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Errors due to imperfect boundary conditions in numerical relativity simulations of binary black
holes can produce unphysical re ections of gravitational waves which compromise the accuracy
of waveform predictions, especially for subdominant modes. A system of higher order absorbing
boundary conditions which greatly reduces this problem was introduced in earlier work [1]. In
this paper, we devise two new implementations of this boundary condition system in the Spectral
Einstein Code (SpEC), and test them in both linear multipolar gravitational wave and inspiralling
mass ratio 7:1 binary black hole simulations. One of our implementations in particular is shown
to be extremely robust and to produce accuracy superior to the standard freezing- 0 boundary
condition usually used by SpEC.

I. INTRODUCTION

With advanced LIGO-Virgo-Kagra detectors online [2 4], and the spacecraft LISA in development [5], the need to
include accurate non-quadrupolar, subdominant modes of gravitational waves (GWs) in the waveformmodels produced
by numerical relativity simulations becomes more and more evident. It has been reported by many publications (see,
for example, [6 12]) that accurate numerical relativity waveforms that include these higher-order multipoles improve
both detection and parameter estimation for a variety of binary black hole (BBH) coalescing systems and their
remnant properties. Such systems include unequal mass BBHs, precessing BBHs, binaries whose orbits are inclined
with respect to the observer, those with certain spin alignments, and those with eccentric orbits. In [13], it is shown
that correct modeling of subdominant modes enables early warning and localization of GWs, which is crucial for
multi-messenger astronomy. In [14 16], the di culty of current Cauchy codes to calculate GW non-oscillatory modes
and GW memory e ects properly is presented. Studies such as [17, 18] show the high increase in signal-to-noise ratio
as a result of including higher-order multipoles in the waveforms obtained from simulations of eccentric, spinning,
BBH mergers. For the spacecraft LISA, detection of binaries with high masses and unequal mass ratios is paramount,
and also depends on accurate modeling of subdominant modes [19]. Finally, accurate numerical relativity multimodal
waveforms will improve templates obtained using analytic e ective-one-body techniques, phenomenological models,
and surrogates based on reduced order modeling [20, 21].
To illustrate how subdominant modes can become important for GWmodeling, we take the example of unequal mass

BBHs. For these systems, the amplitudes of the subdominant ( m) modes relative to the dominant quadrupolar (2 2)
mode increase with mass ratio [22]. For instance, at the frequency which gives the highest (2 2) wave amplitude, the
ratio of the (3 3) mode amplitude to the (2 2) mode amplitude increases from 0 14 to 0 28 as the mass ratio increases
from 2:1 to 6:1 (see Figure 10 of [22]). Thus, correct calculation of gravitational waveforms for higher-order multipoles
becomes increasingly critical as the mass ratio of the BBHs becomes increasingly asymmetric.
Most numerical relativity Cauchy simulations do not evolve the entire spacetime out to spatial in nity, but instead

truncate the domain at some arti cial outer boundary at a far but nite distance from the source. The treatment
of this boundary is a potential source of error. Evolving the Einstein eld equations numerically on a truncated
domain to obtain accurate and unique solutions is a di cult problem. Numerical and mathematical relativists have
been striving for decades to formulate the Einstein equations so that the initial boundary value problem is well posed
and the outer boundary conditions during the numerical evolution are constraint-preserving and, ideally, perfectly
absorbing. By perfectly absorbing, we mean that the outer boundaries are completely transparent to gravitational
waves passing through, including backscatter. (See [23] and the references therein for an excellent review on these
topics). Achieving perfectly absorbing boundary conditions in numerical relativity is unrealistic. However, one can
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impose approximately absorbing boundary conditions and thus signi cantly reduce the spurious re ections o the
outer boundary which contaminate the numerical evolution inside the grid.
A hierarchy of boundary conditions for general relativity which is perfectly absorbing for all multipoles of linearized

gravitational radiation up to a given angular momentum number L was rst introduced in [1]. This hierarchy is referred
to as a set of higher order boundary conditions (HOBCs), where each boundary condition order is a rung of the
hierarchy, numbered by L. The HOBCs presented in [1] are imposed on the Newman-Penrose scalar 0, and assume a
Minkowski background and a spherical outer boundary. These HOBCs were subsequently improved in [24], to include
rst-order corrections for curvature and backscatter (for quadrupolar radiation), and to be applicable to fairly general

Cauchy foliations and to spherical as well as non-spherical outer boundary shapes. In this same publication, James
M. Bardeen generalizes these HOBCs for all L in the case of rst order curvature corrections (but neglecting
backscatter).
The standard boundary conditions used in the Spectral Einstein Code SpEC [25] for the incoming GW degrees of

freedom at the arti cial outer boundary freeze the Newman-Penrose scalar 0 to its initial value. Referred to simply
as freezing- 0 boundary conditions , they are equivalent to the lowest rung of the hierarchy (L = 1). It is shown
mathematically [1] that the freezing- 0 boundary condition causes some amount of spurious re ection at the outer
boundary, even for the dominant quadrupolar mode ( = 2) of the GWs, while the HOBCs perfectly absorb linearized
radiation for all modes with angular momentum number L. Speci cally, the re ection coe cient for the freezing-

0 boundary condition decays as (kRbdry)
4 for every -mode and for large kRbdry (where k is the wavenumber of the

radiation and Rbdry is the radius of the outer boundary), whereas the re ection coe cients for the HOBCs are zero

for L and further, they decay as (kRbdry)
2(L+1) for > L and for large kRbdry. (See [1] for derivations of these

re ection coe cients and their decay rates.) This means, for example, that the re ection coe cient for the = 3
mode decays as (kRbdry)

6 when the HOBC with L = 2 is imposed, and the re ection coe cient for = 4 decays as
(kRbdry)

8 when the HOBC with L = 3 is imposed. It is apparent from these decay rates that spurious re ections at a
speci c outer boundary radius are signi cantly less with HOBCs than with the freezing- 0 boundary condition. The
current strategy for reducing re ections in SpEC BBH simulations which utilize the freezing- 0 boundary condition is
to place the outer boundary at moderately far distances (typically Rbdry & 800M). HOBCs should in principle allow
for smaller Rbdry s, thus reducing the computational cost of simulations.
In [26], it has been shown that the HOBCs presented in [1] are well posed for the second-order generalized har-

monic formulation of the Einstein equations, at least in the high-frequency limit (see also [27, 28]). Although not
proved per se, it is likely that the HOBCs in the rst order formulation are well posed as well. These HOBCs were
implemented [29] for the rst order generalized harmonic Cauchy formulation [30] of the Einstein equations in SpEC

as algebraic conditions on the Regge-Wheeler-Zerilli (RWZ) scalars [31, 32] in a non-rotating, single frame grid. Tests
were performed with multipolar waves [33], and the expected absorbing features were demonstrated. However, pre-
vious experience suggests that for BBH simulations, it is preferable to (i) implement the boundary conditions on the
time derivative of the incoming characteristic elds and (ii) use a grid coordinate system co-moving with the binary
black holes.
In this paper, we enhance the HOBC implementation of [29] for use with BBH systems. The HOBCs have been

adapted for the dual-frame infrastructure of SpEC [34], and they have been recast as conditions on the time derivatives
of the incoming physical characteristic modes. Regarding the latter, we have devised two natural ways of doing this.
The rst, corresponding to a generalization of Eq. (68) of [30], uses information from the HOBC system to set a
projection of the Weyl tensor. The second, corresponding to Equation (69) of [30], directly sets the time derivative
of the physical modes on the boundary to the prediction of the HOBC system. The former is simpler to implement,
reduces exactly to the freezing- 0 condition for L = 1, and turns out to be much more robust. Our HOBCs require
that a set of auxiliary ordinary di erential equations (ODEs) living on the outer boundary are integrated forward in
time. These ODEs require initial conditions on the outer boundary. Accordingly, we devise a recipe for initializing
these ODEs when GWs are present on the boundary at the initial time (e.g. due to junk radiation). This requires
imposing the compatibility conditions that express consistency between the system of ODEs on the boundary and the
metric in the interior volume near the boundary (see [23, 35] for a review of compatibility conditions in the context
of well-posed initial boundary value problems).
Our new implementations are tested both for GWs on a Minkowski background and for a mass ratio 7:1 inspiralling

binary black hole system (prior to merger), and compared against the same tests using the standard SpEC freezing- 0

boundary condition. We calculate waveform errors due to boundary conditions by comparing waveforms extracted on
the boundary with analytic solutions (for GWs on a Minkowski background) or with waveforms extracted at the same
location but in simulations with more distant boundaries (for BBH simulations). We nd the HOBC implementation
which sets a projection of the Weyl tensor (WeylHOBC) to be superior to that which sets the time derivative of
the physical modes (dtHOBC). Furthermore, the WeylHOBC implementation is found to produce higher waveform
accuracy for quadrupolar and subdominant modes of the GWs than does the freezing- 0 boundary condition. In
fact, our BBH simulations with WeylHOBCs give impressively lower errors for the six largest amplitude modes of
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GW strain waveforms extrapolated to future null in nity than those with the freezing- 0 boundary condition. Not
all boundary-related errors are ameliorated by HOBC, however, because of currently untreated errors in the gauge
modes.
Another approach presented in the literature for constructing absorbing boundary conditions is a technique called

Cauchy characteristic matching (CCM) [36 40]. This technique combines Cauchy evolution (which is best suited
for simulating the strong- eld regions of spacetime [41]) in the interior of the domain with characteristic evolution
along null hypersurfaces to future null in nity (where gravitational radiation is de ned unambiguously [42 44]) in the
exterior. Between the Cauchy and characteristic regions is a timelike interface across which information can ow in
both directions. This timelike interface acts as an absorbing boundary for the interior Cauchy evolution since GW
data at this boundary is obtained from the characteristic evolution. An approach much like our Weyl tensor HOBC
formulation has been recently implemented in [40] to achieve fully relativistic three-dimensional CCM in the numerical
relativity code SpECTRE [45]. This CCM code has successfully passed several tests in non-trivial numerical relativity
scenarios, but it has not yet been tried in BBH simulations. Further, it is not clear that the CCM system is well-posed
since the characteristic formulation of the Einstein equations is only weakly hyperbolic [46, 47].
Our paper is structured as follows. In Section II, we review the general HOBC formalism. In Section III, we present

details of our new implementations of the boundary conditions. Results of multipolar wave tests and binary black
hole inspiral simulations are presented in Section IV. Finally, in Section V we summarize our ndings and suggest
future improvements and applications.
Throughout this paper, Greek indices are spacetime indices, lower-case Latin indices a b range over t

and r, and upper-case Latin indices A B range over and . Latin indices i j from the middle of the alphabet
are spatial Cartesian coordinates.

