can effectively reconstruct the simpler,
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low-frequency parts of an image from the corrupted version
Y, but it struggles with the more intricate details. This means
that while OES can denoise an image, some information is
lost in the process. Masking has its limitations compared to
regular training. It can only represent a limited number of
functions, up to 24 where d is the number of parameters in
the network. Consequently, due to this limitation in function
representation, the training loss with masking cannot reach
zero. In our study, we found that OES primarily reconstructs
the simpler, low-frequency parts of images. Since natural
images usually contain more low-frequency elements, focus-
ing on these parts allows for the greatest reduction in loss.
Additionally, because the model described in (1) lacks suffi-
cient function representation capability, it never achieves a
training loss of zero. However, even in this limited setting,
OES is effective in finding a mask that represents the image
y as closely as possible. For experiments in the manuscript,
y is the Gaussian noise corrupted image.

4.2. Finding-2: Sparse DIPs prevent overfitting

In OES, we further train the remaining subnetwork within
the obtained mask (G(6;,, o m*(y), z)) till convergence to
perform the image reconstruction task, image denoising.
We conduct experiments on the denoising capabilities of
these subnetworks over several noise levels and various
images across 3 popularly used datasets, which we report
in Figure-6. We perform a comparison with the following
enumerated network based denoising methods. 1) Dense
DIP which is the overparameterized network originally pro-
posed by Ulyanov et al. (2018). The encoder part has 6
layers (Conv — ReLU — Batchnorm — Downsample) fol-
lowed by 6 layers of decoder (Upsample — ReLU — Batch-
norm). The convolution patch size in both the encoder and
decoder parts is 3 x 3. The input z is fixed to be a random
tensor drawn from the Gaussian distribution of dimension
H x W x 32 x 3. The total number of parameters in Dense-
DIP is 3008867 (3 million) and the image dimension (y)
is 3 * 512 % 512 = 786432 (0.7 million). The network is
overparameterized. 2) Gaussian Process-DIP (GP-DIP) is
the network trained by SGLD and proposed by Cheng et al.
(2019) to alleviate overfitting to an extent, and 3) Deep
Decoder, proposed by Heckel & Hand (2018) is an underpa-
rameterized network that prevents overfitting. Deep decoder
contains only the decoder part of Unet. It has 1 x 1 convolu-
tion layer and upsampling layers ( 1 x 1 Conv — Up sample
— ReLU — channelnorm). Standard decoder architecture
proposed by Heckel & Hand (2018) uses channel dimension
of 128 with 6 layers as optimal denoising architecture. For
this architecture, deep decoder has 100224 (0.1 million) pa-
rameters 2. Sparse-DIP is the pruned architecture obtained

?Further reduction of number of layers to 5 makes the de-
noising performance poor as mentioned by the authors and also
confirmed by our experiments. We use the 6-layer deep decoder

at initialization by our OES method. We perform denoising
with a 3% sparse subnetwork found by OES which has ap-
proximately 90217 parameters (0.09 million), slightly less
than the number of parameters in deep decoder. We use the
ADAM optimizer with learning rate 10~2 (as reported in
Ulyanov et al. (2018)) in all our experiments for training
both the dense and sparse networks. In Figure-6 and Table-
2, we report the results without applying early stopping and
running the optimization procedure for a large number of
iterations (40k). Sparse-DIP outperforms deep decoders
and the overparameterized models (with regularization) for
majority of the images. In Figure-5, we plot the denois-
ing results on Baboon and Pepper images. When closely
zoomed in the area of focus, we observe that the deep de-
coder suffers from oversmoothing the edges, while GP-DIP
overfits to noise due to overparameterization. We study this
phenomenon in detail in Section 5. The OES framework can
also be extended to general noisy inverse problem settings
involving a forward operator (with a non-trivial nullspace).
We extend our framework to MRI reconstruction from un-
dersampled k-space measurements in Appendix H.

0 PSNR vs. Number of Epochs

PSNR
N
b
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(a) Pepper (Set-14 dataset)
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Figure 6. Denoising results of various methods on noisy images
(o0 = 25 dB) across 3 popularly used datasets.

as the standard for our experiments in the paper, unless specified
otherwise
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(a) Dataset-3 (Standard dataset) (b) Face-1 (Face dataset)

PSNR vs. Number of Epochs

(c) Pepper (Set-14 dataset) (d) Lena (Set-14 dataset)

Figure 7. Comparison of denoising performances for subnetworks found by various pruning methods (GRASP, Synflow, IMP, and OES).
IMP utilizes 14 pruning iterations with 20% weight reduction at iterations. All the masks are 5% sparse. IMP undergoes an additional 14
steps of training and pruning before obtaining the final mask. The gray curves indicate the progression of IMP iterations, with darker
shades representing higher iteration counts. Each IMP iteration is shown. The detailed result for all images in 3 datasets can be found in

Table-4 in the Appendix.

4.3. Finding-3: OES is superior to other pruning
methods

We compare OES with the state-of-the-art pruning methods.
For pruning at initialization, we compare with GraSP, Syn-
Flow?, magnitude and random scores in Table-4. For LTH
based pruning, we report for two pruning schedules and ob-
serve that gradual pruning for larger pruning iterations yields
better performance. We evaluate the denoising performance
of these subnetworks at 5% sparsity level. In Figure-7, we
observe that at 5% sparsity level, OES masks shows minimal
to no overfitting. LTH masks are obtained based on ranking
the magnitude of the weights at convergence (at 40k epochs)
and subnetworks obtained by LTH show overfitting, when
masks are at the same level of sparsity. We demonstrate
the adverse effect of LTH on DIP in Figure-7, which we
orignally motivated in Section 3.1. However, when PSNR
curves with LTH masks are plotted at every pruning itera-
tion in Figure-7, we observe that the effect of overfitting
becomes less severe when networks become more sparse.
Both Synflow and Grasp show signs of overfitting for image
denoising. In magnitude and random pruning methods ap-
plied at initialization, it is often observed that layers with
a large number of parameters (large width) and those with
fewer parameters (small width) are respectively at a higher
risk of being entirely pruned. We consistently observe that
with magnitude and random pruning at initialization, at 5%
sparsity level, there is layer-collapse. This phenomenon
occurs when an entire layer gets pruned and the output is a
constant image.

4.4. Finding-4: OES masks are transferable

We perform experiments on transferring the masks obtained
by Step 1 of OES on one image and show the masked sub-
network can be used for denoising a different image. We
compare the transferability of the OES masks with IMP
masks at the same level of sparsity (5%). We also show that
OES masks can be transferred not only to images within the

3Performance of SNIP is not upto par with GraSP and SynFlow
and hence we don’t report it.

same dataset, but also to those from a different dataset. In
Figure-8, we compare the denoising performance for dif-
ferent sets of learned masks for both IMP and OES. Say
there are two image datasets: Dataset-A (face) and Dataset-
B (standard dataset), each of which contains noisy images.
Also, let us term the image that is used to learn the mask
as Ysource and the image on which denoising is performed
as Yiarget- Then we explore three possibilities: 1) self-
masking: ygource = Ytarget> the same corrupted image
is used to learn the mask, and the mask is used for de-
noising; 2) inter-dataset masking: y.ource 7# Ytarget, but
both ysource and yiarger belong to the same dataset; and
3) cross-dataset masking: y.ource 7 Ytarget and both of
them belong to different datasets (say Y source € Dataset-A
and y¢qrger € Dataset-B or vice-versa). In the experiments,
we use images from a standard image dataset (Ulyanov et al.,
2018) and the face-dataset (Bevilacqua et al., 2012) to show
the extent of transferability between inter and cross datasets.
We note that the images in this dataset are visually diverse
as face images have different characteristics than those in
the standard image dataset. We observe in most cases, self-
masking by OES provides the best performance. IMP masks
provide the worst performance irrespective of the source
and target image. Inter-dataset masking and cross-dataset
masking by OES also gives good PSNR at convergence but
the performance slightly degrades when compared to self-
masking. More experiments comparing IMP based masking
with OES are provided in Section-13 in the Appendix.

