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Abstract
We show that there is an operator space notion of Lipschitz embeddability between
operator spaces which is strictly weaker than its linear counterpart but which is still
strong enough to impose linear restrictions on operator space structures. This shows
that there is a nontrivial theory of nonlinear geometry for operator spaces and it answers
a question in Braga et al. (Proc Am Math Soc 149(3):1139–1149, 2021). For that, we
introduce the operator space version of Lipschitz-free Banach spaces and prove several
properties of it. In particular, we show that separable operator spaces satisfy a sort of
isometric Lipschitz-lifting property in the sense of Godefroy and Kalton. Gateaux
differentiability of Lipschitz maps in the operator space category is also studied.
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1 Introduction

The study of nonlinear maps between Banach spaces and how the linear geometry of
those spaces are preserved by such maps dates back to the famous Mazur–Ulam theo-
rem [27]. Since then, several different types of nonlinear embeddings and equivalences
between Banach spaces have been proven to yield a rich theory (we refer the reader
to the monographs [8, 29]). The nonlinear theory becomes particularly interesting
when considering embeddings/equivalences given by maps which are (1) coarse, (2)
uniformly continuous, and (3) Lipschitz.1 Besides to functional analysts, this line of
research is of interest to theoretical computer scientists [1, 5] and operator algebraists
working with the Novikov conjecture [24].

This paper concerns the noncommutative counterpart of this theory, the study of
which has only recently started to be investigated (see [6]). For that, it is necessary to
find “correct” definitions of nonlinear morphisms between operator spaces (in order
not to extend this introduction too much, we refer the reader to Sect. 1 for the basics of
operator spaces). Just as bounded maps between Banach spaces give rise to completely
bounded maps between operator spaces, coarse maps also have a natural “complete
version”: a map f : X → Y between operator spaces is completely coarse if for all
r > 0 there is s > 0 so that for all n ∈ N the n-th amplification fn : Mn(X) → Mn(Y )

satisfies

∥
∥[xi j ] − [yi j ]

∥
∥
Mn(X)

≤ r ⇒ ∥
∥ fn([xi j ]) − fn([yi j ])

∥
∥
Mn(Y )

≤ s

for all [xi j ], [yi j ] ∈ Mn(X) (recall that a map between Banach spaces is coarse
precisely if the above holds for n = 1). Although this definition is very natural, the
main result of [6] shows that it is not the “correct” one. Precisely:2

Theorem 1.1 [6, Theorem 1.1] Let X and Y be operator spaces, and let f : X → Y
be completely coarse. If f (0) = 0, then f is R-linear.

Notice that one should have no hope of recovering C-linear maps from nonlinear
ones; not even from R-linear ones. Indeed, there are nonisomorphic C-Banach spaces
which are isomorphic as R-Banach spaces [10]. Moreover, there are even C-Banach
spaces which are R-linearly isomorphic to each other but totally incomparable as
complex spaces [15, Theorem 1]. So R-linearity is indeed sharp in Theorem 1.1.

As completely coarse maps are automatically R-affine (Theorem 1.1), a different
kind of nonlinear morphism must be considered in order to develop a (nontrivial)
nonlinear theory for operator spaces. In order to remedy this situation, [6] proposed
the nonlinearization of almost complete isomorphic embeddings instead of the usual
complete isomorphic embeddings. Precisely:

1 Notice that, if f : X → Y is a map between Banach spaces, the following implications hold: f is linear
and bounded ⇒ f is Lipschitz ⇒ f is uniformly continuous ⇒ f is coarse.
2 Throughout this introduction, all operator spaces are considered to be over the complex field. We point
out however that all the main results of this paper remain valid for real operator spaces with unchanged
proofs.
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Lipschitz geometry of operator spaces and… 1055

Definition 1.2 [6, Definition 4.1] Let X and Y be operator spaces and K ∈ {R,C}. A
sequence ( f n : X → Y )n is an almost complete K-isomorphic embedding if each f n

is K-linear and there is K > 0 so that each amplification f nn : Mn(X) → Mn(Y ) is a
K-isomorphic embedding with distortion at most K . If K = 1, ( f n : X → Y )n is an
almost complete K-linearly isometric embedding.

Almost complete isomorphic embeddability is clearly weaker than complete iso-
morphic embeddability and, by [6, Theorem 4.2], it is actually strictly weaker.
Moreover, Definition 1.2 has natural nonlinearizations. However, in order for a non-
linear type of embedding to be relevant, two conditions must hold:

(I) the nonlinear embeddingmust still be strong enough to recover some linear aspects
of the operator space structures of the spaces, and

(II) the nonlinear embeddingmust be strictly weaker than almost complete isomorphic
embeddability.

In this paper, we deal with the following Lipschitz version of Definition 1.2.

Definition 1.3 Let X and Y be operator spaces. A sequence ( f n : X → Y )n is an
almost complete Lipschitz embedding if there is K > 0 so that each amplification
f nn : Mn(X) → Mn(Y ) is a Lipschitz embedding with distortion at most K . If K = 1,
( f n : X → Y )n is an almost complete isometric embedding.

It was proved in [6] that, despite its nonlinear nature, the existence of almost
complete Lipschitz embeddings imposes restrictions on the linear operator space
structures of the spaces; hence it satisfies (I) above. For instance, if an infinite dimen-
sional operator space X almost completely Lipschitzly embeds into Pisier’s operator
space OH, then X must be completely isomorphic to OH (see [6, Theorem 1.2]). For
another known example of how the existence of almost complete Lipschitz embed-
dings imposes restrictions to the linear operator space structures, see [6, Proposition
4.4].3

Our main conceptual result shows that almost complete Lipschitz embeddability
also satisfies (II) above and therefore it yields a nontrivial theory of nonlinear geometry
of operator spaces; this answers [6, Question 4.3]. Precisely, we show the following:

Theorem 1.4 There are operator spaces X and Y so that X almost completely iso-
metrically embeds into Y but so that X does not R-isomorphically embed into Y . In
particular:

(1) Almost complete isometric embeddability is strictly weaker than almost complete
R-linearly isometric embeddability.

(2) Almost complete Lipschitz embeddability is strictly weaker than almost complete
R-isomorphic embeddability.

TheBanach space X constructed in Theorem 1.4 is nonseparable and this is actually
necessary for its first statement to hold. Precisely, for separable operator spaces, we
show the following:

3 Theorem 1.2 and Proposition 4.4 of [6] are actually stronger as they only demand the embeddings to be
almost completely coarse embeddings [6, Definition 4.1].
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1056 B. M. Braga et al.

Theorem 1.5 Let X be a separable operator space and assume that X almost com-
pletely isometrically embeds into an operator space Y . Then, X almost completely
R-isometrically embeds into Y .

In particular, Theorem 1.5 provides another example of almost complete isometric
embeddability satisfying (I) above. We must point out that Theorem 1.5 is an operator
space version of the result of Godefroy and Kalton which states that if a separable
Banach space isometrically embeds into another Banach space, then it does so R-
linearly isometrically (see [17, Corollary 3.3]).

Using differentiability of Lipschitz maps, we obtain another example of almost
complete Lipschitz embeddability satisfying (I) above. Recall, if a separable Banach
space X Lipschitz embeds into a dual Banach space, then it does soR-isomorphically
(see [20, Theorem 3.5]). We prove the following operator space version of this classic
result:

Theorem 1.6 Let X and Y be operator spaces and assume that X is separable. If X
almost completely Lipschitzly embeds into Y ∗, then X almost completely R-linearly
embeds into Y ∗.

As it is often the case, although Theorem 1.6 is an operator space version of [20,
Theorem 3.5], its proof required nontrivial adaptations in order for it to hold in the
operator space scenario. Note that by [9, Theorem 2.9] every von Neumann algebra is
a dual operator space. Similarly to the Banach space category, we have that an operator
space Y completely linearly isometrically embeds in Y ∗∗ by [11, Theorem 2.11] or
[13, Theorem 2.2]; hence, if X almost completely Lipschitzly embeds in Y it almost
completely R-linearly embeds in Y ∗∗. However, in contrast to the category of Banach
spaces, not every operator space is locally reflexive [31, Chapter 18], so no general
Ribe-type theorem, like [20, Theorem 5.1], can be deduced from this.

As mentioned above, Theorem 1.6 cannot be strengthened in order to obtain C-
linear maps. However, substituting Y ∗ by Y ∗ ⊕ Y

∗
—where Y denotes the conjugate

operator space of Y (see Sect. 2.4)—we have the following:

Corollary 1.7 Let X and Y be operator spaces and assume that X almost completely
Lipschitzly embeds into Y ∗. Then X almost completelyC-linearly embeds into Y ∗⊕Y

∗
.

We now give a brief description of the methods used in order to obtain our main
results. Recall, given a metric space (X , d), the Lipschitz-free Banach space of X ,
denoted by F(X), is arguably one of most important linearization tools (we refer the
reader to Sect. 3 for details). Precisely, F(X) is a Banach space so that (1) there is a
canonical isometric embedding δX : X → F(X), and (2) given any Lipschitz map
L : X → Y between metric spaces, there is a unique linear map L̃ : F(X) → F(Y )

so that ‖L̃‖ = Lip(L) and L̃ ◦ δX = δY ◦ L (i.e., L̃ lifts L).
In Sect. 3, we introduce an operator space version of F(X). Precisely, for each

operator metric space4 and each n ∈ N, we define an operator space Fn(X)—the n-
Lipschitz-free operator space of X—and show that (1) there is a canonical embedding

4 As seen in Sect. 2.1, an operator metric space X is defined as a subset of B(H) for some Hilbert space
H .
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Lipschitz geometry of operator spaces and… 1057

δnX : X → Fn(X) whose n-th amplification is an isometry (see Proposition 3.7), and
(2) given any Lipschitz map L : X → Y there is a unique linear map L̃ : Fn(X) →
Fn(Y ) whose completely bounded norm equals the Lipschitz constant of the n-th
amplification of L and L̃ ◦ δX = δY ◦ L (see Lemma 3.12). Hence, Fn(X) should be
seen as the noncommutative version of F(X). Several other properties of Fn(X) are
proven in Sect. 3; for instance, we show that Fn(X) is an n-maximal operator space
(Remark 3.11).

In Sect. 4, we introduce an operator space version of the isometric Lipschitz-lifting
property of Godefroy andKalton (Definition 4.1) and show that every separable opera-
tor space satisfies this property (Theorem 4.5). Together with an operator space version
of an old result of Figiel (Proposition 4.6), this is the main tool in order to obtain The-
orem 1.5.

We present in Sect. 5 a second approach to Lipschitz-free operator spaces as an
alternative to the one presented in Sect. 3. In a nutshell, the operator space norms of
Fn(X) described in Sect. 3 are given in terms of a supremum and in Sect. 5 we present
an alternative description of those norms in terms of an infimum (the treatment in this
section follows the presentation of Lipschitz-free spaces given in [4, 35] while our
approach for Sect. 3 follows [17]). Moreover, we use this approach in Sect. 3.1 in
order to compute Fn(X) for some simple operator metric spaces.

At last, Sect. 6 deals with differentiability of Lipschitz maps in the operator space
category. Precisely, this section adapts several results of [20] about Gateaux w∗-R-
differentiability to the operator spaces setting. The tools in this section allow us to
obtain Theorem 1.6 (cf. [20, Theorem 3.5]).

2 Preliminaries

Throughout this paper,K denotes either R or C. All Banach spaces are assumed to be
over the complex field and all linear maps are assumed to beC-linear unless otherwise
stated. In this case, we refer to those asR-Banach spaces,R-operator spaces,R-linear
maps, etc. However, we point out that all of our main results are valid for R-operator
spaces as well (see [32] for a detailed treatment of R-operator spaces).

For each n ∈ N, we let Mn denote the space of n-by-n matrices with complex
entries and ‖ · ‖Mn denotes the canonical operator norm on Mn .

2.1 Basics on operator metric spaces

Given a Hilbert space H and n ∈ N, we denote the space of bounded operators on H
endowed with its operator norm by B(H) and the �2-sum of n copies of H by H⊕n . A
subset X ⊂ B(H) is called an operator metric space. If X is moreover a closed linear
subspace of B(H), then X is an operator space.

Given an operator metric space X ⊂ B(H) and n ∈ N, the matrix spaceMn(X) has
a canonical norm given by its canonical realization as a subspace ofB(H⊕n). Elements
of Mn(X) are denoted by [xi j ]—it is implicit that i, j varies among {1, . . . , n}.
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1058 B. M. Braga et al.

