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ABSTRACT: By accelerating time-consuming processes with high efficiency,
computing has become an essential part of many modern chemical pipelines.
Machine learning is a class of computing methods that can discover patterns within
chemical data and utilize this knowledge for a wide variety of downstream tasks, such
as property prediction or substance generation. The complex and diverse chemical

Add & Norm
Feed
Forward

N-

o

0C1=C(Cl)/C(=N\Cc2ccccc2)C(0)01

N

/
PN on

Downloaded via UNIV OF CALIFORNIA SANTA BARBARA on July 25, 2024 at 01:03:02 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

NH.

space requires complex machine learning architectures with great learning power.
Recently, learning models based on transformer architectures have revolutionized
multiple domains of machine learning, including natural language processing and
computer vision. Naturally, there have been ongoing endeavors in adopting these
techniques to the chemical domain, resulting in a surge of publications within a short
period. The diversity of chemical structures, use cases, and learning models
necessitate a comprehensive summarization of existing works. In this paper, we review
recent innovations in adapting transformers to solve learning problems in chemistry.
Because chemical data is diverse and complex, we structure our discussion based on
chemical representations. Specifically, we highlight the strengths and weaknesses of each representation, the current progress of
adapting transformer architectures, and future directions.
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1. INTRODUCTION

Chemical experiments are often expensive and time-consuming,
requiring domain expertise, sophisticated equipment, and
laborious operations. The long history of chemical sciences
results in ample documented experimental data suitable as
inputs for machine learning (ML) algorithms. By discovering
useful chemical patterns within the data, ML can automate
costly processes and accelerate scientific advancement. Most
notably, predictive models spur the development of quantitative
structure—activity relationships (QSARs) by utilizing curated
labeled data sets of chemical and physical properties. Chemical
generative models trained on large molecular databases help
discover novel chemical structures, which is of interest in drug
discovery. Utilization of ML techniques also facilitates
automation in other tasks such as synthesis, experimental
planning, and physical simulation.

Structural data such as chemical compounds is relatively new
to ML. Earlier attempts transformed chemical structures into
vectorized representations fitting traditional methods such as
Support Vector Machine or Decision Tree. More recently,
advanced learning architectures capable of encoding structural

crucial need for complex ML methods with greater learning
power to capture sophisticated chemical patterns.

Since their introduction in 2017,* transformer architectures
have revolutionized learning in multiple ML domains.>®
Consequently, there is growing interest in developing trans-
former-based learning models for chemical structures. Thanks to
the attention mechanism, transformers can capture long-range
structural dependency, which is highly beneficial in learning
complex chemical interactions. Given the diversity and
structural specificity of the chemical space, this emerging field
remains open to numerous challenges. Nevertheless, its
potential is significant and has attracted increasing attention
from the research community, leading to a substantial body of
literature in a short time. To further facilitate research in this
direction, we provide a comprehensive survey of existing works.

Our review of transformers in the chemical domain is
structured as follows. Section 2 explains the transformer
architectures and highlights related studies. After that, the
review is organized around the representations of chemical data.
Specifically, sections 3 and 4 delve into sequence-based

dependencies like convolutional neural networks (CNNs) or Rec?ive‘l‘ D ec_ember 28, 2023

graph neural networks (GNNSs) have been applied to learning on Revised:  April §, 2024

chemical data.'™® Nevertheless, chemical structures are Accepted: May 6, 2024
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challenging for ML. Unlike image or text which has uniform
structural patterns, chemical data contain irregular connectiv-
ities between information-rich components. As a result, there is a
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Figure 1. Major components of a transformer network.
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representations, while section 5 explores graph-based represen-
tations. Section 6 explores the application side of transformers in
cheminformatics and section 7 discusses future directions. Our
objective is to elucidate the strengths and limitations inherent in
different data representations as well as their unique challenges.
Crucially, we highlight the innovative approaches that have been
proposed to overcome these challenges. Throughout this paper,
we aspire to present a valuable entry point for researchers from
diverse communities, offering an insightful introduction to this
intriguing area of research.

2. BACKGROUND

2.1. Transformer Architecture. Transformers are the latest
advancement in deep learning, building on the success of other
well-established architectures such as convolutional neural
networks (CNNs) for computer vision (CV) and recurrent
neural networks (RNNs) for natural language processing
(NLP)." The fundamental operation of transformers is simple.
At each iteration or layer of the algorithm, the embedding of
each element undergoes updates through referencing and
combining with the embeddings of other elements. These
elements can take various forms, such as tokens from a sentence,
pixels from an image, or nodes from a graph. The major
components and flows in a transformer network are illustrated in
Figure 1.

Referencing in transformers is executed using the multihead-
attention mechanism, which employs the query-keyword-value
(QKV) model.* This nomenclature draws inspiration from
information retrieval, which focuses on assessing the relevance
of a query to a given keyword. The objective of a transformer
model is slightly different: we seek to determine the degree of
attention, or weighting, that an element should assign when
referencing another element.

Let X € RV*P be the embedding of elements after the ith
layer, where N is the number of elements and D is the input

embedding size. We define three matrices Q € RN*Pe,
K € R¥*P¢ and v e R¥*P a5
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Q =x"w,

K =x"w,

v =x%, (1)
where Dy is the intermediate embedding size and W, € RP*Px
Wy € R”*P and W, € R”*® are separate projection heads.

T
Let the attention matrix be A = softmax( Z— , the single-head
4D,
attention is calculated as
. KT

attn(X") = AV = softmax &K %

VD 2)

The attention matrix A contains pairwise attention weight
between elements. Weights on the diagonal are regarded as self-
attentions. Consequently, multihead attention concatenates
multiple single-head attentions:

multihead(X%) = concat(attnl(X(i)), attnz(X(i)), - atth(X(i)))
()
The embeddings of the elements are updated with residual
connections that add the embeddings of the previous output:

(4)

The attention mechanism allows each element, a word token
or an atom, to reference any other elements within the same
sentence or molecule. This is usually referred to as global
attentions. However, if the sentence is too long or the molecule
is too large, calculating the whole matrix of pairwise attentions is
computationally costly. In these cases, the attention can be
constrained to the surrounding neighborhood of each element,
i.e, local attention. Often, additional location context is provided
via positional encodings, which distinguishes elements based on
their positions within the data. For example, a word token may
attend differently to tokens within the same sentence than
tokens from other sentences. In the original transformer,”
absolute positional encodings are added to the element
embeddings X(® before feeding them into the network.

XV = MLP(multihead(X”) + x@)

https://doi.org/10.1021/acs.jcim.3c02070
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Figure 2. An overview of the chemical transformer landscape with a sample of methods in each category. Structure representations can be broadly

categorized into either string-based or graph-based.

Recently, relative positional encodings have been a promising
approach that offers generalization to data of unseen lengths and
sizes.” Positional encodings are an essential part and a major
challenge when adapting transformers to structural data, which
we discuss more in section 5.2.

The attention mechanism, coupled with global referencing,
bestows transformers with distinct advantages over other deep
learning architectures like CNNs. Unlike convolutional kernels,
which are static with fixed kernel weights that do not adapt to
each pixel and its surrounding context, attention matrices offer
dynamic learning, taking into account pairwise contextual
relationships. Furthermore, the use of global attention enables
an exceptionally broad perception field, surpassing the typical
reach of convolutional kernels. This expanded perception field
allows collecting and updating information from any element in
a single step, marking a significant step up from sequential
models such as recurrent neural networks (RNNs) or long short-
term memory networks (LSTMs), which require as many steps
as the length of the input sequence to process all elements. As a
result, transformers, with the attention mechanism, are revolu-
tionary models that consistently achieve and maintain leading
positions in multiple domains of ML.