5. Noise impedance of sparse-DIP

Sparse-DIPs often outperform deep decoder even with lower
levels of parameter count. Based on our experiments, we
observe that with images having edges, this difference be-
comes prominent. To further investigate, we study the
noise impedance of the network (denoted as f(y)) when
trained to fit random Gaussian noise by minimizing the
loss |G(0,z) — y||3 w.rt. the parameters of the network
(dense or sparse), where y ~ N(0,02I). This is to see
how each network has the capacity to fit white Gaussian
noise. Dense DIP fits the noise in the image perfectly with
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PSNR vs Epochs for transfer masks

PSNR

22 —— OES-mask-self

IMP-mask (cross-dataset)
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20 —— IMP-mask-self
—— OES-mask (inter dataaset)
—— IMP-mask (inter dataaset)

5000 10000 15000 20000 25000 30000 35000 40000
Epoch

(a) Building. (ytarget)

PSNR vs Epochs for transfer masks

PSNR

—— OES-mask-self
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—— OES-mask (cross dataset)
20 —— IMP-mask-self

—— OES-mask (inter dataaset)
—— IMP-mask (inter dataaset)

] 5000 10000 15000 20000 25000 30000 35000 40000
Epoch

(b) Face-3. (Ytarget)

Figure 8. Performance of masks trained from several images for
denoising with noise level (c = 25 dB). Self denotes a mask
learned from the same image. Inter-dataset denotes mask learned
from images from the same dataset. Cross-dataset denotes mask
learned from images of different dataset. The standard dataset and
the face dataset were used in this experiment. For Figure-a) Inter-
datset mask (¥ source) is House, Cross-dataset mask (¥ source) 18
Face-0. For Figure-b) Inter-datset mask (y source) is Face-0, Cross-
dataset mask (Y source) is House. All the masks used in this figure
are 5% sparse.

zero training loss and in Fourier domain F[f(y)] shows
a constant wide-band spectrum which is quite typical for
Gaussian white noise. Deep Decoder is underparameterized
and the training loss does not go to 0 indicating that noise y
lies outside of the output range space of the network. Deep
decoder smoothens out the noise to a large extent. The
magnitude of the Fourier Transform of the output shows
that the cut-off frequency is small essentially making it act
like a low-pass filter with small bandwidth. Sparse-DIP
is also underparameterized and obtained by masking 97%
weights of a dense DIP. The magnitude spectrum of F[f (y)]
shows that x-axis and y-axis of the spectra have much higher
magnitude than that of deep decoder, hence it can recon-
struct directional edges better than deep decoder. To further
explore the image representation and noise impedance ca-
pacity, we fit these three networks to a noisy chessboard
image, where the strip frequency is very high. We observe
from Figure-9b that Dense DIPs recover the high-frequency
edges but overfit to noise. Deep decoder has very low cut-
off frequency (Figure-9a). It fails to recover the vertical

Dense-DIP

Sparse-DIP Deep-decoder

Deep-decoder

£(y)

o . . .

(a) Noise impedance

Figure 9. Figure-a) shows the ability of networks to fit noise. f(y)
is the network output and |F(y)| is the magnitude of Fourier
coefficients. Figure-b) shows quality of recovering edges.

and horizontal edges of the chessboard, although it does
smoothen out the noise. Sparse-DIP recovers the edges and
does not overfit to noise. The ability of Sparse-DIP to re-
construct high-frequency edges better than deep decoder
(with similar number of parameters) explains why it showed
superior denoising performance in Figure-6 and Table-2.

6. Pruned architecture study - Finding 5

Throughout all the experiments, we used Unet without skip
connection as the Dense-DIP architecture. In Figure-10a,
we show how the different layers of Unet are pruned with
OES and IMP. These may shed light on the superior per-
formance of OES when compared to IMP. In Figure-10b,
we show the pruning pattern for OES masking for various
levels of sparsity. We make the following observations: 1)
Importance of first and last layer: The first layer of the en-
coder (convolution+dowsampling) layer and the last layer of
decoder (convolution layer) have large number of remaining
weights. The final reconstructed image is formed after con-
volution in the last layer, so it justifies the observation that
the final convolution layer has the least amount of pruned
weights. 2) Towards the emergence of deep-decoder: In
Figure-10b, we observe that for various levels of sparsity,
the decoder part of the architecture is pruned the least. This
leads to the observation that for image generation, the up-
sampling layers play a crucial role, also observed in Liu
et al. (2023). This further justifies the use of Deep decoder
proposed by Heckel & Hand (2018), where the authors
only use the decoder part of the Unet. 3) Encoder layers
play a role in overfitting: When comparing the architecture
of IMP-pruned vs OES-pruned networks, we observe that
IMP prefers the layers in the encoder much more than OES.
4) Importance of encoder-decoder junction: The junction
between the encoder-decoder is important as it has lot of
non-zero parameters after pruning. This part is responsible
for the generation of the low-frequency information of the
image, which composes the majority of the information for
natural images. This is because the spatial feature in this
layer (because of simultaneous downsampling) is compara-
ble to convolutional patch filter size, making its receptive
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Comparative Histogram of Weight Layer Sparsity for Lena image.
Overall sparsity is 5%

701 - iMp
== Sparse-DIP ‘

Sparsity Level (%)

(a) OES vs IMP pruned network

Comparative Histogram of Weight Layer Sparsity for Lena image.

S
Layer Type

(b) Layer-wise sparsity for pruned Unet for various sparsity levels
using OES.

Figure 10. a) Layerwise sparsity in Unet architecture for pruning methods IMP and OES. b) Distribution of layerwise parameters for
various sparsity levels using OES. The corrupted image y used was Lena. The overall sparsity in the architecture is 5%.

field larger. 5) Pruning pattern for various sparsities: We
observe a similarity in the sparsity pattern across different
layers in the shape of *W’. For various pruning percentages
85%, 90% and 96%, we observe a similarity in the sparsity
pattern across different layers. The three most important
layers for the Unet seem to be the first layer (also the first
layer of the encoder), the encoder-decoder junction and the
last layer (final convolution).

7. Limitations

While our work presents a novel method to prevent overfit-
ting, it is essential to acknowledge few limitations:

» Sparse networks tend to overfit slightly for transferring
across different domains (Figure-8).

* Finding the mask adds computational overhead due to the
Gumbel Softmax reparameterization. Since the masks are
transferable, this overhead is not significant.

* Specialized tasks, such as MRI image processing, require
unique architectures (e.g., two-channel Unet), limiting the
transferability of OES subnetworks across different tasks
with different architectures.

8. Conclusion

In this work, we demonstrate for the first time that in a dense
deep image generator network, there exists a hidden sub-
network (sparse DIP) at initialization that shows potential
of reconstructing low-frequency information of an image
from only its noisy measurements. Sparse DIPs show signif-
icant potential for image reconstruction and transferability,
surpassing traditional pruning methods. We believe that
the connection between sparsity in the generator network
and the low-dimensionality of the image output (situated
in the manifold of images) prompts further theoretical in-
vestigation. We aim to further explore the role of these
sparse networks within diffusion model-based generative

frameworks, aiming to expedite the process and enhance the
quality of generated images.
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Appendix

In the appendix section, we provide further extensive results to support our findings presented in the manuscript. We present
the following sections sequentially:

1. Section-A presents denoising results which were reported in Finding-2 of the manuscript (4.2). Here, we present
denoising performance for several noise levels.

2. Section-B contains the performance of OES method with standard pruning methods in literature over images in three
different datasets.

3. Section-C summarizes the details of the Gumbel softmax reparameterization trick that was utitlized in learning the
mask by OES.

4. Sectioin-D summarizes related works and confirms similar findings with related works. Here, we also highlight
the difference of our work and show how OES is a more generalizable approach compared to the related works.
We highlight that no clean image is needed or no prior assumption on architecuture is required for finding a good
subnetwork.

5. Section-E highlights the difficulty in using IMP for pruning networks for image reconstruction tasks. We also consider
the oracle case, where clean image is used for IMP and we show that it has poor transferrability compared to OES.

6. Section-F shows transfer to a different task (here inpainting). We test OES masks learned on inpainting and denoising
tasks and compare them on the respective tasks.

7. Section-G shows the robustness of hyperparameter A when KL regularization is used.
8. Section-H extends the OES framework for MRI reconstruction from undersampled k-space measurements.

9. Section-I shows the comparison and disadvantages of finding mask through L1 regularization as done in Sreenivasan
et al. (2022).

10. Section-J studies the sensitivity of masks obtained at different initialization distribution/initialization scale and when
IMP masks are learned at early stop time.

11. Section-K shows the adverse effects of pruning an already underparameterized deep decoder.

12. Section-L highlights the difference in neural network pruning for image classification and image reconstruction. To the
best of our knowledge, our work shows the phenomenon of Stong Lottery Ticket Hypothesis in image reconstruction
for the first time.

A. Denoising Results

In this section, we report the denoising performance for all the images in the 3 datasets. In Table-1, we report the number of
parameters used in each network. In Table-2, we report the PSNR at convergence for images across 3 datasets. We further
plot the PSNR convergence curves of a subset of these images in Figure-11. In these figures, we want to emphasize that
dense DIPs overfit to noise at convergence. With Sparse-DIP’s obtained at OES, the overfitting is reduced by a large extent.
We also observe that 80%-sparse DIP is more prune to overfitting than 3%-sparse DIP.

