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Errors due to imperfect boundary conditions in numerical relativity simulations of binary black
holes can produce unphysical re ections of gravitational waves which compromise the accuracy
of waveform predictions, especially for subdominant modes. A system of higher order absorbing
boundary conditions which greatly reduces this problem was introduced in earlier work [1]. In
this paper, we devise two new implementations of this boundary condition system in the Spectral
Einstein Code (SpEC), and test them in both linear multipolar gravitational wave and inspiralling
mass ratio 7:1 binary black hole simulations. One of our implementations in particular is shown
to be extremely robust and to produce accuracy superior to the standard freezing- ¢ boundary
condition usually used by SpEC.

I. INTRODUCTION

With advanced LIGO-Virgo-Kagra detectors online [2 4], and the spacecraft LISA in development [5], the need to
include accurate non-quadrupolar, subdominant modes of gravitational waves (GWs) in the waveform models produced
by numerical relativity simulations becomes more and more evident. It has been reported by many publications (see,
for example, | ]) that accurate numerical relativity waveforms that include these higher-order multipoles improve
both detection and parameter estimation for a variety of binary black hole (BBH) coalescing systems and their
remnant properties. Such systems include unequal mass BBHs, precessing BBHs, binaries whose orbits are inclined
with respect to the observer, those with certain spin alignments, and those with eccentric orbits. In [13], it is shown
that correct modeling of subdominant modes enables early warning and localization of GWs, which is crucial for
multi-messenger astronomy. In | ], the di culty of current Cauchy codes to calculate GW non-oscillatory modes
and GW memory e ects properly is presented. Studies such as [17, 18] show the high increase in signal-to-noise ratio
as a result of including higher-order multipoles in the waveforms obtained from simulations of eccentric, spinning,
BBH mergers. For the spacecraft LISA, detection of binaries with high masses and unequal mass ratios is paramount,
and also depends on accurate modeling of subdominant modes [19]. Finally, accurate numerical relativity multimodal
waveforms will improve templates obtained using analytic e ective-one-body techniques, phenomenological models,
and surrogates based on reduced order modeling [20, 21].

To illustrate how subdominant modes can become important for GW modeling, we take the example of unequal mass
BBHs. For these systems, the amplitudes of the subdominant (  m) modes relative to the dominant quadrupolar (2 2)
mode increase with mass ratio [22]. For instance, at the frequency which gives the highest (2 2) wave amplitude, the
ratio of the (3 3) mode amplitude to the (2 2) mode amplitude increases from 0 14 to 0 28 as the mass ratio increases
from 2:1 to 6:1 (see Figure 10 of [22]). Thus, correct calculation of gravitational waveforms for higher-order multipoles
becomes increasingly critical as the mass ratio of the BBHs becomes increasingly asymmetric.

Most numerical relativity Cauchy simulations do not evolve the entire spacetime out to spatial in nity, but instead
truncate the domain at some arti cial outer boundary at a far but nite distance from the source. The treatment
of this boundary is a potential source of error. Evolving the Einstein eld equations numerically on a truncated
domain to obtain accurate and unique solutions is a di cult problem. Numerical and mathematical relativists have
been striving for decades to formulate the Einstein equations so that the initial boundary value problem is well posed
and the outer boundary conditions during the numerical evolution are constraint-preserving and, ideally, perfectly
absorbing. By perfectly absorbing, we mean that the outer boundaries are completely transparent to gravitational
waves passing through, including backscatter. (See [23] and the references therein for an excellent review on these
topics). Achieving perfectly absorbing boundary conditions in numerical relativity is unrealistic. However, one can
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impose approrimately absorbing boundary conditions and thus signi cantly reduce the spurious re ections o the
outer boundary which contaminate the numerical evolution inside the grid.

A hierarchy of boundary conditions for general relativity which is perfectly absorbing for all multipoles of linearized
gravitational radiation up to a given angular momentum number L was rst introduced in [1]. This hierarchy is referred
to as a set of higher order boundary conditions (HOBCs), where each boundary condition order is a rung of the
hierarchy, numbered by L. The HOBCs presented in [1] are imposed on the Newman-Penrose scalar (, and assume a
Minkowski background and a spherical outer boundary. These HOBCs were subsequently improved in [24], to include

rst-order corrections for curvature and backscatter (for quadrupolar radiation), and to be applicable to fairly general
Cauchy foliations and to spherical as well as non-spherical outer boundary shapes. In this same publication, James

M. Bardeen generalizes these HOBCs for all L in the case of rst order curvature corrections (but neglecting
backscatter).
The standard boundary conditions used in the Spectral Einstein Code SpEC [25] for the incoming GW degrees of

freedom at the arti cial outer boundary freeze the Newman-Penrose scalar ¢ to its initial value. Referred to simply
as freezing- ( boundary conditions , they are equivalent to the lowest rung of the hierarchy (L = 1). It is shown
mathematically [1] that the freezing- ¢ boundary condition causes some amount of spurious re ection at the outer
boundary, even for the dominant quadrupolar mode ( = 2) of the GWs, while the HOBCs perfectly absorb linearized
radiation for all modes with angular momentum number L. Speci cally, the re ection coe cient for the freezing-

o boundary condition decays as (kRpary) * for every -mode and for large kRpayy (Where k is the wavenumber of the
radiation and Rpary is the radius of the outer boundary), whereas the re ection coe cients for the HOBCs are zero
for L and further, they decay as (kRbdry) 2(L+1) for > L and for large kRpary. (See [1] for derivations of these
re ection coe cients and their decay rates.) This means, for example, that the re ection coe cient for the = 3
mode decays as (kRpary) © when the HOBC with L = 2 is imposed, and the re ection coe cient for =4 decays as
(kRvary) ® when the HOBC with L = 3 is imposed. It is apparent from these decay rates that spurious re ections at a
speci c¢ outer boundary radius are signi cantly less with HOBCs than with the freezing- ¢ boundary condition. The
current strategy for reducing re ections in SpEC BBH simulations which utilize the freezing- (¢ boundary condition is
to place the outer boundary at moderately far distances (typically Rpary 2 8000 ). HOBCs should in principle allow
for smaller Ryqry s, thus reducing the computational cost of simulations.