2.2, Transformers in Text and Image Processing. The
original transformer architecture was designed for machine
translation tasks. However, since the introduction of BERT,® a
groundbreaking transformer-based design, transformers have
solidified their position as preferred architectures for a wide
array of language-related learning problems. Numerous trans-
former-based models have since emerged, addressing challenges
related to performance, generalizability, and scalability.”"’
Currently, modern transformer models with billions of
parameters can be effectively and efficiently trained, leading to
the development of large language models (LLMs).'"'* These
pretrained LLMs possess a remarkable ability to learn from vast
corpora of text using appropriate self-supervised learning
strategies. Once pretrained, these models become powerful
general language understanding systems, capable of performing
human-like tasks, such as translation, summarization, text
generation, and question answering, with human-level profi-
ciency.12 When fine-tuned, an LLM easily outperforms other
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nonpretrained models on predictive tasks, solidifying the status
of transformer-based models as state-of-the-art in NLP.
Furthermore, their influence extends to various other domains
of machine learning.

Transformer-based models have achieved remarkable success
in computer vision (CV) and have been applied to a broad
spectrum of tasks, including object detection, tracking,
segmentation, and image classification.”® For a long time,
variations of CNNs dominated the CV landscape. Transitioning
from CNN s to vision-based transformers entails forfeiting some
inductive bias, which is characteristic of convolutional kernels
that discover generally reusable patterns, in favor of enhanced
learning capabilities facilitated by pairwise context-based
attentions. ViT is one of the most prominent vision-based
transformers, adopting the same underlying principles as its text-
based counterpart.'* Instead of processing word tokens, ViT
divides images into gridlike patches and arranges them into an
input sequence. Being a complex model, ViT is harder to train
than CNNs and can outperform CNNs on large data sets but not
on tasks with limited data. Recent variations of ViT, such as
XCiT, PiT, LV-ViT, and DeiT, have made strides in closing this
performance gap on smaller data sets by incorporating features
like feature channel attentions, hierarchical feature mapping,
auxiliary supervision, or knowledge distillation.">~"® For more
comprehensive discussions on transformers in language and
vision, we direct readers to existing review papers.13

2.3. Machine Learning on Chemical Structures.
Compared to images and texts, chemical data exhibits greater
structural complexity, posing significant challenges for ML
applications. For that reason, any ML pipeline must start with
identifying an appropriate representation, a decision influenced
by the type of structure, the downstream task, and the chosen
learning model.

For organic molecules, early efforts predominantly relied on
fixed hand-crafted representations, such as descriptors and
fingerprints. Descriptors are numerical or quantitative repre-
sentations of various physicochemical and structural properties
of the molecules. Existing descriptors can be broadly categorized
into constitutional descriptors, topological and geometrical
descriptors, and physicochemical descriptors. On the other

https://doi.org/10.1021/acs.jcim.3c02070
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hand, fingerprints are binary vectors indicating the presence or
absence of predefined substructures. Fragment descriptors are
similar to fingerprints as they record occurences of substructures
in molecules; however, they can be nonbinary. While these
vector representations are straightforward and well-suited for
traditional shallow learning models, they are ineffective at
capturing structural information. Consequently, there has been a
growing interest in adopting string-based molecular representa-
tions like SMILES and InChl, inspired by the success of
language learning models. Such string-based representations
naturally lend themselves to describing biological structures like
proteins and peptides, which are amino acid sequences.
However, for molecular structures, the transition to string-
based representations requires the incorporation of additional
syntax to convert structural connectivity into text, adding
complexity to the learning process. As a result, there has been a
push for graph-based representation of molecules, coupled with
modern graph-based learning algorithms, such as GNNs. Graphs
also provide means to represent higher order protein structures
and lattice patterns in material science.'””

The rising popularity of transformers has led to a surge in
research efforts aimed at adapting these models for learning with
chemical structures, mostly with string-based and graph-based
representations (Figure 2). The main objective of this review is
to provide a comprehensive overview of these adaptations. We
begin by exploring protein sequences, which resemble text data
and are the most straightforward to adapt to text-based
transformers.

3. PROTEIN SEQUENCES AND GENOMICS
SEQUENCES

In this section, we review the adaptation of transformers to
protein and genomics data. The representations of these data
types can be easily expressed in sequential forms, making the
application of transformers, developed for processing texts,
more straightforward.

3.1. Protein Sequences. The structure of protein
sequences can be likened to a complex language, where the
arrangement of amino acids dictates various levels of structural
folding and an array of biological functions and properties. Much
like the protein space itself, these characteristics span a wide
spectrum, encompassing local properties to global attributes and
intrastructural states to interstructural interactions. However,
determining these properties can be cumbersome. Laboratory
experiments are time-consuming, and computational simula-
tions of protein interactions may extend over hours or even days.
Consequently, the prediction of protein properties and
interactions from sequence information is a critical challenge
that has garnered substantial interest from ML practitioners.

Given the specific challenges, transformers have proven highly
adept at handling protein sequences. First and foremost, the
prediction of numerous protein properties requires under-
standing the dependencies and interactions between compo-
nents of sequences across multiple scales. The global attention
mechanism, an integral feature of transformers, is tailored
precisely for capturing this intricate information. Second,
protein sequences closely resemble text data, an area where
transformers have demonstrated remarkable success. By
conceptualizing each amino acid as a word, these sequences
form sentences, while higher-order protein structures can be
likened to paragraphs. Lastly, the breakthroughs achieved by
transformer-based models in text analysis are a result of
innovative pretraining on vast text corpora. Notably, there are
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now open databases housing tens of millions of protein
sequences, serving as invaluable data sources that allow adapting
pretraining techniques that have revolutionized NLP to the
realm of protein research, giving rise to protein language models
(PLMs).

Exploiting the growing availability of enormous protein
databases, many existing works pretrain large transformer-based
language models to capture the biological syntax of amino acid
sequences. TAPE and ESM-1b are among the first models to
utilize transformers in learning PLMs.”"** TAPE pretrains the
original transformer on Pfam,”” a database containing thirty-one
million proteins, using text-based pretraining tasks such as next-
token prediction and masked-token prediction. To encode
protein specificities, TAPE further supervised pretrains the
model on contact prediction and remote homology prediction.
ESM-1b extends training to 250 million protein sequences and
conducts evaluations on a variety of prediction tasks. Given
large-scale data, these papers show the superiority of trans-
formers over earlier sequential learning models such as RNN
and LSTM. In PRoBERT4, the authors optimized the RoBERTa
model for proteins by pretraining using the masked-token
prediction task with byte-pair encoding.”* Another work
modifies the pretraining of ROBERTa and Longformer” by
injecting binding protein pairs into the training set, improvin§
downstream performance on binding prediction tasks.”
ProteinBERT enriches the training of BERT by adding a novel
gene ontology prediction task on top of the bidirectional
language modeling.”” ProtTrans conducts large-scale pretrain-
ing of transformers on proteins via a combined data set of 393
billion structures.”® The authors experimented with a variety of
transformer architectures from NLP, producing ProtBERT,
ProtAlbert, ProtT5, ProtElectra, and ProtXLNet.”? ™! They
found that the embeddings produced by these pretrained PLMs
serve as competitive initial network weights for smaller
predictive models even without training. ProtDistillBERT
applies a distillation technique to reduce the size of ProtBERT
by half while maintaining most of its performance.’”
Interestingly, MSA-transformer introduces a protein-specific
transformer architecture that takes in a set of proteins,
represented as a multiple sequence alignment, and performs
novel row and column attentions on the alignment.?’3 Overall,
the introduced protein foundational models based on trans-
formers are important artifacts that can be transferred to a wide
range of ML use cases.