Table 1. Number of parameters count of sparse and dense networks. Number of pixels in image is 512 x 512 x 3 = 786432 (0.7M)
Model Dense DIP  Dense Decoder Sparse-decoder (50%) Sparse-DIP(3%) Sparse-DIP(4%)

Number of parameters 3008867(3M) 100224(0.10M) 50112  (0.05M) 90217 (0.09M) 120354 (0.12M)
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Table 2. Denoising capabilities comparison without early stopping on Set-14 dataset. The decoder has 100,224 parameters. Dense DIP has
3,008,867 parameters. Sparse networks are 3% sparse and have 90217 parameters. The PSNR values are noted at the end of convergence
of training after 40000 epochs. The average of three runs using different random seeds are noted. For each implementation, a random z
and network initialization is used for evaluation. For X, X denotes the average of three runs and y denotes the standard deviation.

o = 25dB o =12dB o =17dB
Image Dense GP Deep | Sparse- || Dense GP Deep | Sparse- || Dense GP Deep | Sparse-
DIP DIP |Decoder| DIP DIP DIP |Decoder| DIP DIP DIP | Decoder| DIP

Pepper 21.210,22 25.140‘29 27.010,25 27.450,22 27-340.18 29-170.26 28.810,18 30-410436 24.390,39 26.020,16 27.520_32 28.920,22

Foreman 20.690,17 21.840,29 24.200‘24 25.150_13 26.590,07 28.330‘05 29.810,08 30.550‘14 23.710_22 25.140,17 27~140428 27-700416

Flowers 22.270,13 2376035 27.090‘22 27.10()‘13 28.550,17 30.780‘14 3033009 31.070‘25 2551015 27.480,11 29.210‘25 29.390,22

Comic |20.63¢.22|21.56¢.29[23.22¢.12(24.030.21(|26.450.36|28.270.36|28.010.06 | 28.570.09 || 23.680.03|24.900.18 |25.820.02[26.530.19

Lena |21.280.39|22.760.22|26.800.35|26.400.29 ||27.500.25 [29.480.19[30.960.24[30.890.43 ||24.520.11 |26.300.18 | 29.3331 | 29.0313

Barbara 23.900,10 23.490,35 25.300,09 26.500,37 28.270,20 30.810,25 27.500,31 27.810,21 25.150,13 27-550.08 26.650,04 27.630,30

Monarch 23.620,36 23.350‘14 27.870‘33 27.620,03 28.250‘05 31,170,24 32.000,22 32.120‘17 25.140,14 27.200‘25 30290.18 30.420_30

Baboon 21.680,14 23.040‘31 22.930_18 24.000_29 27.270‘39 27.030,22 24.120,21 25.91()‘04 24.800,11 25.570‘20 23.780,27 25.040‘32

Ppt3  [24.070.35|24.570.39|26.810.35|26.900.22 |28.880.10[31.940.13(31.730.18[32.410.17([25.850.21(28.780.20(|29.490.23(29.96( .22

Coastguard 20.53001 21.230421 23.71020 24-19006 26.50()‘07 28.13010 29.430,17 30.600411 23.540_04 24.530,14 26.36008 27.09035

Bridge 21‘77031 25.070_02 25-55026 26.12()‘30 28.580_20 30.47010 28.100_09 29.230_31 25-310.08 28.170_42 27-04028 28.08()‘38

Zebra 21»940.08 23.460,02 27.370,19 27.400,29 28.450,17 30.930,20 30.810,12 31.540‘20 25250.38 27.390,34 29.210,29 29.420,05

Face 21.030,07 21.760‘30 24.320,11 24.530,22 26.900‘02 27.810,37 29~930.36 29.930‘02 24-100.06 24.960‘12 27.010,25 27.230_33

Man  |21.980.31(24.180.10|26.270.33|26.590.39 ||28.450.39 [31.220.19(29.840.2530.940.31 |[25.120.26|28.630.29(28.770.20(29.11¢.13

Table 3. Denoising capabilities comparison without early stopping for ¢ = 25dB on Face Dataset and Standard dataset.
(a) Standard Dataset
(b) Face Dataset

o = 25dB
o = 25bdB
Image Dense GP Deep Sparse
Image | Dense GP Deep Sparse
DIP DIP Decoder DIP
Flight | 2049 | 22.02 | 2399 | 24.02 DIP_| DIP | Decoder | DIP
Face-1 | 22.40 | 26.72 28.90 29.07

BH.‘E.S;’ g}gg ggg %ggg ggg Face2 | 22.02 | 2602 | 2950 | 29.58
unding : : : . Face3 | 21.96 | 25.88 | 2827 | 2701

Door 21.85 | 23.31 27.02 28.18
Hats 3176 | 2412 5436 26.07 Face-4 | 21.83 | 26.37 28.31 27.89

B. Comparison with Standard Pruning Methods

In section-4.2, we briefly showed some results on comparison of OES with standard pruning methods that comprised of
pruning at Initialization methods like Synflow, Grasp and magnitude/random based pruning and pruning after training
methods like Iterative magnitude pruning. In Table-4, we show all the results for images in three different datasets: Set-14,
Face, and Standard image. All the PSNR values were noted at convergence. Our observation suggests that OES outperforms
the traditional pruning methods at initialization. We did not report the performance of SNIP as it resulted in layer collapse
for Unet. We see that magnitude and random choice of parameters serve as a bad indication of importance score and
most often than not leads to layer-collapse. We explored this part in the manuscript in Section 4.2. Synflow, Grasp
pruning at initialization leads to overfitting when run for longer iterations. Lastly, our comparison with IMP (Iterative
magnitude pruning), shows that using the mask obtained from converged DIP training easily leads to overfitting of the
masked subnetwork. We implement IMP with two schedules: IMP-(0.8)'# denotes pruning and training was run for 14
iterations and at each iteration 20% of the remaining weights were pruned, IMP-(0.2)? denotes pruning and training was
run for 3 iterations and at each iteration 80% of the remaining weights were pruned. Having gradual pruning performed
better when compared to aggressive pruning. This further shows that runnign IMP to get good masks can be costly since we
need to run more iterations of pruning to reach a desired sparsity level.

C. Details of the Gumbel Softmax Reparameterization Trick

Let s be the final number of non-zero elements we want to have in the subnetwork and d is the total number of parameter.
Then we fix the prior to be pg = 5 X 1, which means each parameter will have a prior probability py for selecting the

weight. We solve the following optimization problem using the Gumbel softmax reparameterization trick, but first we
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Table 4. Denoising capabilities (¢ = 25dB) comparison without early stopping for standard pruning methods for images from 3 different
datasets. PAI refers to Pruning At Initialization. PAT refers to Pruning After Training. All networks have sparsity level of 5%. IMP refers
to Iterative Magnitude Pruning (IMP) with weight rewinding. IMP-(1 — p)™ denotes at each pruning iteration p% of weights have been
deleted and has been run for n number of pruning iterations. None of the methods use clean image for training.

Image PAI PAT Ours (PAI)
GraSP | SynFlow | Magnitude | Random || IMP-(0.8)™* | IMP-(0.2)? OES
Pepper 22.22 22.07 12.42 10.80 25.52 25.66 27.45
Foreman 21.67 20.93 12.13 10.75 21.66 23.78 25.15
Flowers 23.02 23.07 12.22 10.61 26.11 26.43 27.10
Comic 21.07 21.50 12.13 11.75 22.13 22.42 24.03
Lena 13.39 22.19 14.37 13.33 25.73 25.75 26.40
Set.14 | Barbara 23.45 23.51 13.56 13.03 26.20 26.05 26.50
Monarch 22.67 22.93 14.52 12.73 26.27 26.52 27.62
Baboon 2242 22.56 12.50 11.61 23.75 23.49 24.00
Ppt3 23.42 2423 9.54 8.51 26.34 26.22 26.90
Coastguard || 20.78 20.73 13.31 13.16 21.38 21.90 24.19
Bridge 2425 23.29 13.36 13.10 26.27 26.20 26.12
Zebra 22.92 23.22 13.29 12.34 26.56 26.54 27.40
Face 21.38 21.14 10.74 9.50 21.80 22.50 24.53
Man 23.62 2371 12.89 11.30 26.82 26.72 26.59
Image PAI PAT Ours (PAI)
GraSP | SynFlow | Magnitude | Random || IMP-(0.8)™" [ IMP-(0.2)? OES
Face | Face-l || 22.88 22.97 12.64 8.41 26.89 26.62 29.07
Face-2 || 22.64 22.90 1235 10.40 26.74 26.19 29.58
Face-3 || 22.74 22.80 13.46 11.86 26.94 26.50 27.91
Face-4 || 22.71 2257 12.16 11.61 26.33 26.46 27.89
Image PAI PAT Ours (PAI)
GraSP | SynFlow | Magnitude | Random || IMP-(0.8)'* | IMP-(0.2)? OES
Standard |_House 20.46 20.24 13.51 13.20 26.61 26.88 29.27
Building || 22.72 2252 15.32 13.23 26.30 26.02 27.23
Door 21.87 21.80 12.32 10.49 26.80 26.46 28.18
Hats 22.43 21.60 11.20 12.45 25.97 25.92 26.07

explain the challenges of solving this optimization problem:

m*(y) = C(p*) such that
p’ =arg mpin Em~Ber(p) [||G(0m om,z) — y||§]

R(p)

3

+ MK L(Ber(p)||Ber(po))

The standard way to minimize R(p) is to obtain a direct Monte Carlo estimate of 9,, R(p) for every i = 1,2, .., d by several
random realizations of the network. Let ) := Ber(p) denote the posterior distribution. Then for every 4, let e;(m/)) =
Eq [[|G(8in o m, z) — y||3|m; = m}], we have R(p) = piei(1) + (1 — p;)e;(0), which yields 9, R(p) = e;(1) — ;(0).
Finding the Monte Carlo estimate of 0,, R(p) is computationally infeasible because of computing the conditional expectation
for every . The loss R(p) depends on p in an implicit way and calculating the gradient 0, R(p) using Monte Carlo samples
is not straightforward.