II. REVIEW

The HOBCs on the RWZ scalars
( )
m presented in [29], as translated from those on the Newman-Penrose scalar

0 [1] for the purposes of numerical relativity, are

[r2( t + r)]
L+1 ( )

m = 0 (1)

where L is the boundary condition order. As developed in [48], the RWZ formalism (originally put forth in [31]
and [32]) describes gauge-invariant gravitational perturbations of Schwarzschild spacetime, although here, we focus

on the special case of a at rather than Schwarzschild background. The RWZ scalars are denoted by
( )
m , where

m is the odd-parity Regge-Wheeler scalar, +
m is the even-parity Zerilli scalar, and the subscripts m refer to a

spherical harmonic decomposition. They obey the following master equation for at spacetime:

2
t

2
r +

( + 1)

r2
( )
m = 0 (2)

The HOBCs given in Eq. (1) are perfectly absorbing for all perturbations with angular momentum numbers L.
Note that Eq. (1) is the well-known Bayliss-Turkel conditions [49] for the scalar wave equation.
As in reference [29], it is assumed in this paper that the metric elds can be linearized about at spacetime close

to the outer boundary, which is taken to be a sphere of constant radius r (which is constant in time as well)1. The
spacetime metric g is written as

g = g + g (3)

and the background metric g is

g = gabdx
adxb + r2gABdx

AdxB (4)

where g = dt2 + dr2 is the standard Minkowski metric on a 2-manifold M and g = d 2 + sin2 d 2 is the standard
metric on the 2-sphere. The covariant derivative compatible with the metric g (g) [g] will be denoted by ( ) [ ]
and the volume element by ab ( AB) [ ].

1 In standard SpEC BBH simulations, the outer boundary is not kept at a constant radius but rather allowed to drift inward at a slow

velocity. As a consequence of this slow drift, many characteristic fields change from zero-speed to outgoing which means that these

characteristic fields no longer need boundary conditions. As a result, reflections that may have been caused by these boundary conditions

no longer exist. Note that all the results in this paper are for runs with constant outer boundary radius.
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The RWZ scalars are computed from the spacetime metric. Thus, the metric perturbations are decomposed with
respect to scalar, vector, and tensor spherical harmonics, using the basis harmonics:

YA AY SA

B

AYB

YAB [ (AYB)]
TT = (A B)Y + 1

2 ( + 1)gABY

SAB (ASB) (5)

where Y is the standard scalar spherical harmonic. The odd and even parity metric perturbations are treated
separately (see [29] and [48] for details). Following the gauge-invariant procedure of [48], the odd parity perturbations
are

gAb = hbSA gAB = 2kSAB gab = hab = 0 (6)

where ha, k and hab are metric amplitudes, and the even parity perturbations are

gAb = QbYA gAB = r2(KgABY +GYAB) gab = HabY (7)

where again Qa, K, G, and Hab are metric amplitudes. In terms of these metric amplitudes and for 2, the odd
parity Regge-Wheeler scalar is

m = r hr ht + 2ht r (8)

and the even parity Zerilli scalar is

+
m = 1 2rHrr 2r2K r2 ( + 1)G 4Qr + 2r2G + rK + r ( + 1)G 2 2Qr + r2G ( + 1) (9)

where a dot denotes partial di erentiation with respect to t, a prime denotes partial di erentiation with respect to r,
and ( 1)( + 2). The sign di erence between Eq. (9) above and Eq. (29) of [29] allows us to match our sign
conventions with those that have become standard in the numerical relativity community, as detailed in Appendix C
of [50], pages 43 and 44.
As was shown in [29], the HOBCs given in Eq. (1) can be implemented numerically by introducing a set of auxiliary

variables which are de ned only at the boundary. These are

w
( )
k m r (2k+1)[r2( t + r)]

k ( )
m (10)

It was further shown in [29] that the these auxiliary variables obey a system of ODEs on the boundary, namely

tw
( )
k m =

1

2r2
[ ( + 1) + k(k 1)]w

( )
(k 1) m + 1

2w
( )
(k+1) m

k

r
w

( )
k m (11)

This system of ODEs is closed by

w
( )
(L+1) m = 0 (12)

which is equivalent to the boundary condition given by Eq. (1). Eq. (11) is integrated on the boundary for 1 6 k 6 L,

using Eq. (12) and w
( )
0 m =

( )
m r.

Thus, simulations with HOBCs can be carried out by evolving two coupled systems: the partial di erential equations

for the metric in the interior (the interior system) and the set of ODEs for w
( )
k m on the boundary (the auxiliary system).

III. COMPATIBILITY CONDITIONS AND NEW FORMULATIONS

The absorbing HOBCs in [29] were implemented in a single, non-rotating frame and tested for multipolar waves [33]
originating in the interior of the computational domain. The research presented in this paper extends what was done
in [29] to be applicable to BBH simulations in several ways. First, the HOBC implementation has been updated
for the rotating, dual-frame infrastructure of SpEC used for BBH simulations. Second, we studied cases where the
values of the auxiliary variables on the boundary were nonzero at t = 0, mimicking the initial data of BBHs which
contain junk radiation. We found that in these scenarios, the auxiliary variables had to be initialized properly in order
to satisfy compatibility conditions (see section IIIA). Finally, the algebraic formulation presented in [29] has been
modi ed to the form of Eq. (68) or Eq. (69) of [30]. Note that Eq. (68) of [30] is currently used for the freezing- 0

boundary condition in SpEC. We have named the HOBC formulation derived using Eq. (68) WeylHOBC , and that
derived using Eq. (69) dtHOBC . These are discussed in sections III B 1 and III B 2 below.
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A. Compatibility Conditions

HOBC simulations evolve two coupled systems, interior and auxiliary, both of which provide information about the

RWZ scalars
( )
m . For the two systems to be consistent, the values of w

( )
k m evolved on the boundary should agree

with the corresponding derivatives of the
( )
m in the interior grid evaluated at the boundary. Thus, one can consider

Eq. (10) as a constraint establishing the compatibility of the two systems, a constraint known as a compatibility

condition (see Sec. 5 of [23]). We must initialize w
( )
k m correctly for the compatibility condition to be satis ed at

t = 0.
We introduce the null coordinates v = t+ r and u = t r to parameterize the numerical solution for the di erential

operator in Eq. (10). In these coordinates, the di erential operator r2( t + r) represents a directional derivative
along a path of constant u. For a general choice of parameter (v) labeling points on this path, the corresponding
tangent vector will be given by

u

=
r

u

( r + t) (13)

For appropriate choice of (r), namely that for which r u = r2, the derivative d d will be the di erential
operator r2( t + r) in Eq.(10). Solving for (r),

=
1

r
(14)

We then utilize Eq. (13) on our boundary condition formulation to solve for the initialization of the auxiliary variables.

w
( )
k m r (2k+1)

k
( )
m (15)

Our goal now is to gather
( )
m ( ) for particular events along a line of constant u. This involves running a short-time

Cauchy evolution on a larger grid extending beyond the desired boundary location. The larger grid for the short run
is chosen to have an outer boundary su ciently distant from our desired outer boundary so as to remain out of causal
contact throughout the short run. Since the outer boundary of the short run does not matter, it can use the L = 1

(freezing- 0) boundary condition which does not depend on initialization of w
( )
k m. Subsequently, we measure

( )
m

at several values of from the short run, and perform a polynomial t to
( )
m ( ):

( )
m ( ) = 0 + 1 + 2

2 + 3
3 (16)

The Python scipy.optimize.curvefit function is employed to determine i (i =0,1,2,3) for achieving a least squares

best t. Subsequently, we evaluate w
( )
k m using Eq.(15) in conjunction with Eq.(16).

Recall that our HOBC (Eq. (1)) is equivalent to w
( )
(L+1) m = 0 (Eq. (12)). However, whereas w

( )
(L+1) m = 0 is

enforced in the auxiliary system, the corresponding condition on the derivatives of
( )
m is not imposed in the interior

evolution. So the enforcement of Eq. (12) at each timestep and for each , m, and parity is at least somewhat
inconsistent with with the compatibility condition given in Eq. (10). One might impose the compatibility condition

for order (L+ 1) by setting w
( )
(L+1) m = g(t), where g(t = 0) g0 is determined by the volume data metric evaluated

on the boundary for the initial time. The time dependence must then be speci ed explicitly. Setting g to a constant is
undesirable, since then the wave passing through at t = 0 would leave a permanent imprint on the boundary. A better
alternative might be to damp this initial wave exponentially by employing something of the form g(t) = g0e

t . This

still will not guarantee satisfaction of the compatibility condition for w
( )
(L+1) m at later times. It can be argued that

if w
( )
(L+1) m is dynamically signi cant, it is advisable to evolve the HOBC auxiliary system to an order of at least

(L+1). In all cases we have investigated, we have found that the magnitude of w
( )
k m decreases rapidly with k, usually

approaching machine double precision by k = 4, and furthermore, that the computational cost of increasing L to this
value (or higher) is negligible. Consequently, we always set g0 = 0.

B. New Higher Order Boundary Condition Formulations

In the rst order generalized harmonic formulation of the Einstein equations [30] used by SpEC, there are three
types of characteristic elds which require outer boundary conditions: constraint, physical, and gauge. As presented
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in [30], constraint-preserving, freezing- 0, and constant-in-time gauge boundary conditions are the current standard in
SpEC. In this paper, we focus on improving the boundary conditions for the characteristic elds representing physical
gravitational waves. We start by outlining the mathematical description of these physical modes incoming at the
outer boundary. They are given in Eq. (33) of [30] as

u1 = ni
i 2g (17)

where

t g and i ig (18)

In these equations, 2 is a parameter arising from the addition of constraint-damping terms to the evolution equations,
n is the outward-pointing unit spacelike normal to the boundary on the t = constant slices, and t is the future
directed unit timelike normal to the t = constant surfaces (t n = 0).
In order to cast Eq. (17) in terms of covariant derivatives with respect to the background metric instead of partial

derivatives (which depend on the coordinate system), we introduce the outgoing and incoming null vectors as

(t + n ) and k (t n ), respectively, and let denote covariant di erentiation along . A simple
partial derivative operator ( t + r) will be denoted by D. The incoming characteristic elds at the boundary can
then be expressed as

u1 = ( + 2)g (19)

Note that the introduction of a at-space covariant derivative in Eq. (19) simpli es the transformation to spherical-
polar coordinates.
Given that the 2-metric intrinsic to the boundary is P g + t t n n , the projection operator for the

boundary conditions on the two physical degrees of freedom is PP = P P 1
2P P , where PP constructs

the transverse-traceless version of a symmetric spacetime tensor. Given that only the perturbation of the metric is
involved, the projection is onto the background geometry which in this case is the 2-sphere. The resulting non-zero
components of the physical boundary conditions are then the angular components:

u1
AB

= PP
AB

u1 = r2( t + r)(r
2 gTT

AB
) 2 gTT

AB
(20)

where TT denotes the trace-free part with respect to the metric g on the 2-sphere and = indicates at the boundary .