Let f : X → Y be a map between operator metric spaces. For each n ∈ N, the n-th
amplification fn : Mn(X) → Mn(Y ) is defined by letting

fn([xi j ]) := [ f (xi j )]

for all [xi j ] ∈ Mn(X). We say that f is an n-isometry if fn is an isometry and a
complete isometry if each fn is an n-isometry. If X and Y are operator spaces and
f : X → Y is K-linear, then each fn is also K-linear and its norm is denoted by
‖ fn‖n . In this case, we say that f is an n-contraction if fn is a contraction (i.e., if
‖ fn‖n ≤ 1) and a complete contraction if each fn is an n-contraction. Moreover, f is
completely bounded (abbreviated by cb) if

‖ f ‖cb = sup
n

‖ fn‖n < ∞

and f is a complete K-isomorphic embedding if both f and f −1 are completely
bounded.

The space of all linear cb-maps X → Y between operator spaces is denoted by
CB(X ,Y ) and ‖ · ‖cb defines a complete norm on CB(X ,Y ). The norm ‖ · ‖cb is
called the cb-norm. Moreover, CB(X ,Y ) carries a natural operator space structure
itself. Precisely, given n ∈ N, the matrix norm on Mn(CB(X ,Y )) is given by the
canonical isomorphism Mn(CB(X ,Y )) ∼= CB(X ,Mn(Y )). In particular, the Banach
space dual of an operator space X is an operator space via the norms inherited from
the identifications Mn(X∗) ∼= CB(X ,Mn).

It is well known that for a given Banach space X , among all the possible operator
space structures which are compatible with the norm of X there are a smallest one and
a largest one, denoted MIN(X) and MAX(X) respectively (see [31, Chap. 3]). More
generally, following [28] given an operator space X and a natural number n we will
consider the smallest and largest operator space structures that are compatible with
the norm on Mn(X), which will be denoted by MINn(X) and MAXn(X) respectively.
Explicit descriptions can be found in [25, Definition I.3.2] or [28, Section 2], though
we essentially will not need them, so, for our purposes, the following property can be
taken as their definition [28, Lemma 2.3]: given an operator space X , MINn(X) (resp.
MAXn(X)) is the unique operator structure on X which agrees with that of X up to
the n-th matricial level, and such that for any operator space Y and any linear map
u : Y → X (resp. v : X → Y ) we have ‖u : Y → MINn(X)‖cb = ‖un : Mn(Y ) →
Mn(X)‖n (resp. ‖v : MAXn(X) → Y‖cb = ‖vn : Mn(X) → Mn(Y )‖n).

2.2 Almost complete isomorphic embeddings

The next definition is a weakening of complete isomorphic/isometric embeddings and
it was introduced in [6, Definition 4.1]. Moreover, as shown in [6, Theorem 4.2], this
is a strict weakening.

Definition 2.1 (Definition 1.2) Let X and Y be operator metric space and consider a
sequence of K-linear maps ( f n : X → Y )n .
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Lipschitz geometry of operator spaces and… 1059

(1) The sequence ( f n)n is an almost complete K-linear isometric embedding of X
into Y if the n-th amplification of each f n is an isometry. In this case, X almost
completely K-linear isometrically embeds into Y .

(2) The sequence ( f n)n is an almost complete K-isomorphic embedding of X into Y
if there is D > 0 so that the n-th amplification of each f n is a D-isomorphism. In
this case, X almost completely K-isomorphically embeds into Y .

If K is not specified, it is always assumed to be C.

Unlike the category of separable Banach spaces, there is no linearly isometrically
universal element in the category of separable operator spaces, i.e., there is no separable
operator space X so that all separable operator spaces can be linearly isometrically
embedded into X (see [31, Section 2.12]). As we show in the next proposition, this
is no longer the case for almost complete linear isometric embeddings. For that, let
� denote the Cantor set {0, 1}N. Given n ∈ N, C(�,Mn) denotes the Banach space
of all continuous functions � → Mn endowed with the supremum norm. We view
C(�,Mn) with the canonical operator space structure determined by the fact that it is
a C∗-algebra.

Proposition 2.2 Let X be a separable operator space and n ∈ N. Then there
is an n-isometry X → C(�,Mn). In particular, the separable operator space
(⊕

n∈N C(�,Mn)
)

c0
is universal for almost complete linear isometric embeddings

of separable operator spaces.

Proof By [25, Theorem I.1.9], there is a linear n-isometric embedding f n : X →
C(Kn,Mn) where Kn is the unit ball of Mn(X∗) endowed with the weak∗ topology.
Since X is separable, K is metrizable. So, by the Alexandroff–Urysohn theorem, there
is a continuous surjection qn : � → Kn . Finally, observe that the map C(Kn,Mn) →
C(�,Mn) given by f n 
→ f n ◦ qn is a complete isometry.

The maps ( f n ◦ qn)n∈N clearly induce an almost complete linear isometric embed-
ding of X into

(⊕

n∈N C(�,Mn)
)

c0
.

2.3 Almost complete Lipschitz embeddings

As mentioned in the introduction, although the natural nonlinear versions of complete
isomorphic embeddings do not lead to an interesting nonlinear theory for operator
spaces (Theorem 1.1), we will show that the natural nonlinearizations of almost com-
plete isomorphic embeddings do (Theorem1.4).We point out that this nonlinearization
was first introduced in [6, Definition 4.1] for the coarse category.

Given metric spaces (X , d) and (Y , ∂), and a map f : X → Y , we denote the
modulus of uniform continuity of f by ω f : [0,∞) → [0,∞], i.e.,

ω f (t) = sup

{

∂( f (x), f (y)) | d(x, y) ≤ t

}

for t ≥ 0. The Lipschitz constant of f is given by Lip( f ) = supt>0 ω f (t)/t and f
is called Lipschitz if Lip( f ) < ∞. Moreover, if f is an injective Lipschitz map and
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1060 B. M. Braga et al.

f −1 is also Lipschitz, then f is a Lipschitz embedding. The infimum of all D > 0 so
that there is r > 0 such that

r · d(x, y) ≤ ∂( f (x), f (y)) ≤ Dr · d(x, y)

for all x, y ∈ X is called the Lipschitz distortion of f and denoted by Dist( f ).

Definition 2.3 Let X and Y be operator metric spaces and let n ∈ N.

(1) The n-th Lipschitz constant of f is given by Lipn( f ) = supt>0 ω fn (t)/t . Equiva-
lently, Lipn( f ) = Lip( fn).

(2) If f is a Lipschitz embedding, the n-th Lipschitz distortion of f is defined as
Distn( f ) = Dist( fn).

Notice that, if f is Lipschitz, then fn is Lipschitz for all n ∈ N. However, if f is
not R-affine,5 then supn∈N Lipn( f ) = ∞ by Theorem 1.1. In order to overcome this
issue, we look at almost complete Lipschitz embeddings (cf. Definition 2.1):

Definition 2.4 (Definition 1.3) Let X and Y be operator metric spaces and consider a
sequence of maps ( f n : X → Y )n .

(1) The sequence ( f n)n is an almost complete isometric embedding of X into Y if
each n-th amplification of f n is an isometry. In this case, we say that X almost
completely isometrically embeds into Y .

(2) The sequence ( f n)n is an almost complete Lipschitz embedding of X into Y if
there is D > 0 so that Distn( f n) ≤ D for all n ∈ N. In this case, we say that X
almost completely Lipschitzly embeds into Y .

2.4 ObtainingC-linear maps fromR-linear maps

As mentioned in the introduction, it is not always possible to recover C-linear maps
fromR-linearmaps; not even in theBanach space category (see [10, 15, 21]). However,
R-linear embeddability still sheds some light onC-linear embeddability; at least if one
is allowed to change the target space “slightly”. Before stating the precise result, we
recall the concept of conjugate operator space.

Given a C-Banach space X , we denote the conjugate of X by X , i.e., X = X as
a set and the scalar multiplication on X is given by αx = ᾱx for all α ∈ C and all
x ∈ X . Then, given a C-operator space Y ⊂ B(H), Y denotes the conjugate operator
space of Y , i.e., Y = Y and the operator space structure on Y is given by the canonical
inclusion Y ⊂ B(H) = B(H).

The following simple proposition can be obtained just as [6, Proposition 4.5], so
we omit the details.

Proposition 2.5 If aC-operator space X almost completelyR-isomorphically embeds
into a C-operator space Y , then X almost completely C-isomorphically embeds into
Y ⊕ Y .

5 A map f : X → Y between K-vectors spaces is called K-affine if g = f − f (0) is K-linear.
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3 n-Lipschitz-free operator spaces

Given a metric space X , one can assign to it a Banach space F(X) which is called
the Lipschitz-free (Banach) space of X . This construction comes equipped with a
canonical isometry δX : X → F(X) and one of its main features is that for any
Lipschitz map L : X → Y there is an unique linear map L̃ : F(X) → F(Y ) so that
‖L̃‖ = Lip(L) and L̃◦δX = δY ◦L . This linearization processmakes theLipschitz-free
spaces important tools when working with the nonlinear geometry of Banach spaces.
In this section, we introduce the operator space version of Lipschitz-free spaces and
use it to show that there is a nontrivial theory of nonlinear geometry for operator spaces
(see Theorem 1.4). We refer to [2, 17, 18, 35] for detailed treatments of Lipschitz-free
spaces.

A pair (X , x0), where X is an operator metric space and x0 ∈ X , is called a pointed
operator metric space. If X is an operator space, we always view it as a pointed
operator metric space with the distinguished point 0 ∈ X . Given pointed operator
metric spaces (X , x0) and (Y , y0), let Lip0(X ,Y ) be the set of all Lipschitz maps
f : X → Y so that f (x0) = y0. If Y is an operator space, for each n ∈ N we define a
norm ‖ · ‖Lip,n on Lip0(X ,Y ) by letting

‖ f ‖Lip,n = Lipn( f ).

If n = 1, we write ‖ · ‖Lip = ‖ · ‖Lip,n The norm ‖ · ‖Lip,n is a Banach norm on
Lip0(X ,Y ). Notice that

Lip( f ) ≤ Lipn( f ) ≤ n2 Lip( f ) (3.1)

for all f ∈ Lip0(X ,Y ); so the norms ‖ · ‖Lip and ‖ · ‖Lip,n are equivalent.
The canonical algebraic isomorphisms

Mk(Lip0(X ,Y )) ∼= Lip0(X ,Mk(Y )) for k ∈ N

induce a natural operator space structure on the Banach space (Lip0(X ,Y ), ‖ · ‖Lip,n).
Precisely, for k ∈ N and [ fi j ] ∈ Mk(Lip0(X ,Y )), we let

‖[ fi j ]‖Lip,n,k = Lipn

(

[ fi j ] : X → Mk(Y )

)

.

Definition 3.1 Let (X , x0) be a pointed operator metric space and let Y be an operator
space. We denote the operator space (Lip0(X ,Y ), (‖ · ‖Lip,n,k)k∈N) defined above by
Lipn0(X ,Y ).

Remark 3.2 Given a set Z , let [Z ]2 = {(x, y) ∈ Z2 | x �= y}. Then the Lipschitz
norm on Lip0(X ,C) can be seen as the norm inherited by the embedding

f ∈ Lip0(X ,C) 
→
(

f (x) − f (y)

‖x − y‖
)

(x,y)∈[X ]2
∈ �∞([X ]2,C).
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1062 B. M. Braga et al.

Similarly, given n ∈ N, the operator space structure on Lipn0(X ,C) is given by the
embedding

f ∈ Lip0(X ,C) 
→
(

fn(x) − fn(y)

‖x − y‖Mn(X)

)

(x,y)∈[Mn(X)]2
∈ �∞([Mn(X)]2,Mn).

Therefore it follows from Smith’s lemma [31, Proposition 1.12] that the cb-norm of
any linear mapwith values on Lipn0(X ,C) is equal to the norm of its n-th amplification,
and thus Lipn0(X ,C) is an is an n-minimal operator space.

The following proposition is straightforward, so we omit its proof.

Proposition 3.3 Let H be a Hilbert space and (X , x0) be a pointed operator metric
space with X ⊂ B(H) and let n ∈ N. The canonical map

ι : B(H)∗ → Lipn0(X ,C)

given by ι(a) = a � X − a(x0), for all a ∈ B(H)∗, is a complete contraction.

Let (X , x0) be a pointed operator metric space. Given x ∈ X , define a map

δx : Lip0(X ,C) → C

by letting

δx ( f ) = f (x) for all f ∈ Lip0(X ,C).