To make the relation of the loss R(p) and variable p explicit for gradient based methods, a classical approach called
the reparameterization trick is used to find the mapping that makes it explicit. For discrete Bernoulli distribution, the
reparamterization trick is called the Gumbel-Max (GM) trick which is a method of sampling from discrete random variables
using explicit dependence on the probabilities of each state. The GM trick allows straightforward simulation of discrete
variables, but it is not practical for gradient computing because it involves differentiation through a max function. To
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overcome this disadvantage of GM trick, Maddison et al. (2016) introduced the Gumbel-Softmax trick which relaxes the
discrete distribution to CONCRETE distribution: CONtinuous relaxations of disCRETE random variables. Let " € R™
denote the temperature which controls the degree of relaxation from the discrete distribution to the continuous distribution.
The sampling from the Concrete distribution Concrete(p;, 1 — p;) is as follows:

1. fix T and sample Gy, G; ~ Gumbel i.i.d (— log(—log(U|[0, 1]))).

(og(pi)+Gp) )

exp ( A ~C .
, — oncrete(p;,1 —p;) fori =1,2,...d.
(log(p%)+Gl))+eXp((10g(l CAEESTN (i, p@) y Ly ee

2. set ’Iﬂl‘(pi) = (
exp

Here, m obeys a continuous Concrete distribution denoted as Concrete(p,1 — p) instead of discrete Bernoulli distribution
Ber(p). This continuous approximation of discrete distribution is controlled by the temparature variable T'. As T tends to
0, Concrete(p,1 — p) distribution converges to the Ber(p) distribution, however, for small T, there are numerical instability
issues in estimating m;. In our experiments, 7" is fixed to 0.2 for all the experiments, as it gives a good approximation to
the discrete distribution without suffering from the numerical instability issue. Note that unlike in Bernoulli distribution
m ~ Ber(p), where the dependence of R(p) on p was implicit, making (4) challenging to optimize, for Concrete
distribution the dependence on p is explicit, making it amenable to solve by gradient based optimizers. So, given random
network initialization, 6;,,, and the noisy corrupted image y, the steps to learn mask m to the model parameters are as
follows.

Algorithm 1 Optimal Eye Surgeon (Learning Mask at initialization)

1: Input: 0,,,, po,y, G(.,z),C(.), number of samples K
2: Output: Final mask m*(y)

3: Initialize p=0.5 x1,setT =02, A=1e—9

4: for each iteration do

5. fork=1to K do

6: m”(p) < Concrete(p, 1 — p)

T LH(p) + |G(6in ot (p), 2) — I3

8: end for

9 Lo(p) + % Sr—y L¥(p) + AKL (Ber(p)||Ber(po))
10:  Compute VLo (p),doGD : p < p — nVpLc(p)
11: end for
12: m*(y) < C(p*), where p* is the converged probability mean.

While optimizing (4) by Algorithm-1, we reparameterize the optimization variable p through a sigmoid function p =
sigmoid(v), which maps the domain of the variable p from [0, 1] to the optimization variable v :[—00, 00]. So our
initialization, which ensures unbiased selection of weights is at v = sigmoid~!(p) = sigmoid—'(0.5) = 0. The prior
probability which controls sparsity, is also related as vy = sigmoid~!(pg) where py is the prior probability vector. This
reparameterization of the optimization variable ensures that the variable domain is not restrictive.

Once p* is obtained by gradient descent, mask m*(y) < C(p*) is obtained by ranking the elements of p* and setting the
indices of m*(y) corresponding to the top s% values of p* to be 1, and 0 otherwise. This way the sparsity of the mask
is set to be the desired sparsity s and is accomplished by the C(.) function. C(.) is a ranking function, which ranks the
values of p and then thresholds the weight indices corresponding to s% highest values of p to achieve the desired sparsity.
We chose the initialization p = 0.5 X 1, so that there is no bias towards any weight selection and all weights have equal
probability of selection/pruning at initialization. Although with prior knowledge, for certain layers p can be initialized to
higher probability values, but in our preliminary experiments, we do not introduce bias towards any weights in any layers.

D. Differences with Related Work

While we provide an interesting insight on the image generation capability of hour-glass Unet architecture, we acknowledge
the existence of previous works which further substantiate our current findings. In the following points, we highlight the
difference of our work with the following and also mention the similarity of the findings:
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D.1. Comparison to NAS-DIP (Chen et al., 2020) and ISNAS-DIP (Arican et al., 2022)

NAS-dip proposes to apply the NAS (Neural architecture search) algorithm on DIP framework. They build a searching
space for upsampling cells in the decoder and the skip connections between encoder and decoder. Then they leverage
reinforcement learning (RL) with RNN controller and use PSNR wrt clean image as reward to guide the architecture. After
the network search, they transfer the best-performing architecture and optimize the model the same way as DIP. We highlight
the points of difference:

* Architecture search vs. pruning: Chen et al. (2020) and Arican et al. (2022) search for the best architecture. The final
architecture found by NAS-DIP is a dense architecture. Instead, we start with a dense deep Unet architecture and then
make it sparse. Instead of searching for the best architecture combination, we focus on each weight parameter and
evaluate it’s importance in the context of image generation. Infact, a NAS-DIP model found by Chen et al. (2020) can
be further pruned by OES.

 Limited search space: NAS-DIP searches over only the upsampling and residual connections. For OES, a 6 layer
encoder-decoder network is the base architecture and each parameter gets it’s individual importance metric through
learning p. We believe that although upsampling layers play a crucial role, the encoder layers can’t be entirely
discarded.

e Using clean image to find architecture: We want to emphasize this is the main point of difference between the previous
works like Chen et al. (2020); Arican et al. (2022); Wu et al. (2023) and ours. We do not need to use the clean image
for pruning the network. Masking at initialization induces image prior even when trained against a corrupted image.
We discuss this phenomenon in detail in Finding-1.

D.2. Comparison to The Devil is in the Upsampling (Liu et al., 2023)

Liu et al. (2023) proposed a heursitic strategy for designing appropriate architecture by analyzing the frequency response of
architecture parts of DIP. Their observation was that the bilinear upsampling layers are the most important parts for image
generation. Followed by the convolutional layers as they observed that only when the decoder part is used, convolutional
decoders performed better than non-convolutional or MLP decoders. Furthermore, they suggest whether to increase/decrease
depth or width or whether to keep skip connections (or not) based on signal processing intuition and sanity check based
experiments. Our Alorithm OES relies on the mask learning algorithm to convey the similar information obtained in Liu
et al. (2023) and both these works agree on three findings.

1. Importance of decoder: In Figure-10b, we also find that given a hour-glass Unet architecture, the decoder part seems to
be more important while the encoder part is more compressible. This is the main finding in Liu et al. (2023) based
on the frequency response of the upsampling layer. However, in OES, the final converged value of p conveys this
information.

2. Reduced depth in Unet: For hour-glass architecture, the authors observe that increased depth can lead to oversmoothing
of final image. Hence, for decoder architectures, the authors advocate reduced upsampling operations and for Unet
architecture, they advocate decreasing the depth of the network. In Figure-10b, we see that the converged and
thresholded value of p conveys the same finding. For 6 layer Unet architecture, the middle layer of the encoder-decoder
architecture seems to get pruned the most showing a "W’ shape in encoder-decoder hour glass architecture. This
denotes that we can do with reduced depth.

3. Not using skip connections: The authors notice that the skip connections ameliorate the oversmoothing issue when
the network has large depth. Hence, they may lower the effective upsampling rate, making deep networks perform
similarly to shallower ones. Thus in our base architecture, we use the simple hour-glass Unet architecture. Trying to
understand and analyze OES with skip architecture can be more complicated and we leave it as future work.

We also want to highlight one point of difference in the findings between these two works. We observe that using an irregular
pruned Hour-glass architecture outperforms deep decoder based architecture. Hence, although devil is in the upsampling
layers, we observe that the encoder-decoder junction also plays a crucial role.
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D.3. Comparison to Lottery Image Prior (Wu et al., 2023)

The main message of our paper was to advocate learning the mask at initialization instead of learning the mask based on
magnitude obtained post-training. However, we acknowledge that Wu et al. (2023) is the first work to apply unstructured
pruning for image reconstruction based problems. However, they use the early stopping time to obtain the mask through
Lottery Ticket Hypothesis. Generally speaking, identifying the early stopping time in image reconstruction tasks is itself a
challenging task. It is hard to come up with an estimate of an early-stopping time based on observations from different
images and corruption levels. For example in Figure-21, we see that for two different images with two different corruption
levels, the early stopping time can vastly vary. We also observe that in their python script in their github repo they use the
clean image to train the mask for a single image. In our experiments, we show the adverse effects of LTH based masks
obtained at convergence. But further we also compare our method when LTH masks are obtained at early-stopping time
or using clean images. We observe that LTH based masks obtained at early stop time perform well when the image used
for training the mask is also used for denoising in Figure-14-a. But when a different image is used for denoising, the
transferability of OES masks seems to be better (Figure-14-b). In Table-5, we compare the transferability of OES masks
and IMP based masks. Here, OES masks are obtained at initialization and LTH based masks are obtained by training the
network to convergence but with a clean image. We study the pruning pattern of Unet architecture in details and compare
OES and IMP methods, something that was not studied comprehensively (Wu et al., 2023).