Following the success of PLMs, transformers have emerged as
a powerful means to tackle many ML problems on proteins.
CollagenTransformer uses transformer-based models to predict
the thermal stability of collagen triple helices.”* With only
hundreds of downstream data points, it would be infeasible to
train transformers directly from scratch. The authors exploited
the pretrained ProtBERT model for the task, outperforming
smaller transformer models trained directly on collagen data.
Another work deploys PLMs to zero-shot prediction of the
effects of mutation on the functionality of proteins.”® The
authors introduced ESM-1v, an extension of ESM-1b, and
compared it with other transformer-based PLMs such as TAPE
and ProtBERT. On the basis of the BERT architecture,
MutFormer is developed and pretrained on pairs of reference
and mutated proteins.”® The model is finetuned for the
prediction of missense mutation, achieving competitive
performances. For drug-binding affinity prediction, ELEC-
TRA-DTA pretrains an ELECTRA-based model to capture
contextual information on protein sequences and further stacked

https://doi.org/10.1021/acs.jcim.3c02070
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a CNN block to capture geometrical features from the learned
representation.’’ The authors applied ELECTRA-DTA to drug
repurposing and target selection for COVID-19, illustrating the
capability of the model and protein transformers in general to
tackle urgent emerging problems.

Arguably one of the most challenging yet crucial endeavors in
chem- and bioinformatics is protein structure prediction (PSP).
PSP is a long-standing problem, stemming from the
interdependence between structure and functionality. The
environment and the internal interactions of the 20 amino
acids constituting protein sequences determine the structure of
proteins. In their working environment, most proteins reliably
fold into the low-energy conformation that allow them to
perform their functions. Predicting the stable conformations is
not only essential in understanding the characteristics of existing
proteins but also in designing new proteins. As a result,
performances on PSP is the standard in evaluating many
PLMs.”**?* Spot-Contact-Single adapts the PLM ESM-1b to
predict contact maps of protein sequences.”’ The method
notably outperforms previous models on sequences in which
homologous information is limited. RGN2** and trRosettaX-
Single® are recent PSP models on single-sequence inputs that
outperform AlphaFold2*’ and RoseTTAFold,*' ground-break-
ing graph-based PSP models that we will discuss in section 7.2,
on orphan proteins and human designed proteins. In the RGN2
framework, the authors pretrained another variation of PLM
called AminoBert with novel self-supervised tasks and sequence
representation.”” trRosettaX-Single is developed upon ESM-1b
and is 2 times faster than AlphaFold2.*

3.2. Genomics Sequences. Genomics sequences are
another major type of biological encoding. Many discussions
regarding learning on protein sequences can be applied to DNA
or RNA sequences as they share significant similarities. Both can
be considered languages in which sequences are constructed via
constitutional units, of which the ordering determines the
biological semantics and functions. However, compared to
learning on protein sequences, learning transformer-based
foundational models on genomics data is still an under-explored
area with a potential for wide applications. As a language,
genomics sequences convey rich semantic information,
including those closely related to natural language such as
polysemy and distant semantic relationships.**

The tokenization of genomics sequences is different from that
of protein sequences as each token is a nucleotid base
concatenated with a number of the trailing bases. Such token
is called a k-mer if there are k trailing bases. Since the number of
unique bases in a DNA is extremely limited, such representation
helps diversify the tokens with contextual information. DNABert
is the first language model on DNA sequences with the k-mer
representations.*” The authors finetuned the model on multiple
downstream scenarios and obtained better performances
compared to those of other architectures such as CNN and
LSTM. Enformer further demonstrates the superiority of
transfromer architectures by training a model with a perception
field of up to 100 kilobases, compared to only 20 kilobases in
previous CNN models.”> MoDNA extends the self-supervised
learning beyond k-mer to include repetitive motifs, improving
the learned embeddings with biologically inspired patterns.”*
Most recently, Nucleotide Transformer and DNABert-2 further
introduce foundational models on genomics data.”>*® DNA-
Bert-2, in particular, replaces the k-mer representation with byte-
pair tokenization, imgroving the efficiency and efficacy of
learning embeddings.*
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Even though transformers have been remarkable in addressing
challenges related to learning from sequential protein or
genomics data, it is important to note that not all types of
substances can be approached similarly. While proteins or DNAs
can be conveniently represented as sequences that neatly align
with well-established NLP frameworks, the same does not hold
for other complex structures like molecules or material lattices
and adaptation in terms of the representation is often required.
In the following sections, we discuss the current progress of
applying transformers on inherently nonsequential structures.

4. MOLECULAR STRINGS

Molecules constitute a major portion of the chemical space and
are building blocks for larger chemical and biological structures.
As a type of data, molecules are rich in information, not only
from the chemical specificity of their components, such as
atoms, bonds, and functional groups, but also from the
connectivity and interaction between these components. As
molecular structures significantly influence chemical and
physical properties, preserving structural information in
molecule representations is essential for extracting predictive
learning patterns. Fortunately, this challenge has been a topic of
interest among researchers for quite some time."” However, its
motivation was not rooted in machine learning but stemmed
from the necessity to effectively document chemical knowledge
in written text. Because of the vastness of the chemical space, it is
infeasible to assign unique names to each substance. Instead,
given a system of rules and syntax, each molecule can be
represented as an identifying string, which in turn, can be
utilized to reconstruct the molecule itself. The possibility of
reconstruction means that these strings implicitly encapsulate
structural information. When these representations are coupled
with text-based transformer models borrowed from NLP, the
prospects for advancing molecular learning become promising.

4.1. String-Based Molecular Representations. Numer-
ous string-based representations have been devised for
molecules, each comprising distinct sets of rules to transform
molecular structures into one-dimensional strings. For instance,
the IUPAC nomenclature defines a method to name organic
compounds by building upon a predefined vocabulary of
common substructures and functional groups.** Naming
becomes increasingly intricate as molecules expand in size,
which requires more compact string representations, such as the
international chemical identifier (InCHI) and the simplified
molecular-input line-entry system (SMILES).*”*° Among these,
SMILES is the most frequently used in text-based ML on
molecules, thanks to its simple and compact expression. Since its
inception in 1988, SMILES has been the standard string-based
molecular representation in computational chemistry. Its
ubiquity led to the development of other variations, such as
BigSMILES and DeepSMILES.”">

While widely adopted, SMILES is not without its limitations.
Particularly, SMILES representation is not unique for each
molecule. Quite commonly, multiple SMILES strings, even
considerably different ones, correspond to the same molecule.
Conversely, not every SMILES string translates to a valid
molecule. A large portion of the SMILES space consists of such
invalid SMILES.>” Additionally, structural differences between
molecules do not translate to equivalent string edit distances in
their respective SMILES representations. In other words, a
minor change to a molecule may lead to a drastically different
SMILES string. These phenomena pose a notable challenge to
learning with SMILES as QSAR relies on using structural

https://doi.org/10.1021/acs.jcim.3c02070
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similarity to infer characteristic similarity. Recently, self-
referencing embedded strings (SELFIES) have emerged as an
innovation that mitigates some of the existing issues with
SMILES.>* Every SELFIES corresponds to a valid molecule,
ensuring the robustness of the string representation space.

4.2. Transformers on Molecular Strings. String-based
representations of molecules recorded in existing massive
accumulation of chemical documentation are valuable resources
for ML, especially text-based transformer models that are
extremely data-hungry. SMILES Transformer uses an encoder-
decoder pipeline to pretrain a sequence-to-sequence SMILES
language model.”* The encoder maps an input SMILES string
into a latent encoding, and the decoder reconstructs the original
string from this latent encoding. This encoding, which the
authors called ST Fingerprint, is utilized as the input feature for
shallow predictors such as support vector machines. SMILES-
BERT adopts the masked language model from BERT for
pretraining on SMILES, treating each SMILES string as a
sentence and each atom symbol as a word token.” The entire
pretrained model is finetuned for downstream tasks. Compared
to earlier featurizations based on molecular fingerprints, both ST
fingerprint and SMILES-BERT exhibit a marked improvement
in predictive quality across a range of chemical tasks. Such results
motivated later works that extend pretraining to more variations
of transformers, domain-specific pretext tasks, and larger-scale
training data.

