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Abstract—Distributed integrated circuit (IC) supply chain has
resulted in a myriad of security vulnerabilities including that of
hardware Trojan (HT). An HT can perform malicious modifica-
tions on an IC design with potentially disastrous consequences,
such as leaking secret information in cryptographic applications
or altering operation instructions in processors. Due to the
emergence of outsourced fabrication, an untrusted foundry is
considered the most potent adversary in introducing an HT.
In order to address this issue, in this paper, we introduce
a layout-level HT detection algorithm utilizing low-confidence
classification and providing Trojan localization. We convert the
IC layout to a graph and utilize Graph Neural Network (GNN)-
based learning frameworks to flag any unrecognized suspicious
region in the layout. The proposed framework is evaluated
on AES and RS232 designs from the Trusthub benchmark
suite, where it has been demonstrated to detect all nine HT-
inserted designs. Finally, we open-source the full code-base for
the research community at large.

Index Terms—Hardware Trojan Detection, IC Layout, Graph
Neural Network, Connectivity Graph

I. INTRODUCTION

Integrated circuits (IC) are keystones of modern electron-
ics, ranging from smartphones to military-grade applications.
These ICs form the root-of-trust (RoT) that play an important
role in ensuring the privacy, authenticity, and integrity of the
entire solution stack, including those that contain sensitive
information. However, with the globalization of the IC supply
chain, this assumption has come under intense scrutiny in
recent years. With deep sub-micron technology, the rising
cost of owning a fabrication facility created a high barrier
to entering the market, especially for start-ups. For instance,
TSMC'’s 28nm Fab 15 in Taiwan is valued at $9.3B. Similarly,
the cost of establishing its new 3nm facility is projected to
be $20B [1]. This financial constraint lead to the birth of
the fabless model; where semiconductor companies began to
outsource manufacturing to large integrated device manufac-
turers (IDM) having excess capacity. This shift proved to be
advantageous for many as it allowed design companies to
improve the bottom-line profitability, while remaining focused
on core competencies. However, relinquishing such a large
part of control over the IC supply chain has led to several
threats, including the insertion of Hardware Trojans (HT) in
a circuit. For instance, In 2017, it was estimated that U.S.
companies incurred financial losses ranging from $225 billion
to $600 billion due to design IP infringement [2]. Besides
massive financial losses [3], these threats can also potentially
undermine national security. Indeed, in 2008, Syrian radar
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Figure 1: Overview of the IC supply chain, where outsourced
fabrication is untrusted as marked in red.

systems were suspiciously disabled by an alleged backdoor
in its microprocessors [4]. Furthermore, according to a 2013
report by the Semiconductor Industry Association (SIA), 15%
of all the “spare and replacement semiconductors” bought by
the Pentagon are counterfeit [5]. With rapid advancements in
capabilities for adversaries, such threats become a pressing
concern for commercial and government agencies alike.

A. Hardware Trojans and Its Associated Challenges

A Hardware Trojan (HT) is an unauthorized alteration of
IC functionality often with malicious intent such as denial of
service, leaking sensitive information, etc. Since outsourcing
design is getting more attraction, the off-shore untrusted
foundry has become the most potent adversary in introducing
an HT. A typical IC supply chain is shown in Fig. 1, where
the untrusted foundry is highlighted in red. A stealthy Trojan
is usually hard to detect due to the following reasons:

« Conventional IC testing is limited in scope due to the

classic controllability/observability issues.

o Parametric on-chip variations (POCV) cause non-
deterministic changes in IC characteristics, which are
indistinguishable from HTs.

o Formal verification for possible HT insertion in an IC
leads to a state space explosion.

Consequently, existing research, including functional test-
ing [6], side-channel analysis (SCA) [7], and formal verifi-
cation (FV)-based techniques [8] suffer from several pitfalls
such as low coverage, POCV, and the requirement of a
golden IC. A summary of HT detection techniques and their
limitations is provided in Table I. Further details are provided
in Section II-B.

B. Contributions

To overcome the above shortcomings, we present a frame-
work for HT detection that successfully identifies the struc-
tural/functional characteristics of an HT in a gate-level layout.'

LA circuit’s layout is closely associated with its functionality [13].