E. Comparing IMP-based Denoising

In Finding-4, in the manuscript, we discussed the transferability of OES masks and compared how these masks transferred
with the same image, within images of the same dataset and within images of varying datasets. Here, in this section, we
report additional performance where we use the mask learned on Lena image (clean and noisy) at 5% sparsity. In Table-5,
we compare the performance of OES masks with IMP masks at convergence for several noise levels. Here in Table-5, the
IMP masks were learned on the noisy Lena images. We demonstrate the corresponding figures in Figure-13. We run the
denoising algorithm till 40k iterations. We see that in Figure-13, the IMP based masks overfit to noise, whereas OES-masks
learned at initialization do not overfit. For this particular experiment, we do not use any knowledge of early-stopping time,
so at convergence the parameters overfit to noisy Lena image. The IMP mask in Table-5 is obtained based on the magnitude
of these parameters.

Table 5. Comparison of denoising capabilities (for various noise levels) of transferred masks for OES vs IMP based pruning. ¥source
used is the noisy Lena image. All masks are 5% sparse.

Tmage (Yrarger) o = 25dB o = 12dB o = 17dB
m(IMP) | m(OES) || mIMP) | m(OES) || m(IMP) | m(OES)
Pepper 2657 27.05 20.66 30.37 27.92 28.55
Flowers 26.17 27.10 30.03 31.02 28.54 29.31
Lena (self) 25.85 26.35 20.36 30.95 28.45 28.89
Barbara 2531 26.34 28.60 30.36 2730 28.43
Monarch 26.45 27.38 31.01 32.84 20.14 30.23
Baboon 2326 2391 2487 2525 2424 24.89
Ppi3 26.11 26.96 30.92 32.32 20.05 29.57
Bridge 25.00 26.17 28.06 28.74 26.93 2754
Zebra 2634 27.20 30.54 31.45 28.80 29.87
Man 25.83 26.92 20.67 30.22 27.99 29.13

To further make an apple-to-apple comparison with Wu et al. (2023), we compare our method when the clean Lena and
Pepper images were used to learn the mask. We observe that when IMP uses clean Lena and Pepper image for learning the
mask, the denoising performance is improved as compared to when IMP only used the corrupted image. Like in Table-5, the
final PSNR achieved when IMP used the noisy image was 25.85dB (Lena-self in Table-5) whereas when IMP used the clean
image to learn the mask, the denoising performance improved to 26.65 dB (Lena-self in Table-6b). But the improvement,
for denoising other images does not increase when compared to OES. For example, the PSNR of IMP masks using the clean
image (26.65 dB (Lena-self in Table-6b) is still less than when OES used the corrupted image (27.05 dB in Table-5). When
the target image was different, say for Barbara image, the mask learned on clean Lena image using IMP gives a PSNR of
25.66 dB (Table-6b) but using OES mask with a corrupted image gives PSNR of 26.34 dB (Table-5, Barbara). We further
explore this phenomenon of transferability in Figure-14 where IMP masks learned on clean image performed well, when it
was used for denoising on the same image but performed worse than OES when it was used for a different image.
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Table 6. Comparison of Denoising Capabilities of Transferred Masks Obtained from Sparse-DIP Pruning at Initialization vs IMP/OES
Based Pruning. Here, both the OES and IMP masks were learned on clean Lena image.

(a) Masks learned on clean Pepper image.
(b) Masks learned on clean Lena image.

Image o = 25dB
m(IMP) | m(OES) Image o = 25dB

Pepper (self) 26.89 27.68 m(IMP) | m(OES)
Flowers 26.48 26.80 Foreman 26.39 26.67
Lena 25.96 26.38 Lena(self) 26.65 26.83
Barbara 25.42 26.32 Barbara 25.66 26.46
Monarch 26.73 27.40 Monarch 26.61 27.35
Baboon 23.49 23.89 Baboon 23.65 24.02
Ppt3 26.36 26.84 Ppt3 23.19 26.85
Bridge 25.75 26.03 Bridge 25.81 26.21
Zebra 26.58 27.20 Man 26.31 26.88
Man 26.19 26.94

We observe a similar phenomenon in transferability in Figure-14 when IMP masks were obtained at an early stopping time.

F. Transfer to Different Task: Inpainting

In the manuscript, we performed on learning mask m(y) from noisy images y, where y is corrupted by additive Gaussian
noise with standard deviation o. In this section, we show the efficiency of OES masks, when y is a masked image with
probability of masking p = 0.5, i.e, on average 50% of the image pixels are missing. We compare the masks learned
when y had missing pixels (referred to as Sparse-DIP-in) and when y was corrupted with Gaussian noise (referred to
as Sparse-DIP-den). We evaluate the relative comparison of both these masks against deep decoder and dense DIP at
convergence. We report the results of these masks in the inpainting task in Table-7. Furthermore, we use this set of masks for
denoising in two different noise levels 0 = 25dB and 0 = 12d B and report in Table-8. Based on this observation in Table-7,
we see that sparse-DIPs (mask learned from missing pixel y or noisy y) seems to perform comparably with Deep-decoder
and Vanilla DIPs. This is because for inpainting tasks, the effect of overfitting is not as pronounced as compared to denoising
tasks. Both the masks learned from denoising task and the inpainting task seem to perform comparably in Table-8.

Table 7. Comparison of inpainting capabilities of transferred masks (denoising training) obtained from Sparse-DIP pruning at initialization
vs IMP based pruning. p = 0.5

Dense DIP | Deep Decoder | Sparse-DIP (den) | Sparse-DIP (in)
Ppt3 28.62 28.40 28.43 28.33
Baboon 21.36 22.13 22.60 22.38
Coastguard 27.80 27.27 27.45 27.45
Man 25.47 26.63 26.13 26.16
Zebra 31.20 29.52 31.62 31.27
Pepper 28.40 28.45 30.76 30.81
Face 28.64 31.27 31.12 29.10
Comic 22.36 24.53 22.55 22.54
Flowers 30.73 29.61 31.10 30.85
Bridge 24.85 25.16 25.01 24.78
Foreman 31.57 33.60 30.75 31.53
Monarch 30.54 31.08 31.44 31.70
Barbara 27.62 25.71 27.23 27.28
Lena 28.85 31.23 31.17 31.17

However, for denoising task in Table-8, we see that Sparse-DIP (learned through denoising and inpainting loss) outperforms
both Deep decoder and Dense-DIP due to severe overfitting. This is something we already explored in Table-2.
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Table 8. Denoising capabilities comparison without early stopping on Set-14 dataset. The Sparse-DIP masks have been generated with
two procedures. “denoise” denotes the masks generated from the denoising operation. “inpaint” denotes the masks generated from the
inpainting operation.

o = 25dB o =12dB

Image Dense Deep Sparse-DIP Dense Deep Sparse-DIP
DIP | Decoder | denoise | inpaint | DIP | Decoder | denoise | inpaint
Pepper 21.21 27.08 27.45 27.46 | 27.34 28.81 29.89 30.40
Foreman 20.69 24.20 25.15 2436 | 26.59 29.81 30.12 30.37
Flowers 22.27 27.03 27.10 27.10 | 28.55 30.33 31.07 31.07
Comic 20.63 23.35 24.03 23.96 | 26.45 28.01 28.57 28.81
Lena 21.28 26.85 26.40 26.23 | 27.50 30.96 30.89 30.85
Barbara 23.90 25.30 26.50 26.25 | 28.27 27.50 29.85 30.09
Monarch 23.62 27.87 27.87 27.82 | 28.25 32.00 32.12 32.67
Baboon 21.68 22.93 24.00 24.10 | 27.27 24.12 2591 25.90
Ppt3 24.07 26.81 27.20 26.64 | 28.88 31.73 3241 32.50
Coastguard | 20.53 23.71 24.19 24.16 | 26.50 29.43 30.60 29.80
Bridge 21.717 25.19 26.12 26.10 | 28.58 28.10 29.23 28.98
Zebra 21.94 27.40 27.32 27.29 | 28.45 30.81 31.54 31.62
Face 21.03 24.14 24.18 24.05 | 26.90 29.93 29.93 29.86
Man 21.98 26.32 26.59 26.55 | 28.45 29.84 30.94 30.56

G. Sensitivity of \ in OES Mask Learning and Selectivity of p,
G.1. Sensitivity of \

We found empirically that OES algorithm is robust to the choice of A, given a network architecture with fixed number
of parameters (Unet in this case). We fix A = le — 9 for all our experiments. For this particular experiment, we take
Po = 0.05 x 1 and threshold 95% of the weights by ranking p. The initialization value was taken to be at p = 0.5 x 1,
where all the weights have equal chance of selection or deletion. A controls the regularization balance on fitting the image
(first part of the loss) or by making the distribution Ber(p) close to Ber(pg) (second part of the loss). Note that py is the
pre-specified prior probability that is same for all the parameters of the network. As A — oo, then p — py, at this limit
a) there is no image generation at initialization, as the first part of the loss is not minimized and b) there is no separation
among the converged values p and the probabilities for all the elements will collapse to pg. So the mask can’t be formed by
ranking and thresholding at the desired sparsity level.