MOoIBERT pretrains BERT on SMILES with masked token
prediction and auxiliary chemistry-relevant predictive tasks.*®
These tasks include SMILES equivalent prediction, which
checks whether a pair of SMILES strings encode the same
molecule, and molecule descriptor prediction, which estimates
various physical properties. Instead of predicting SMILES
equivalence directly, knowledge-based BERT follows a con-
trastive setting in which embeddings of similar examples are
enforced to be closer in the latent space while those of different
examples are pushed apart.57 In this context, SMILES
permutations of the same molecule form similar, or positive,
pairs of examples. The authors also performed atom feature
prediction from atom token embeddings and global property
prediction from SMILES sequence embeddings. Interestingly,
PolyBERT pretrains a language model on polymers represented
as SMILES strings.”® TransPolymer takes a step further and
defines a novel string-based representation that contains the
polymer SMILES, the copolymer SMILES, and other condition
parameters such as ratio and temperature.59

Other studies investigate the influence of large-scale
pretraining on string-based molecular learning models. Chem-
BERTa adopts the RoBERTa pipeline for pretraining 10 million
molecular strings, represented as either SMILES or SELFIES.*
Even though ChemBERTa was outperformed by strong existing
baselines, the authors demonstrated improvement in perform-
ance with more pretraining data, strengthening the positive
effect of large-scale pretraining. Recently, ChemBERTa-2,
pretrained on 77 million molecular strings via a more optimized
pipeline, has demonstrated competitive performance versus
contemporary state-of-the-art methods on MoleculeNet bench-
marks.”’ To enforce understanding of molecular structural
syntax, Chemformer pretrains BART on 100 million molecules
via an autoregressive SMILES reconstruction task.”> Other
works push the scale of the pretraining to over a billion
molecular strings. X-MOL generatively pretrains various
language models, BERT, RoBERTa, XLNet, TS5, and ERNIE
on a colossal data set of 1.1 billion molecules.”* Similarly,
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MolFormer also pretrains on 1.1 billion SMILES and introduces
a masked language prediction task coupled with rotary
positional encoding and a novel linear attention.”* These
large-scale pretrained models outperform strong baselines on
various downstream predictive tasks, confirming the effective-
ness of transformer architectures in learning text-based chemical
syntax.

Besides increasing the scale of the pretraining, other related
works employ innovative mechanisms to elevate the perform-
ance of transformer models. MTL-BERT uses SMILES
enumeration to tackle the data scarcity problem, especially
during downstream multitask finetuning in which the authors
comprehensively evaluated their models on 60 prediction
tasks.”” MolRoPE-BERT inco?orates rotary positional embed-
dings into pretraining BERT.*® Interestingly, Mol-BERT and
FP-BERT utilize the masked token prediction from BERT to
learn rich fingerprint embeddings. Even though they do not
pretrain directly on molecular strings, these methods are
inspired by Mol2Vec, which, in turn, was inspired by Word2Vec,
a famous deep self-supervised pretraining method from
NLP.&7—%°

5. MOLECULAR GRAPHS

Though interesting, string-based molecular representation
learning has several shortcomings. Competitive performance
relies on immensely powerful transformer-based architectures,
enormous unlabeled data for pretraining, and huge computing
resources. The additional syntax in constructing molecular
strings complicates learning, and string-based representations
are not directly topologically aware. Graphs, on the other hand,
can represent molecular connectivity explicitly. Incorporating
chemical properties into node and edge featurizations is more
straightforward in graphs compared to strings and fingerprints.
As a result, graphs can be considered the most natural way to
represent molecular structures. Learning on molecular graphs is
an active research area in chemical ML. A large portion of state-
of-the-art methods are 7%raph—based models, such as GNNs and
graph transformers.”””" In this section, we review existing
innovations in developing transformer-based learning models
for chemical structures formulated as graphs.

5.1. Graph Transformers and Positional Encodings. In
an ideal scenario, it can be expected that combining the most
natural molecular representations, graphs, with the most
expressive learning models, transformers, would lead to a
major leap in performance. However, adapting transformer
architectures to graphs is a more complicated process than that
of images or texts. If we consider texts as line graphs and images
as grid graphs, then graphs are their generalization. Unlike line
graphs and grid graphs, general graphs, including molecular
graphs, do not always have uniform graph connectivity and
pivoting points based on which one can define positional
information. As a result, an essential problem in developing
transformer-based models on graphs is effectively defining and
learning graph positional encodings. In that regard, we can
categorize existing techniques according to how they approach
handling this problem. Specifically, we break down existing
graph transformers on molecules into groups that use structure-
based positional encoding, distance-based positional encoding,
and positional encoding via GNNs. Despite our nomenclature,
both structural-based and distance-based positional encodings
capture various degrees of graph structure. While distance-based
encoding focuses more on the immediate relative structural
context and distance between two particular nodes, structure-
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Figure 3. (left) Absolute positional encoding and (right) relative positional encoding. Absolute structural information can be added directly to the
input node and edge embeddings. On the other hand, a common way to handle relative positional encodings is to aggregate the embedded pairwise

distances to the pairwise attentions.

based encoding encompasses the overall graph structure and the
position of nodes within the context of the whole graph.
Interestingly, structure-based encoding and distance-based
encoding are analogous to absolute positional encoding and
relative positional encoding, two common encoding paradigms
for transformers on text, respectively. Figure 3 illustrates some
common ways of performing absolute positional encodings and
relative positional encodings.

5.2. Graph Transformers with Strutural Positional
Encoding. Structure-based graph transformers enrich the node
features and, optionally, the edge features with structural
information before passing them into the network. These
enrichments enhance node embeddings with graph structural
information and positional information with respect to the
whole graph. Essentially, nodes that are closer in the graph have
similar positional encodings and vice versa. For example, Graph-
BERT orders nodes via the PageRank algorithm, which obtains
the ordering scores with a closed-form formula involving the
adjacency matrix.”>”* Positional encodings are obtained from
this ordering of nodes, much like in a vanilla transformer. Such
encodings provide a canonical way to process a sequence of
nodes; however, they fail to encode the graph structure. For this
reason, the authors enhanced node embeddings with graph role
embedding based on the Weisfeiler-Lehman (WL) algorithm, a
standard procedure for graph isomorphism testing,”*

Other works use the eigenvectors of the graph Laplacian
matrix, which was shown to empirically perform better than WL-
encodin_g,73 to capture structural and positional informa-
tion.”>””” GT adds the Laplacian embeddings to the node
features at the input layer.”> SAN further processes the Laplacian
eigenvectors ordered by their corresponding eigenvalues via a
series of linear projections and transformers before adding them
to the node features.”® TokenGT employs a simple yet effective
strategy that uses various concatenation of Laplacian embed-
dings to node and edge features.”® Graph ViT/MLP Mixer
sequentially processes graph at node levels and subgraph
levels.”” Laplacian embeddings are added to the nodes before
being processed by a GNN to obtain subgraph embeddings.
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After that, the subgraph embeddings are enhanced with relative
position embeddings obtained from the subgraph adjacency
matrix weighted by the number of edges connecting pairs of
subgraphs. The subgraphs are passed into a series of transformer
layers and a pooling layer to obtain the final graph embedding.
NAGFormer represents each node as a series of k-hop
neighborhood embeddings with various radii.”” The Laplacian
eigenvectors are concatenated to the node features before
neighborhood extraction and projection. Besides the eigenvec-
tors of the Laplacian matrix, other structure-based encoding
approaches have been proposed. Graph Multiset Transformer
learns to cluster nodes via the attention mechanism and uses the
cluster identity as the positional encoding.”® Exphormer
introduces attention via edges of random expander graphs
generated from the input graphs.”'