In [29], HOBCs are imposed using the auxiliary system of w
( )
k m s to specify the elds u1

AB
on the boundary, according

to Eqs. (46) and (50) of that paper. This was shown in [29] to be successful when the multipolar wave initial data was
zero on the boundary. However, in the general binary black hole case, there is non-zero GW data on the boundary
initially. As discussed in [51] and [30], discontinuities produced with an algebraic boundary condition are avoided by
casting the boundary condition in a time-derivative form as per Bj rhus [52]. Hence the boundary conditions which
we present in the next two sections are represented by

dtu
1
AB

= PP
AB tu

1 (21)

Reference [30] presents two ways to implement such time derivative physical boundary conditions in Eqs. (68) and (69),
reproduced here for clarity. Utilizing our notation, Eq. (68) of [30] is

dtu
1
AB

= PP
AB

[Dtu
1 + v( BC 2n

ic3i )] (22)

where the quantity Dtu is the right hand side of the rst order generalized harmonic evolution system, v is the
characteristic speed at which the characteristic eld u1 enters the boundary, is the projection of the Weyl

tensor, BC is the target value to which is to be xed at the boundary, and nic3i are incoming constraint elds

(see [30] for more details). Eq. (69) of [30] is

dtu
1
AB

= PP
AB

h (t r) (23)

where h (t r) is a pre-determined waveform (x tx). The precise form of these conditions and their interface
with the auxiliary system will be described in the two sections below. The WeylHOBC formulation uses the auxiliary
system to set a projection of the Weyl tensor and is equivalent to using the time derivative of u1 to drive the radial
derivative of u1 at the boundary to a desired value. The dtHOBC formulation directly sets the time derivative of
the incoming physical eld to its value in the auxiliary system.
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1. WeylHOBC Formulation

The incoming wave projection of the Weyl tensor contains the information needed to construct the physical boundary
conditions, as proposed in [53]. These ideas as well as those in [54] were adapted for the 3D Einstein equations in [51]
and further developed for the rst order generalized harmonic system in [30].
The goal of this section is to calculate the quantity BC of Eq. (22). To begin, recall

= PP C (24)

where C is the Weyl tensor. Since a vacuum background is assumed and since the projection operator selects only
the angular components, Eq. (24) becomes

AB = PP
AB

R (25)

= RA B

1
2R

C

C
PAB (26)

where R is the Riemann tensor and PAB = r2gAB. In terms of metric perturbations with respect to the at
spacetime metric in Eq. (4), Eq. (26) becomes

AB = 1
2 B gA + A gB B A g gAB

1
2 C gC + C gC

C

C g gC

C
r2gAB

(27)

After a lengthy calculation, Eq. (27) can be simpli ed for general parity. Recalling (note that is not an
index) and D = ( t + r), the result is

AB = 1
2 B gA + A gB r 2 r2 gAB B A g +

1

r
B gA + A gB

1
2 2 C gC r 2 r2 gC

C C

C g +
2

r
C gC r2gAB

(28)

Specialization to odd and even parity GW metric perturbations, given the auxiliary variables w
( )
k m and the vacuum

linearized Einstein equations, is shown in sections III B 1 a and III B 1 b. The expressions then obtained for odd and
even parity

AB
are used as the target values

AB BC.
a. Odd Parity Substituting the odd parity metric perturbations of Eq. (6) into Eq. (28), one obtains

AB
= 1

2 B ha
aSA + A ha

aSB r 2 r2 2kSAB +
1

r
B ha

aSA + A ha
aSB

1
2 2 C ha

aSC r 2 r2 2kSC

C
+

2

r
C ha

aSC r2gAB

(29)

Expansion of the last (trace) term of Eq. (29) yields terms involving C(ha
a), CS

C and S C

C
which equal zero with

the result that this last term vanishes. Further expansion and subsequent simpli cation of Eq. (29) gives

AB
= D (ha

a) +
2

r
Dk

2

r2
k D2k SAB (30)

The auxiliary variables as de ned in Eq. (10), are now introduced through the term D2k. Using Eq. (45) of [29] to
relate Dk to the auxiliary variables and using Eq. (8) of [29] to nd expressions for Dw0 m and Dw1 m, we obtain

D2k = D (ha
a) +

2

r
Dk

2

r2
k + r2w2 m (31)

One can see by inspection that substituting Eq. (31) into Eq. (30) gives the nal simple and elegant result for odd
parity:

AB
= r2w2 m SAB (32)

This value will now be used for the odd parity target value,
AB BC.
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b. Even Parity Specializing Eq. (28) to even parity using the perturbations given in Eq. (7), one obtains

AB = 1
2 B

aQaYA + A

aQaYB r 2 r2 KgAB Y +G YAB (33)

B A Hab
a b Y +

1

r
B

aQaYA + A

aQaYB

TT

Note here that it was found to be more straightforward to take the transverse-traceless part of each term rather than
to explicitly subtract the trace as in Eq. (28). Doing so and simplifying gives

AB = 1
2 2D( aQa) D(r2DG) Hab

a b YAB (34)

To make things simpler, we turn to the generalized Regge-Wheeler gauge with the idea that if the results are true in
one gauge, they are true in all gauges since the expression is gauge invariant. The generalized Regge-Wheeler gauge
is de ned so that Qb and G of Eq. (7) vanish (see [48] page 4). Also, in this gauge, Hab and K correspond with their

gauge-invariant counterparts, H
(inv)
ab and K(inv) for > 2. Thus in the Regge-Wheeler gauge and for > 2, Eq. (34)

simpli es to

AB = 1
2 H

(inv)
ab

a b YAB (35)

In order to introduce the auxiliary variables w+
2 m, we make use of Eq. (19) of [24], which relates H

(inv)
ab to the even

parity Zerilli scalar +
m via

H
(inv)
ab = 2 a b

1
2gab

d
d r +

m (36)

Again, the sign di erence from Eq. (19) of [24] makes the sign of +
m agree with the usual sign conventions in

numerical relativity, as mentioned earlier. Plugging into Eq. (35), one gets

AB = a b
1
2gab

d
d r +

m
a b YAB (37)

which simpli es to AB = D2(r +
m)YAB noting that gab

a b = 0 for Minkowski spacetime. This expression is gauge

invariant provided the derivatives of +
m are gauge invariant. Using the equation for w+

2 m obtained from Eq. (10),
namely

r2w+
2 m = r 1D r2D +

m = D2(r +
m) (38)

one again arrives at a wonderfully simple result:

+
AB

= r2w+
2 m YAB (39)

This is the value that will be used for the even parity target value, +
AB BC.

The complete AB will be the sum of odd and even parity components for each mode. Combining all of the above
results, we can write

AB =
m

r2(w+
2 m YAB +w2 m SAB) (40)

2. dtHOBC Formulation

In this section, the HOBCs are implemented via Eq. (23), where h = tu
1 . The result is

dtu
1
AB

= PP
AB tu

1 = PP
AB

r2( 2
t + t r)(r

2 g ) 2P
P
AB t g (41)

Notice that the 2 term is annihilated by PP in the algebraic boundary condition implemented in [29], but not in
the corresponding time-derivative boundary condition.
Since PAB = r2gAB, it follows that P

P
AB

= PA PB (r2 2)gABP . Also keeping in mind that PAB = r 2gAB and
P B

A
= B

A
, we obtain

dtu
1
AB

= r2( 2
t + t r)(r

2 gTT
AB
) 2 t gTT

AB
(42)

Expressions for the right-hand-side of Eq. (42) are derived in the Regge-Wheeler-Zerilli formalism which involve the
auxiliary variables at the boundary.
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a. Odd Parity The gauge-invariant potential h(inv) [48] is related to the odd parity Regge-Wheeler scalar m

via h(inv) = d(r m), where denotes the Hodge dual with respect to g. In particular, uadx
a = abu

adxb (from

the top of page 3 of [48]), where ab is the standard volume element in (M g), oriented so that tr = g 1 2. For at
spacetime, tr = rt = 1, and tr = rt = 1. Applying this to the expression h(inv) = d(r m), we obtain

h(inv) = ab
a(r m)dxb = t(r m)dr r(r m)dt (43)

Since the 1-form h(inv) is decomposed as h(inv) = h
(inv)
r dr + h

(inv)
t dt, it follows that

h(inv)
r = t(r m) and h

(inv)
t = r(r m) (44)

Using Eqs. (16) and (17) of [29], which are h
(inv)
t = ht tk and h

(inv)
r = hr r2 r(r

2k), respectively, we re-express
the time-derivative boundary condition (42) in terms of the amplitudes ha and the odd-parity auxiliary variables wk m
to give

( t + r)(r
2k) = r 2(ht + hr + r2w1 m + rw0 m) (45)

With gTT
AB

= 2kSAB [29], substitution into Eq. (42) gives

dtu
1
AB

= 2[ht + hr + r2w1 m + rw0 m + 2 k]SAB (46)

The time derivative w0 m is removed by recalling rw0 m = m and w1 m using Eq. (11). The nal result for odd
parity in the dtHOBC formulation is:

dtu
1
AB

= 2 ht + hr
1
2 ( + 1)w0 m rw1 m + 1

2r
2w2 m

1

r
(hr + 2k r rk) + 2 k SAB (47)

for 2. All the time derivatives of the metric perturbations (ht, hr, and k) are calculable in SpEC.
b. Even Parity Following [48] (page 5), a scalar eld is introduced according to Z = d , where Z is the Zerilli

one-form. The Zerilli scalar is then de ned as +
m , recalling that ( 1)( + 2). Since Z = Zrdr+Ztdt

and d = r dr + t dt, it follows that Zr = r and Zt = t . Thus,

Zt + Zr = ( t + r)
+
m = rw+

1 m (48)

The Zerilli one-form of Eq. (48) is combined with the alternate form obtained using the amplitudes of the even parity
metric perturbations to give

r2( t + r)G = 2r2w+
1 m

2 r2( t + r)K + 2 r(Qr rQt
2
rQr +Htr +Hrr) (49)

(Note that this equation was also derived in Sec. 2.5.2 of [29] modulo the sign in front of w+
1 m). The substitution of

gTT
AB

= r2GYAB into Eq. (42) gives

dtu
1
AB

= t[r
2( t + r) G]YAB 2r

2 GYAB (50)

Substituting for the expression for r2( t + r)G given in Eq. (49) and eliminating w+
1 m using Eq. (11), we obtain the

nal result for even parity, namely:

dtu
1
AB

= [ ( + 1)w+
0 m + 2rw+

1 m r2w+
2 m + 2 r2(K + rK) 2 r(Qr rQt

2
rQr +Htr +Hrr) 2r

2 G]YAB (51)

for 2.