Table I: Summary of existing HT detection techniques and
their limitations. X denotes each technique’s limitation, v/
denotes it does not suffer from that limitation.

and thus, tampering only a subset of ICs). In this paper, we

Techniques Low Statf: POCY Golden | Error
coverage | explosion IC tolerant
Functional
testing [6] X X v X v
SCA [7], [9] v v X X v
FV [8], [10]-[12] v X v v X
Our work v v v v v

Accordingly, we represent a layout as a directed acyclic graph
(DAG) and extract several features from the design layout
that help capture its structure/functionality. Finally, we provide
an end-to-end automated framework for HT detection and
Trojan cell localization. The contributions of this paper are
summarized as follows:

o We extract several features from the layout of a circuit
including gate-types and gate-connectivity to accurately
identify the functionality of a circuit. To this end, we
apply Graph Neural Network (GNN) node classification
to flag a cell, if it contains a function that significantly
differs from the original functionality of the circuit.

o A complete end-to-end automated layout-level HT detec-
tion framework is presented that scales for large designs
such as AES, having 240K+ cells.

« We utilize a low-confidence node classification approach
to flag suspicious cells in the layouts and separate
them into connected components via the cell connection.
Clustering-based identification is applied on the con-
nected components to differentiate the HT-inserted layout
from HT-free one, which aids in further localizing the
Trojan cells.

« We present extensive results on a wide range of HTs
from the TrustHub benchmark suite [14], that establish
the efficacy of our technique. To this end, we are able to
flag all ICs having HTs in the layout.

« Finally, we shed some light on several aspects of our work
such as different HT payloads, scalability, error tolerance,
and comparison against other GNN-based approaches.

The rest of this paper is organized as follows. Section II
describes the defense capabilities, threat model, and related
works in HT detection domain. Section III provides an
overview of the proposed technique. Section IV demonstrates
the evaluation of the proposed technique. Section V discusses
the capabilities of the proposed technique and compares it with
prior research. Finally, Section VI concludes our paper.

II. MOTIVATION AND BACKGROUND

Before delving into further details, it is imperative that we
precisely define the threat model and identify the assumptions
within the context of this work.

A. Threat Model

1) Defense Capabilities: We consider that the designer has
the capability to reverse engineer the manufactured IC layout
and obtain the pre-silicon netlist for analysis. Furthermore, we
assume that the malicious foundry inserts HTs in all copies of
the IC (since it is extremely expensive to create different masks

explore the high-level functional abstraction performed on the
gate-level netlist, and subsequently, functional anomalies that
are used to identify to flag HTs. However, note that this does
not correspond to the often-mentioned concept of “Golden IC”,
since this is a soft IP that does not guarantee to represent the
original RTL, and hence, side-channel analysis can’t be per-
formed here [15]. Although equivalence checking can detect a
difference between the original and reverse-engineered netlist,
it fails in the presence of errors while performing reverse-
engineering [16]. Since the RE process is highly susceptible
to errors, equivalence checking will generate a lot of false
positives. To address these challenges, the proposed method
only flags suspicious cells in the layout, and only if these cells
perform an undefined functionality. In this case, the layout is
identified as being infected by Trojans.

2) Adversarial Capabilities: As explained earlier, foundry-
inserted HTs are enabled by the asymmetric business model
between the design house and the foundry; the design IP is
fully transparent to the foundry, whereas the design house is
oblivious to the fabrication process. Usually, HTs are inserted
during the fabrication process by modifying the mask.

B. Prior Work and Their Limitations

All prior works on HT detection can be classified into the
following categories:

1) Functional testing: Traditional functional testing of ICs
with test patterns is ineffective for HT detection due to the
following reasons: a) HTs are stealthy in nature, thus, the
trigger condition is rarely satisfied, b) functional testing only
covers a negligible part of the total input space, and c) it
is computationally infeasible to cover the whole input space
through automatic test pattern generation (ATPG), and thus,
techniques relying on ATPG suffer from low success rate [6].

2) Side-channel analysis (SCA): Several methods have
been proposed that leverage SCA to detect HTs [7]. However,
such methods suffer from several pitfalls: a) the footprint of
an HT could be small, sometimes as low as 0.01% of the
main circuit, and thus the SCA footprint such as power profile
of an HT becomes hard to detect [7], b) at deep sub-micron
technology, the difference between HT footprint and random
POCYV becomes indistinguishable, and c) it is relying on the
existence of a golden IC.