So δx ∈ Lip0(X ,C)∗ for all x ∈ X . Notice that, given n ∈ N, as Lipn0(X ,C) is an
operator space, so is its dual Lipn0(X ,C)∗. So we can write δx ∈ Lipn0(X ,C)∗ for all
x ∈ X and all n ∈ N.

Definition 3.4 Let (X , x0) be a pointed operator metric space and let n ∈ N. We define
the n-Lipschitz-free operator space of (X , x0) as the Banach space

Fn(X) = span{δx ∈ Lipn0(X ,C)∗ | x ∈ X}

together with the operator space structure inherited from Lipn0(X ,C)∗. If n = 1, we
write F(X) = F1(X).

In the purely metric setting (i.e., when no operator structure is assumed), given a
metric space X , the Lipschitz-free Banach space of X is the Banach space F(X). In
Banach space theory, F(X) is usually defined with respect to real-valued Lipschitz
maps X → R with f (x0) = 0; see Sect. 3.2 for more on that.

Remark 3.5 Notice that the operator space structure of F(X) = F1(X) is generally
not the one of MIN(F(X)). First, by Remark 3.2, Lip0(X ,C) is minimal and so
Lip0(X ,C)∗ ismaximal, which implies thatF1(X) is submaximal (i.e., it is a subspace
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of a maximal operator space). In fact, more is true: by Remark 3.11 below, F1(X)

is itself maximal. Since it is well-known that for an operator space of dimension
at least 3 its minimal and maximal operator space structures are different (see the
discussion after [30, Theorem 14.3]), we conclude that the operator space structure
we have defined on F(X) is not that of MIN(F(X)) whenever |X | > 3 (and thus
dim(F1(X)) ≥ 3). Moreover, this is sharp. It is clear that when |X | ≤ 2 the space
F(X) has a unique operator space structure, and the same can happen when |X | = 3:
if we take X to be a path graph of length 2 endowed with the shortest path metric,
F(X) is isometric to �21 and this space also has a unique operator space structure [30,
Page 190].

Proposition 3.6 Let (X , x0) be a pointed operator metric space. Then, for each n ∈ N,
F(X) = Fn(X) as a set and the identityF(X) → Fn(X) is a complete isomorphism.

Proof As noticed above , the norms ‖ · ‖Lip and ‖ · ‖Lip,n are equivalent. Moreover, the
same argument gives that ‖ · ‖Lip,1,k and ‖ · ‖Lip,n,k are n2-equivalent for all k. Hence,
the adjoint of the identity map (Lip0(X ,C), ‖ · ‖Lip) → (Lipn0(X ,C), ‖ · ‖Lip,n) is
a complete isomorphism between Lipn0(X ,C)∗ and Lip0(X ,C)∗. So its restriction to
Fn(X) is a complete isomorphism between Fn(X) and F(X).

We now show that the basic properties of Lipschitz-free Banach spaces have oper-
ator space versions.

Proposition 3.7 Let (X , x0) be a pointed operator metric space and let n ∈ N. The
map

δnX : x ∈ X 
→ δx ∈ Fn(X)

is an n-isometric embedding.

Proof Let δ = δnX and fix [xi j ], [yi j ] ∈ Mn(X). So

δn([xi j ]) − δn([yi j ]) = [δxi j − δyi j ] ∈ Mn(Fn(X)) ⊂ CB(Lipn0(X ,C),Mn).

Let k ∈ N and [ fm�] ∈ Mk(Lipn0(X ,C)) with ‖[ fm�]‖Lip,n,k ≤ 1. As

[δxi j − δyi j ]n([ fm�]) = [ fm�(xi j ) − fm�(yi j )],

it follows from the definition of the norm ‖ · ‖Lip,n,k that

‖[δxi j − δyi j ]n([ fm�])‖Mnk ≤ ‖[xi j − yi j ]‖Mn(X).

Hence, ‖δn([xi j ]) − δn([yi j ])‖Mn(Fn(X)) ≤ ‖[xi j − yi j ]‖Mn(X).
For the reverse inequality, fix a Hilbert space H so that X ⊂ B(H) as an operator

metric space. Fix ε > 0 and pick unit vectors ξ̄ = (ξi )i , ζ̄ = (ζi )i ∈ H⊕n such that

∣
∣
∣
∣

∑

i, j

〈(xi j − yi j )ξ j , ζi 〉
∣
∣
∣
∣
= ∣∣〈[xi j − yi j ]ξ̄ , ζ̄ 〉∣∣ ≥ ‖[xi j − yi j ]‖Mn(X) − ε.
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Let K = span{ξ1, . . . , ξn, ζ1, . . . , ζn}, let PK : H → K be the orthogonal projection
onto K , and let g : B(H) → B(K ) be the map given by g(x) = PK x � K for all
x ∈ B(H). So g is a completely contractive linear map. As K has finite dimension,
there is no loss of generality to assume that B(K ) = Mk for k = dim(K ).

Let ι : B(H)∗ → Lipn0(X ,C) be given by Proposition 3.3. As g : B(H) → Mk is
a complete contraction, g is in the unit ball of Mk(B(H)∗); so Proposition 3.3 implies
that ιk(g) is in the unit ball of Mk(Lipn0(X ,C)). Hence, we have

‖[δxi j − δyi j ]‖Mn(Fn(X)) = ‖[δxi j − δyi j ]‖CB(Lipn0(X ,C),Mn)

≥ ‖[δxi j − δyi j ]n(ιk(g))‖Mnk

= ‖[ιk(g)(xi j ) − ιk(g)(yi j )]‖Mnk

= ‖[g(xi j − yi j )]‖Mnk .

Therefore, by definition of g, we conclude that

‖[δxi j − δyi j ]‖Mn(Fn(X)) ≥ ‖[xi j ] − [yi j ]‖Mn(X) − ε.

As ε was arbitrary, this shows that

‖δn([xi j ]) − δn([yi j ])‖Mn(Fn(X)) ≥ ‖[xi j ] − [yi j ]‖Mn(X)

and the result follows.

The following corollary follows straightforwardly from Proposition 3.7.

Corollary 3.8 Every pointed operator metric space (X , x0) almost completely isomet-
rically embeds into

(⊕

n∈N Fn(X)
)

c0
.

Let (Xλ)λ∈
 be a family of operator metric spaces and U be an ultrafilter on 
.
The ultraproduct of (Xλ)λ∈
 with respect to U is denoted by (

∏

λ∈
 Xλ)/U and its
elements, i.e., equivalence classes of elements in (

∏

λ∈
 Xλ), are denoted by [(x(λ))λ].
The ultraproduct Y = (

∏

λ∈
 Xλ)/U has a canonical operator space structure so that
if n ∈ N and [xi j ] ∈ Mn(Y ), then

‖[xi j ]‖Mn(Y ) = lim
λ,U

‖[xi j (λ)]‖Mn(X),

where xi j = [(xi j (λ))λ] ∈ Y for each i, j ∈ {1, . . . , n}. In particular, it easily follows
that the inclusion IX : X → Y given by IX (x) = [(x)λ] is a complete isometry into a
subspace of Y . If 
 = N and (Xn)n∈N is a constant family, say X = Xn , we denote
(
∏

λ∈
 Xλ)/U by XU .
The next corollary also follows straightforwardly from Proposition 3.7. The reader

can see a similar computation in [6, Proposition 4.4].
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Corollary 3.9 Let (X , x0) be a pointed operator metric space and U be a nonprincipal
ultrafilter on N. Then

x ∈ X 
→ [

(δnX (x))
]

n ∈
(
∏

n

Fn(X)

)

/U

is a complete isometric embedding.

We can now show that the notion of almost complete Lipschitz embeddability is a
truly nonlinear notion; in particular, this solves [6, Question 4.3].

Proof of Theorem 1.4 Let H be any nonseparable Hilbertian operator space. By Corol-
lary 3.8, H almost completely isometrically embeds into

Y =
(
⊕

n∈N
Fn(H)

)

c0

.

Hence, we only need to show that H does not R-isomorphically embed into
(⊕

n∈N Fn(H)
)

c0
. Items (1) and (2) will then follow immediately.

For the remainder of this proof, we consider eachFn(H) as anR-Banach space and
suppose T : H → Y is an R-isomorphic embedding. By a sliding hump argument,
for all ε > 0 there is k ∈ N and a finite codimensional subspace H ′ ⊂ H such
that ‖Pn ◦ T � H ′‖ ≤ ε, where Pn : Y → (

⊕

n>k Fn(H))c0 is the canonical
projection. Choosing ε small enough and letting Qn = IdY − Pn , this gives that
Qn ◦ T � H ′ is an isomorphic embedding of H ′ into

⊕k
n=1 Fn(H). As H ′ has finite

codimension, it is isomorphic to H . Therefore, this shows that H isomorphically
embeds into

⊕k
n=1 Fn(H). Since each Fn(H) is isomorphic to F(H) (Proposition

3.6), we conclude that H isomorphically embeds into
⊕k

n=1 F(H).
By [22, Theorem 3.1], F(H) is isomorphic to (

⊕∞
n=1 F(H))�1 . Therefore,

⊕k
n=1 F(H) embeds isomorphically into F(H) (in fact, [22, Theorem 3.1] com-

bined with Pelczynski’s decomposition technique gives us that these two spaces are
isomorphic). Therefore, by the previous paragraph, we have that H isomorphically
embeds intoF(H). However, [35, Theorem 5.21] says that, as H is nonseparable, this
cannot happen; a contradiction.

Another important property of the Banach space F(X) is that it is an isometric
predual for Lip0(X ,C). The next proposition gives the operator space version of this
result.

Proposition 3.10 Let (X , x0) be a pointed operator metric space and n ∈ N. Then
Fn(X)∗ is completely isometric to Lipn0(X ,C). Moreover, under this complete isom-
etry, the weak∗ topology on Fn(X)∗ coincides on the unit ball of Lipn0(X ,C) with the
pointwise convergence topology.
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Proof We define a map u : Lipn0(X ,C) → Fn(X)∗ by letting

u( f )

(
∑

i

aiδxi

)

=
∑

i

ai f (xi )

for all a1, . . . , am ∈ C, all x1, . . . , xm ∈ X , and all f ∈ Lipn0(X ,C). Clearly, u( f ) is
linear on the span of {δx }x∈X . Moreover, we have that

‖u( f )‖Fn(X)∗ = sup

∣
∣
∣
∣

∑

i

ai f (xi )

∣
∣
∣
∣
= sup

∣
∣
∣
∣

(
∑

i

aiδxi

)

( f )

∣
∣
∣
∣
≤ ‖ f ‖Lip,n,

where the suprema above are taken over all a1, . . . , am ∈ C and x1, . . . , xm ∈ X such
that ‖∑i aiδxi ‖Fn(X) ≤ 1. This implies that u( f ) extends uniquely to a functional
on Fn(X) with norm at most ‖ f ‖Lip,n ; so u is a well defined contraction. Let v :
Fn(X)∗ → Lipn0(X ,C) be given by v(g)(x) = g(δx ) for all g ∈ Fn(X)∗ and all
x ∈ X . By Proposition 3.7, v(g) is indeed Lipschitz, so v is well defined. Moreover,
it is straightforward to check that v is the inverse of u. Hence, we only need to check
that u is a k-isometry for all k ∈ N.

Fixm ∈ N. The fact thatu is anm-contraction follows completely analogously to the
proof that u is a contraction, so we omit the details. Now let [ fk�] ∈ Mm(Lipn0(X ,C))

and ε > 0, and pick [xi j ], [yi j ] ∈ Mn(X) such that

‖[ fk�]‖Lip,n,m ≤ ‖[ fk�(xi j ) − fk�(yi j )]‖Mnm

‖[xi j − yi j ]‖Mn(X)

+ ε.

By Proposition 3.7, ‖[xi j − yi j ]‖Mn(X) = ‖[δxi j − δyi j ]‖Mn(Fn(X)), and we have that

∥
∥
∥
∥

[
fk�(xi j ) − fk�(yi j )

‖[xi j − yi j ]‖Mn(X)

]∥
∥
∥
∥
Mnm

=
∥
∥
∥
∥

[

u( fk�)

(
δxi j − δyi j

‖[δxi j − δyi j ]‖Mn(Fn(X))

)]∥
∥
∥
∥
Mnm

≤ ‖um([ fk�])‖Mm(Fn(X)∗).

Since ε > 0 was arbitrary, this shows that ‖un([ fk�])‖Mm (Fn(X)∗) = ‖ f ‖Lip,n,m , so u
is an m-isometry.

The last statement in the proposition follows immediately form the formula of the
complete isometry presented above.