IV. RESULTS

A. Multipolar Waves

We rst evolve GW packets on a at background to test our new boundary conditions. The tests we perform are
similar to those in [29]. We evolve a solution of the linearized (about at spacetime) Einstein equations, but using
the fully nonlinear SpEC code. We will compare the numerical solution to the (linearized) analytic solution, and we



10

expect di erences of order A2, where A is the amplitude of the linearized solution. For the evolution, we choose the
harmonic gauge, which is consistent with the analytic solution.
The analytic solution is given by Rinne [33], and is a generalization of the ( = 2) Teukolsky wave [55] to arbitrary

multipoles. The solution depends on freely speci able mode functions F (r t), where (r t) is a retarded radius. We
choose F with the same form as in [29]:

F (r t) = A exp
(r r0 t)2

2
(52)

Here, A is the amplitude, is the width, and r0 is the radius of the peak of the wave packet at t = 0. The at
spacetime master equation for the Regge-Wheeler-Zerilli scalars, Eq. (2), can be solved by making the ansatz

( )
m =

j=0

cj ( m)r
j F (j)(r t) (53)

where F (j)(r t) djF (r t) d(r t)jfor an outgoing solution. For all reported multipolar wave tests, the outer
boundary radius Rbdry of the computational domain is placed at Rbdry = 30, and the width of the Gaussian wave-
packet is chosen to be = 1 5.
In addition to the wave-packet envelope function F , a multipolar wave is characterized by its angular mode numbers

( m) and and by its parity, even (+) or odd (-). Furthermore, each mode has distinct real and imaginary components

(constrained by the requirement that
( )
m itself be real). We have tested our boundary condition algorithms with

both = 3 and = 4 modes and both even and odd parity, with very similar results in all cases. In addition, we
have evolved a multipolar wave whose center is displaced from the coordinate origin, so that wavefronts do not match
coordinate spheres on the outer boundary, and the wave is a mixture of modes in the tensor spherical harmonic
decomposition in our code s coordinates. Results for such displaced waves are also very similar to those for centered
waves. Therefore, we choose to pick one representative case and provide an exhaustive description of its behavior
under di erent initialization and evolution choices. We choose an = 4, m = 2, even parity wave. Given the usual

complex spherical harmonics, the reality condition for
( )
m requires

( )
m = ( 1)m

( )
m, so in this basis an

appropriate = 4, m = 2 mode is also present.
A nal choice is whether to evolve in an asymptotically Minkowski or in a rotating coordinate system (ie. a non-

rotating or a rotating grid). For this particular problem, there is no advantage to the latter (and no natural non-zero
choice for angular velocity). However, since many of the most interesting applications involve binaries, for which SpEC

uses co-rotating frames, we have tried evolving with angular speed = 0 01 (so equatorial boundary grid points move
at 0.3c). This has negligible e ect on the results, except that the problematic late-time behavior for the dtHOBC
implementation discussed below is only seen in runs with rotating grid. Therefore, we report only results for runs
with rotating grids below.

1. Evolution of an interior wave

We rst evolve a wave with r0 = 15, so the wave begins in the interior far from the boundary and propagates
outward. For this choice, the wave will vanish at the boundary to numerical roundo error at t = 0, so it is acceptable

to initialize w
( )
k m = 0. We then track the RWZ scalar

( )
m in the subsequent evolution and compare it to

( )
m for

the analytic solution of the linearized equations. The di erence between the two, denoted
( )
m , is initially zero (by

construction) but will become nonzero at later times for three reasons.
First, there can be re ections from the outer boundary due to imperfect boundary conditions. This is the deviation

that interests us, which the HOBCs are designed to minimize. The second is numerical truncation error; however,
convergence testing shows that this is not a major contribution to the di erence between numerical and analytic
solutions. The third reason is that the numerical and analytic solutions are solutions to a di erent set of equations
to the full and linearized Einstein equations, respectively. This is a large e ect, but it can be controlled by varying the
amplitude, A, of the wave packet. Di erences due to re ections can scale as A, while di erences due to nonlinearities
in Einstein s equations must scale as A2 or higher. Therefore, following earlier work [29], we perform convergence

tests in A, plotting A 1 ( )
m . In the absence of re ections, A 1 ( )

m will decrease as A decreases until a roundo
error oor is reached.
This is, in fact, what happens for these interior wave evolutions, for both dtHOBC andWeylHOBC implementations,

as shown in Figure 1. We show results for boundary condition orders L = 1 and L = 4. For an = 4 wave, there
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s h o ul d b e r e fl e cti o n s f o r b o u n d a r y c o n diti o n o r d e r L = 1 ( s e e [ 1 ]) b ut n o t f o r o r d e r L = 4. T h e s e r e fl e cti o n s s h o ul d

m a nif e st a s c o ntri b uti o n s t o ∆ Φ
( ± )
ℓ m li n e a r i n A , s o t h a t A − 1 ∆ Φ

( ± )
ℓ m s h o ul d c o n v e r g e t o z e r o f o r t h e 4 t h o r d e r b o u n d a r y

c o n diti o n r u n s, b ut it s h o ul d c o n v e r g e t o a n o n z e r o f u n cti o n f o r t h e 1 s t o r d e r b o u n d a r y c o n diti o n r u n s. T hi s c a n b e
s e e n e s p e ci all y b y l o o ki n g a t t h e e a rl y e v ol uti o n t < 8 0; t h e s e p a r a ti o n of r e s ol uti o n s (i n di c a ti n g c o n v e r g e n c e t o z e r o )

i s cl e a rl y m u c h cl e a n e r f o r t h e o ut p ut of t h e L = 4 r u n s. F o r t h e L = 1 r u n s, o n e s e e s t h a t A − 1 ∆ Φ
( + )
4 ,2 c o n v e r g e s t o t w o

p ul s e s a t t h e e a rl y e v ol uti o n a s A d e c r e a s e s. T h e fir s t p ul s e, a t a ti m e of t = 1 5, o c c ur s w h e n t h e o ut g oi n g w a v e r e a c h e s
t h e b o u n d a r y ( a n d i s al s o s e e n i n t h e L = 4 r u n s ). T h e s e c o n d p ul s e, a t t = 7 5, i s t h e r e s ult of a s p uri o u s r e fl e cti o n
o c c ur ri n g a t t = 1 5 i n t h e L = 1 r u n. T h e ti m e i nt e r v al b et w e e n t h e t w o p ul s e s, ∆ t = 6 0, i s t h e ti m e n e e d e d f o r
t hi s r e fl e cti o n t o tr a v el i n w a r d a c r o s s t h e C a u c h y d o m ai n ( w hi c h i s a r a di al di s t a n c e of 3 0 ), a n d o ut w a r d a g ai n t o t h e
o ut e r b o u n d a r y. R e c all t h a t, f o r t h e We yl H O B C i m pl e m e nt a ti o n, t h e 1 s t- o r d e r b o u n d a r y c o n diti o n i s al g o rit h mi c all y
i d e nti c al t o t h e fr e e zi n g- Ψ0 b o u n d a r y c o n diti o n u s u all y u s e d b y S p E C , b ut f o r t h e dt H O B C i m pl e m e nt a ti o n, t h e
1 s t- o r d e r b o u n d a r y c o n diti o n i s o nl y i d e nti c al t o S p E C ’ s s t a n d a r d b o u n d a r y c o n diti o n t o tr u n c a ti o n e r r o r.
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FI G. 1: A m pli t u d e c o n v e r g e n c e of e v e n p a ri t y m ul ti p ol a r w a v e wi t h ( 4, 2 ) m o d e. T h e w a v e i s i ni ti all y c e nt e r e d i n t h e i nt e ri o r

wi t h r 0 = 1 5. T h e w
( ± )
k ℓ m ’ s a r e i ni ti ali z e d t o z e r o. U p p e r l ef t: d t H O B C f o r m ul a ti o n wi t h L = 1. U p p e r ri g ht: d t H O B C wi t h

L = 4. L o w e r l ef t: We yl H O B C f o r m ul a ti o n wi t h L = 1. L o w e r ri g ht: We yl H O B C wi t h L = 4.

A n o t a bl e f e a t ur e a t l a t e ti m e s i s t h a t, f o r e a c h r u n, A − 1 ∆ Φ
( ± )
ℓ m s ettl e s t o a n o n z e r o c o n s t a nt. T hi s i s a n o nli n e a r

e ff e ct, a s d e m o n s tr a t e d b y t h e f a ct t h a t t h e s ettl e d v al u e c o n v e r g e s t o z e r o a s a m plit u d e i s d e c r e a s e d. N e v e r t h el e s s,
it i n di c a t e s t h a t, e v e n aft e r t h e w a v e i s l o n g p a s t, t h e i nt e ri o r s p a c eti m e pl u s b o u n d a r y s y st e m m a y s ettl e t o s o m e
s t a ti o n a r y v a c u u m s t a t e o t h e r t h a n Mi n k o w s ki. T hi s p o s si bl y c o ul d b e a g a u g e e ff e ct s o t h a t t h e s y s t e m s ettl e s t o fl a t
s p a c eti m e i n s o m e sli g htl y di ff e r e nt c o o r di n a t e s y s t e m. We t e s t t hi s b y pl o tti n g t h e N e w m a n- P e nr o s e s c al a r Ψ 0 . A s
a pr oj e cti o n of t h e We yl t e n s o r, Ψ 0 s h o ul d g o t o z e r o if t h e s p a c eti m e i s s ettli n g t o a z e r o- c ur v a t ur e st a t e. Fi g ur e 2
s h o w s Ψ +

0 ( 4 , 2 ) f o r t h e hi g h- a m plit u d e c a s e A = 1 0 − 2 . We s e e t h a t Ψ+0 ( 4 , 2 ) d o e s d e c r e a s e t o w a r d z e r o a t l a t e ti m e s
f o r We yl H O B C b ut n o t f o r dt H O B C. P e r h a p s t hi s i s b e c a u s e t h e dt H O B C i m pl e m e nt a ti o n o nl y c o ntr ol s t h e ti m e
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d e r i v a ti v e of t h e m etri c o n t h e b o u n d a r y a n d n o t t h e m etri c it s elf.
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FI G. 2: R e al Ψ +
0 ( 4, 2 ) m o d e. T h e w a v e i s i ni ti all y c e nt e r e d i n t h e i nt e ri o r wi t h r 0 = 1 5. T h e w a v e a m pli t u d e i s 1 0 − 2 i n all

c a s e s.