3) Formal verification (FV): FV is used to formally prove
that a given design conforms to the specified properties, else
flags an issue if any such property is violated. There exist
several works that have leveraged FV for the detection of
HTs such as [11]. However, the scope of applying FV for HT
detection remains limited due to the following reasons: a) the
large available space in the IC for possible HT insertion leads
to state space explosion for FV, thus, limiting its scalability,
b) FV assumes the existence of a golden reference, and
¢) FV has zero tolerance toward any error, and thus fails
against a circuit that may include unintentional errors while
performing RE. In other words, it can not distinguish between
an unintentional error and a true HT in a circuit layout.

4) Self-authentication techniques: These approaches uti-
lize runtime measurements to identify the HT effect without
the golden design. Operation parameters such as transient



current, path delay fingerprints, and error signals are collected
to capture significant differences caused by Trojan payloads in
different time periods [17], [18]. However, these approaches
suffer from reduced detection sensitivity without the original
design layout. Nevertheless, they require expensive computa-
tions, variations of process models, and a significant amount
of measurements to ensure accuracy for complex designs.

5) Machine learning (ML): Recently, several ML-based
HT detection techniques have been proposed such as [19]-
[21]. In [20], the authors developed a gradient-boosting model
that extracts features from the RTL source code. Further,
several works on less-toggled signal (LTS) identification using
a support vector machine or artificial neural network have
been presented in [22]. These approaches commonly require
a golden design to be effective in Trojan detection. Lastly,
GNN4TJ, a GNN-based approach was presented which is a
golden reference-free HT detection method in the RTL [23].
However, it does not have the capability of locating Trojan.

C. Graph Neural Network (GNN)

GNNs are powerful tools that facilitate classification and
clustering on attributed graphs. Consider G(V, E) is an un-
directed attributed graph; V is the set of nodes, and E is
the set of edges. Each node v € V is associated with a
feature vector (embedding) that captures its properties. After-
ward, GNN performs neighborhood aggregation (AGG), where
the embeddings are exchanged between neighboring nodes
through message passing. A new embedding is computed
through a loss function by combining the node’s embedding
with its neighbors’ aggregated embeddings. This facilitates a
node to capture the structural/functional information about its
neighborhood. Thus, GNNs are well-suited for identifying sub-
circuits (sub-graphs) as they tend to possess specific structures
and connections.

The GNN framework GraphSAINT used in our tech-
nique is inspired by the Graph Convolution Neural Network
(GCN) [24]. However, instead of building a GCN on the
full graph through the nodes or edges across GCN layers,
GraphSAINT is developed from minibatch construction by
sampling the training graph and developing a full GCN on
the sub-graph. Since nodes with higher influence on each
other will have a higher probability of forming a sub-graph,
the framework allows the sampled nodes to have a stronger
correlation with each other in the minibatch. It also applies
normalization techniques in order to address the issues of
non-identical node sampling probability and bias in the mini-
batch estimator. Furthermore, variance reduction analysis and
lightweight sampling algorithm are utilized to improve the
scalability of the training process.

III. FINDING THE NEEDLE: GNN-BASED HARDWARE
TROJAN DETECTION

In this section, we demonstrate that this is indeed possible.
To this end, we train a GNN-based model to capture a circuit’s
functionality from its layout.” Since the functionality of a
Trojan payload is fundamentally different than that of a Trojan-
free circuit, it can be accurately identified by the GNN model,

2Note that a circuit’s function exhibits a strong correlation with its structure,
as illustrated in [13], [25].

thereby flagging the circuit. Nevertheless, it is challenging
to correctly extract the feature sets from the layout, and
subsequently, train the GNN model. Fig. 2 shows the complete
end-to-end framework, which can be divided into two major
processes: 1) model training and 2) HT detection.

A. Model Training

The training phase can be divided into three parts, which
are described as follows:

1) Layout-based feature extraction,
2) Circuit to graph transformation,
3) Dataset generation.

1) Netlist-based Feature Extraction: In order to capture
the functionality of a circuit, we leverage the following fea-
tures from a netlist reverse-engineered from the circuit layout;

o Gate-type. Each cell in the circuit is associated with a
specific type of Boolean logic gate such as AND, OR,
etc., that is captured as a feature in the GNN.