Remark 3.11 The previous result shows that Fn(X) is the predual of an n-minimal
operator space, which implies thatFn(X) is n-maximal. To see this, note that if E is an
n-minimal operator space, then E∗ is n-maximal by [28, Lemma 2.4]. Thus Fn(X)∗∗
is n-maximal. Now, for any operator spaces E and F and any linear map v : E → F ,
we have that ‖v∗∗‖cb = ‖v‖cb by the proof of [9, Theorem 2.5]; hence,Fn(X) is itself
n-maximal.

The next lemma is one of the main benefits of the Lipschitz-free construction and
it works as a tool to linearize certain problems (cf. [17, Lemma 2.2]).
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Lemma 3.12 Let (X , x0) and (Y , y0) be pointed operator metric spaces and let n ∈ N.
For any L ∈ Lip0(X ,Y ), the cb-norm of the map

f ∈ Lipn0(Y ,C) 
→ f ◦ L ∈ Lipn0(X ,C)

equals Lipn(L). Moreover, there exists a unique bounded linear map L̃ : Fn(X) →
Fn(Y ) such that δnY L = L̃δnX , i.e., the diagram below commutes.

X
L

δnX

Y

δnY

Fn(X)
L̃ Fn(Y )

Furthermore, ‖L̃‖cb = Lipn(L).

Proof LetC : Lipn0(Y ,C) → Lipn0(X ,C) be the map above, i.e.,C( f ) = f ◦ L for all
f ∈ Lipn0(Y ,C). Clearly, ‖Ck‖k ≤ Lipn(L) for all k ∈ N. In order to get the reverse
inequality, we proceed as in Proposition 3.7. Let ε > 0 and pick [xi j ], [yi j ] ∈ Mn(X)

such that

Lipn(L) ≤ ‖[L(xi j ) − L(yi j )]‖Mn(Y )

‖[xi j − yi j ]‖Mn(X)

+ ε.

Fix a Hilbert space H so that N ⊂ B(H) as an operator space and pick ξ̄ = (ξi )i , ζ̄ =
(ζi )i ∈ H⊕n such that

|〈[L(xi j ) − L(yi j )]ξ̄ , ζ̄ 〉| ≥ ‖[L(xi j ) − L(yi j )]‖Mn(Y ) − ε‖[xi j − yi j ]‖Mn(X).

Let K = span{ξ1, . . . , ξn, ζ1, . . . , ζn}, let PK : H → K be the orthogonal projection,
and let g : B(H) → B(K ) be the map g(x) = PK x � K . Then g is an n-contractive
linear map. Without loss of generality, B(K ) = Mk for k = dim(K ). So g is an
element in the unit ball of Mk(B(H)∗).

Let ι : B(H)∗ → Lipn0(Y ,C) be the map given by Proposition 3.3. So ιk(g) is in
the unit ball of Mk(Lipn0(Y ,C)) and this gives that

‖Ck‖k ≥ ‖Ck(ιk(g))‖Mk

≥ ‖g([L(xi j ) − L(yi j )])‖Mnk

‖[xi j − yi j ]‖Mn(X)

≥ ‖[L(xi j ) − L(yi j )]‖Mn(Y )

‖[xi j − yi j ]‖Mn(X)

− ε

≥ Lipn(L) − 2ε.

As ε was arbitrary, we conclude that ‖C‖cb = Lipn(L), and it follows that C∗ :
Lipn0(X ,C)∗ → Lipn0(Y ,C)∗ also satisfies ‖C∗‖cb = Lipn(L).
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Given a1, . . . , an ∈ C and x1, . . . , xn ∈ X , we have that

C∗
(
∑

i

aiδ
n
xi

)

=
∑

i

aiδ
n
Lxi .

Hence L̃ = C∗ � Fn(X) maps Fn(X) into Fn(Y ) and it is clear that δnN L = L̃δnX .
As ‖C∗‖cb = Lipn(L), we have that ‖L̃∗‖cb ≤ Lipn(L). Moreover, the proof that
‖Ck‖k ≥ Lipn(L) − 2ε above also implies that ‖L̃k‖k ≥ Lipn(L) − 2ε. Hence, as ε

was arbitrary, we conclude that ‖L̃‖cb = Lipn(L).

Corollary 3.13 Let (X , x0) and (Y , y0) be pointed operator metric spaces and let
n ∈ N. Let L : X → Y be an n-Lipschitz equivalence with L(x0) = y0. Then L̃
is a complete isomorphism with complete bounded distorsion at most Distn(L), i.e.,
‖L̃‖cb‖L̃−1‖cb ≤ Distn(L). In particular, if L is a complete isometry, L̃ is a complete
linear isometry.

Proof Since L is surjective, then the map L̃−1 : Fn(Y ) → Fn(X) given by
Lemma 3.12 applied to L−1 is clearly the inverse of L̃ , so L̃ is surjective. More-
over, by Lemma 3.12, ‖L̃‖cb‖L̃−1‖cb = Lipn(L)Lipn(L

−1). So, the result follows.

Recall, given a metric space X and A ⊂ X , a map r : X → A is called a retraction
if f (a) = a for all a ∈ A.

Corollary 3.14 Let (X , x0) and (Y , x0) be operator metric spaces with distinguished
points and so that X ⊂ Y . If there exists a retraction Y → X with n-th Lipschitz
constant at most λ, then Fn(X) is λ-completely isomorphic to

span{δx ∈ Fn(Y ) | x ∈ X}Fn(Y )
.

Proof For each a1, . . . , an ∈ C and x1, . . . , xn ∈ X , define ι(
∑

i aiδxi ) = ∑i aiδxi .
Clearly, ‖ι(∑i aiδxi )‖Fn(Y ) ≤ ‖∑i aiδxi ‖Fn(X), so ι extends to a contractive linear
map ι : Fn(X) → Fn(Y ). Moreover, ι is clearly completely contractive.

Let r : Y → X be a retraction with Lipn(r) ≤ λ. Let C : Lipn0(X ,C) →
Lipn0(Y ,C) be given by C( f ) = f ◦ r for all f ∈ Lipn0(X ,C). By Lemma 3.12,
‖C‖cb = Lipn(r) ≤ λ. Therefore,

Ck

(

BLipn0(X ,Mk )

)

⊂ λ · BLipn0(Y ,Mk )

for all k ∈ N. By the definition of Fn(Y ), it follows that for all k ∈ N and all
[zi j ] ∈ Mk(Fn(X)), we have that ‖[ιk(zi j )]‖ ≥ λ−1‖[zi j ]‖. So, ‖ι−1

k ‖ ≤ λ for all
k ∈ N. Hence ι is a λ-complete linear isomorphism into Fn(Y ).

The map δnX : X → Fn(X) has a natural completely contractive left inverse if X
is an operator space. Indeed, let X be an operator space. Given a1, . . . , am ∈ C and
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x1, . . . , xm ∈ X , define

βn
X

(
∑

i

aiδxi

)

=
∑

i

ai xi .

Given x∗ ∈ X∗, we have that x∗ ∈ Lipn0(X ,C), ‖x∗‖X∗ = ‖x∗‖Lipn0(X ,C), and

∣
∣
∣
∣
x∗
(
∑

i

ai xi

)∣
∣
∣
∣
=
∣
∣
∣
∣

(
∑

i

aiδxi

)

(x∗)
∣
∣
∣
∣
≤
∥
∥
∥
∥

∑

i

aiδxi

∥
∥
∥
∥
‖x∗‖.

So, βn
X extends to a contractive map βn

X : Fn(X) → X . It is easy to check that βn
X is

actually a complete contraction, hence a complete quotient map, and βn
XδnX = IdX .

Corollary 3.15 Let (X , x0) be a pointed operator metric space and Y be an operator
space. Then, given L ∈ Lip0(X ,Y ), there exists a unique bounded linear map L̄ :
Fn(X) → Y such that L = L̄δnX and ‖L̄‖cb = ‖L̄n‖n = Lipn(L).

Proof This is a trivial consequence of Lemma 3.12 and the discussion preceding the
lemma.

Before stating the next corollary, recall that a linear operator T : X → Y between
normed spaces is a 1-quotient, or metric surjection, if it is surjective and ‖w‖ =
inf
{ ‖v‖ | T v = w

}

for every w ∈ Y . A complete 1-quotient, or complete metric
surjection, is a map all of whose amplifications are 1-quotients/metric surjections. On
the other hand, given C > 0, a Lipschitz map f : X → Z between metric spaces is
called co-Lipschitz with constant C if for every x ∈ X and r > 0, we have

f
(

B(x, r)
) ⊇ B( f (x), r/C).

A map is called a Lipschitz quotient if it is surjective, Lipschitz, and co-Lipschitz [7].
Similarly, we will say that a map between operator metric spaces is an n-Lipschitz
quotient if its n-th amplification is a Lipschitz quotient.

Corollary 3.16 Let (X , x0) and (Y , y0) be pointed operator metric spaces and let
n ∈ N. Suppose that L ∈ Lip0(X ,Y ) is an n-Lipschitz quotient such that Ln is
Lipschitz with constant 1 and co-Lipschitz with constant 1. Then its linearization
L̃ : Fn(X) → Fn(Y ) is a complete 1-quotient.

Proof. It suffices to show that (L̃)∗ : Fn(Y )∗ → Fn(X)∗ is a complete isometry.
Observe that this map can be canonically identified with the map

f ∈ Lipn0(Y ,C) 
→ f ◦ L ∈ Lipn0(X ,C)

in Lemma 3.12 and, by this lemma, we have ‖L̃‖cb = 1. Given [ fk�] ∈
Mm(Lipn0(M,C)) and ε > 0, pick [xi j ], [yi j ] ∈ Mn(Y ) such that

‖[ fk�]‖Lip,n,m‖[xi j − yi j ]‖Mn(Y ) ≤ (1 + ε)‖[ fk�(xi j ) − fk�(yi j )]‖Mnm .
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By the co-Lipschitz with constant 1 condition, we can find [zi j ], [wi j ] ∈ Mn(X) such
that L(zi j ) = xi j , L(wi j ) = yi j for 1 ≤ i, j,≤ n and

∥
∥[zi j − wi j ]

∥
∥
Mn(X)

≤ (1 + ε)
∥
∥[xi j − yi j ]

∥
∥
Mn(Y )

.

It follows that

‖[ fk� ◦ L]‖Lip,n,m ≥ (1 + ε)−2‖[ fk�]‖Lip,n,m .

3.1 Examples of n-Lipschitz-free operator spaces

Given a connected undirected graph, we consider it (more precisely, its vertex set) as a
metric space by endowing it with the shortest path distance. Recall that if such a graph
has no cycles it is called a tree, and it is well-known that the Lipschitz-free space of
a tree on k + 1 vertices can be isometrically identified with �k1 as Banach spaces [29,
Example 10.12]. The following proposition shows an example of an operator metric
space where this identification is now at the level of operator spaces.

Proposition 3.17 Let (T , x0) be a rooted treewith k+1 vertices, say T = {0, 1, . . . , k}
where x0 = 0. Consider the isometry T → �k1 given by

0 ∈ T 
→ 0 ∈ �k1 and j ∈ T \{0} 
→
∑

0≺i� j

ei ∈ �k1,

where≺ is the partial order induced by the tree, and consider T as an operator metric
space with the structure induced by this isometry and the maximal operator space
structure on �k1. Then for any n ∈ N, Fn(T ) is completely isometric toMAX(�k1).

Proof Let u : Fn(T ) → �k1 be the linear operator that for each j ∈ {1, 2, . . . , k}
sends δ j to

∑

0≺i� j ei . It is clear from Corollary 3.15 that u : Fn(T ) → MAX(�k1)

is completely contractive, since it is the linearization of a complete isometry T →
MAX(�k1). Since MAX(�k1) is a maximal space,

∥
∥u−1 : MAX(�k1) → Fn(T )

∥
∥
cb = ∥∥u−1 : �k1 → Fn(T )

∥
∥,

and now we estimate

∥
∥u−1 : �k1 → Fn(T )

∥
∥ ≤ ∥∥u−1 : �k1 → F1(T )

∥
∥ · ∥∥Id : F1(T ) → Fn(T )

∥
∥.

Note that
∥
∥u−1 : �k1 → F1(T )

∥
∥ = 1 follows from the classical identification ofF1(T )

with �k1. Also, as Lip( f ) ≤ Lipn( f ) (see (3.1)), we have that the idendity Lip
n
0(T ) →

Lip0(T ) has norm at most 1, which in turn implies that
∥
∥Id : F1(T ) → Fn(T )

∥
∥ ≤ 1

(alternatively, this will also be a consequence of Theorem 5.2 below).
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The previous proposition is a particular case of the followingmore general situation,
whose proof is exactly the same.