2. I niti al w a v e o n t h e b o u n d a r y: e a rl y ti m e s

N e x t w e c e nt e r t h e w a v e o n t h e b o u n d a r y, wit h r 0 = 3 0. I n t hi s c a s e, i niti ali z a ti o n of w
( ± )
k ℓ m i s n o ntri vi al. Wit h

t h e w a v e c e nt e r e d i niti all y o n t h e b o u n d a r y, i niti ali zi n g w
( ± )
k ℓ m = 0 will pr o d u c e s p uri o u s r e fl e cti o n s. O n e c a n s e e

b y s t u d yi n g Fi g ur e 3 , t h a t t h e A − 1 ∆ Φ
( ± )
ℓ m c o n v e r g e n c e f ail s; t h u s, w e d o n o t r e c o v e r t h e a n al y ti c s ol uti o n a t e a rl y

ti m e s. T hi s i n di c a t e s t h a t t h e r e a r e li n e a r e r r o r s c o r r e s p o n di n g t o r e fl e cti o n s. T h e e x c e pti o n i s t h e fir s t- o r d e r We yl
i m pl e m e nt a ti o n, w hi c h d o e s n o t s h o w s tr o n g e a rl y- ti m e r e fl e cti o n s. T hi s i s e x p e ct e d b e c a u s e o r d e r L = 1 We yl H O B C
i s i d e nti c al t o t h e st a n d a r d fr e e zi n g- Ψ0 b o u n d a r y c o n diti o n f o r w hi c h t h e a u xili a r y s y s t e m i s n o t u s e d; t h u s, it d o e s
n o t m a tt e r h o w p o o rl y it i s i niti ali z e d.

T h e pr o p e r i niti ali z a ti o n of t h e a u xili a r y v a ri a bl e s s h o ul d all o w Φ
( ± )
ℓ m t o e v ol v e c o r r e ctl y a s t h e w a v e p a s s e s t hr o u g h

t h e o ut e r b o u n d a r y. We e x tr a ct w
( ± )
k ℓ m v al u e s c o n si s t e nt wit h t h e c o m p a ti bilit y c o n diti o n s a s d e s c ri b e d i n III A. I n

T a b l e I, w e c o m p a r e t h e e x tr a ct e d t o t h e a n al y ti c s ol uti o n s of t h e li n e a ri z e d Ei ns t ei n e q u a ti o n s, a n d s e e t h a t w e c a n
e xtr a ct u p t o w 1 ℓ m a n d w 2 ℓ m t o yi el d a c o r r e ct a n s w e r, b ut n o t u p t o w 3 ℓ m . E v e n a p a r t fr o m a n a n al yti c v al u e wit h
w hi c h t o c o m p a r e, t h e v a ri a n c e i n t h e fit i n di c a t e s t h a t t h e e xtr a ct e d w 3 ℓ m i s u nr eli a bl e.

A n al y ti c E x t r a c t e d V a ri a n c e

w 1 ℓ m 1 .3 1 4 3 1 × 1 0 − 8 1 .3 1 4 3 2 × 1 0 − 8 3 .5 0 2 8 4 × 1 0 − 1 0

w 2 ℓ m − 4 .3 6 3 9 7 × 1 0 − 1 0 − 4 .3 6 4 6 9 × 1 0 − 1 0 4 .9 5 0 6 3 × 1 0 − 1 2

w 3 ℓ m − 1 .7 0 7 0 6 × 1 0 − 1 2 − 1 .4 7 1 9 1 × 1 0 − 1 3 8 .4 2 5 1 0 × 1 0 − 1 4

T A B L E I: C o m p a ri s o n of e x t r a c t e d wi t h a n al y ti c w
( ± )
k ℓ m , i n cl u di n g v a ri a n c e, f o r i ni ti ali z a ti o n w h e n a n e v e n p a ri t y ( 4, 2 ) m ul ti p ol a r

w a v e i s c e nt e r e d o n t h e o u t e r b o u n d a r y a t ti m e t = 0. T h e We yl H O B C i m pl e m e nt a ti o n i s u s e d, a n d t h e m ul ti p ol a r w a v e
a m pli t u d e i s 1 0 − 4 .

R e s ult s f o r r 0 = 3 0 wit h c o r r e ct i niti al w
( ± )
k ℓ m a r e s h o w n i n Fi g ur e s 4 a n d 5 . I n Fi g ur e 4 , w e i niti ali z e w

( ± )
k ℓ m u p

t hr o u g h k = 4 (t h e hi g h e st u s e d b y t h e 4 t h o r d e r m et h o d) u si n g t h e a n al y ti c m ulti p ol a r w a v e s ol uti o n. I n Fi g ur e 5 ,

w e i n iti ali z e w
( ± )
k ℓ m u si n g all of t h e r eli a bl y e x tr a ct e d v al u e s, l e a vi n g t h e o t h e r s z e r o. I n b o t h c a s e s, w e s e e t h e e x p e ct e d

c o n v e r g e n c e wit h a m plit u d e. T hi s i s m o s t cl e a r f o r t h e fir s t t = 5 0 of t h e e v ol uti o n s w h e n r e fl e cti o n s, if pr e s e nt, a r e
vi si bl e.
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FI G. 3: S a m e a s Fi g u r e 1 e x c e p t r 0 = 3 0 .

3. I niti al w a v e o n t h e b o u n d a r y: l at e ti m e s

It i s a t l a t e ti m e s, l o n g aft e r t h e w a v e h a s p a s s e d t hr o u g h t h e o ut e r b o u n d a r y (s o t h e r e s h o ul d b e n o t hi n g l eft
b ut s t a ti c Mi n k o w s ki s p a c eti m e), t h a t t h e di ff e r e n c e b et w e e n dt H O B C a n d We yl H O B C m o s t cl e a rl y m a nif e st s. We

o b s e r v e a drift, n e a rl y li n e a r wit h ti m e, i n Φ
( ± )
ℓ m f o r t h e dt H O B C e v ol uti o n, b ut n o t f o r t h e We yl H O B C e v ol uti o n.

T hi s drift b e c o m e s vi si bl e fr o m a b o ut t = 5 0 o n w a r d, a s s e e n i n t h e u p p e r p a n el s of Fi g ur e s 4 a n d 5 . I nt e r e s ti n gl y,
w hil e t h e drift d o e s a p p e a r i n t h e r e al c o m p o n e nt of t h e ℓ = 4, m = 2 m o d e (t h e o nl y m o d e i niti all y e x cit e d), it i s

s tr o n g e r i n t h e ℓ = 4, m = − 2 i m a gi n a r y c o m p o n e nt ( c o n si s t e nt wit h t h e c o n diti o n t h a t Φ
( ± )
ℓ m b e r e al). T h e drift i s

i n s e n siti v e t o t h e m et h o d of i niti ali z a ti o n of w
( ± )
k ℓ m (i e., e x tr a ct e d v s. a n al y ti c), a n d it s l a t e- ti m e sl o p e i s li n e a r i n t h e

w a v e a m plit u d e A . T hi s s u g g e s t s a n e ff e ct w hi c h i niti all y i s s ti m ul a t e d b y a n o nli n e a r e ff e ct ( s o t h a t m o d e s w hi c h a r e
z e r o a t t = 0 c a n g r o w) b ut w h o s e l a t e r i n c r e a s e i s a li n e a r e ff e ct.

B y i ntr o d u ci n g t h e a u xili a r y v a ri a bl e s, w e h a v e i n e ff e ct a d d e d a n e w s et of c o n s tr ai nt e q u a ti o n s t o t h e o v e r all

s y st e m, n a m el y t h e c o m p a ti bilit y c o n diti o n s. At a n y gi v e n ti m e, w
( ± )
k ℓ m a t t h e b o u n d a r y c a n b e c o m p ut e d i n t w o

w a y s: eit h e r fr o m t h e o ut g oi n g n ull d e ri v a ti v e s of t h e i nt e ri o r m etri c e v al u a t e d o n t h e b o u n d a r y o r fr o m t h e e v ol v e d

a u xili a r y s y s t e m. B y pr o p e rl y i niti ali zi n g w
( ± )
k ℓ m , w e f o r c e t h e s e c o n s tr ai nt s t o b e s a ti s fi e d a t t = 0. H o w e v e r, a t t > 0,

tr u n c a ti o n e r r o r i s e x p e ct e d t o c a u s e t h e t w o s ol uti o n s f o r w
( ± )
k ℓ m a t t h e b o u n d a r y t o drift a p a r t. We h a v e tri e d t o

m e a s ur e w ±
1 ℓ m fr o m t h e i nt e ri o r m etri c t hr o u g h o ut t h e e v ol uti o n, u si n g t h e t e c h ni q u e s d e s c ri b e d i n S e cti o n III A, b ut

wit h o b s e r v a ti o n r a dii i n si d e r = 3 0. U nf o r t u n a t el y, t h e s e e x tr a ct e d w ±
1 ℓ m v al u e s a r e f o u n d t o b e m u c h l e s s a c c ur a t e

t h a n t h o s e o bt ai n e d u si n g e xt e ri o r p oi nt s o n a n e nl a r g e d g ri d, m a ki n g c o n fi d e nt c o n cl u si o n s di ffi c ult. H o w e v e r, w e
d o i n d e e d s e e t h a t t h e t w o v al u e s of w ±