« Neighborhood-size. The layers of neighboring cells,
corresponding to each individual cell are denoted as
h = 1,2,3,.... For example, in Fig. 3a, for cell C;
(marked in blue), its neighborhood-size h = 1 is illus-
trated in green. Note that each individual cell represents
only a limited amount of information about a particular
functionality. However, the aggregation of neighboring
cells could capture the structure/function of the local
neighborhood in a holistic way, and thus, help identify
the unique functionality of the circuit. To this end, we
store the gate-type information for all the neighboring
cells in the circuit, as illustrated in Fig. 3b.

2) Circuit to Graph Transformation: In order to apply
the GNN model, we first need to convert a circuit to its
equivalent graph representation. Usually, this can be achieved
in a straightforward manner, where a circuit is represented as
a directed acyclic graph (DAG) [25]. However, an un-directed
graph is more suitable for GNN, since it renders the internal
message passing more efficient. Therefore, we represent a
circuit as an un-directed graph G = (V, E), where V' denotes
the set of nodes, i.e., cells, while F represents the set of edges,
i.e., the connections between the cells.? Fig. 3a shows a sub-
circuit and a table for each included cell. It can be transformed
into a sub-graph, as shown in Fig. 3b.

3) Dataset Generation: As mentioned in Section II-C, we
utilize an open-source GNN model, GraphSAINT, to learn
the functionalities of different circuits [24]. The proposed
GNN-based methodology operates by identifying a Trojan
payload, whose circuit features differ considerably from that of
the known functionalities. GraphSAINT dataset requires five
separate files to train the model, viz., 1) full graph matrix,
2) training matrix, 3) role dictionary, 4) class dictionary, and
5) cell feature matrix, which are described below.

o Full graph matrix (Myg) GraphSAINT represents a

netlist graph with an N x N adjacency matrix, where
N = |V] denotes the number of nodes in the graph.
If there exists a connection between cells C, — Cy,

3Note that a circuit can be represented as an un-directed graph without loss
of generality.
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Figure 2: An overview of the proposed methodology. It utilizes the GNN model to classify the suspicious node in the graph
and generate a cell connectivity graph to identify HT in the design.
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Figure 3: Figure (a) demonstrates a sub-circuit with an AND gate at the center and its neighbor cells (green), as well as a
simplified table of gate types and their index. Figure (b) demonstrates the corresponding sub-graph shown in Figure (a). Figure
(c) shows one row of the feature generated for C;.

Mp[z][y] and M p[y][z] will have value of one, where z
and y denotes the index for cells C;, and C,, respectively.
In addition, we can process multiple graphs by stacking
the matrices into a larger matrix. As shown in Fig. 4a, an
N x N matrix and an M x M matrix can be merged into
a (N + M) x (N + M) matrix. This technique is used to
represent the training and the testing circuit in a single
graph, where the nodes in the testing circuit are kept
completely separate from that of training or validation.
Nevertheless, since Mg is a sparse matrix, it can be
stored with three one-dimensional arrays for the non-zero
values, thereby having only a linear space complexity.
Training matrix (M) In contrast to the full graph ma-
trix M g, a non-zero value in M7 corresponds to an edge
between two training nodes. In Fig. 4b, the full graph
matrix Mg is shown, where training nodes, validation
nodes, and testing nodes are denoted with green, yellow,
and red, respectively. The training and validation metrics
are generated by multiple netlists containing the same
functionalities with a split of 80% and 20%. The testing
matrix is generated by the target layout which potentially
contains a Trojan. In the training matrix, M, all the
non-zero values in the yellow/red region will be ignored,
and only the training nodes marked in green will retain
the connectivity information from Mp.

Role dictionary (Dpg) The role dictionary Dy contains
three keys, viz., tr, va, and te corresponding to train-
ing, validation and testing nodes, respectively. Note that
[tr| + |va|+|te] = N, where N denotes the total number
of nodes in the graph. Dp directly establishes the relation
between M7 and M g, where it dedicates the node as one
for training, validation, or testing. To this end, we first
select the training and testing nodes, and subsequently,
choose 10% of the training nodes at random for cross-
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Figure 4: Figure (a) shows how two matrices combine into one.
Figure (b) shows the training, validating, and testing metrics.

validation. For example, in Fig. 4b, the green nodes
are used for training, the yellow nodes are chosen for
validation, and the red nodes are used for testing.