A major problem of many structure-based positional
encodings, especially those relying on spectral decompositions
of Laplacian matrices, is the limited transferability of these
encodings between different graphs. Such a drawback is critical
for inductive learning scenarios such as property prediction on
molecular graphs. To tackle this problem, SAT uses random
walk positional encoding, which is more transferable than
Laplacian-based encoding.*”** GraphiT improves transferability
by exploring graph kernels defined through regularizations
applied to the Laplacian spectrum and using the Gram matrix of
these kernels to directly bias the attention scores.”* While a
majority of structural encoding methods define absolute
positional encoding, such a matrix acts as relative positional
encoding. Biasing the attention matrix with relative positional
encoding is a commonly employed strategy by distance-based
methods, which we review in the next section.

5.3. Graph Transformers with Relative Distance
Encoding. Even though relative distance encodings may not
capture the overall graph structure as effectively as numerous
spectral methods, their strengths reside in their simplicity and
transferability. Concretely, Laplacian eigenvectors are graph-
specific, and vectors from different graphs are not comparable.
On the other hand, relative node-to-node distance metrics such
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as shortest path distance are consistent across various graphs.
This property is particularly suitable for inductive learning,
which may explain the recent superior performances of graph
transformers with relative distance encodings on molecular
prediction tasks. Additionally, the limited encoding of overall
structural information may not be detrimental to these tasks
since molecular graphs are quite simple. The node degrees are
low due to valency, and cycles often come from relatively large
aromatic rings.

PATGN encodes both the distance and the collection of edges
within the shortest path between pairs of nodes.*> The
encodings are transformed into a matrix of shortest-path
features. Each path feature is concatenated to the features of
the corresponding nodes to calculate the pairwise attention
score. MAT biases the attention matrix with 3D interatomic
distances.”® R-MAT extends MAT by applying the radial basis
function®” on the 3D distance and encoding the shortest path
distance between nodes.*® Graphormer trains a graph trans-
former on PCQM4M,*” a large predictive data set with 3.8 M
molecules, and achieves a better performance over GNNs.”
‘While Graphormer also relies on shortest path encoding, unlike
PATGN, the method encodes both the bonds and the bond
order within each path. GRPE also encodes the shortest path;
however, the model learns shortest path embeddings and uses
this information to update the query and key features before
calculating the attention matrix.”’ While Graphormer uses the
same relative positional bias for all layers, EGT updates the
pairwise relative positional embeddings after each layer, starting
with the embedding of the adjacency matrix at the input layer.”
GPTrans also updates the edge embeddings, employing node-
to-node, edge-to-node, and node-to-edge attention.” Interest-
ingly, MolFormer defines motif nodes that connect to
corresponding atom nodes that appear in the motif.”* The
authors define attention between motif nodes and the connected
atom nodes and use 3D absolute distance for relative positional
encoding.

Apparently, the ever-growing interest in applying trans-
formers to chemical graphical data has resulted in a wide variety
of methods. Traversing the graph transformer landscape has
become more challenging due to the sheer diversity of positional
encodings, be it absolute or relative, structure-based or distance-
based. GPS introduces a modular and unified framework for
experimenting with various types of positional encodings.” The
authors also proposed a novel network layer that is a hybrid
combination of the message-passing layers of GNNs and
transformer layers. Such a combination is beneficial because it
can leverage both the local structural encoding power of GNNs
and the long-range reference capability of transformers. We
review the methods that follow this line of ideas in the next
subsection.

5.4. Combining Graph Neural Networks and Graph
Transformers. Methods reviewed in this section do not
necessarily require positional or structural encoding because
such information can be captured by graph neural networks
(GNNs). After being processed by a k-layer GNN, a node
embedding would encode the structural information on its k-
hop neighborhood. Note that GNNs often suffer from
oversmoothing, a phenomenon associated with deeper GNNGs.
When a GNN has too many layers, the final node embeddings
get saturated with information that embeddings of different
nodes appear indistinguishable.”””” Such oversmoothed
embeddings may limit the quality of structural encoding.
However, given enough structural diversity within a molecular
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graph, a moderately deep GNN can be quite useful at encoding
graph positional information. When positional encoding is not
explicitly defined, the network can learn to extract useful
structural information without relying on hard-coded inductive
bias from practitioners. Additionally, relative inductive bias may
not be as useful for long-range dependencies as it is for learning
short-range patterns.g8

In place of positional encoding, several methods rely entirely
on GNNs for capturing positional and structural information. In
GraphTrans, a transformer module follows a GNN module.”
The output of the GNN module is embeddings that encode the
neighborhood and structural information surrounding each
node. The concatenation of these embeddings and the original
node features form the inputs to the transformer module.
Essentially, the embeddings produced by the GNN module
replace positional encodings. Similarly, GROVER uses a
dynamic message-passing network that captures neighborhoods
surrounding a node with randomly sampled size before passing
the output embeddings into a transformer.

Instead of stacking two distinct blocks of GNN and
transformer, other methods merge GNN layers and transformer
layers to form hybrid layers, leveraging the advantages of both
types. For example, in UGFormer, a network layer consists of a
transformer layer followed by a GNN layer.'”" Graph
connectivity information is only included during the pass
through the GNN layer. In contrast, GPS adopts an inverse
approach in which a transformer layer follows a GNN layer.
Similar to GraphTrans and GROVER, the GNN layers encode
structural information. However, interweaving the GNN layers
in between the transformer layers minimizes the chance of
oversmoothing. The authors of GPS++ further capitalized on
this idea and achieved first place on the large-scale PCQM4M
benchmark for learning on molecular graphs.'”

6. APPLICATIONS OF TRANSFORMERS IN
CHEMINFORMATICS

Our review has focused so far on the transformer architecture
and its adaptation in processing various chemical representa-
tions. For the purpose of comprehensiveness, in this section, we
shift the focus to the application side of cheminformatics. We
review several key areas in which machine learning has played a
pivotal role with the focus on the adaptation of transformers
within these domains.

6.1. Property Prediction. An important part of chem-
informatics is the analysis of chemical activities and properties
based on structural patterns, as per the development of
quantitative structure—activity relationship (QSAR) and
quantitative structure—property relationship (QSPR) mod-
els."” These models assume a correlation between structural
similarity and characteristics similarity among chemical
compounds. As a result, machine learning has naturally been
useful analytical tools for the development of such models.
Recently, the adaptation of expressive learning architectures
such as transformers has become prominent for predicting a
wide array of chemical properties and activities.

The availability of benchmark databases such as Molecule-
Net'® and Open Graph Benchmark (OGB)™ has played a
pivotal role in advancing the development of property predictive
models, especially transformer-based models spanning various
modalities of molecular representations.””'’> Notably, OGB
hosts PCQM4M and PCQM4Mv2, some of the largest labeled
molecular data sets containing more than 3.8 million
compounds. At the moment, graph-based transformer models
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such as Graphormer,90 EGT,”” and Uni-Mol,'°® achieve the
most competitive performance on these large scale challenges. In
particular, Graphormer won the 2021 KDD Cup on PCQM4M
and EGT currently tops the leaderboard on PCQM4Mv2.' "%
Most recently, long-range graph benchmark'® introduces
several data sets on macro-molecular structures, which require
the understanding of long-range dependencies among graph
components. Benchmarking results on these data sets showed
that transformer models outperform other learning architec-
tures, confirming the advantage of transformers and the
attention mechanism in learning complex structural interactions.

Beyond benchmark data sets, transformer-based models have
been successfully applied to tackle various QSAR/QSPR
problems, such as predicting solubility''* and toxicity.""" For
example, Riedl et al."'” finetuned a pretrained language model
on SMILES to predict the fraction unbound in human plasma,
an important parameter in ADMET. With a similar SMILES-
based model, transformer-CNN""* predicts AMES mutagenicity
and aqueous solubility. Cremer et al.''" applied TorchMD-
NET, an equivariant graph transformer, on predicting drug
toxicity.