Proposition 3.18 Let (X , x0) be a pointed metric space. Consider the maximal oper-
ator space structure MAX(F(X)) on F(X), and induce an operator metric space
structure on X by the canonical embedding δX : X → F(X). Then for each n ∈ N,
the n-Lipschitz free space Fn(X) is completely isometric toMAX(F(X)).

Remark 3.19 Suppose that (X , x0) is a pointed metric space corresponding to a finite
graph endowedwith the shortest path distance. It is known [29, Prop. 10.10] that in this
caseF(X) can be identified (as a Banach space) with �1(E)/Z , where E is the edge set
of the graph and Z is the cycle subspace (see [29] for the detailed definition, and note
that though the proof of [29, Prop. 10.10] is given for real scalars the same argument
works in the complex case). Since quotients ofmaximal spaces aremaximal, endowing
X with an operatormetric space structure as in Proposition 3.18 yields that for all n ∈ N

the n-Lipschitz free space Fn(X) is completely isometric to MAX(�1(E))/Z .

3.2 n-Lipschitz-freeR-operator spaces

In Banach space theory, F(X) is usually defined with respect to real-valued Lipschitz
maps X → R with f (x0) = 0; in particular, it is an R-Banach space. We discuss
this approach in this subsection (we refer the reader to [32] for details on R-operator
spaces).

Proceeding analogously as we did above for Lip0(X ,C), we denote by Lipn0(X ,R)

the R-operator space which consists of Lip0(X ,R) endowed with the real operator
space structure (‖ · ‖Lip,n,k)k , where the sequence of norms (‖ · ‖Lip,n,k)k is defined
completely analogously as above. Given x ∈ X , in an abuse of notation we denote by
δx the map Lip0(X ,R) → R given by δx ( f ) = f (x) for all f ∈ Lip0(X ,R). The
n-Lipschitz-free R-operator space of X is the R-Banach space

Fn
R
(X) = spanR{δX ∈ Lipn0(X ,R)∗ | x ∈ X}

together with the operator space structure inherited from Lipn0(X ,R)∗. If n = 1, we
write FR(X) = F1

R
(X).

All the results in Sect. 3 have analogous versions for the n-Lipschitz-freeR-operator
spaces and their proofs follow analogously as well (this will be used in Sect. 4).

When working in the R-Banach space category, an advantage of working with
FR(X) is that a real-valued Lipschitz map can always be extended without increasing
its Lipschitz constant (see [18, Section 2]). For complex-valued Lipschitz maps this
is no longer the case ([35, Example 1.37])—the Lipschitz constant may increase by
a factor of at most

√
2 ([35, Corollary 1.34]). As a result of that, if Y ⊂ X , then

F(Y ) is
√
2-isomorphic to a subspace of F(X), while FR(Y ) is linearly isometric to

a subspace of FR(X). However, in the operator space category, it is not clear if this
advantage remains. Precisely:
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Problem 3.20 Let X and Y be operator metric spaces with X ⊂ Y and let n ∈ N.
Let f : X → R be a Lipschitz map. Is there an extension F : Y → R of f so that
‖F‖Lip,n ≤ ‖ f ‖Lip,n?

At last, we finish this subsection relating the n-Lipschitz-free R-operator space
with its complex version defined before. Its proof is completely straightforward, so
we leave the details to the reader.

Proposition 3.21 Let X be a C-operator space. Then Fn(X) is R-isomorphic to
Fn
R
(X) ⊕ Fn

R
(X) for all n ∈ N.

4 n-Lipschitz-lifting property

In [17], the authors introduced the isometric Lipschitz-lifting property for Banach
spaces, and showed that every separable Banach space satisfies this property. In this
subsection, we introduce the equivalent definition and prove the equivalent statement
for operator spaces. This will allow us to obtain Theorem 1.5.

Definition 4.1 (cf. [17, Definition 2.7]) Let X be an operator space and let n ∈ N.
We say that X has the n-isometric Lipschitz-lifting property if there exists a linear
n-contraction T : X → Fn(X) such that βn

X T = IdX .

Notice thatwe always haveβn
X ◦δnX = IdX . So the content of the definition above lies

on T being linear. In order to show that separable operator spaces have the completely
isometric Lipschitz-lifting property, we will need to work with Gateaux differentia-
bility.

Definition 4.2 (cf. [3, Definition 14.2.1]) Let X and Y be R-Banach spaces. A map
f : X → Y is Gateaux R-differentiable at x ∈ X if for all a ∈ X the limit

Dfx (a) = lim
λ→0

f (x + λa) − f (x)

λ

exists and the map a ∈ X 
→ Dfx (a) ∈ Y is R-linear and bounded. If f : X → Y
is Gateaux R-differentiable at every x ∈ X , we simply say that f is Gateaux R-
differentiable. If X and Y are C-Banach spaces, we say that f : X → Y is Gateaux
R-differentiable at x ∈ X if it is so with X and Y being seen as R-Banach spaces.

Since operator spaces are, in particular, Banach spaces, the notion of Gateaux R-
differentiability applies to operator spaces. The following simple proposition shows
how operator norms of derivatives relate to their Lipschitz operator norms.

Proposition 4.3 Let X and Y be operator spaces, n, k ∈ N, and [ f�m] ∈
Mk(Lipn0(X ,C)) be Gateaux R-differentiable at x ∈ X. Then

‖D([ f�m])x‖n ≤ ‖[ f�m]‖Lip,n,k .
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Proof Given [ai j ] ∈ Mn(X), we have

‖D([ f�m])x ([ai j ])‖Mn(Y ) = lim
λ→0

∥
∥
∥
∥

[
f�m(x + λai j ) − f�m(x)

λ

]∥
∥
∥
∥
nk

= lim
λ→0

1

λ
·
∥
∥
∥
∥
[ f�m]n([x + λai j ]) − [ f�m]n([x])

∥
∥
∥
∥
nk

≤ Lipn([ f�m])‖[ai j ]‖Mn(X)

So, ‖D([ f�m])x‖n ≤ Lipn([ f�m]) = ‖[ f�m]‖Lip,n,k .

Before we prove that separable operator spaces have the completely isometric
Lipschitz-lifting property, we need a proposition about the density of the set ofGateaux
differentiable functions in Lipn0(X ,C). The next proposition is the operator space ver-
sion of [8, Corollary 6.43].

Proposition 4.4 Let X be a separable operator space. Then, for all n, k ∈ N, all
[ f�m] ∈ Mk(Lipn0(X ,C)), and all ε > 0, there is a Gateaux R-differentiable [g�m] ∈
Mk(Lipn0(X ,C)) such that ‖[g�m]‖Lip,n,k ≤ ‖[ f�m]‖Lip,n,k and

sup
[xi j ]∈Mn(X)

‖[ f�m(xi j ) − g�m(xi j )]‖Mnk ≤ ε.

Proof Since X is a separable Banach space, there exists a nondegenerate Gaussian
measureμon X so that

∫

X ‖z‖dμ(z) ≤ 1.6 Fixn, k ∈ N and [ f�m] ∈ Mk(Lipn0(X ,C)).
For each �,m ∈ {1, . . . , k} and N ∈ N, define f N�m : X → C by letting

f N�m(x) =
∫

X
f�m(x + N−1z)dμ(z).

Given [xi j ], [yi j ] ∈ Mn(X), we have that

‖[ f N�m(xi j ) − f N�m(yi j )]‖Mnk

=
∥
∥
∥
∥

∫

X
[ f�m(xi j + N−1z) − f�m(yi j + N−1z)]dμ(z)

∥
∥
∥
∥
Mnk

≤
∫

X
‖[ f�m(xi j + N−1z) − f�m(yi j + N−1z)]‖Mnk dμ(z)

≤ ‖[ f�m]‖Lip,n,k‖[xi j ] − [yi j ]‖Mn(X).

So, ‖[ f N�m]‖Lip,n,k ≤ ‖[ f�m]‖Lip,n,k for all N ∈ N. Moreover, by the Lebesgue domi-
nated convergence theorem and [8, Theorem 6.42], each f N�m is everywhere Gateaux
R-differentiable for all �,m ∈ {1, . . . , k}.
6 See [8, Definition 6.17] for the definition of a Gaussian measure on a Banach space and the comments
after [8, Proposition 6.20] for a proof of this statement.
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Fix n ∈ N, and notice that, for all [xi j ] ∈ Mn(X), we have

‖[ f�m(xi j ) − f N�m(xi j )]‖Mnk ≤
∫

E
‖[ f�m(xi j ) − f�m(xi j + N−1z)]‖Mnk dμ(z)

≤ N−1‖[ f�m]‖Lip,n,k

∫

E
‖[z]‖Mn(X)dμ(z)

≤ n2N−1‖[ f�m]‖Lip,n,k

Hence, given any ε > 0, there exists N ∈ N large enough so that

‖[ f�m(xi j ) − f N�m(xi j )]‖Mnk < ε

for all [xi j ] ∈ Mn(X).

Theorem 4.5 Every separable operator space has the n-isometric Lipschitz-lifting
property for all n ∈ N.

Proof Let X be a separable operator space, n ∈ N, and let (xm)m be a linearly inde-
pendent sequence in X whose linear span X0 is dense in X and so that

{
∑

m

tmxm | (tm)m ∈ [0, 1]N
}

is a compact subset of X . Define L : [0, 1]N → X by letting L(t̄) =∑m tmxm for all
t̄ = (tm)m ∈ [0, 1]N, and let λ denote the product measure of the Lebesgue measure
on [0, 1].

Proceeding exactly as in the proof of [17, Theorem 3.1], there exists a linear map
R : X0 → Fn(X) so that βn

X R(xm) = xm for all m ∈ N and

R(x)( f ) =
∫

[0,1]N
DfL(t̄)(x)dλ(t̄)

for all x ∈ X0 and all Gauteaux R-differentiable maps f ∈ Lipn0(X ,C). (We leave
the details to the reader.) Hence, given k ∈ N, [xi j ] ∈ Mn(X0), and a Gateaux R-
differentiable [ f�m] ∈ Mk(Lipn0(X ,C)), we have that

‖[R(xi j )( f�m)]‖Mnk =
∥
∥
∥
∥

[ ∫

[0,1]N
D( f�m)L(t̄)(xi j )dλ(t̄)

]∥
∥
∥
∥
Mnk

≤
∫

[0,1]N
‖[D( f�m)L(t̄)(xi j )]‖Mnk dλ(t̄)

≤
∫

[0,1]N
‖[D( f�m)L(t̄)]‖n‖[xi j ]‖Mn(X)dλ(t̄).

By Proposition 4.3, we have that ‖[D( f�m)y]‖n ≤ ‖[ f�m]‖Lip,n,k , so

‖[R(xi j )( f�m)]‖Mnk ≤ ‖[ f�m]‖Lip,n,k‖[xi j ]‖Mn(X).
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By Proposition 4.4, the subset of the unit ball of Mk(Lipn0(X ,C)) consisting of all
GateauxR-differentiablemaps is densewith respect to the uniform convergence topol-
ogy in this unit ball. Therefore, by Proposition 3.10, this subset is also weak∗ dense
in it. This shows that

‖[R(xi j )( f�m)]‖Mnk ≤ ‖[ f�m]‖Lip,n,k‖[xi j ]‖Mn(X)

for all [ f�m] ∈ Mk(Lipn0(X ,C)), which in turns implies that R extends to a complete
n-contraction T : X → Fn(X). Since βn

X R(xn) = xn for all n ∈ N, it follows that
βn
X T = IdX , and we are done.

The next proposition is the operator space version of a result of Figiel [16] (see also
[3, Theorem 14.4.10]).

Proposition 4.6 Let X and Y be operator spaces, n ∈ N, and let f : X → Y be
an n-isometry so that spanR{ f (X)} = Y and f (0) = 0. Then there exists a unique
R-linear map T : Y → X so that ‖Tn‖n = 1 and T ◦ f = IdX .

Proof Since spanR{ f (X)} = Y , it follows that

spanR{ fk(X)} = Mk(Y )

for all k ∈ N. Hence, as fk is an isometry for k ≤ n, the result for Banach spaces
(see [3, Theorem 14.4.10], or [16]) applied to the map fk : Mk(X) → Mk(Y ) gives
us an R-linear map T k : Mk(Y ) → Mk(X) so that T k ◦ fk = IdMk (X) and ‖T k‖ = 1.
Moreover, this is the unique R-linear map with such properties. If k = 1, we simply
write T = T 1; so T ◦ f = IdX .