o Class dictionary (D.) The class dictionary contains N

keys, representing the class label for each node in the
training set. To this end, we classify each cell in the
netlist according to its base-level functionality. Note that
the base-level functionality of a cell can be easily derived
from the module hierarchy. Consider Fig. 5a, where the
module hierarchy for each cell is shown with the colored
boxes. For example, the module hierarchy for Cell 67
is marked in the red box, which is t2. Since this is an
instance of a multi-class node classification, we assign a
numerical value to each class in the circuit, e.g., the class
t2 is assigned to Class 6, as seen from Fig. 5b.
Therefore, in the case of this example, Fig. 5d shows that
cell 67 obtains a classification array, which contains the
functionality classes as [6].

o Cell feature matrix (F). The feature matrix is an N x F'

matrix, where each row i represents a vector of length F
for each cell C; in the training set. The features we used
to train the data include four aspects of netlist: the gate-
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Figure 5: Figure (a) shows the required gate-type and class
information parameters for each cell. Figure (b) shows an
example of AES which demonstrates the class for each cell.
Figure (b) shows the final class dictionary array for each cell.

type of target cell C;, number of each gate-type from
input set C;,,, number of each gate-type from output
set C;_,,, and distances to all functional regions. This
is illustrated in Fig. 3c. First, we create a list [C;, G;],
that extracts each cell and its gate-type. Next, the input
set C;,,, is created. To store the gate-type of the input set
C;,,, an array of length X is created, where X denotes the
total number gate-types present in the library. A simple
example of a table of gate-type is shown in Fig. 3a,
where each gate-type has its own index. Now, the array is
populated according to the number of gate-types that are
present in C;, . A similar approach is followed for the
output set C;, ,. Finally, we combine all three together
to form a single array that stores the gate-types in the
neighborhood of cell C;. Fig. 3c shows the final feature
array for the cell C; which consists of one layer of the
neighboring gates. Moreover, the neighborhood size can
be increased by extending the layers of neighbors, as
shown in Section III-A1.

B. Determining the Existence of an HT Node

After the dataset generation, we proceed to train the GNN
model. Note that the model is trained only with the un-
tampered netlist. Hence, any cell with an unknown function
such as a Trojan payload would result in a low-confidence
classification. Typically, a trained machine learning model for
multi-class classification will predict an unseen data sample
for each class with a value scaling from 0 to 1 (0 refers to no

confidence and 1 refers to full confidence). Accordingly, we

develop a strategy to detect the Trojan payload by identifying

such cells with prediction value lower than a certain Threshold

‘Pr and generate a detection profile, which contains all cells

with low-confidence classification. To this end, we develop the
following three parameters that help achieve a higher coverage
of Trojan cells for detecting the HT payload.

¢ Threshold of Trojan node detection (Pr) The model
will furnish each cell in the testing netlist a prediction
score for each class from O to 1. The class index with the
highest score will be the predicted class for the testing
cell. Since the Trojan payload is not included in the
training netlist, we posit that the trained model will face
challenges in predicting the class for these cells, which
will end up with a low prediction score for all classes. We
utilize this feature to identify any cell that has a prediction
score lower than a pre-defined Pr.

(a) Trojan-inserted AES

(b) HT-free AES

Figure 6: Graph connectivity of the detection profile. a) Shows
the detection profile of AES-T900, where true-positives are
marked in red while false-positives are marked blue. b) Shows
the detection profile of an HT-free AES. It is evident that
the true-positive nodes in the AES-T900 exhibit a strong
clustering, whereas no such clustering can be observed in an
HT-free circuit.

Algorithm 1 Trojan Detection via Detection Profile

Input: Detection Profile H, Layout Graph G(V, E)
Output: True/False

: G’ +initialize_graph
: for each h € H
G’ + add_node(h)
: for each edge (u,v) € E
ifu,ve H

G’ <add_edge(u,v)
: L. < connected_component(G’)
- {y[0], y[1]} « k-means(L.,n_cluster = 2)
. if 0 < sizeof(y[0] or y[1]) < Th
10: return True
11: else
12: return False

Re)

e Number of rounds (R) With the same netlist, the
GNN model will produce different weight values on each
feature in various training rounds, thereby, leading to
different prediction outcomes. We could apply this aspect
to reveal more Trojan cells that might escape the detection
in one round.