One important QSAR usage of learning models is the
prediction of drug-target affinity prediction (DTA). DTA is a
crucial step in computer-aided drug discovery since it helps
identifying appropriate drug targets, usually physiological
proteins, and the design of molecules capable of modulating
their activity. Transformers are well-suited for this task as their
attention mechanism not only allow effective capturing of drug-
target interactions and long-range structural information, but
also result in more interpretability. For that reason, there has
been increasing adaptations of transformers for DTA. For
example, DTITR'"® employs transformer encoders to process
SMILES strings and protein sequences, followed by a cross-
attention module to produce molecule-protein interaction
embeddings. Another work by Kang et al.''* adapts additional
BERT-like pretrainings on the transformer encoders separately
for either SMILES strings or protein sequences. TEFDTA'"
extends the analysis to bonded (valence) interactions. The
authors represented molecules as MACCS fingerprints. A
transformer encoder processes these MACCS vectors while a
1D convolutional neural network processes the protein
sequences. TAG-DTA''® is another transformer-based model
on SMILES strings and protein sequences in which an auxiliary
binding pocket prediction task is learned in parallel in order to
condition and guide the main DTA task. Other works look into
interpretability. MolTrans'"” is a popular model that works on
SMILES and protein subsequences. The authors computation-
ally mined common SMILES and protein subsequences from
large databases and decomposed input SMILES or proteins
based on the mined vocabulary of subsequences. These
sequences of substructures are processed by transformer
encoders and pairwise interaction scores between each pair of
protein substructure, and a molecular substructure is obtained
via dot products of the embeddings. The resulting interaction
map casts light on the engagement between drugs and targets.
HoTS''® pretrains the encoders on complexes of protein—
ligand interaction. Evaluated interpretability of downstream
DTA predictions are obtained from the attention scores. To
better capture structural information, which is essential for DTA,
several recent methods such as GTAMP-DTA,'" Atten-
tionMGT-DTA,"*° and TransVAE-DTA'*' turn to graph
representations, representing molecules and proteins as
molecular graph and protein pocket graphs and processing
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them via graph transformers. These models obtain strong
performances on DTA predictions.

6.2. Structure Generation. Generative models are at the
forefront of AI research, encompassing diverse domains
including chemical structures. Out of the 10%* to 10%° possible
druglike molecules,"**'** only a minuscule portion has been
synthesized,"”* explaining the strong need for the discovery and
generation of new drug candidates. As a result, generative
models have been developed in parallel with predictive models
as a major part of machine learning in cheminformatics.
Coupling generative and predictive methods allows the
discovery of chemically valid molecules with one or multiple
desired properties. Existing generative models span a wide
variety of paradigms, including variation encoders, generative
adversarial networks, flow-based models, transformer-based
models, and diffusion.'>* Given the prevalence of transformers
in the generative Al landscape, it is compelling to explore their
potential in discovering novel chemical structures.

Text-based representations such as SMILES are common
choices for chemical generative models because of the natural
transferability of successful transformer-based language models.
For instance, GMTransformer'*® autoregressively generates
molecular strings via pretraining a transformer network with a
novel blank filling language model. The authors experimented
with various string-based representations, including SMILES,
SELFIES, and DeepSMILES. Regardin% generation of mole-
cules with target properties, MCMG'* trains a conditional
transformer with reinforcement learning and knowledge
distillation. The model effectively generates molecules with
multiple desired properties. In a different flavor, CMGN'**®
autoregressively reconstruct molecules from fragments, con-
ditioning on certain properties. RegressionTransformer129 is
another conditional transformer model that not only generates
molecules with high-quality continuous attributes but also
outperforms multiple baselines on regression tasks. Besides
string-based representations, MolFormer”* explores the gen-
eration on molecular graphs.

Several methods utilize the ability of transformer in
interdomain translation to train generative models. Grechishni-
kova'?” trained a transformer model to translate from amino
acid sequences to SMILES, effectively generating molecules for
given target proteins. TransAntivirus'>' translates TUPAC
nomenclatures into SMILES. This translation includes select-
and-replace edit that transform input molecules into ones with
desired properties, with the application in discovering antiviral
compounds. In general, translation is a powerful mechanism of
transformer architectures with, beyond structure generation,
many important use cases in cheminformatics, which we review
in the following section.

6.3. Chemical Translations. The original transformer was
developed for the machine translation task,* which converts
texts from one language to those with the same meaning in
another language. However, this mechanism can be applied to
use cases outside of the ordinary language translation. An
example is in the question answering task in which the input
question is “translated” into the appropriate answer.'*” In
general, translation via transformer can be extended to mapping
between multimodal data or data distributions. This usage is
especially applicable for chemical data in which multiple
representations often exist for the same compound. For instance,
the transformer model on natural language text can be readily
adapted to translating from SMILES to IUPAC'* or from
InCHI to ITUPAC."** Notably, pretraining a transformer model
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on the SMILES-to-IUPAC translation task has been found to
result in better performance when finetuned on downstream
tasks, such as binding affinity prediction.'”> Another interesting
application is in optical chemical structure recognition, in which
the chemical structure information on compounds from
scientific records and publications is converted into machine
readable formats. Several works formulate this task as an image-
to-text translation with the text being any string-based
representation of chemical structures.”*°™'** For instance,
SwinOCSR'*® uses a Swin Transformer for image to SMILES
translation. Other similar models include Image2Smiles'*” and
DECIMER."*® Interestingly, MassGenie'*” predicts chemical
structures from mass spectroscopy by translating the mass
spectroscopy of molecular fragments into the original molecule.

Analogical to the question answering task, in cheminfor-
matics, translation can be applied to generate “answers” to a
given “question”, both represented as chemical structures. For
example, to generate druglike molecules that target specific
proteins, several works translate input amino acid sequences into
SMILES strings of molecule with appropriate binding
activities."””"** To optimize existing molecules in order to
obtain certain desired properties, translation models are trained
to make adjustment to input molecules or scaffold. He et al."*’
trained a conditional transformer model that converts an
aggregated input of the source molecule SMILES string and the
target property into an output SMILES string of a molecule
possessing the property. Similarity constraints ensure that the
output molecule closely resemble the source molecule. Deep-
Hop'*' uses translation to perform scaffold hopping in which
the output molecule is novel in terms of scaffold as compared to
the input molecule while maintaining similar bioactivity, which
is ensured via enforcing 3D structural similarity. MetaTrans'**
translate an input molecule into its products after going through
various metabolism procedures, effectively predicting metabo-
lism outcomes of drugs.

6.4. Chemical Reactions. Chemical reaction analysis is
another pivotal domain within cheminformatics where
computational methodologies and learning techniques have
made significant strides. Both the forward problem, entailing the
prediction of reaction outcomes, and the backward problem,
involving retrosynthetic analysis, have witnessed substantial
advancements aided by modern learning architectures. While
earlier approaches rely upon rule-based procedures and reaction
templates, of which the extraction from existing literature is a
laborous and tricky process, recent learning-based methods
explore template-free modeling of chemical reactions. In these
template-free models, chemical reaction information is
automatically learned from data and stored as embeddings in
deep neural networks, resulting in more flexibility and
robustness of both the forward and backward analysis. The
rise of transformers has catalyzed modeling chemical reactions
as a translation problem. Intuitively, this formulation fits the idea
of chemical reaction being a transition of a chemical system from
the reactants to the products and vice versa.