Let us notice that T n = Tn , i.e., T n is the n-th amplification of T . For that, fix
i, j ∈ {1, . . . , n}, let Ii j,X : X → Mn(X) and Ii j,Y : Y → Mn(Y ) be the natural
inclusions into the (i, j)-th coordinate of Mn(X) and Mn(Y ), respectively, and let
πi j,X : Mn(X) → X be the projection onto the (i, j)-th coordinate. Define T n

i j : Y →
X by

T n
i j = πi j,X ◦ T n ◦ Ii j,Y .

As f (0) = 0, we have Ii j,Y ◦ f = fn ◦ Ii j,X , and it follows that

T n
i j ◦ f = πi j,X ◦ T n ◦ fn ◦ Ii j,X = πi j,X ◦ IdMn(X) ◦ Ii j,X = IdX .

As ‖T n‖ = 1, it is clear that ‖T n
i j‖ = 1. Hence, as T = T 1 is the unique R-linear

operator T : Y → X so that ‖T ‖ = 1 and T ◦ f = IdX , the equality above implies
that T n

i j = T . Since i and j are arbitrary, T n is the n-th amplification of T .
Since ‖T n‖ = 1, it follows that ‖Tn‖n = 1, and we are done.

The following should be compared with [17, Proposition 2.9].
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Proposition 4.7 Let X and Y be operator spaces, n ∈ N, and assume that X has the
n-isometric Lipschitz-lifting property. Let Q : Y → X be an R-linear n-contractive
surjection. If Q admits an n-isometric section, then Q admits anR-linear n-isometric
section.

Proof Let L : X → Y be an n-isometric section of Q and let L̄ : Fn
R
(X) → Y

be given by Corollary 3.15 (see Sect. 3.2), so L̄ is an R-linear n-isometry so that
L = L̄δnX . Since L is a section of Q, it follows that QL̄δnX = IdX ; so, we must have
QL̄ = βn

X . As X has the n-isometric Lipschitz-lifting property, let T : X → Fn
R
(X)

be the R-linear n-contraction with βn
X T = IdX . We must then have that QL̄T = IdX ,

so L̄T is an R-linear n-isometric section of Q.

Proof of Theorem 1.5 Let ( f n)n be an almost completely isometric embedding of X
into Y . Fix n ∈ N and set Z = spanR{ f n(X)}. By Proposition 4.6, there exists an
R-linear n-contraction T : Z → X so that T ◦ f n = IdX , i.e., f n is an n-isometric
section of T . Since X is separable it has the n-isometric Lipschitz-lifting property
by Theorem 4.5, and Proposition 4.7 implies that T admits an R-linearly n-isometric
section u : X → Z . As n ∈ N was arbitrary, we are done.

We finish this section by pointing out that there are nonseparable examples of
operator spaces having the n-isometric Lipschitz-lifting property: simply take a non-
separable pointed operator metric space in the next proposition. The proof is exactly
the same as that of [17, Lemma 2.10], so we omit it.

Proposition 4.8 Let (X , x0) be a pointed operator metric space. For any n ∈ N, the
n-Lipschitz-free space Fn(X) has the n-isometric Lipschitz-lifting property.

5 An alternative approach to n-Lipschitz-free operator spaces

In Definition 3.4, we have defined the operator space structure of Fn(X) in a “dual
way”. Indeed, this is done by embedding Fn(X) into the operator space Lipn0(X ,C)∗.
Therefore, the norm of an element of Mm(Fn(X)) is naturally calculated as a supre-
mum. It is always useful to have an alternative description of such a quantity as an
infimum, which is what we will do in this section. Our approach in this section mirrors
the presentation of the classical case as in [35], which in turn follows that of [2].

Recall from Remark 3.11 above that Fn(X) is an n-maximal operator space, so
Proposition 5.1 belowgoes in the desired direction: for anm-maximal operator space, it
gives a description of the operator space structure as an infimum. It is a generalization
of [31, Theorem 3.1]. The proof is exactly the same, just using the description of
MAXm(E) as in [28, Section 2] or [25, Proposition I.3.1]. Proposition 5.1 is not
needed for what we are doing, but it provided the inspiration for Theorem 5.2 below
(and it might be of independent interest).

Given an operator space E and n, k ∈ N, we view operators a ∈ Mk(Mn(E)) as
k-by-k matrices of m-by-m matrices with entries in E .
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Proposition 5.1 Let E be an operator space and n ∈ N, m ∈ N. For each x ∈ Mn(E)

we have

‖x‖Mn(MAXm (E)) = inf
{ ‖α‖ ‖D‖ ‖β‖ | x = α · D · β

}

,

where the infimum above is taken over all N ∈ N, all α ∈ Mn,Nm, all β ∈ MNm,n,
and all N × N diagonal matrices D ∈ MN (Mm(E)) with entries inMm(E).

Proof For each n define a norm |||·|||n on Mn(E) as the infimum appearing in the
statement. It is not difficult to see that this sequence of norms satisfies Ruan’s axioms
as in [31, Section 2.2], and therefore it defines an operator space structure on E that
we denote by Ẽ .

Let F be an arbitrary operator space and u : E → F be linear andm-contractive. It
follows easily from Ruan’s axioms that u : Ẽ → F is completely contractive; hence,
Ẽ is completely isometric to MAXm(E) by [28, Lemma 2.3].

We can now give the promised alternative description of Fn(X). It shows that in
the specific case of an n-Lipschitz-free operator space, the representations appearing
in Proposition 5.1 can be assumed to be of a special form.

Theorem 5.2 Let (X , x0) be a pointed operator metric space, n ∈ N, and let F =
span{δx }x∈X ⊂ Fn(X). For any m ∈ N and μ ∈ Mm(F) we have

‖μ‖Mm (Fn(X)) = inf
{

‖α‖ ‖β‖ max
1≤�≤N

|c�|
∥
∥
∥[x�

i j − y�
i j ]
∥
∥
∥

}

where the infimum is taken over all N ∈ N and all representations ofμ of the formμ =
α ·D ·β whereα ∈ Mm,Nn and β ∈ MNn,m are scalar matrices, and D ∈ MN (Mn(F))

is a diagonal matrix whose diagonal entries are of the form c�[δx�
i j

− δy�
i j
]i j with c� a

scalar and [x�
i j ], [y�

i j ] ∈ Mn(X) for 1 ≤ � ≤ N.

Proof Use the infimum in the statement to define a norm |||·|||m on each space Mm(F).
Note that just as in the classical case, in principle it is only clear that this defines
seminorms. But since |||·|||1 coincides with the Arens–Eells definition of the norm on
the Lipschitz-free space F(X) [35, Section 3.1], it follows from the discussion after
[35, Definition 3.2] that |||·|||1 is a norm and thus so is |||·|||m for each m. It is not
difficult to see that this sequence of norms satisfies Ruan’s axioms [31, Section 2.2],
and therefore defines an operator space structure on the completion of F with respect
to |||·|||1. To set notation, denote this operator space by F n(X). We now show that
F n(X)∗ is completely isometric to Lipn0(X ,C) using the same maps as in Proposition
3.10. This will imply thatF n(X) andFn(X) are completely isometric via the identity
map.

As before (cf. Proposition 3.10), we define a map u : Lipn0(X ,C) → F n(X)∗ by
letting

u( f )

(
∑

i

aiδxi

)

=
∑

i

ai f (xi )
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for all a1, . . . , am ∈ C, all x1, . . . , xm ∈ X , and all f ∈ Lipn0(X ,C). Clearly u( f ) is
linear on F , and the calculations below show that u( f ) extends to a linear functional
on all of F n(X).

Fix [ frs] ∈ Mk(Lipn0(X ,C)). Take μ = [μab] ∈ Mm(F), and consider a represen-
tation μ = α · D · β as in the statement of the theorem. Now,

‖[u( frs)μab]‖Mkm
=
∥
∥
∥

[

α · diag (c�[ frs(x�
i j ) − frs(y

�
i j )]i j

) · β]rs
∥
∥
∥
Mk (Mm )

=
∥
∥
∥(Ik ⊗ α) · [ diag (c�[ frs(x�

i j ) − frs(y
�
i j )]i j

)]

rs · (Ik ⊗ β)

∥
∥
∥
Mk (Mm )

≤ ‖Ik ⊗ α‖
∥
∥
∥

[

diag
(

c�[ frs(x�
i j ) − frs(y

�
i j )]i j

)]

rs

∥
∥
∥
Mk (MN (Mn ))

‖Ik ⊗ β‖

= ‖α‖ ‖β‖
∥
∥
∥diag

(

c�[ frs(x�
i j ) − frs(y

�
i j )]i jrs

)
∥
∥
∥
MN (Mkn))

= ‖α‖ ‖β‖ max
1≤�≤N

|c�|
∥
∥
∥

[

frs(x
�
i j ) − frs(y

�
i j )
]

i jrs

∥
∥
∥

≤ ‖α‖ ‖β‖ ‖[ frs ]‖Mk (Lipn0 (M,C)) max
1≤�≤N

|c�|
∥
∥
∥[x�

i j − y�
i j ]
∥
∥
∥ .

By taking the infimum over all representations of μ we conclude that

‖[u( frs)μab]‖Mkm
≤ ‖[ frs]‖Mk (Lipn0(M,C)) |||μ|||m,

which shows that u : Lipn0(X ,C) → F n(X)∗ is a complete contraction.
As before (cf. Proposition 3.10), let v : F n(X)∗ → Lipn0(X ,C) be given by

v(g)(x) = g(δx ) for all g ∈ F n(X)∗ and all x ∈ X ; the calculations below will show
that this is well defined.

Let [grs] ∈ Mm(F n(X)∗), and consider [xi j ], [yi j ] ∈ Mn(X). Now,

∥
∥[v(grs)(xi j ) − v(grs)(yi j )]

∥
∥
Mmn

= ∥∥[grs(δxi j − δyi j )]
∥
∥
Mmn

≤ ‖[grs]‖Mm (F n(X)∗)
∥
∥[δxi j − δyi j ]

∥
∥
Mn(F n(X))

≤ ‖[grs]‖Mm (F n(X)∗)
∥
∥[xi j − yi j ]

∥
∥
Mn(X)

,

where in the last inequality we have used the representation [δxi j − δyi j ] = In · [δxi j −
δyi j ] · In to estimate the norm

∥
∥[δxi j − δyi j ]

∥
∥
Mn(F n(M))

. The inequality above shows
that v : F n(X)∗ → Lipn0(X ,C) is a complete contraction, finishing the proof.

While Theorem 5.2 provides a description for the norms of matrices over Fn(X)

whose entries come from span{δx }x∈X , it is also desirable to have a description that
applies to all matrices over Fn(X). That is the content of our next result, whose
proof is based on that of the usual representation for elements of the completion of
the projective tensor product of operator spaces [14, Theorem 10.2.1]. This is not a
surprise: in the classical case, it is well-known that one can represent elements of the
Lipschitz-free space using a series representation that is reminiscent of what one does
for projective tensor products of Banach spaces: e.g., compare [33, Prop. 2.8] and [4,
Lemma 2.1].
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The notation for infinite matrices which we use below is that of [14]. The reader
can find all details in Sections 1.1, 10.1 and 10.2 of [14], we will only recall some
basics. Given an operator space E , M∞(E) is the space of infinite matrices [xi j ]∞i, j=1
with entries xi j in E whose truncations to Mn(E) are uniformly bounded; M∞(E)

has a natural operator space structure. A similar construction can be done for matrices
MI ,J (E), where I (resp. J ) is a finite or countably infinite set of indices for the
rows (resp. columns); operator space structures and matrix multiplication can then be
defined using truncations again (in this context, N is identified with ∞). Moreover, if
E = C, we simply writeM∞ = M∞(C), Mn,∞ = Mn,∞(C), andM∞,n = M∞,n(C).

Theorem 5.3 Let (X , x0) be a pointed operator metric space and n ∈ N. For any
m ∈ N and μ ∈ Mm(Fn(X)) we have

‖μ‖Mm (Fn(X)) = inf

{

‖α‖ ‖β‖ sup
�

|c�|
∥
∥
∥[x�

i j − y�
i j ]
∥
∥
∥

}

where the infimum is taken over all representations ofμ of the formμ = α ·D ·β where
α ∈ Mm,∞ and β ∈ M∞,m are scalar matrices, and D ∈ M∞(Mn(span{δx }x∈X )) is
a diagonal matrix whose diagonal entries are of the form c�[δx�

i j
− δy�

i j
]i j with c� a

scalar and [x�
i j ], [y�

i j ] ∈ Mn(X) for each � ∈ N.