m* = C(p*) such that
p* = arg mpinEmNBer(p) [1|G(8in, 0 m, z) — y||3] +AK L(Ber(p)||Ber(po(s)))
R(Q)

A = le — 3 correspond to this observation in Figure-18. Increasing it to A = le — 6, we observe that p’s for different
weights start to vary and are not entirely localized at pg. However, even in this case, ranking the values of p, leads to layer
collapse. Layer collapse happens in this phenomenon because important weights are thresholded. For smaller A = le — 13,
we observe that the distribution p, is uniform around the initialization p = 0.5 x 1. Although the image is formed by
masking in this case, the distribution remains uniform. We see that at A = 1le — 9, the distribution of p seems to have two
modes. We see a clear distinction where some of the p’s are localized at 1 and other is centered around pq. This leads to
better separation while thresholding and pruning the weights based on p. However, we note that the value of the KL would
depend on the size of the network, for the current Unet architecture we are using, which has 3 million parameters, we found
that 1e — 9 works the best among all the other values in logarithmic scale.

H. OES pruning for MRI reconstruction

We extend the OES pruning and sub-network training framework to the setting of multi-coil magnetic resonance image
(MRI) reconstruction from undersampled k-space measurements. In previous literature [4], dense networks based DIP was
used for MRI reconstruction as folows:
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N
6 = arg min > I1ADG(8,2) — y |3 (P1:Vanilla DIP)
c=1

For multi-coil MRI, let there be N, number of coil sensitivity maps denoted as S, € C7*?, ¢ = 1, 2.., N.. The corresponding
A denotes the undersampled forward linear operator A¢(M) = MFS,.. {M € {0, 1}7%7} is the sampling mask in k-space,
F € C7%4 denotes the Fourier Transform operator and y(¢) € C9 denotes the undersampled k-space measurements. G/(6, z)
is an overparameterized Unet with two channels that processes the real and complex channel separately and with trainable
parameters 6 and fixed input z. For our experiments, we use multi-coil fastMRI knee and brain datasets [1,2] which are
available publicly. The coil sensitivity maps were obtained using the BART toolbox [3]. When the dense network [4]
is trained with generic optimizer like ADAM, the above suffers from overfitting (Figure-24a). In the OES framework,
we first learn the mask for the subnetwork, denoted as m* (A y) (not to be confused with the k-space mask M), where
A(M) = [A¢(M)]Y¢, and y = [y©]Y¢,. For the sake of notation, we will omit the coil dependency c as the loss can be
combined across coils and written in terms of one forward operator A and measurements y.

m*(y,A) = C(p*) such that
p’ = arg mgnEmNBeT(p) [HAG(Bm om,z) — y||§] )
+ AK L(Ber(p)|| Ber(po)).

In Figure-23, we show the 4 MRI scans that are used in the following experiment. x denotes the ground truth MRI image
(obtained from a full set of k-space measurements), M4, and Mgy denote the 4x and 8 x undersampling masks for k-space
or Fourier space (white lines are sampled), respectively. A” (M, )y and A¥ (Mg, )y denote the conventional zero-filling
MRI reconstructions that produce aliasing artifacts. We will denote the set of the forward operator and measurement pair
as (A;(Myx ), y;) for data index i = 1,2, 3,4 for 4x undersampling rate. For 8 x undersampling rate, we denote the pair
as (A;(Mgx),y;). In our experiments, we train the OES mask using the pair (A;(Myx),¥y1), and then use the mask
subnetwork to reconstruct MRI in four different scenarios across various network sparsity levels:

1. Self + same undersampling: The target reconstruction pair is (A;(Myx),y1). We denote this experiment as
P(A1(Max), y1).

2. Self+higher undersampling: The target reconstruction pair is (A1(Msgx),y1). We denote this experiment as
P(A1(Msx), y1)

3. Cross + same undersampling: The target reconstruction pair is (A;(Myx ),y;) for i = 2,3 and 4. We denote this
experiment as P(A;(Myx),y:)

4. Cross + higher undersampling: The target reconstruction pair is (A;(Msx ), y;) for i = 2,3 and 4. We denote this
experiment as P(A;(Msx),yi)-

Note that transfer to a higher undersampling rate demonstrates the capability of transferring to a different level of degradation.
Once the mask m* (A, y1) is obtained, the subnetwork at initialization is further trained to convergence with the following
optimization. Similar notations extend to 8 x undersampling rate.

min || A;i(Max)G(0 o m”(y1, A1), 2) - vill3 (P(Ai(Myx), yi): Sparse-DIP)

We make the following observations from the PSNR curves in Figure-24.

» Sparse-DIP reduces overfitting: Vanilla Dense DIP produces artifact-affected images in all the cases. This is due to the
nullspace of the forward operator that does not offer any control over nonsampled frequencies. Sparse DIP has very
less overfitting.

 Sparse-DIP is robust to higher undersampling rate: For higher undersampling factor, i.e, 8 x undersampling, vanilla
dense DIP overfits much more. Sparse DIP at higher sparsities (above 90%) seems to be robust to overfitting even at
8x undersampling.
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e Moderate overfitting at moderate sparsity: With moderate sparsity level (50%, 80%), subnetwork overfits artifacts
when cross transfer tasks take place (different image’s measurements) or when the undersampling rate is 8 x. However,
overfitting (at moderate sparsity levels) takes place to much less extent when self transfer takes place with the same
undersampling rate 4.

* Limited representation capability at very high sparsity: For higher sparsity levels (90% or higher), overfitting rarely
happens in any of the scenarios (cross-transfer or higher undersampling rate). For very high sparsity level 97%, the
PSNR curve fails to rise very high, denoting that the network has already reached its representation capability.

H.1. Selectivity of Prior py and Thresholding

In our experiments, after the final convergence of our algorithm, we rank and threshold the value of p to reach the desired
sparsity level. An avid reader may ask the question that since the sparsity level is achieved through ranking and thresholding
of the p values, so is the selection of the prior py important in getting a good ranking? Ideally speaking, the ranking should
be based on the importance of the parameter in contributing to the loss. That means, a parameter w; is considered more
important than parameter ws in the following case: if the objective when we fix wy = 0 (say 7'(w; )) would be more than
the objective when we fix wo = 0 (say T'(ws)). So in this case, if T'(w;) > T(ws) then a proper ranking would imply
p(wy) > p(ws). We observe that for A = le — 9 choosing the prior pg to be the same as the desired sparsity level provides
a good ranking that separates the important parameters from the non-important ones. Like in Figure-18 with A = 1e — 9,
when the prior pg is chosen to be the same as the desired sparsity level (5%), we observe that most of the distribution is
centered around py with some values p at 1. In the previous subsection, we discussed how the choice of A affects this
distribution. In this section, we empirically show that the choice of py is crucial in getting OES masks that are suitable for
denoising. Fixing A = le — 9, we perform a denoising experiment with different ranges of values where py is as high as
0.5,0.8 or as low as 0.05,0.03. After the convergence of the loss we rank and threshold 95% of the weights based on the
value of p. We see that choosing a high value of p( outputs a mask that suffers from layer collapse and hence when further
trained to denoise, completely breaks down. This is because, when py is set to be high as 0.5 or 0.8, the distribution of p
across the network is centered at 0.5 or 0.8 respectively. Now when 95% of the weights are thresholded after ranking, w.h.p
all the weights in one layer are getting pruned because of improper ranking of p. This phenomenon of layer collapse seems
to be avoided when the value of pg is chosen to be close to the pruning level. pg = 0.03 or pg = 0.05 seem to give the
same denoising performance when 95% of the weights are pruned.

I. Comparison with ,; Regularization

In the image classification literature, supermasks have been used for obtaining a subnetwork by Bernoulli masking for
example in Zhou et al. (2019) without sparsity control. Sreenivasan et al. (2022) used the ¢; regularization to control the
sparsity of the mask and used iterative freezing at every epoch to reach the desired sparsity level. However, we observed
that using ¢; regularization can’t give a good ranking of p based on the importance score. The optimal ¢; regularization
coefficient can vary for different images but with KL regularization it is the same for all the images.

Through extensive study, we find that in our experiments:

1. That masking based on the ranking of the p is sensitive to the choice of A when used in L, regularization like in
Sreenivasan et al. (2022), i.e, the optimal Ap,, is not the same for two different images (Figure-29). The best A1, for
the Pepper image can lead to a layer-collapse when used for the Flowers image for a desired sparsity level.