1 ℓ m s e e m t o di v e r g e q ui c kl y ( o n e g r o wi n g a n d p o siti v e, t h e o t h e r g r o wi n g
a n d n e g a ti v e) d uri n g t h e drift p h a s e of t h e dt H O B C e v ol uti o n. T h e e x p e ri e n c e of i nt e ri o r ( v ol u m e d a t a ) c o n s tr ai nt s
i n n u m e ri c al r el a ti vit y i s t h a t vi ol a ti o n s t e n d t o g r o w di s a s tr o u sl y u nl e s s t h e f o r m ul a ti o n i s c a r ef ull y c h o s e n, wit h
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W e yl H O B C, L = 4

FI G. 4: S a m e a s Fi g u r e 3 e x c e p t f o r i ni ti ali z a ti o n of w
( ± )
k ℓ m . H e r e, t h e w

( ± )
k ℓ m ’ s a r e i ni ti ali z e d t o t h ei r a n al y ti c v al u e s, w h e r e

k = 1 , 2 , 3 , 4.

t e r m s pr o p o r ti o n al t o t h e vi ol a ti o n a d d e d b a c k t o t h e e v ol uti o n t o “ d a m p ” c o n s tr ai nt vi ol a ti o n s, dri vi n g t h e s ol uti o n
t o w a r d s t h e c o n s tr ai nt s a ti sf yi n g s u b s p a c e of s t a t e s. It i s p o s si bl e t h a t t h e a u xili a r y e v ol uti o n s y s t e m o r t h e b o u n d a r y
c o n diti o n s i m p o s e d o n t h e i nt e ri o r m etri c c o ul d b e alt e r e d i n s u c h a w a y a s t o d a m p vi ol a ti o n s of t h e c o m p a ti bilit y
c o n diti o n s i n t h e dt H O B C f o r m ul a ti o n. H o w e v e r, si n c e We yl H O B C s h o w s n o si g n s of a n y s u c h pr o bl e m, w e s e e n o
r e a s o n t o p ur s u e t hi s li n e of t h o u g ht f ur t h e r. A s w e m o v e t o bi n a r y bl a c k h ol e si m ul a ti o n s pr e s e nt e d i n t h e n e x t
s e cti o n, w e utili z e e x cl u si v el y t h e We yl H O B C i m pl e m e nt a ti o n.

B.  Bi n a r y Bl a c k H ol e s

N e x t, w e e v ol v e a n i n s pir alli n g bi n a r y bl a c k h ol e s y s t e m. T h e bi n a r y h a s a hi g h m a s s r a ti o, 7: 1, e n s uri n g a
si g ni fi c a nt c o ntri b uti o n fr o m s u b d o mi n a nt m o d e s. T h e i niti al d a t a i s c o n s tr u ct e d fr o m a s u p e r p o s e d K e r r- S c hil d
b a c k g r o u n d [ 5 6 ]. T h e i niti al bi n a r y s e p a r a ti o n i s c h o s e n t o b e 2 7M , w he r e M i s t h e s u m of t h e C hri st o d o ul o u m a s s e s
of t h e t w o h o ri z o n s. B o t h bl a c k h ol e s a r e i niti all y n o n- s pi n ni n g. Wit h t hi s i niti al d a t a s c e n a ri o, t h e ti m e t o m e r g e r
i s e s p e ci all y l o n g (tm e r g e r ≈ 1 0 6 , 0 0 0 M ). H e n c e i n t hi s p a p e r, w e f o c u s o n t h e i n s pi r al p h a s e of t h e c o al e s c e n c e o nl y
a n d pl a n t o di s c u s s m e r g e r s i n a f oll o w- u p p a p e r. Te s ts a r e p e rf o r m e d wit h t w o o ut e r b o u n d a r y l o c a ti o n s: fir s t, t h e
o ut e r b o u n d a r y i s pl a c e d a t R b d r y = 2 5 0 M a n d s e c o n d, a t R b d r y = 5 0 0 M . T h e s e a r e i nt e nti o n all y pl a c e d cl o s e r t o
t h e s o ur c e t h a n f o r t y pi c al si m ul a ti o n s s o a s t o t e s t t h e b o u n d a r y c o n diti o n s.

F o r bi n a r y bl a c k h ol e si m ul a ti o n s, t h e r e a r e n o a n al y ti c s ol uti o n s wit h w hi c h t o c o m p a r e. I n s t e a d, w e r u n r ef e r e n c e
si m ul a ti o n s, w hi c h h a v e g ri d s i d e nti c al t o t h a t of t h e t e s t r u n s i n si d e of R b d r y , b ut a r e s ur r o u n d e d b y e x tr a s p h e ri c al
s h ell d o m ai n s w hi c h e x t e n d t h e o ut e r b o u n d a r y t o eit h e r R = 2 , 4 0 0 M (f o r t e s t r u n s wit h R b d r y = 2 5 0 M ) o r t o
R = 2 , 6 4 6 M (f o r t e st r u n s wit h R b d r y = 5 0 0 M ). T h e r ef e r e n c e r u n s u s e t h e 4 t h o r d e r b o u n d a r y c o n diti o n i n t h e
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FI G. 5: S a m e a s Fi g u r e s 3 a n d 4 e x c e p t f o r i ni ti ali z a ti o n of w
( ± )
k ℓ m . H e r e t h e w

( ± )
k ℓ m ’ s a r e e x t r a c t e d, w h e r e k = 1 , 2.

We yl H O B C i m pl e m e nt a ti o n. A n y s p uri o u s r e fl e cti o n s of o ut g oi n g G W s fr o m t hi s e x t e n d e d o ut e r b o u n d a r y r a di u s
s h o ul d b e s m all a n d s h o ul d n o t a ff e ct t h e t e st R b d r y s h ell b ef o r e t ≈ 4 , 5 0 0 M .

We e v ol v e t h e hi g h m a s s r a ti o bi n a r y bl a c k h ol e i niti al d a t a u si n g t h e s t a n d a r d fr e e zi n g- Ψ 0 S p E C i m pl e m e nt a ti o n
a n d t h e 4 t h o r d e r We yl H O B C ( c o r r e s p o n di n g t o L = 1 a n d L = 4, r e s p e cti v el y ), wit h b o u n d a r y a t R b d r y . We
m o nit o r t h e si x R W Z s c al a r m o d e s wit h t h e hi g h e s t a m plit u d e s a t t h e o ut e r b o u n d a r y of t h e t e s t r u n s ( i e. a t eit h e r
R b d r y = 2 5 0 M o r R b d r y = 5 0 0 M ). T h e s e a r e (i n o r d e r of d e s c e n di n g a m plit u d e) Φ +

2 ,2 , Φ+2 ,0 , Φ−2 ,1 , Φ+3 ,3 , Φ+3 ,1 , a n d Φ+4 ,4 .

F o r t h e f o ur t h o r d e r We yl H O B C, w e p e rf o r m t w o s e p a r a t e e v ol uti o n s: (i) wit h all w
( ± )
k ℓ m i niti ali z e d t o z e r o, a n d

(ii) wit h w +
1 2 2 , w +

2 2 2 , w +
1 2 0 , w +

2 2 0 , w −
1 2 1 , w −

2 2 1 , w +
1 3 3 , w +

2 3 3 , w +
1 3 1 , w +

2 3 1 , w +
1 4 4 , w +

2 4 4 i niti ali z e d u si n g a s h o r t e v ol uti o n o n t h e

r ef e r e n c e g ri d, a c c o r di n g t o t h e pr o c e d ur e of S e cti o n III A ( wit h t h e r e s t of t h e w
( ± )
k ℓ m i niti ali z e d t o z e r o ). T h e m o d e s

i niti ali z e d i n t h e s e c o n d e v ol uti o n w e r e c h o s e n b e c a u s e t h e y w e r e f o u n d t o h a v e t h e l a r g e s t e a rl y- ti m e w
( ± )
k ℓ m . F o r t hi s

bi n a r y bl a c k h ol e c a s e, w e alt e r t h e fitti n g f o r m ul a E q. ( 1 6 ) a n d o nl y fit t o a q u a dr a ti c f u n cti o n i n λ (i e. w e t a k e

σ 3 = 0 ). We fi n d t h a t w e c a n n o t e x tr a ct w
( ± )
3 ℓ m u si n g t h e u s u al c u bi c f u n cti o n; fitti n g t o a c u bi c f u n cti o n o nl y l e a d s

t o l a r g e v a ri a n c e o n all e x tr a ct e d v a ri a bl e s, alt h o u g h it gi v e s al m o s t e x a ctl y t h e s a m e w
( ± )
1 ℓ m a n d w

( ± )
2 ℓ m , a n d w

( ± )
3 ℓ m i s

n o t di s ti n g ui s h e d fr o m z e r o. Usi n g t h e v a ri a n c e of t h e q u a dr a ti c fit, w e e x tr a ct w
( ± )
1 ℓ m m o d e s (f o r t h e m o st si g ni fi c a nt

ℓ ,m ) wit h a r el a ti v e u n c e r t ai nt y of 1 0 − 5 a n d w
( ± )
2 ℓ m m o d e s wit h a r el a ti v e u n c e r t ai nt y of 1 0 − 2 – 1 0 − 3 .

We d e fi n e t h e e r r o r of a m o d e a t ti m e t t o b e t h e di ff e r e n c e b et w e e n Φ
( ± )
ℓ m of t h a t m o d e e x tr a ct e d a t R = R b d r y

a n d Φ
( ± )
ℓ m of t h e s a m e m o d e e xtr a ct e d a t t h e s a m e r a di u s a n d ti m e fr o m t h e r ef e r e n c e si m ul a ti o n. E r r o r s f o r t h e s e si x

hi g h e s t m o d e s fr o m r u n s wit h R b d r y = 2 5 0 M a r e s h o w n i n Fi g ur e 6 , a n d t h o s e fr o m r u n s wit h R b d r y = 5 0 0 M a r e

s h o w n i n Fi g ur e 7 . E a c h e r r o r i s n o r m ali z e d b y t h e a m plit u d e of t h e m o d e Φ
( ± )
ℓ m m e a s ur e d a t t h e e xtr a cti o n r a di u s

s h o r tl y aft e r t h e i niti al b ur s t of j u n k r a di a ti o n h a s p a s s e d. Si n c e t h e i n s pi r al f o r t hi s hi g h m a s s r a ti o B B H i s s o sl o w,
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FI G. 6: E r r o r s f o r t h e si x hi g h e s t a m pli t u d e R W Z s c al a r m o d e s ( c al c ul a t e d a n d n o r m ali z e d a s d e s c ri b e d i n t h e t e x t ), f r o m B B H
si m ul a ti o n s wi t h t e s t R b d r y = 2 5 0 M a n d r ef e r e n c e R b d r y = 2 , 4 0 0 M . All w a v e s a r e e x t r a c t e d a t R = 2 5 0 M . T h e t u r q u oi s e a n d
bl u e c u r v e s a r e r u n s w hi c h u s e t h e L = 4 We yl H O B C wi t h o u t a n d wi t h p r o p e r w k ℓ m i ni ti ali z a ti o n, r e s p e c ti v el y. T h e r e d c u r v e
i s a r u n w hi c h u s e s t h e L = 1 f r e e zi n g- Ψ 0 b o u n d a r y c o n di ti o n.