Proof First let us prove the ≤ inequality. Suppose that we have a representation μ =
α ·D ·β as in the statement. By definition, this means thatμ is the limit inMm(Fn(X))

of the truncated products μr = αrn · D · βrn as r → ∞. By Theorem 5.2 we get

‖μr‖Mm (Fn(X)) ≤ ∥∥αrn
∥
∥
∥
∥βrn

∥
∥ sup
1≤�≤r

|c�|
∥
∥
∥[x�

i j − y�
i j ]
∥
∥
∥

≤ ‖α‖ ‖β‖ sup
�

|c�|
∥
∥
∥[x�

i j − y�
i j ]
∥
∥
∥

so taking the limit as r → ∞ yields the ≤ inequality.
Assume now without loss of generality that μ �= 0 and ‖μ‖Mm (Fn(X)) < 1. Then

there exists a sequence {μs}∞s=1 of nonzero terms in Mm(span{δx }x∈X ) such that

μ =
∞
∑

s=1

μs and
∞
∑

s=1

‖μs‖Mm (Fn(X)) < 1.

Let ε be a number with 0 < ε < 1 −∑∞
s=1 ‖μs‖Mm (Fn(X)). For each s, Proposition

5.2 gives a representation μs = αs · Ds · βs , with αs ∈ Mm,Nsn , β ∈ MNsn,m , and
Ds ∈ MNs (Mn(X)) a diagonal matrix whose diagonal entries are

[

δx�,s
i j

− δy�,s
i j

]

i j ,

1 ≤ � ≤ Ns and such that

‖αs‖ ‖βs‖ max
1≤�≤Ns

∥
∥
∥[x�,s

i j − y�,s
i j ]
∥
∥
∥ < ‖μs‖Mm (Fn(X)) + ε/2s .
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Observe that λs = max1≤�≤Ns

∥
∥
∥[x�,s

i j − y�,s
i j ]
∥
∥
∥ > 0 becauseμs �= 0. Define an infinite

diagonal matrix D of n × n blocks whose entries are the concatenation of the finite
sequences

λ−1
s [δx�,s

i j
− δy�,s

i j
]i j , 1 ≤ � ≤ Ns .

Observe that D ∈ M∞(Mn(X)) and

‖D‖ = sup
s∈N,1≤�≤Ns

λ−1
s

∥
∥
∥[x�,s

i j − y�,s
i j ]
∥
∥
∥ = 1.

Note that by rescaling, we may assume

‖αs‖ = ‖βs‖ <

(‖μs‖Mm (Fn(X)) + ε/2s

λs

)1/2

Now define scalar matrices

α =
[

λ
1/2
1 α1 λ

1/2
2 α2 λ

1/2
3 α3 · · ·

]

∈ Mm,∞

and

β =
[

λ
1/2
1 β1 λ

1/2
2 β2 λ

1/2
3 β3 · · ·

]T ∈ M∞,m .

Observe that ‖α‖ , ‖β‖ < 1, and μ = α · D · β.

6 Differentiation in operator spaces

We now discuss Gateaux R-differentiability of maps between operator spaces. We
point out that we will make use of classic results on differentiability of Lipschitz maps
between Banach spaces [26], and those results are only valid for Banach spaces over
the reals.

For the definition of Gateaux R-differentiability, see Definition 4.2 above. We now
recall its weak∗ version (cf. [3, Definition 14.2.17]):

Definition 6.1 Let X and Y be R-Banach spaces. A map f : X → Y ∗ is Gateaux
w∗-R-differentiable at x ∈ X if for all a ∈ X the limit

D∗ fx (a) = w∗ − lim
λ→0

f (x + λa) − f (x)

λ

exists and the map a ∈ X 
→ D∗ fx (a) ∈ Y ∗ is R-linear and bounded.
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Given an R-Banach space X , we need an idea of “almost everywhere” R-
differentiability on X . If X has finite dimension, the Lebesgue measure does the
job: given a linear isomorphism between X and R

dim(X), the Lebesgue measure on
R
dim(X) induces via this isomorphism a measure μ on X . A measure of this type is

called a Lebesgue measure on X , and the notion of a Borel subset A ⊂ X having
positive measure (resp. full measure, finite measure, or zero measure) is independent
of the isomorphism, hence well defined.

Since there is no Lebesgue measure on an infinite dimensional Banach space, the
infinite dimensional case requires something different. For that, we use the notion of
Haar null sets [3, Definition 14.2.7].

Definition 6.2 Let X be a separableR-Banach space and let A ⊂ X be a Borel subset.

(1) The set A is calledHaar null if there exists a Borel probability measure on X such
that μ(A + x) = 0 for all x ∈ X .

(2) If A� is Haar null, then A is said to be Haar full.

Notice that, for finite dimensional R-Banach spaces, all the notions of “null” sets
presented above coincide. Precisely, if X has finite dimension, a subset A ⊂ X has
measure zero with respect to a Lebesgue measure on X if and only if A is Haar null
[3, Lemma 14.2.9].

The following well-known theorem will be essential for our goals.

Theorem 6.3 Let X and Y be R-Banach spaces, and f : X → Y be a Lipschitz map.
If X is separable, the following holds.

(1) [26, Theorem 4.5] If Y has the Radon–Nikodym property, then f is Gateaux R-
differentiable at a Haar full subset of X.

(2) [20, Theorem 3.2] If Y is the dual of a separable Banach space, then f is Gateaux
w∗-R-differentiable at a Haar full subset of X.

Proposition 6.4 Let X and Y be R-operator spaces and f : X → Y be a Lipschitz
map. Then, given n ∈ N,

(1) ‖Dfx‖n ≤ Lipn( f ) for all x ∈ X such that D fx exists, and
(2) If Y is a dual space, then ‖D∗ fx‖n ≤ Lipn( f ) for all x ∈ X such that D∗ fx exists.

Moreover, if f is a Lipschitz embedding, then

(3) ‖(Dfx )−1‖n ≤ Lipn( f
−1) for all x ∈ X such that D fx exists.

Proof (1) and (3) Fix x ∈ X so that Dfx exists. Given [ai j ] ∈ Mn(X), we have

‖Dfx ([ai j ])‖Mn(Y ) = lim
λ→0

∥
∥
∥
∥

[
f (x + λai j ) − f (x)

λ

]∥
∥
∥
∥
n

= lim
λ→0

1

λ
·
∥
∥
∥
∥
fn([x + λai j ]) − fn([x])

∥
∥
∥
∥
n

.
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Since

|λ| ‖[ai j ]‖Mn(X)

Lipn( f −1)
≤
∥
∥
∥
∥
fn([x + λai j ]) − fn([x])

∥
∥
∥
∥
n

≤ |λ|Lipn( f )‖[ai j ]‖Mn(X),

it follows that ‖Dfx‖n ≤ Lipn( f ) and ‖(Dfx )−1‖n ≤ Lipn( f
−1).

(2) Say Y = Z∗. Fix x ∈ X so that D∗ fx exists. Fix [ai j ] ∈ Mn(X). So
D∗ fx ([ai j ]) ∈ Mn(Z∗) = CB(Z ,Mn), and we have

‖D∗ fx ([ai j ])‖Mn(Z∗)

= sup

{

‖[D∗ fx (ai j )(bpq)]‖nk | k ∈ N, [bpq ] ∈ BMk (Z)

}

= sup

{

lim
λ→0

∥
∥
∥
∥

[〈

bpq ,
f (x + λai j ) − f (x)

λ

〉]∥
∥
∥
∥
nk

| k ∈ N, [bpq ] ∈ BMk(Z)

}

.

If [bpq ] ∈ Mk(Z), the map b : Z∗ → Mk given by b(y) = [〈bpq , y〉] for all y ∈ Z∗
is a linear map, so

‖D∗ fx ([ai j ])‖Mn(Z∗) ≤ lim
λ→0

∥
∥
∥
∥

[
f (x + λai j ) − f (x)

λ

]∥
∥
∥
∥
n

= lim
λ→0

1

λ
·
∥
∥
∥
∥
fn([x + λai j ]) − fn([x])

∥
∥
∥
∥
n

≤ Lipn( f ) · ‖[ai j ]‖n .

Hence, ‖D∗ fx‖n ≤ Lipn( f ).

If f : X → Y ∗ is a Lipschitz embedding, we would like to obtain an upper bound
for ‖(D∗ fx )−1‖n similarly as we did in Proposition 6.4(3). Unfortunately, the norm of
Y ∗ is only lower semicontinuous, so the arguments above are not enough to give us that
‖D∗ fx ([ai j ])‖Mn(Y ∗) ≥ (Lipn( f

−1))−1 for all [ai j ] ∈ ∂BMn(X). Amore sophisticated
argument is needed.

Proposition 6.5 Let X be a separable R-Banach space and Y ⊂ X∗ be a separable
subspace. Then the Borel σ -algebra on Y generated by the norm open subsets of Y
and the Borel σ -algebra generated by the weak∗ open subsets of Y are the same.

Proof Clearly, everyweak∗ Borel subset ofY is normBorel. SinceY is separable, every
open subset of it is the countable unionof openballs inY . Since openballs are countable
unions of closed balls, we only need to show that BY is weak∗ Borel in Y . Let (xn)n
be a dense sequence in BX , and for each n ∈ N let Vn = {x∗ ∈ X∗ | |x∗(xn)| ≤ 1}.
Each Vn is weak∗ closed in X∗, hence weak∗ Borel in X∗. Since BY = Y ∩⋂n Vn , it
follows that BY is weak∗ Borel in Y .

We can now prove the main tool we need in order to obtain Theorem 1.6. The
following is an adaptation of [20, Lemma 3.1] to the operator space setting; we point
out that its main difference from the classic setting lies in Subclaim 6.8.
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Proposition 6.6 Let X be a separableR-operator space, Y be a separableR-operator
space, n ∈ N, and f : X → Y ∗ be an n-Lipschitz embedding. Then ‖(D∗ fx )−1‖n ≤
Lipn( f

−1) at a Haar full subset of X.

Proof Let W = {x ∈ X | f is Gateaux R-differentiable at x}. By Theorem 6.3, W
is Haar full. We first prove the proposition with the further assumption that X has
finite dimension, in particular, X has a Lebesgue measure and W has full Lebesgue
measure. To simplify notation, let s = (Lipn( f

−1))−1. Given [ai j ] ∈ ∂BMn(X), let

Q[ai j ] =
{

x ∈ W | ‖D∗ fx ([ai j ])‖Mn(Y ) ≥ s

}

.

Claim 6.7 For all [ai j ] ∈ ∂BMn(X), the set W\Q[ai j ] has measure zero.

Proof Suppose not and fix an offender, say [ai j ] ∈ ∂BMn(X). Pick m ∈ N such that

N =
{

x ∈ W | ‖D∗ fx ([ai j ])‖Mn(Y ) ≤ s

(

1 − 1

m

)}

has positive measure.

Subclaim 6.8 There exists F ⊂ N with positive measure so that the map

�i j : x ∈ F 
→ D∗ fx (ai j ) ∈ Y ∗

is continuous for all i, j ∈ {1, . . . , n}.
Proof Consider the map


 : x ∈ N 
→ [D∗ fx (ai j )] ∈ Mn(Y
∗).

Since 
 is given by a derivative, by endowing Mn(Y ∗) with the topology given by
the weak∗ topology of Y ∗, it follows that 
 is a Baire class 1 function, i.e., 
 is the
pointwise (weak∗) limit of continuous functions. In particular, 
 is measurable with
respect to the Borel σ -algebra of Mn(Y ∗) generated by the weak∗ topology. Since
X is separable, there exists a separable subspace Z ⊂ Y ∗ such that Im(
) ⊂ Z .
Let ‖ · ‖∞ be the supremum norm on Mn(Y ∗), i.e., ‖[bi j ]‖∞ = maxi, j ‖bi j‖ for all
[bi j ] ∈ Mn(Y ∗). Proposition 6.5 implies that 
 is also measurable as a map into
(Mn(Z), ‖ · ‖∞).

Fix r > 0 such that (r · BX ) ∩ N has positive (finite) measure. A theorem of Lusin
(see [23, Theorem 17.12]) gives us an F ⊂ (r · BX ) ∩ N with positive measure so
that 
 � F : F → (Mn(Z), ‖ · ‖∞) is continuous. Since the coordinate projections
πi j : Mn(Z) → Y ∗ are continuous, we are done.

Let F ⊂ N be given by Subclaim 6.8. Given x ∈ X and i, j ∈ {1, . . . , n}, define a
map ψx,i, j : R → R by

ψx,i, j (t) = χF (x + tai j )
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for all t ∈ R, where χF is the characteristic function of F .