2. Controlling the sparsity level through KL regularization leads to a better ranking in p that can clearly separate out the
important weights (Figure-18). Using no (or extremely small) KL regularization, does not lead to a proper ranking of p
based on importance. The best ranking is obtained when the desired sparsity level is the same as the prior probability
used in the KL. This alleviates the need to tune the prior pgy and can be fixed to the target sparsity we want to achieve.
We also demonstrate that using a severely different pg than the target sparsity can lead to improper ranking which leads
to layer-collapse (Figure-15).

3. The regularization strength A1, is robust when KL regularization is used. We find Ax; = le — 9 works for all the
images unlike for L, regularization. We show this in Figure-18.
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Lastly, we want to emphasize that although learning masks by optimizing the Bernoulli probability p has already been
used in several works before, we show that using KL-based regularization gives us robust control over the sparsity we
want to achieve. We compare our mask learning method with that of L1 regularization on p, which is known to promote
sparsity in p. Sparsity in p would ensure that the corresponding mask will be 0 with a very high probability. Although
unlike in our formulation where we controlled the distribution Ber(p) to be close to some prior distribution Ber(pg), in L
regularization, we can only make p sparse.

m* = C(p*) such that
p' = argInpinIEmNBer‘(p) HlG(em © m,z) - YH%] + )\HPHl

We solve the above optimization using the same algorithm as in Algorithm-1, but change the regularization term to ||p||1
(scaled by \) instead of the KL term. Here A would control the sparsity level of p, a higher A would ensure more p is towards
zero. Just like in OES, we also rank the p values and threshold them at the desired level of sparsity. We observe through
experiments that obtaining a reasonable network mask at initialization is sensitive for L; regularization. In Figure-29, we
see that the optimum A for the Pepper image and the Flowers image are different. For A\ = 1e — 9, the mask produced by the
Pepper image gives the best image representation, while for Flowers image, the best A = 1le — 8. In fact for A = 1le — 9,
the Flower image seems to suffer from layer-collapse resulting in a constant image. This is unlike in the loss used for KL
regularization, where A = le — 9 performed consistently for all images.

L.1. Comparing KL, /; and Centered Mean Regularizaion

We further investigate the use of £; regularization (given as ||p||1) and the centered mean regularizer (given as |mean(p)— 31),

where we take 3 = 0.05.

When we minimize the objective with the centered mean regularizer and monitor the value of mean(p), we see that starting
from p = 0.5 the loss can decrease to p = 0.05 but not more, where it becomes stationary and does not change over
10 thousands of iterations (Figure-25). During this phase, this penalty has the same gradient as the ¢; norm regularizer.
However, after mean(p) reaches 0.05, the mean p becomes stationary and the loss seems to get stuck, although the penalty
might behave differently than ¢;. So, the overall effect of /; and the centered mean regularizer are similar.

Now, comparing ¢; regularizer to the KL regularizer, we notice across various experiments that ¢; regularization is less
stable to the choice of the regularization strength. This is because ¢; regularizer encourages sparser solutions (for centered
mean, (p-0.05) is sparse) than KL regularizer. This enforces a bulk of p values to collapse on the same point. Hence the
relative ranking gets lost due to this effect.

For example, when the logits corresponding to the three regularizers are plotted in Figure-28, the logits in KL regularization
seems to be more well spread than the ¢; and centered mean regularizer. When we look at the corresponding layerwise
architecture in Figure-27, we see that the middle layers are severely pruned by ¢; and centered mean regularization which
may lead to layer collapse. We intentionally plot the sparsity percentage on the log scale to show the severity of this effect.

So, based on this empirical observation, we think that sparser solutions may not be ideal for bringing the data misfit loss
down (since loss of rank importance may lead to layer collapse). Furthermore, enforcing sparsity shrinks the search space of
gradient descent, so it may be more likely to get stuck in local minima.

I.2. On using Pointwise Regularization

From our experiments, we observed that using a pointwise regularizartion chosen with a proper regularization strength
preserves the ranking. For KL regularization penalty, the ranking would remain preserved for very large range of moderate
values of regularization coefficient ), especially when compared to other pointwise regularization choices like mean|p — po|-.
This is because for KL regularization, the regularizer takes very low values around a large window [pg — €, po + €] (Figure-26).
This is not true for linear pointwise regularizers such as /7.

We want to emphasize that pointwise regularization may allow the implementation of non-uniform prior p, across various
weights in Unet. That’s why we presented a more generic implementation, so if the user has some prior knowledge on what
parameters are more important, they have the flexibility to modify the corresponding prior value.
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J. Sensitivity of Masks to Weight Initialization
J.1. Change in weight distribution (Uniform/ Normal initialization)

Unlike other methods, OES learns the mask at initialization where the parameters are drawn from random Uniform
distribution (He/Kaiming initializaiton) by Pytorch’s default implementation. We check that the denoising performance of
the mask is not affected by the distribution of the initialization. Changing the distribution to Normal Xavier distribution does
not significantly affect the denoising performance of the OES masks. In Figure-31, we show that across 4 various images,
the performance of masks learned either at uniform initialization or Normal Gaussian initialization remains the same.

J.2. Scale of Initiailization

We observe that the scale of the initialization seems to affect the learned mask. So, in the experiment in Figure-30, we scale
the original He initialization by 0.1 and 5 times respectively and then learn the mask by OES on the Pepper image. We
observe that with a smaller scale of initialization, the learned OES mask seems to perform better in terms of denoising. On
the contrary, masks learned at 5 initialization, seem to overfit slightly.

J.3. Initial Weights are at Early-Stopping Point

Finding an early stopping point is a challenging task without the knowledge of the ground truth image. So performing
IMP based pruning at the early-stopping point is too ambitious. In the following experiment, we show that even if we
had an estimate of the early-stopping point, IMP based pruning may not be the best option. In Figure-14, we compare the
denoising performance of three different masks: 1) IMP masks obtained at convergence on training with Pepper, 2) OES at
initialization when Pepper is used in the loss function and 3) IMP masks obtained at the early stopping point also trained on
Pepper (with the assumption that early stopping point is known). In this particular setting, when the target y is the corrupted
Pepper image, we observe that IMP obtained at early-stopping point performs as well as OES. However, when the same 3
masks are used for denoising the Flower-image in Figure-14, we observe that the performance of IMP (at early stopping)
degrades with respect to the OES mask.

K. Pruning Deep Decoders by OES

In the manuscript, we showed that pruning a random-initialized Unet with 6 layers can give good starting point for further
doing image reconstruction using just the masked subnetwork. Here we apply the OES methodology on the deep decoder
architecture (Heckel & Hand, 2018). Deep decoders only consist of upsampling operations as the source of getting low-
frequency components in an image. In Figure-32, we compare the images produced by the masked decoder at 55% sparsity
and compare it with images with masked Unet at 3% sparsity, along with the corrupted versions. Since, the decoder is
already underparameterized and acting as a natural image prior, masking at initialization seems to oversmoothen the image.
There seems to be patches of bright and dark areas in the sparse decoder output when the parameters are just masked. On the
contrary, for sparse Unets, the information lost due to oversmoothing is not that drastic. This is because decoders are already
underparameterized, constraining the output space of decoder to have low frequency componenets. Further pruning by OES
at masking leads to oversmoothing and loss of information. We observe that these sparse decoders are compressible by OES
upto 74% after which the output image is failed to produce due to layer collapse. In Table-9, we perform denoising using
the masked decoder subnetworks for three different images. We observe that at 27% sparsity level deep decoder performs
comparably with it’s original dense counterpart. However, for higher sparsity levels like 55% and 74%, the performance
starts to detoriate. When we observe the layer-wise sparsity pattern produced in deep decoder at 3 different sparsity levels in
Figure-33, we observe that the first and last layer seems to the most important. The importance of parameter layers seems to
be gradually diminishing towards the middle. This is similar to the finding in Figure-10b where the middle of the encoder
and the decoder architecture was pruned the most. With the study of masking deep decoder, we motivate one fundamental
question :

Q3 : Should we start with a highly overparameterized model (dense Unet) to find a subnetwork or should we start with a
smaller model (dense deep decoder) to find a subnetwork?

Our experiments suggest that we should start with a highly overparameterized model. Starting with a smaller model, imposes
the prior assumption that some architecture parts are not useful. However, this might not be always the case as we see that
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Sparse-DIP often outperforms deep decoders at the same level of sparsity. In all our experiments, we fix A = le — 9 and
fix prior pg = 0.5 for all the weights in all layers. A realization of the decoder can be obtained by fixing pp = 1 for the
decoder part and pg = 0 for the encoder part.

Table 9. Comparison of deep decoder performance across various pruning levels.

Deep Decoder | Sparse Decoder (27%) | Sparse Decoder (55%) | Sparse Decoder (74%)
Pepper 27.01 27.06 26.17 26.35
Lena 26.80 26.94 25.35 25.15
Barbara 25.30 25.14 24.58 24.42

L. Comparison of Pruning in Image Classification and Image Reconstruction

In Table-10, we discuss the many differences in pruning networks for image classification and image reconstruction. Pruning
for image classification tasks, dates back to the early 90’s with a recent surge of works being done after the popularity of
Lottery Ticket Hypothesis (Frankle & Carbin, 2018). To the best of our knowledge, Wu et al. (2023), is the first work to
propose pruning network for image reconstruction tasks. In our work, we show the drawbacks of just applying LTH on
image reconstruction tasks and propose OES that mitigates the problem. Our work also shows the Strong Lottery Ticket
Hypothesis in image reconstruction networks for the first time. In Figure-19, we highlight the representation capability of
OES. With no mask and or all masked, we get two extremes. In the middle ground, we can approximate any image by just
masking. In Figure-20, we show the progression of transferred subnetwork through intermediate epochs, showing that the
subnetwork output image is always constrained in the manifold of image priors. The images we used in this paper are shown

in Figure-34 and Figure-35.