Fi r s t, w e will di s c u s s t h e r e s ults w hi c h a r e m o s t r e a dil y a p p a r e nt. F o r t h e ti m e r a n g e b et w e e n a p pr o xi m a t el y
1 , 2 0 0 M a n d 4 , 5 0 0 M , t h e e r r o r s i n t h e We yl H O B C r u n s wit h L = 4 a n d pr o p e r w k ℓ m i niti ali z a ti o n a r e a b o ut a n
o r d e r of m a g nit u d e s m all e r t h a n t h e e r r o r s i n t h e L = 1 r u n s f o r t h e m o d e s Φ +

2 ,2 , Φ−2 ,1 , Φ+3 ,3 , Φ+3 ,1 , a n d Φ+4 ,4 i n Fi g ur e 6

a n d t h e m o d e s Φ +
2 ,2 , Φ−2 ,1 , an d Φ +

3 ,1 i n Fi g ur e 7 . F o r t h e ti m e r a n g e b et w e e n a p pr o xi m a t el y 1, 2 0 0 M a n d 1 2 , 0 0 0 M , t h e

m o d e Φ +
2 ,0 ( w hi c h s h o ul d i n cl u d e t h e l a r g e s t G W m e m o r y e ff e ct) s h o w s a b o ut t w o o r d e r s of m a g nit u d e r e d u cti o n i n

e r r o r i n b o t h fi g ur e s w h e n 4 t h o r d e r We yl H O B C wit h pr o p e r w k ℓ m i niti ali z a ti o n i s u s e d a s o p p o s e d t o t h e fr e e zi n g- Ψ0
b o u n d a r y c o n diti o n. A s f o r t h e e r r o r s i n Φ +

3 ,3 a n d Φ +
4 ,4 , t h e y a r e r el a ti v el y i n d e p e n d e nt of b o u n d a r y c o n diti o n o r d e r

( e x c e pt i n Fi g ur e 6 b et w e e n a p pr o xi m a t el y 6 5 0 M a n d 4 , 5 0 0 M ). We a ttri b ut e t h e l a c k of i m pr o v e m e nt i n t h e s e t w o
m o d e s wit h H O B C s t o t h e f a ct t h a t Φ +

3 ,3 a n d Φ +
4 ,4 a r e d o mi n a t e d b y hi g h-fr e q u e n c y n oi s e, i n di c a ti n g t h a t t h e y a r e

c o nt a mi n a t e d b y n u m e ri c al e r r o r i n t h e i nt e ri o r e v ol uti o n. It i s i m p o r t a nt t o n o t e t h a t t h e n o r m ali z e d e r r o r s i n all t h e
m o d e s pl o tt e d a r e s m all. F o r e x a m pl e, t h e n o r m ali z e d e r r o r s i n Φ +

2 ,2 f o r b o t h L = 1 a n d L = 4 b o u n d a r y c o n diti o n s

a r e of o r d e r 1 %. Fi n all y, t h e s e fi g ur e s cl e a rl y s h o w t h a t t h e We yl H O B C i m pl e m e nt a ti o n i s s t a bl e a n d w ell- b e h a v e d
e v e n f o r a l e n g t h y bi n a r y bl a c k h ol e si m ul a ti o n. T hi s i s n o t tr u e of t h e dt H O B C i m pl e m e nt a ti o n ( n o t s h o w n), w hi c h
pr o d u c e s a li n e a r drift s u p e ri m p o s e d o n t h e a ct u al w a v ef o r m.

O n f ur t h e r i n s p e cti o n, w e s e e a l a r g e i niti al g r o wt h of e r r o r a t e a rl y ti m e s ( t < 1 , 7 0 0 M ) i n b o t h t h e L = 1 o r d e r

r u n s a n d t h e L = 4 r u n s i n w hi c h t h e w
( ± )
k ℓ m a r e i m p r o p e rl y i niti ali z e d t o z e r o (r e d a n d t ur q u oi s e c ur v e s, r e s p e cti v el y ),

f o r b o t h R b d r y l o c a ti o n s. W h e n w
( ± )
k ℓ m a r e i niti ali z e d pr o p e rl y, h o w e v e r, t h e r e i s n o s u c h i niti al (tr a n si e nt) g r o wt h i n

e r r o r f o r t h e L = 4 o r d e r r u n s. Aft e r t hi s ti m e, b o t h of t h e L = 4 b o u n d a r y c o n diti o n r u n s ( wit h a n d wit h o ut pr o p e r
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FI G. 7: S a m e a s Fi g u r e 6 e x c e p t: t e s t R b d r y = 5 0 0 M , r ef e r e n c e R b d r y = 2 , 6 4 6 M , a n d all w a v e s a r e e x t r a c t e d a t R b d r y = 5 0 0 M .

w
( ± )
k ℓ m i niti ali z a ti o n) c o n v e r g e t o g et h e r a n d tr a c k e a c h o t h e r f ai rl y cl o s el y. T hi s s u g g e s ts t h a t i n c o r r e ct i niti ali z a ti o n

of w
( ± )
k ℓ m d o e s n o t l e a v e a l a sti n g e ff e ct, a n d t h e r ef o r e o n e mi g ht b e willi n g t o s u ff e r t hi s tr a n si e nt e r r o r f o r si m pli cit y

of i niti ali z a ti o n.
N o w l et u s e x a mi n e i n m o r e d e pt h t h e e r r o r s i n Φ +

2 ,2 , Φ−2 ,1 , Φ+3 ,1 a n d Φ +
2 ,0 b e y o n d e a rl y ti m e s. T h e e r r o r s i n t h e

q u a dr u p ol a r Φ +
2 ,2 m o d e f o r b o t h b o u n d a r y c o n diti o n o r d e r s di s pl a y di ff e r e nt b e h a vi o r d e p e n di n g o n w h et h e r t h e t e st

R b d r y i s 2 5 0M o r 5 0 0 M . F o r R b d r y = 2 5 0 M , a n d f o r t 9 , 0 0 0 M , t h e e r r o r i n Φ+2 ,2 i s si g ni fi c a ntl y l o w e r w h e n L = 4

t h a n it i s w h e n L = 1 ( s e e Fi g ur e 6 ). P a st t h a t ti m e, t w o e ff e ct s a r e vi si bl e. Fi r s t, a c c u m ul a ti o n of e r r o r i n t h e
L = 4 si m ul a ti o n bri n g s t h e e r r o r cl o s e r i n m a g nit u d e t o t h a t of t h e L = 1 si m ul a ti o n, w hi c h w a s l a r g e r fr o m t h e
b e gi n ni n g b ut d o e s n o t g r o w. S e c o n d, all b o u n d a r y c o n diti o n m et h o d s s h o w a n a c c el e r a ti n g drift a w a y fr o m z e r o.
T h e l a tt e r e ff e ct i s a k n o w n f e a t ur e of S p E C si m ul a ti o n s t h a t di s a p p e a r s f o r l a r g e R b d r y a n d i s a s s o ci a t e d wit h a
drift i n t h e c o o r di n a t e c e nt e r of m a s s of t h e s y st e m [ 5 7 ]. I n Fi g ur e 8 , w e pl o t t h e drift of t h e c o o r di n a t e c e nt e r
of m a s s v e r s u s ti m e f o r R b d r y = 2 5 0 M , 5 0 0M , a n d 2, 6 4 6 M . We s e e t h a t t h e drift i s s e n siti v e t o o ut e r b o u n d a r y
l o c a ti o n, i n a g r e e m e nt wit h pri o r s t u di e s (s e e [5 8 ], f o r e x a m pl e). T h e drift g r o w s m u c h m o r e sl o wl y f o r R b d r y = 5 0 0 M
t h a n f o r R b d r y = 2 5 0 M , a n d e v e n m o r e sl o wl y f o r t h e r ef e r e n c e r u n w hi c h h a s R b d r y = 2 , 6 4 6 M . E n h a n c e m e nt s
i n n u m e ri c al r e s ol uti o n yi el d a m a r gi n al i m pr o v e m e nt i n miti g a ti n g t hi s drift. Alt e ri n g t h e o r d e r of t h e b o u n d a r y

c o n diti o n s, wit h o r wit h o ut pr o p e r i niti ali z a ti o n of w
( ± )
k ℓ m , h a s n o e ff e ct. T o u n d e r s t a n d w h a t c a u s e s t hi s drift, fir st

r e c all t h a t t h e H O B C s i m pl e m e nt e d h e r e a r e f o r t h e p h y si c al c h a r a ct e ri s ti c fi el d s, w hi c h r e pr e s e nt g r a vit a ti o n al w a v e
i n fl o w a n d o ut fl o w. T h e r e a r e, i n a d diti o n, c o n str ai nt a n d g a u g e c h a r a ct e ri s ti c fi el d s a n d c o r r e s p o n di n g b o u n d a r y
c o n diti o n s. T h e f a ct t h a t t h e drift i s i n s e n siti v e t o t h e H O B C o r d e r s u g g e s t s t h a t it i s n o t c a u s e d b y t h e p h y si c al
b o u n d a r y c o n diti o n s; i n o t h e r w o r d s, it i s n o t c a u s e d b y a s y m m etri c G W r e fl e cti o n s pr o d u ci n g a n u n p h y si c al r a di a ti o n
r e a cti o n e ff e ct. T h e m o s t li k el y c ul prit f o r t h e c o o r di n a t e c e nt e r of m a s s drift i s t h e g a u g e b o u n d a r y c o n diti o n s, a n d
i n d e e d, e x p e ri m e nt s i n pr o g r e s s s h o w t h a t t hi s drift i s i n f a ct s e n siti v e t o g a u g e b o u n d a r y c o n diti o n s [5 9 ]. F ur t h e r
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FIG. 8: The drift of the coordinate center of mass in BBH simulations using the freezing- 0 boundary condition at Rbdry =
250M , 500M , and 2 646M .