Reappearance ratio (A) After each round of testing,
different cells will be flagged. The reappearance ratio
A, where 0 < A < 1, is introduced to determine the
number of times each cell is flagged during testing, which
could help in filtering the true-positives from the false-
positives. A is defined as n/R, where 1 <n <R, is a
predetermined threshold. Any cell having a reappearance
ratio larger than A will be flagged as a Trojan.

After the detection profile is generated, we visualize the cell
distribution by plotting its corresponding graph. Fig. 6a shows
the detection profile graph for AES-T900 from TrustHub,
whereas Fig. 6b shows the detection profile graph of an HT-
free AES circuit [14]. Note that the false-positives are marked
in blue, whereas the true-positives are marked in red. It is



Table II: TrustHub benchmark suites used in our experi-
ments [14].

Benchmark [ Trigger? | HT Payload [ Detected? | Runtime |

AES-T100 No Leakage Yes 45m57s
AES-T200 No Leakage Yes 46mSs
AES-T900 Yes Leakage Yes 46m17s
AES-T1200 Yes Leakage Yes 46m30s
AES-T1800 Yes DoS Yes 46m48s
RS232-T100 Yes DoS Yes 3m40s
RS232-T200 Yes Function Alter Yes 4m10s
RS232-T400 Yes Function Alter Yes 3m55s
RS232-T800 Yes Function Alter Yes 7m10s

evident from Fig. 6a that in an HT-inserted layout, the true-
positives exhibit a strong clustering as compared to the false-
positive ones.

Based on this observation, we develop a heuristic that
captures the clustering pattern in the detection profile. To
this end, we generate the sub-graph for the detection profile
and subsequently, list all the connected components in it. If
there exists a few connected components that are significantly
larger than the rest, we flag the circuit as HT-inserted, else
not. Algorithm 1 delineates the proposed heuristic. First, we
initialize the sub-graph with all the nodes from the detection
profile. Next, we add the edge (u,v) € E to G’ if u, v are both
present in the detection profile H. Afterwards, we list all the
connected components in G’ denoted by L. Next, we classify
the components in terms of the number of nodes present. To
this end, we apply K-Means clustering to split them into two
clusters y[0], y[1], from which either of the following two
conclusions can be made [26]:

1) If only a few components have a large number of nodes,
they are labeled in one cluster, whereas the majority of
the components having only a small number of nodes fall
into the other. The existence of a few such components
having a large number of nodes is indicative of HT,
and accordingly, we return True. In our experiments,
we empirically determine that the threshold Th for the
number of large components is three. Note that the
identification of such components implicitly localizes the
Trojan cells in the layout.

2) If both clusters y[0] and y[1] contain a similar number
of components which is larger than the threshold T'h, it
indicates that there is no outlier having a large # nodes;
thus the layout is marked Trojan-free by returning False.

IV. EXPERIMENTAL RESULTS
A. Experiment Setup

All our experiments are carried out on a machine having 40
CPUs of 64-bit Intel(R) Xeon(R) E5-2698 v4 @ 2.20GHz.
All the codes have been implemented in Python. All the
circuits are synthesized using Synopsys Design Compiler (DC)
with the 45nm NanGate Open Cell Library [27], and the
corresponding layouts are generated using Cadence Innovus.
For evaluation purposes, we use five AES-128 and four
RS232 benchmark suites from Trusthub [14]. Note that since
we are comparing our performances with the work in [28], we
chose these benchmarks with different Trojans that are shown
in their work. A brief description of the circuits is presented
in Table II.

(a) Pr =0.7
Figure 7: Effect of detection threshold P on AES-T900.
B. Identifying HTs in design layout

(b) Pr=0.8 () Pr=20.9

Through the evaluation shown later in Section IV-C, we em-
pirically select the following parameters: threshold of Trojan
detection Py = 0.8, # of rounds R = 10, reappearance ratio
A = 0.1, and neighborhood-size h = 2 for our experiments.
Table II summarizes the HT detection results. It is seen that our
approach is able to correctly detect HT in all nine HT-inserted
benchmarks. On average, for each HT-inserted AES layout,
our technique is able to reveal 70% of the Trojan cells in a
layout, with the maximum coverage up to 90%. In addition,
false-positive rates are almost zero once the outlier component
is identified.