Table 10. Pruning for Image Classification vs Image Reconstruction

Criterion Image Classification Image Reconstruction (DIP)
The pruned network is learned based on | Pruned network is learned over a single im-
Task ERM loss over a set of given image/label | age instance (extreme data-diet) and regres-
pairs. Usually, 0-1 loss is used. sion loss (MSE) loss is used.
Validity of | LTH is essential to obtain matching subnet- | LTH is suboptimal as network overfits to
LTH works at non-trivial sparsities. image noise at convergence (post-training).
.... | Transferability is difficult to attain. (Mehta, Reasonable transficr'ablhty can be att:«:uned.
Transferability 2019) Better transferability can be achieved
through OES when compared to LTH.
Matching subnetworks can attain almost
Performance | the same level of test accuracy (or slightly | Sparse subnetworks alleviate the problem
of matching | higher in intermediate sparsity levels (Jin | of overfitting. Sparsity is necessary to alle-
subnetworks | et al., 2022). Sparsity may not be necessary | viate overfitting.
to get good generalization.
Ramanujan et al. (2020) showed that mask-
ing a wide Resnet50 can give similar test ac-
curacy as training a Resnet-34 on Imagenet | Our work is the first to show that Strong
classification. Malach et al. (2020) proved | Lottery Ticket Hypothesis can also be ob-
that if a ReLU fully-connected neural net- | served for image reconstruction tasks. We
Strong Lot- . . .
tery Ticket work with depth d gnd width n can fit a tar- | see that the network. output can give low
Hypothesis get by normal training, then masking a Relu | frequency representation of the clean image
network at depth 2d and polynomial width | by just masking the network parameters by
can approximate the same performance. For | OES. Proving it for image reconstruction
CNN’s (da Cunha et al., 2021), the width | problems will be future work.
required was logarithmic in depth and num-
ber of parameters.
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Figure 11. Denoising performances (o = 25dB) of OES at 3 sparsity levels (3%,50%,80%) and comparison to underparamterized deep
decoder and overparameterized dense DIP. We observe that the peak performance of vanilla DIP is comparable with the final convegence

of sparse-DIP.
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Figure 12. Denoising results of various methods on noisy images (¢ = 25 dB) across 3 popularly used datasets.
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Figure 13. Comparing the denoising performance of transferred subnetworks found by OES vs subnetworks found by IMP in Set-14
dataset. Here ysource is the Lena image. Both masks are at sparsity level of 5%. IMP based subnetworks overfit to noise as shown in the
zoomed version. All noisy images are corrupted with o = 25dB. The PSNR values are found in Table-5.
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convergence and OES at initialization on the same image (Pepper). learned with Lena, used to denoise Flowers.

Figure 14. IMP masks learned at early-stopping time performs comparatively well. But when used on transfer tasks performs worse than
OES masks at initialization. All the masks are 5% sparse.
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Figure 15. Performance of subnetworks trained with different prior po’s in equation and then pruned 95% by ranking. This shows that the
importance ranking of p’s after training is dependent on prior po. Good results are expected when prior po used in optimization, matches
the pruning percentage.
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Figure 16. G(0;, o m*(y), z) for Set-14 dataset. Images generated by the randomly initialized network found after applying OES mask.

Noisy image 3% sparse 50% sparse 80% sparse

Noisy image 50% sparse  80% sparse

soDn
oMo

(a) G(0;» o m™(y), z) for Face dataset. (b) G(0;r, o m*(y), z) for standard dataset.

~—

Figure 17. Masking at initialization can induce image prior. Figures shows the images after masking image generator at initialization
G(0;, om”*(y),z). The mask m* was learned using OES algorithm. Images corresponding to several sparsity levels are shown.
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Figure 18. Distribution of logits (p) for various A in front of KL term and its effect of the output image (G(0;, o m*(y), z)) after
thresholding the logits p to reach the desired sparsity level. Here the prior po = 0.05 x 1 and the desired threshold level is also 5%
sparsity. Different strength of KL term A leads to the distribution of logits p centered around the desired prior po. From eq-, we observe
that higher A = 1le — 3 or A = le — 6 gives more importance to the KL term and less importance to the image data-fidelity term (no image
formation). A = le — 9 gives the best balance of regularization and data-fidelity. For A = 1le — 9, although the centre of distribution is at
Po, there is some concentration near p = 1, ensuring that there is a clear distinction between the important and non-important parameters.

OES subnetwork is 5%.
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Figure 19. G(6;, om”*(y), z): capability of image representation by just masking network parameters. When m = 1, images correspond
to stochastic processes producing spatial structures with self-similarity as noticed in Ulyanov et al. (2018). For m = 0, it produces
a constant image (assuming no bias terms). However, in the middle ground, different images (even at a fixed sparsity level) can be
represented by the combination of chosing to select a weight parameter or delete it.
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Figure 20. Transferability of OES subnetworks. OES masks trained on y1, denoted as G(0;,, o m*(y1), z) can be used for denoising
image y2. Here interchanging y1 and y3 in the opposite way also ensures the operation of OES. At epoch 7" = 0, just the application of
mask on random network initialization (on which mask was learned), produces an image. Epoch 7" = 40000 denotes the final recovered

image that does not suffer from overfitting. Underparameterization by OES subnetwork ensures that the output lies in the manifold of
natural image prior.
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Figure 21. Early stopping time window can vary for different images and also various noise levels. Estimating this early-stopping time
from an image distribution or a particular noise level can be difficult. Here we see that there can be a window as large as 2500 iterations
between early stopping times of two images with different corruption levels.
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Figure 22. MRI reconstruction comparison with Sparse-DIP and Vanilla Dense DIP without early stopping. Sparse-DIP removes aliasing
artifacts and preserves the important details of the images when compared to the ground-truth x. Vanilla dense DIP overfits to artifacts

(due to nullspace) and requires careful early stopping (See Figure-24a). Supermasked output at network initialization still manages to
capture some important image details.
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Figure 23. The 4 MRI ground-truth and measurements used in this experiment. x denotes the ground-truth image or full-kspace
reconstruction. Myx and Mgy denote the k-space undersampling masks. A (M, )y and A¥ (Msx )y denote the zero-filling
reconstructions that produce aliasing artifacts.
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Figure 24. Performance of OES subnetworks for MRI reconstruction from 4 x (left column) and 8 x (right column) undersampled k-space
measurements. In all the experiments, the OES network mask m™ was learned from pair (A1 (Max),y1). In Figure-a (self+ same
undersampling), the subnetwork mask was used to reconstruct image from (A1 (Max ), y1). In Figure-b (self+ higher undersampling),
mask was used to reconstruct from (A1 (Mszx ), y1) which has a higher undersampling. For Figures (c-h) (cross), the operator-measurement
pair for image reconstruction were different from which the mask was learned (A1 (Max ),y1).
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Figure 25. Mean of p across various epochs when the regular-
ization used is |[mean(p) — /. In this particular experiment,
5 =0.05.

Combined Histogram of Weight Layer Sparsity for Flowers image
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Figure 26. Comparison of KL regularization and pointwise
centered ¢; regularization for a scalar value. Around the
prior value po, the KL is much smoother than ¢; regularizer.
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Combined Histogram of Weight Layer Sparsity for Baboon image
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Figure 27. Layerwise architecure pruning (sparsity percentage in log-scale) by OES at initialziaiton using three different choices of
regularization, KL, ¢; and centered ¢; for Baboon image and Flowers image in Set-14 dataset. Centered ¢; means the centered mean

regularizer.
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Figure 28. Histogram of logits of p when OES is ran across images with KL, ¢; and centered mean regularizer. In our implementation we
minimize | ), pi — (§ * numel(p))|, to both £, regularization and centered mean regularizer on the same scale.
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Figure 29. Sensitivity of hyperparameter A when mask is optimized by L1 regularization. Here, the best mask is obtained for different A
for different images. For example, for the flower image, A = le — 8, is the best hyperparameter, but for the Pepper image A = le — 9.
The masks here are 5%-sparse.
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Figure 30. Comparison of denoising performance of OES masks at different initialization scales.
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Figure 31. Denoising performance of OES masks learned at He (uniform) initialization vs at Xavier initialization (Gaussian initialization).
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The initialization distriubtion does not seem to play a big role in learning the mask.
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Figure 32. Comparison of OES masking in deep Unet vs in deep decoder.
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Figure 33. Layerwise pruning percentage for a deep decoder at various level sparsity levels.
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Figure 34. Set-14 dataset images used in this paper.
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Figure 35. Images in face and standard dataset used in this paper.
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