Subclaim 6.9 Let

E =
⋂

i, j∈{1,...,n}

{

x ∈ N | 0 is a Lebesgue point of ψx,i, j

}

.

Then N\E has measure zero.

Proof Let i, j ∈ {1, . . . , n}, x0 ∈ X , and L = {x0 + tai j | t ∈ R}. Since for an
integrable map almost every point is a Lebesgue point, letting

Ei, j,x0 =
{

x0 + tai j ∈ N ∩ L | t is a Lebesgue point of ψx0,i, j

}

,

we have that L\Ei, j,x0 has measure zero as a subset of L .
For each i, j ∈ {1, . . . , n}, let

Ei, j =
{

x ∈ N | 0 is a Lebesgue point of ψx,i, j

}

.

Notice that 0 is a Lebesgue point ofψx,i, j if and only if t is a Lebesgue point ofψx0,i, j ,
where x = x0 + tai j . Therefore, the previous paragraph and Fubini’s theorem imply
that L\Ei, j has measure zero as a subset of L for all lines L ⊂ X in the direction
of ai j . Hence N\Ei, j has measure zero for all i, j ∈ {1, . . . , n}, which implies that
N\E has measure zero.

By Subclaim 6.9, we can pick x ∈ F ∩ E . By our choice of F , there exists δ > 0
such that for all i, j ∈ {1, . . . , n} we have

∥
∥
∥
∥
D∗ fx (ai j ) − D∗ fx+y(ai j )

∥
∥
∥
∥

<
s

4mn2

for all y ∈ X with ‖y‖ ≤ δ and x + y ∈ F . In particular,

‖[D∗ fx+tai j (ai j )]‖Mn(Y ∗)

≤ ‖[D∗ fx (ai j )]‖Mn(Y ∗) + ‖[D∗ fx (ai j )] − [D∗ fx+tai j (ai j )]‖Mn(Y ∗)

≤ ‖[D∗ fx (ai j )]‖Mn(Y ∗) +
∑

i, j∈{1,...,n}
‖D∗ fx (ai j ) − D∗ fx+tai j (ai j )‖

≤ s

(

1 − 1

m

)

+ s

4m

= s

(

1 − 3

4m

)

for all t ∈ R with t ≤ δ and x + tai j ∈ F for all i, j ∈ {1, . . . , n}.
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By the definition of Lebesgue point, there exists ε > 0 such that the Lebesgue
measure of

A =
⋂

i, j∈{1,...,n}

{

t ∈ (0, ε) | x + tai j ∈ F

}

is at least ε(1−s/(4m Lipn( f ))). By replacing ε by a smaller positive number if neces-
sary, assume that ε ≤ δ. Let B = (0, ε)\A, so B hasmeasure atmost εs/(4m Lipn( f )).

To simplify notation, let b = [ f (x + εai j ) − f (x)] ∈ CB(Y ,Mn). Since

‖[ f (x + εai j ) − f (x)]‖n = ‖ fn([x + εai j ]) − fn([x])‖n ≥ sε,

there exists k ∈ N such that ‖bk‖k > sε(1− 1/(2m)), so we can pick [bpq ] ∈ BMk (Y )

such that ‖bk([bpq ])‖ > sε(1−1/(2m)). Pick ξ̄ = (ξi )
nk
i=1, ζ̄ = (ζi )

nk
i=1 ∈ R

⊕nk such
that

(1)
∑nk

i=1 ‖ξi‖2 =∑nk
i=1 ‖ζi‖2 = 1, and

(2) 〈bk([bpq ])ξ̄ , ζ̄ 〉 > sε(1 − 1/(2m)).

Define ϕ : (0, ε) → R by letting

ϕ(t) =
〈

fn([x + tai j ])([bpq ])ξ̄ , ζ̄

〉

for all t ∈ (0, ε). Clearly, Lip(ϕ) ≤ Lipn( f ). Therefore, Rademacher’s Theorem
implies that ϕ′(t) exists almost everywhere, and we have that |ϕ′(t)| ≤ Lipn( f ) and

ϕ′(t) = 〈[D∗ fx+tai j (ai j )]([bpq ])ζ̄ , ξ̄ 〉

for all such t . Hence, we have that

sε

(

1 − 1

2m

)

< ϕ(ε) − ϕ(0)

=
∫

(0,ε)
ϕ′(t)dt

=
∫

A
ϕ′(t)dt +

∫

B
ϕ′(t)dt

≤
∫

A
‖[D∗ fx+tai j (ai j )]‖Mn(Y ∗)dt + sε

4m

≤ sε

(

1 − 3

4m

)

+ sε

4m

= sε

(

1 − 1

2m

)

;

a contradiction.
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Since X is separable, we can pick D ⊂ ∂BMn(X) which is countable and dense.
Since each Q[ai j ] has full measure, the same holds for

Q =
⋂

[ai j ]∈D
Q[ai j ].

By the continuity of each Dfx : X → Y ∗, it follows that ‖Dfn([ai j ])‖Mn(Y ∗) ≥ s for
all n ∈ N and all [ai j ] ∈ ∂BMn(X). So ‖(Dfx )−1‖n ≤ s−1 for all x ∈ Q, and this
completes the proof of the proposition in the case X has finite dimension.

We now deal with the infinite dimensional case. For that, we follow the proof
of [3, Theorem 14.2.19]. Let (Xk)k be an increasing sequence of finite dimensional
subspaces of X so that

⋃

k Xk is dense in X . For each k ∈ N, let Dk be the set of all
x ∈ X such that there exists a linear operator T k : Xk → Y ∗ such that

(1) for all a ∈ Xk and all y ∈ Y we have

T k(a)(y) = lim
λ→0

f (x + ta)(y) − f (x)(y)

λ
,

and
(2) s‖[ai j ]‖Mn(X) ≤ ‖T k

n ([ai j ])‖Mn(Y ∗) for all n ∈ N and all [ai j ] ∈ Mn(X).

For each k ∈ N, let Ak = X\Dk .
For each z ∈ X , define fz : X → Y ∗ by fz(x) = f (x − z). So, for each k ∈ N, the

result for finite dimensional domains implies that the set

(z + Ak) ∩ Xk

=
{

x ∈ Xk | fz � Xk is not w
∗-Gateaux differentiable

at x or ‖(D∗ fz � Xk)
−1‖ > s−1

}

has Lebesgue measure zero for all z ∈ X . Hence, [3, Lemma 14.2.9 and Lemma
14.2.12] imply that

⋃

k Ak is Haar null.
One can easily prove (see [3, Theorem 14.2.13]) that

⋂

n Dn equals the set of all
x ∈ X such that f is Gateaux w∗-differentiable at x and ‖(D∗ fz � Xk)

−1‖n ≤ s−1—
we leave the details to the reader—so we are done.

We will now use Proposition 6.6 to show that almost complete Lipschitz embed-
dability of a separable K-operator space into a dual K-operator space implies almost
complete R-linear embeddability. But before that, we need a result on ultrapowers of
operator spaces.

The proof of the following proposition is straightforward and we omit it (see also
[31, Sec. 2.8]).
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Proposition 6.10 Let X be a K-operator space and U an ultrafilter on some index set
I . The map j : (X∗)U → (XU )∗ given by

j

(

[(x∗(n))n]
)(

[(x(n))n]
)

= lim
n,U

x∗(n)

(

x(n)

)

,

for all [(x(n))n] ∈ XU and all [(x∗(n))n] ∈ (X∗)U , is a complete isometry into (XU )∗.

The following should be compared with [34, Theorem 2.2] (cf. [20, Theorem 1.6]).

Proposition 6.11 Let X and Y be R-operator spaces with X ⊂ Y and X �= {0}. Then
there exists an R-operator space Z, a nonprincipal ultrafilter U on some index set �,
and a surjective complete isometry v : ZU → YU such that

(1) X ⊂ Z ⊂ Y ,
(2) dens(Z) = max{dens(X),ℵ0}, and,
(3) letting i : Z → Y be the inclusion map, the following diagram commutes.

ZU v
YU

Z
i

IZ

Y

IY

Proof This proof uses model theory and we refer the reader to [12] for details. Define
Q-operator spaces as theQ-vector subspaces of bounded operators on a Hilbert space.
First notice that the class ofQ-operator spaces is an axiomatizable class on a countable
language (cf. [34, Section 5] and [19, Appendix B]). Let X0 ⊂ X be a denseQ-vector
subspace of cardinality dens(X). By the Downwards Löewenheim–Skolem Theorem,
there exists a Q-operator space Z0 ⊂ Y containing X0 so that |Z0| = max{|X0|,ℵ0}
and Z0 is elementarily equivalent to Y . Therefore, Keisler–Shelah’s isomorphism
theorem [12, Theorem 6.1.15] implies that there exists an index set � and an ultrafilter
U on � such that ZU

0 is completely isometric to YU . Let Z be the closure of Z0, so
dens(Z) = max{dens(X),ℵ0} and X ⊂ Z ⊂ Y . Moreover, it is straightforward to
check that ZU

0 and ZU are completely isometric, so we are done.

Theorem 6.12 Let X and Y be K-operator spaces, let n ∈ N, and assume that X is
separable. If λ > 0 and X Lipschitzly embeds into Y ∗ by a map with n-th distortion
at most λ, then X R-linearly embeds into Y ∗ by a map with n-th distortion at most λ.

Proof Firstly, notice that we can assumeK = R. Indeed, ifK = C, then denote X and
Y viewed as R-operator spaces by XR and YR, respectively. Then we have canonical
complete R-isomorphisms Y ∗ ∼= Y ∗

R
⊕ Y ∗

R
∼= (YR ⊕ YR)∗. So we assume K = R for

the remainder of the proof.
Let f : X → Y ∗ be a Lipschitz embedding. We first prove the result with the

extra condition that Y is separable, so assume Y is separable. By Theorem 6.3, f is
Gateaux w∗-R-differentiable at a Haar full subset of X and ‖Dfx‖n ≤ Lipn( f ) for all
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x’s in this subset. By Proposition 6.6, ‖(Dfx )−1‖n ≤ Lipn( f
−1) in a Haar full subset

of X . Pick x ∈ X satisfying both conditions. Then D∗ fx : X → Y ∗ is an R-linear
isomorphism into a subspace of Y ∗ whose n-th distortion is at most the one of f .

We prove the result for an arbitrary Y . Since X is separable, so is Im( f ). Pick a
separable subspace Z0 ⊂ Y which completely norms span{Im( f )}, i.e., for all n ∈ N

and all [x∗
i j ] ∈ Mn(span{Im( f )}) we have

‖[x∗
i j ]‖n = sup

{

‖[x∗
i j ]([xpq ])‖ | k ∈ N, [xpq ] ∈ BMk (Z0)

}

.

Proposition6.11gives a separableR-operator space Z ⊂ Y containing Z0, an ultrafilter
U on an index set �, and a complete linear isometry v : ZU → YU such that IY ◦ ι =
v ◦ IZ , where ι : Z → Y is the inclusion. Let j : (Z∗)U → (ZU )∗ be the map in
Proposition 6.10, and define u = I ∗

Y ◦ (v−1)∗ ◦ j ◦ IZ∗ . Then u : Z∗ → Y ∗, and for
all n, k ∈ N, all [z∗i j ] ∈ Mn(X∗), and all [z pq ] ∈ Mk(Y ) we have that

I ∗
Y ◦ (v−1)∗ ◦ j ◦ IZ∗([z∗i j ])([z pq ]) = [ j ◦ IZ∗(z∗i j )(v−1(IY (z pq)))]

= [ j ◦ IZ∗(z∗i j )(IZ (z pq))]
= lim

m,U
[IZ∗(z∗i j )(z pq)]

= lim
m,U

[z∗i j (z pq)]
= [z∗i j (z pq)]
= [z∗i j ]([z pq ]).

So, u is a complete linear isometry into Y ∗. Let r : Y ∗ → Z∗ be the restriction
operator, so r is a complete contraction. Since Z completely norms the image of f ,
the map r ◦ f : X → Z∗ is a complete Lipschitz embedding. Since Z is separable,
the result for duals of separable operator spaces (which we proved in the beginning
of this proof) implies that X λ-completely R-isomorphically embeds into Z∗ for all
λ ≥ Lipn( f ) · Lipn( f −1). Therefore, as Z∗ is completely R-linearly isometric to a
subspace of Y ∗, it follows that X completely R-isomorphically embeds into Y ∗.
Proof of Theorem 1.6 This is an immediate consequence of Theorem 6.12.

Proof of Corollary 1.7 This follows from Theorem 1.6 and Proposition 2.5.
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