Note that the main objective of this work is to identify
whether the HTs exsit in an unseen netlist, where it succeeds
in all cases. Further, these results show that not only is our
technique capable of Trojan-inserted layout detection, but also
in localizing the majority (up to 90%) of the Trojan cells that
are inserted in the layout.

C. Parameter Evaluation for Py, R, A, and h

In this section, we discuss how to tune different parameters
of our proposed GNN model. As mentioned earlier, the param-
eters chosen for our model are as follows: Pr = 0.8, R = 10,
A =0.1, and h = 2. To evaluate the effects, we change only
one parameter at a time, while keeping the rest constant. All
the experiments in this section are demonstrated based on the
cell connectivity graphs of AES-T900 benchmark. Similar
results were obtained for other benchmarks as well.

1) Detection Threshold Pr: Fig. 7 establishes a direct cor-
relation between Pr and the false-positive rate on AES—-T900
benchmark; the larger the threshold, the higher is the false-
positive rate. This is due to the fact any node having prediction
score less than Pr is flagged as a potential HT. Nonetheless,
even with a high false-positive rate, the HT-inserted circuit
exhibits strongly clustering components, thereby aiding in
the detection of HT. However, with lower threshold, the
connectivity starts to fade out as seen for Py = 0.7, when
compared to Py = 0.8. Thus, it becomes a trade-off between
HT detection capability vs false-positive rate, and we consider
Pr = 0.8 for our experiments.

2) # Round 'R: Fig. 8 shows the effects of R on
AES-T900 benchmark. It can be seen that with R = 1, the
GNN model fails to detect the existence of HT in the circuit.
Nevertheless, with larger R, the true-positive improves con-
siderably, and after R = 10, the improvement plateaus. Hence,
R = 10 is selected for our experiments, in order to maximize
the detection coverage and reduce time consumption.
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Figure 8: Effect of # Rounds R on AES-T900.
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Figure 9: Effect of reappearance ratio .4 on AES-T900.

(b) A=0.3
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Figure 10: Effect of neighborhood-size h on AES-T900.

3) Reappearance Ratio A: Fig. 9 shows the effect of A on
false-positive rate; the smaller the ratio, the higher the false-
positive rate. Nevertheless, even with a high false-positive
rate, the HT-inserted circuit strongly exhibits clustering com-
ponents, thereby aiding in the detection of HT. However, with
larger ratio, the connectivity starts to fade out as seen for
A = 0.5 when compared to A = 0.1, thereby limiting the HT
detection ability of the model. For our experiments, A = 0.1
provides the best results, i.e., some Trojan cells might be
detected only once in 10 rounds. On the other hand, some cells
in Sbhox and ShiftRow have a much higher appearance ratio,
since these cells lack the amount of input and output features
compared to other cells. Therefore, they are more likely to be
flagged due to their limited features in any class. However,
the Trojan cells have different features from the majority of
cells in Shox and ShiftRow; thus, they have unstable prediction
confidence through different rounds of testing. Hence, when A
= 0.1, the framework achieves the highest Trojan cell coverage
since it more likely to reveal difficult-to-classify Trojan cells.

4) Neighbourhood-size h: The effect of neighborhood-size
is illustrated in Fig. 10. We can conclude that the dataset
with h = 2 provides the best performance. Two layers of
neighbouring cells could properly capture the functionality in
a local region, thereby drastically reducing the false-positive
rate from h = 1. Although increasing h further reduces the
false-positive, which can be seen when h = 3, the detection
coverage gets significantly lower.

©)h=3

Table III: Our work compared to other GNN-based techniques.

[ [ Our Work | GNN4j [23] | GNN-re [25] | HW2VEC [28] |

Golden IP Free? v v v v

Unknown Trojan? v v v Unknown
Trojan Localization? v Unknwon v X

Fault Tolerance? v X X X

V. DISCUSSION

A. Comparison with Prior Work

In this section, we compare our method with a related
technique [28]. In [28], a data flow graph (DFG) is generated
from the design RTL and Spatial Graph Convolution Neural
Network (SGCN) is applied to study the convolution operation
based on a node’s spatial relations. It converts each hardware
design RTL into the corresponding DFG and generates the
graph embedding of the design. The authors trained and
tested GNN models with graph embedding generated from
Trojan-inserted and Trojan-free DFG, and demonstrated that
their approach is capable of classifying Trojan-inserted and
Trojan-free RTL through DFG. However, this approach fails
to classify an unseen benchmark unless the benchmark is
labeled prior to training, which limits the performance of
Trojan detection. In a separate work [23], although the authors
claim that the approach is able to provide Trojan localization
and labeling, it does not consider the performance of faulty
designs. Furthermore, we could not evaluate it since the code
is not publicly available.