examination of the +
2 2 error reveals that the early-time error for L = 1 is much lower when the test Rbdry = 500M

than it is when Rbdry = 250M . Consequently, the di erence in early-time error between L = 1 and L = 4 is smaller
when Rbdry = 500M . For the modes 2 1 and +

3 1, the fourth order method gives reduced errors for the duration of
the simulation for both boundary locations, even though it grows after t 4 500. This growth in error, which occurs
in most of the tests plotted, could be the result of compounding errors accumulating from outer boundary re ections
and/or gauge BC errors. Finally, let us consider the +

2 0 mode more thoroughly. This mode should contain the largest
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FIG. 9: Errors (as measured by the di erence between the test and reference runs) in the strain (h) of the (2 0) mode. The
strain is computed at future null in nity using the SpECTRE codes Cauchy-characteristic evolution (CCE) module. Note that
these errors are not normalized since the amplitudes from the di erent test run vary. Otherwise, the legend is the same as in
Figures 6 and 7. The test Rbdry = 500M and the reference Rbdry = 2 646M .

contribution to GW memory e ects [14, 15] and has been di cult to compute in numerical relativity simulations [16]
without Cauchy-characteristic evolution (CCE) [15, 60, 61] or post-processing [62] methods. In Figures 6 and 7, the

+
2 0 mode error settles to a value o set from zero with the standard L = 1 freezing- 0 boundary condition. With

the L = 4 WeylHOBC method, however, the error in +
2 0 quickly settles to zero, although if w

( )
k m are incorrectly

initialized to zero, the error has a large initial transient. These results indicate that HOBC with L = 4 gives more
accurate results for +

2 0 than does the freezing- 0 boundary condition, with respect to the reference run.
Nonetheless, studying only the RWZ scalars extracted at nite radii is not su cient to understand whether or not

HOBCs improve the resolution of the GW memory in the GW strain, h, that is measured at future null in nity. To
verify this, we extract the GW strain at future null in nity using SpECTRE s CCE module [45, 60, 61]. Furthermore,
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we map these waveforms to the superrest frame at 4,000M using a 3-orbit window to ensure that they are in a more
reasonable BMS frame than that which is output by CCE [63 65]. With these waveforms, we then study the error
in the (2 0) mode, as measured by the di erence between the test and reference runs. This is highlighted in Fig. 9,
where one sees that the HOBC curves outperform the standard freezing- 0 boundary condition to a large degree.
Furthermore, although not shown in this gure, comparison to a 3 PN waveform whose parameters match those of
the simulation shows that the net change over time in the (2 0) mode is much more on par with that of the waveform
for the HOBC simulations than those for the standard freezing- 0 boundary condition simulation. This suggests that
the HOBCs indeed improve the resolution of GW memory in numerical relativity simulations. In the future, we will
perform a more robust comparison of waveforms from simulations that utilize HOBCs with PN waveforms to illustrate
the improved GW accuracy produced by HOBCs.
The appearance of a small amount of high-frequency noise in the errors of all modes at early times in Figure 7

warrants explanation. Notice that this noise disappears rather abruptly at t 4 800M . This high-frequency com-
ponent is present only in the reference run and thus shows up in the di erence between waves extracted from the
Rbdry = 500M runs and the reference run. Its presence in the reference run is due to high-frequency, short-wavelength
junk radiation in the initial data which pervades the grid. It persists in the reference run for about the amount of
time a signal takes to pass from near the binary black holes to the reference outer boundary of R = 2 646M and back
again to Rbdry = 500M (which would be a total time of 4 792M). One might have hoped that the L = 4 WeylHOBC
in the reference run would have eliminated even a single round of re ections, but this short-wavelength radiation is
not well resolved by the SpEC code at the grid resolutions we have used, so unphysical backscatter and re ections
are possible even with absorbing boundary conditions. This high frequency junk radiation component is not visible
in Figure 6 (which shows the Rbdry = 250M boundary errors) because these errors are larger; hence, the scales of the
plots are larger.
In Figure 10, we study the convergence of our runs with numerical resolution. We plot the di erences between

consecutively higher resolutions for the Rbdry = 500M runs using 4th order WeylHOBCs with properly initialized

w
( )
k m. Here Lev in the gure refers to the adaptive-mesh-re nement tolerance that determines the grid resolution;

larger Levs have ner grids. All the modes show nice convergence except for the +
2 0 mode in the time range

3 000M < t < 4 000M . We attribute the non-convergence in this time range to the fact that +
2 0 is primarily

non-oscillatory, in the sense that there is a non-zero o set component to the wave, which dwarfs the sinusoid, and
in addition there is a linear drift component. Because of these features, when the amplitude of the +

2 0 mode with
one resolution crosses the amplitude of the same mode with a di erent resolution at t 3 000M , they linger close to
each other. On the other hand, the other modes, which show nice convergence properties, are more purely oscillatory.
Thus, zero crossings between resolutions are sharp and brief, as seen in the remaining ve panels of Figure 10.
We conclude our discussion of HOBCs for BBH systems by extrapolating the gravitational wave strain, h, to future

null in nity, since extrapolated strain waveforms are the ultimate product of most numerical relativity simulations
and are used in gravitational wave detection and interpretation. Our results, shown in Figure 11, show dramatic
improvement in accuracy with HOBCs for all the modes analyzed. In addition, for the (2 2) mode, HOBCs with

proper w
( )
k m initialization result in signi cantly lower normalized errors than freezing- 0 boundary conditions and

HOBCs without proper initialization, even for times as late as 12 000M . Extrapolation was performed using the
scri python code [58, 66 68]. The strain wave amplitudes h+ and h are de ned from the metric perturbation in
the transverse-traceless gauge. An expression for h h+ ih in terms of our gauge-invariant Regge-Wheeler-Zerilli
scalars (Eqs. (8) and (9)) is given, to leading order in 1 r, by

h =
1

r
m

( + 1)
(+)
m + i

( )
m 2Y

m (54)

recalling that ( 1)( +2). Note that we follow the sign conventions outlined in [50] (see Eq. (10) and Appendix
C). While reading o h directly from the metric perturbation only works in the transverse-traceless gauge, Eq. 54 is
valid in any gauge.
There is no extra computational cost when implementing the HOBCs for BBH simulations. HOBC runs are found

to run at about the same speed as those using SpEC s freezing- 0 boundary condition. Furthermore, use of HOBC
causes no detectable di erence in the violation of the generalized harmonic constraints, neither the norm of constraint
violation over the whole grid nor that of the outermost spherical domain.
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FI G. 1 0: C o n v e r g e n c e pl o t s f o r B B H si m ul a ti o n s u si n g L = 4 We yl H O B C a n d p r o p e r w k ℓ m i ni ti ali z a ti o n. Te s t R b d r y = 5 0 0 M ,
r ef e r e n c e R b d r y = 2 , 6 4 6 M , a n d all w a v e s a r e e x t r a c t e d a t R b d r y = 5 0 0 M . B r a n c hi n g i nt o di ff e r e nt r e s ol u ti o n s ( L e v s ) i s d o n e
af t e r j u n k r a di a ti o n f r o m t h e i ni ti al d a t a h a s l ef t t h e g ri d, s o all r e s ol u ti o n s a r e i d e nti c al u p t o t = 1 , 5 0 0 M . C o n v e r g e n c e
pl o t s f o r t h e o t h e r c a s e s ( r u n s wi t h L = 4 We yl H O B C b u t n o p r o p e r w k ℓ m i ni ti ali z a ti o n, t h o s e u si n g t h e f r e e zi n g- Ψ0 b o u n d a r y
c o n di ti o n, a n d r ef e r e n c e r u n s ) all s h o w si mil a r r e s ul t s.
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FIG. 11: Errors (as measured by the normalized di erence between the test and reference runs) in the strain (h) which is
extrapolated to future null in nity to order N4 using the scri python code. The legend is the same as in Figures 6, 7, and 9.
The test Rbdry = 500M and the reference Rbdry = 2 646M .
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V. CONCLUSIONS AND FUTURE WORK

We have presented two new implementations of the high-order absorbing boundary conditions for the Einstein
eld equations, WeylHOBC and dtHOBC, and nd WeylHOBC to be clearly superior in accuracy, robustness, and

simplicity of implementation (given a code that already uses the freezing- 0 boundary condition). We point out that
the problem of coupling a second evolution system to an interior Cauchy evolution at the latter s boundary occurs
in other schemes besides HOBC, notably in Cauchy characteristic matching. Our ndings on how best to implement

this coupling may be applicable to these schemes as well. A simple recipe for initializing the w
( )
k m auxiliary functions,

which signi cantly reduces initial transients, has been demonstrated. This recipe is the rst attempt to satisfy
compatibility conditions between the initial and boundary surfaces. For an unequal mass binary black hole inspiral,
WeylHOBC signi cantly reduces boundary errors in gravitational waveforms when compared with the freezing- 0

boundary condition. It is clear especially in the strain waveforms extrapolated to future null in nity that these
improvements in accuracy occur for the quadrupolar and subdominant modes, and persist throughout a long inspiral
simulation. We veri ed that the improvement in accuracy of the (2 0) mode actually re ects an improvement in the
resolution of the gravitational wave memory by extracting the strain at future null in nity with Cauchy characteristic
extraction, and by comparison with post-Newtonian waveforms.
Although successful implementation of WeylHOBCs for BBHs has been demonstrated, there are several avenues for

future work to gain increased accuracy in the years ahead. Implementation of the rst order corrections for curvature
and backscatter given in [24] would improve accuracy even further and allow for smaller computational grids. By
simulating BBHs through merger and ringdown, one could perhaps reproduce correctly the tail decay. Implementing
WeylHOBCs without demanding the outer boundary radius to be constant in time would perhaps further increase
accuracy by allowing various outgoing characteristic elds to exit the grid as the evolution proceeds. Finally, we plan
to compare the accuracy of gravitational waveforms computed with our WeylHOBCs to those computed with the
recent implementation of CCM in the SpECTRE code.
The center of mass drift problem seen in SXS long-time BBH simulations was not improved by our WeylHOBCs,

leading one to believe that the source of this problem is from the gauge boundary conditions. We plan to investigate
whether or not some form of WeylHOBCs could be applied to the gauge modes and thereby alleviate this problem.
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