A prime example of formulating reactions as translations is the
Molecule Transformer,'” a popular translational model for
predicting reaction outcomes. The authors modeled the
mapping from the reactants to the products as a SMILES-to-
SMILES translation. Molecule Transformer outperforms
previous baselines by large margins on various experimental
settings. Jaume-Santero et al.'** further investigated the effects
of different training parameters, including representations
(SMILES or SELFIES), tokenization (atom or byte-pair

4401

encoding), pretraining, data augmentations, and predictive
tasks, on the performance of Molecule Transformer. Pesciullesi
et al.'* developed finetuning strategies for Molecule Trans-
former and evaluated the model on predicting regio-stereo-
selective reactions on carbohydrates. Andronov et al.'** used the
translation formulation to predict reaction reagents. In this case,
the input is the whole reaction string instead of just the reactants.
A few recent works incorporate both the graph and string
representations into the translation process.”'"*® Graph2-
SMILES""’ translates the molecular graphs of reactants into the
SMILES strings of products. The authors replaced the
transformer encoder with a §raph neural network (GNN).
Instead of GNN, SeqAGraph'™ develops a novel transformer-
based graph encoder that assigns node ordering on the graph
atoms based on the corresponding SMILES string. The whole
model is trained for both forward and backward (retrosynthesis)
prediction problems.

Similarly, translational transformers are also popular for the
backward retrosynthetic analysis of chemical compounds. For
instance, Karpov et al.'*’ trained a translational transformer
model that converts the SMILES string of a compound into
another SMILES string of its constitutional reactants. Schwaller
et al."* coupled the single-step backward prediction with hyper
graph representations of chemical reactions to discover
synthetic pathways. SCROP'®' couples the translational trans-
former with a neural network-based syntax corrector, signifi-
cantly reducing the number of chemically invalid candidate
precursors. Tetko et al.'>* employed data augmentation on the
input SMILES strings, noticeably improving the performance of
their model across multiple metrics. RetroPrime'> disects a
retrosynthesis step into 2 steps: generating sythons and adding
leaving groups. The authors developed 2 separate translational
models for these steps. Recent methods on retrosynthesis also
incorporate molecular graph information on top of the SMILES
representation. For example, RetroFormer'>* has separate
attention heads for the global attentions on SMILES strings
and the local attentions that encode neighborhood connectiv-
ities on molecular graphs. The aggregated embeddings of these
attentions serves as the input to the decoder, which outputs
SMILES strings. G2GT"° takes a step further and formulate
retrosynthesis as a graph-to-graph translation problem in which
they utilize the Graphormer architecture’® as the encoder and
the decoder. The method outperforms other template-free
transformer baselines on top-1 accuracy.

Transformer-based models also have other interesting
applications within the chemical reaction domain. For example,
Wang et al."*® introduced the reaction generation task and
trained the Transformer-XL to generate novel reactions within
the same reaction class. Thousands of generated reactions were
assessed and confirmed by chemists, and the whole process from
training to confirmation took only 15 days. GraphormerMap-
per'®” trains a atom-mapping model based on the BERT
architecture with the encoder replaced by a Graphormer
encoder.”” The model effectively maps corresponding atoms
between the reactants and the resulting molecule from chemical
reactions, outperforming the state-of-the-art atom mapping
algorithm. In a different flavor, Schwaller et al."*® used the
attention weights of a pretrained transformer model to capture
the atom mapping. Another work by Schwaller et al.">* predicts
and analyzes reaction classes. They trained a SMILES-to-
SMILES translational transformer model in an unsupervised
manner and a BERT-based encoder-only model in an supervised
manner on reaction classification. Both models achieve
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remarkable classification performance. Additionally, the authors
found that the embeddings learned by these models, which they
termed reaction fingerprints, effectively capture the clustering of
various chemical reaction classes with granular details and
differences.

7. FUTURE DIRECTIONS

We conclude the review on the application of transformer-based
architectures in cheminformatics by discussing interesting
research directions. These directions encompass novel applica-
tions and developments of models capable of encoding domain-
specific, geometric, and multimodal information. Such ap-
proaches potentially achieve improved performances on existing
tasks and solving more complex ones.

7.1. Transformers for Molecular Dynamics Simula-
tions. We have witnessed rapid progress on the analysis of
proteins, especially on crucial tasks such as protein structure and
protein-drug affinity predictions. However, as encouraging as
they are, these tasks present only interactions under fixed
conformations. Existing learning frameworks provide limited
capability in reasoning about dynamic chemical/biological
configurations. One important use case of such reasoning is in
targeting protein misfolding and degenerative diseases.'®’
Degenerative diseases such as Alzheimer’s and Parkinson’s are
extremely common, affecting millions of people worldwide, and
are directly linked to the misfolding of certain proteins.'®"'**
Developing prevention and treatment for these diseases requires
understanding the effects of drugs on flexible protein
conformations.

Molecular dynamics (MD) simulations can cast light on
interactions and changes in protein structures; however, they are
costly in terms of time and computation and not suitable for
large scale screening of drugs. Machine learning has the potential
to automate and speed up parts or the whole process. Moreover,
transformer-based models are particularly suitable for simu-
lations since they can effectively capture multiscale interactions
between drugs and protein sequences amd handle multimodal
data. For example, Wang et al.'®® formulated molecular
dynamics simulations as a generative problem with the goal of
discovering novel conformation. A transformer encoder-
decoder network is trained to predict propagating frames of
protein complexes with data obtained from MD simulations.
Despite its importance, this direction is still quite unexplored
with only a few other works with similar ideas.”**~"°° A general
approach toward generative models using MD simulation is still
much desired.

7.2. Equivariant Graph Transformers. Despite their usual
2D visualization, molecules do not lie on the 2D space as planar
graphs. Instead, a large portion of their chemical properties
depend on their 3D geometrical alignments and interactions. As
a result, more works have investigated the incorporation of 3D
geometric features into the learning of molecular graphs.
However, such a process is not straightforward. Due to
translations and rotations, there can be an intractable number
of equivalent 3D atomic coordinates to the same molecule.
Translation and rotation form the SE(3) group in the 3D
Euclidean space, and as such, geometric learning on molecules
requires a certain degree of equivariant or invariant with respect
to SE(3) transformations.

Before transformers, several GNNs have experimented with
equivariant convolution. Inspired by the use of Clebsch-Gordan
coeflicients and the spherical harmonics in Tensor Field
Networks,'”” SE(3)-Transformer connects SE(3) equivariant
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and the attention mechanism.'®® In particular, the method
achieves roto-translational equivariance within the node
embeddings and invariance with respect to the attention
weights. TorchMD-Net obtains rotational equivariance by
encoding interatomic distances via the radial basis functions.'®”
GPS++ encodes interatomic distances with Gaussian kernels.'”
Besides rotation and translation, Equiformer extends equivar-
iance to inversion. The authors replaced the dot product
attention with multilayer perceptron attention and nonlinear
messages, leading to higher expressive power.'”’

By extending geometric learning to graph transformers,
equivariant transformers allow fuller utilization of the long-
range referencing via the attention mechanism. Such property is
especially beneficial to tasks in which 3D geometric information
is important, such as energy, binding affinity, and protein folding
prediction. For example, RoseTTAFold, a recent remarkable
work on protein folding prediction uses SE(3)-Transformer as
the backbone of the pipeline.”’ Similarly, AlphaFold2, a
revolutionizing model for protein folding prediction, is backed
by an original equivariant graph transformer layer called
Evoformer and novel triangle attentions.*” AlphaFold2 was the
top performer on the CASP14 protein folding challenge and is
the state-of-the-art model. These facts signify the importance of
equivariant transformers as a research direction in geometric
learning and ML within the chemical domain.

7.3. Graph Transformers for Infinitely Repetitive
Patterns. Graph-based learning on material structures is an
interesting direction that has recently captured increasing
attention. These graphs consist of local connectivity patterns
between atoms within a unit cell and global connectivity patterns
among an infinitely repetitive lattice of unit cells. These
properties pose a significant challenge in constructing graphical
representations for such data. With the availability of larger
material data sets such as the Material Project or the Cambridge
Structural Database, there is an interest in applying complex
learning models to solve learning problems in this data
domain.'”"'"?