For our proposed HT detection technique, we use clus-
ter identification to distinguish between Trojan-inserted and
Trojan-free ICs at the netlist level. As shown in Section III-B,
through our approach, if a cluster is detected among all the
connections formed by the nodes flagged by the GNN model,
the layout under test will be considered as HT-inserted. There-
fore, it is applicable in real scenarios when the designs under
test are not labeled and the Trojan payloads are unpredictable.

B. Efficacy of the Proposed Technique

1) Run-time & Scalability: As shown in Table II, the total
execution time takes only up to a few minutes, even for large
layouts such as AES crypto cores having ~ 250K+ gates. Since
the GNN represents the graphs with sparse matrices, the com-
plexity scales only linearly in (|V| + | E|), where |V| denotes
the number of nodes and | F| denotes the number of edges in
the graph. This is evident from the fact that even when the size
of the dataset changes from ~ 5K+ to ~ 250K+ cells, the run-
time does not suffer from any bottleneck. Furthermore, each
round of training can be completely parallelized independent
of each other, making our framework highly scalable.

2) Effectiveness Against Different Types of HT Payloads:
We experimented with three different types of HT payloads,
viz., leakage, denial of service, and change-functionality. It
is evident from Table I that we are able to detect all three
different types of payload successfully. However, certain types
of payload may prove to be harder to detect than others, e.g.,
denial of service. This is attributed to the small footprint of
the HT. Moreover, we can easily identify multiple obvious
connectivity clusters, that correspond to HT triggers, since they
differ from any fundamental functional module.



(a) AES-T900

(b) Faulty AES Layout

Figure 11: Distinguishing between an HT-inserted and a Faulty
layout. Note that in the case of the fault layout, no clusters
are present, whereas for AES-T900 existence of clusters flags
the circuit as suspicious.

C. Distinguishing Between HT-inserted and Faulty Layouts

In our threat model, we assume that faults/errors might be
introduced during the design phase, which leads to a faulty de-
sign layout. In such cases, it gets challenging to distinguish
between a faulty layout and an intentional alteration in the
circuit. On the contrary, the proposed framework can easily
differentiate between them. Since an error would be uniformly
random, it would be spread across the layout as opposed to
an HT, which exhibits a strong clustering behavior. To mimic
a faulty layout, we randomly alter 0.1% of their connections
during the testing. The results of applying our framework to
such faulty layouts are shown in Fig. 11b, where the absence
of any cluster correctly classifies it as HT-free. However, for
AES-T900, and other benchmarks in our experiments, clear
clusters can be observed toward the center, thereby flagging
the circuit as suspicious. In addition, we created five faulty
layouts with a few cell connections and gate types swapped
in HT-free layouts, and none of them were falsely identified
as HT-inserted.

Note that our work does not suffer from the requirement of
a “Golden IC” which is necessary for SCA/functional testing-
based detection techniques [6], [7], [9]. Our framework only
requires the design house to possess the un-tampered netlist,
which is a “soft-IP”. It is reasonable since the design house
generates the circuit netlist.

VI. CONCLUSION

In this paper, we have presented our proposed framework
for Hardware Trojan detection that operates on layout-inserted
HT, utilizing graph neural networks (GNN) for identification
and labeling of different functionality regions. By transforming
an IC layout into a graph, the GNN model can capture
the global network structural information of the layout and
local structural details of each cell along with its neighboring
cells. Moreover, it captures the gate-level features of each
cell to identify each unique functional region. Our proposed
framework identifies whether the layout is HT-inserted by
utilizing the trained model to reveal suspicious cells by
flagging cells with low-confidence classification, and utilizes
clustering-based identification to provide Trojan localization
in the layout. It is demonstrated to be capable of identifying
Trojan-inserted layouts corresponding to various types of

Trojan payloads and different sizes of layouts using designs
from the Trusthub benchmarks. The proposed method operates
without the need for a Golden IC. In the future, we aim
to introduce methods to improve the performance of HT
coverage; thereby, reducing the amount of effort to examine
the layout and uncover all the Trojan cells.
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