CGCNN is an earlier work that tackles this problem.'”” For
any crystal lattice, the authors constructed a compact graph in
which nodes are atoms in the unit cell and edges represent both
intercell and intracell connectivities. Since lattice data does not
often contain explicit bonding information, connectivities are
determined via a distance threshold. Matformer further
capitalizes on this graph construction and rigorously proves its
periodic invariance.'”* They enriched the attention mechanism
with edge distances featurized via radial basis functions,
achieving roto-translational and reflective invariance. MOFNet
works on metal—organic frameworks (MOF) and only applies
transformer-based embedding on the local graph representation
of the unit cell.'”® For capturing global lattice patterns, MOFNet
incorporates features such as crystal density, porous volume,
gravimetric surface area, etc. Xtal2DoS learns to predict the
density of states of crystals.'”® The authors used GAT, an
attention-based GNN,'”” to embed both local and global
patterns, then employed a transformer-based model to decode
the embeddings to density sequences. To further advance
performance, other methods attempt pretraining MOF on large
data sets. In a supervised manner, MOFTransformer pretrains a
standard transformer model to predict the topology, the void
fraction, the metal cluster, and the organic linker of more than 1
million hypothetical MOF."”® The pretrained model captures
both local and global features of MOF lattices and obtains
competitive results on downstream tasks such as gas absorption
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prediction. Instead of supervised pretraining, MOFormer
pretrains in a self-supervised manner.'”” The authors used
GCGNN to learn node embeddings that capture the graph
connectivity of unit cells and a text-based transformer that
processes the string-based representations of MOFs. The
framework then contrastively enforces the correlation between
both embeddings.

7.4. Multimodal Pretraining with Large Chemical
Knowledge Bases. Despite the availability of large chemical
knowledge bases,'** most existing methods only extract patterns
from molecular structures, neglecting an abundance of
corresponding chemical information stored as text descriptions.
The main challenge of exploiting these chemical corpora is the
multimodality of the data, i.e, graphs and SMILES strings versus
natural language texts. Many recent works take on the challenge
by leveraging the powerful processing ability of transformer-
based language models.

Joint learning of SMILES strings and texts is an apparent
direction because both modalities can share the same learning
architecture and utilize NLP learning techniques. For example,
KV-PLM'® learn to process both SMILES strings and text
descriptions using the masked token prediction task and the
BERT model.” The model processes molecule text descriptions
with masked tokens being either byte-pair encoded SMILES
strings placed next to the substance name in the text or other
randomly selected words. The pretrained model then performs
tasks such as property or reaction prediction using SMILES
strings as inputs. Similarly, MolT5"'®" trains a single medium-size
TS model for both text descriptions and SMILES strings using
the replace-disrupted-span objective. Downstream tasks include
molecule captioning which translates SMILES into text and text-
to-molecule generation which outputs SMILES according to
textual descriptions. MoIXPT'** replaces substance names with
SMILES strings and pretrains on the combined corpus of texts,
texts with wrapped SMILES, and SMILES strings. The
downstream predictions on molecular properties are obtained
via prompting. MolReGPT'® employs LLM to perform
molecule and text translation.

Other works expand the multimodal learning to other
molecular representations. Text2Mol'** uses molecular graphs
with Mol2Vec®® embeddings as node features. The embeddings
of these graphs produced by a GNN are contrastively pretrained
against the text embeddings produced by SciBERT,'® a
language model trained on scientific texts. Following a similar
approach contrasting texts against molecular graphs, MoMu'*®
extensively evaluates the pretrained model on a variety of
challenging downstream tasks, such as cross-modal retrieval,
molecule captioning, zero-shot text-to-molecule generation, and
property prediction. Interestingly, CLAMP"®’ finds that tradi-
tional fingerprints work better than SMILES or graphs in
representing molecules for contrastively pretraining against
texts. Finally, GIT-Mol'*® pretrains on a wide range of modality
including texts, images, and graphs.

7.5. Large Language Models. Recently, the most
important artifacts built upon the transformer architecture are
undoubtedly large language models (LLMs). LLMs such as
GPT, Llama, Claude, and Falcon have significantly impacted
various fields, including technology, education, creativity,
business, healthcare and the society at large.'®” The revolutional
power of LLMs comes from their ability to efficiently process
enormous text corpus, capture the underlying associations/
patterns, and reproduce the information via an intuitive interface
with human-like communication. Driven by this wave of success,
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there is an rising interest in applying LLMs to assist scientific
research. Most recent findings on the usage of LLMs in
cheminformatics show that this is a promising direction.

The most straightforward application is using LLMs as
property predictors via smart prompting.190 In Chem-
LLMBench,"” the authors created a testbed for benchmarking
LLMs with eight chemical property prediction tasks. Jablonka et
al."”” finetune GPT-3 model on molecular classification and
regression tasks. More importantly, the authors attempt inverse
designing by training the LLM to generate molecular photo-
switches with a desired range of wavelength. Although most
generated molecules belong to the training set, a considerable
portion of them are novel and do not exist in PubChem. Further
evaluation reveals that the mean absolute error on the transition
wavelengths of these molecules is remarkably around 10
percents of the desired values. ChemCrow'”” integrates existing
chemical tools with LLMs to improve chemical research. In
particular, chemical tools can help with input processing and
output correction. Using such hybrid approach enhances the
overall performance of various chemical tasks, including
property prediction, structure generation, and prediction
outcome forecasting. Interestingly, White et al.'”* formulate
chemistry problems as coding tasks, on which LLMs have been
shown to perform well. More specifically, the inputs are
incomplete code with instructions as comments and LLMs are
asked to complete the code to produce a function that executes
certain chemical calculations.

As a new direction, applying LLMs on chemical tasks still
requires further research and development. Encouragingly, the
scientific community has responded with enthusiasm. In a
relatively short period, numerous benchmarks and comgetitions
have been established to expedite progress in this area.'”"'”> We
anticipate further advancements that will significantly enhance
computational methods in cheminformatics.

8. SUMMARY AND CONCLUSION

Machine learning models play an important part in many
modern chemical pipelines as they can efliciently assist or even
replace expensive and time-consuming chemical experiments.
This trend is assisted by the growing availability of large
chemical databases and the rapid development of machine
learning methods. Even though learning algorithms are
traditionally developed for tabular and vectorized data, there
has been a growing number of methods geared toward structural
data, such as graph neural networks. These methods have led to
a surge of applications and advancements in terms of
performance on multiple chemical learning tasks. This fact
confirms the effectiveness of powerful structural learning
architectures on complex data in the chemical domain. For
that reason, transformer models, which recently revolutionized
learning in natural language processing and computer vision,
gained the attention of researchers as a potential solution to
chemical learning problems. In this paper, we reviewed recent
efforts in applying transformer architectures to learning in the
chemical domain.

Many methods utilize the 2D sequential representations of
chemical structures to fit the input configuration of transformers.
Examples include string-based amino acid chains, SMILES, and
SELFIES. Such setup conveniently benefits from the established
transformer models developed for text processing. Since text
data are simple to obtain and process, large-scale self-supervised
learning is feasible, resulting in multiple foundational models for
string-based chemical data. Other works adapt and develop
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novel transformer architectures fitting the intrinsic representa-
tion and properties of chemical data, often in the form of graphs.
A wide variety of graph transformers have been developed for
this purpose, taking into account multiple geometric and
chemical characteristics of structures. Interestingly, several
research directions focus on domain-specific characteristics,
such as equivariant transformers that are invariant to equivalent
3D configurations or graph transformers that process infinitely
repetitive patterns to learn on material lattices.

Overall, transformer models are highly capable learning
architectures, and the existing methods we review show the
potential of transformers on chemical data. The chemical
domain is vast and diverse with a variety of structures, a wide
range of problems, and a diversity of physical and chemical
characteristics that can be exploited for learning. As research
efforts continue to rapidly expand across multiple scientific
communities, we have great confidence that even more exciting
results await us in the near future.
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