In [26], it has been shown that the HOBCs presented in [1] are well posed for the second-order generalized har-
monic formulation of the Einstein equations, at least in the high-frequency limit (see also [27, 28]). Although not
proved per se, it is likely that the HOBCs in the rst order formulation are well posed as well. These HOBCs were
implemented [29] for the rst order generalized harmonic Cauchy formulation [30] of the Einstein equations in SpEC
as algebraic conditions on the Regge-Wheeler-Zerilli (RWZ) scalars [31, 32] in a non-rotating, single frame grid. Tests
were performed with multipolar waves [33], and the expected absorbing features were demonstrated. However, pre-
vious experience suggests that for BBH simulations, it is preferable to (i) implement the boundary conditions on the
time derivative of the incoming characteristic elds and (ii) use a grid coordinate system co-moving with the binary
black holes.

In this paper, we enhance the HOBC implementation of [29] for use with BBH systems. The HOBCs have been
adapted for the dual-frame infrastructure of SpEC [34], and they have been recast as conditions on the time derivatives
of the incoming physical characteristic modes. Regarding the latter, we have devised two natural ways of doing this.
The rst, corresponding to a generalization of Eq. (68) of [30], uses information from the HOBC system to set a
projection of the Weyl tensor. The second, corresponding to Equation (69) of [30], directly sets the time derivative
of the physical modes on the boundary to the prediction of the HOBC system. The former is simpler to implement,
reduces exactly to the freezing- ¢ condition for L = 1, and turns out to be much more robust. Our HOBCs require
that a set of auxiliary ordinary di erential equations (ODEs) living on the outer boundary are integrated forward in
time. These ODEs require initial conditions on the outer boundary. Accordingly, we devise a recipe for initializing
these ODEs when GWs are present on the boundary at the initial time (e.g. due to junk radiation). This requires
imposing the compatibility conditions that express consistency between the system of ODEs on the boundary and the
metric in the interior volume near the boundary (see [23, 35] for a review of compatibility conditions in the context
of well-posed initial boundary value problems).

Our new implementations are tested both for GWs on a Minkowski background and for a mass ratio 7:1 inspiralling
binary black hole system (prior to merger), and compared against the same tests using the standard SpEC freezing- ¢
boundary condition. We calculate waveform errors due to boundary conditions by comparing waveforms extracted on
the boundary with analytic solutions (for GWs on a Minkowski background) or with waveforms extracted at the same
location but in simulations with more distant boundaries (for BBH simulations). We nd the HOBC implementation
which sets a projection of the Weyl tensor (WeylHOBC) to be superior to that which sets the time derivative of
the physical modes (dtHOBC). Furthermore, the WeylHOBC implementation is found to produce higher waveform
accuracy for quadrupolar and subdominant modes of the GWs than does the freezing- o boundary condition. In
fact, our BBH simulations with WeylHOBCs give impressively lower errors for the six largest amplitude modes of



GW strain waveforms extrapolated to future null in nity than those with the freezing- ¢ boundary condition. Not
all boundary-related errors are ameliorated by HOBC, however, because of currently untreated errors in the gauge
modes.

Another approach presented in the literature for constructing absorbing boundary conditions is a technique called
Cauchy characteristic matching (CCM) | ]. This technique combines Cauchy evolution (which is best suited
for simulating the strong- eld regions of spacetime [11]) in the interior of the domain with characteristic evolution
along null hypersurfaces to future null in nity (where gravitational radiation is de ned unambiguously [ ]) in the
exterior. Between the Cauchy and characteristic regions is a timelike interface across which information can ow in
both directions. This timelike interface acts as an absorbing boundary for the interior Cauchy evolution since GW
data at this boundary is obtained from the characteristic evolution. An approach much like our Weyl tensor HOBC
formulation has been recently implemented in [40] to achieve fully relativistic three-dimensional CCM in the numerical
relativity code SpECTRE [45]. This CCM code has successfully passed several tests in non-trivial numerical relativity
scenarios, but it has not yet been tried in BBH simulations. Further, it is not clear that the CCM system is well-posed
since the characteristic formulation of the Einstein equations is only weakly hyperbolic [46, 47].

Our paper is structured as follows. In Section II, we review the general HOBC formalism. In Section III, we present
details of our new implementations of the boundary conditions. Results of multipolar wave tests and binary black
hole inspiral simulations are presented in Section IV. Finally, in Section V we summarize our ndings and suggest
future improvements and applications.

Throughout this paper, Greek indices are spacetime indices, lower-case Latin indices a b range over t
and r, and upper-case Latin indices A B range over and . Latin indicest j from the middle of the alphabet
are spatial Cartesian coordinates.

II. REVIEW

The HOBCs on the RWZ scalars (m) presented in [29], as translated from those on the Newman-Penrose scalar

o [1] for the purposes of numerical relativity, are

et L) =0 (1)
where L is the boundary condition order. As developed in [18], the RWZ formalism (originally put forth in [31]
and [32]) describes gauge-invariant gravitational perturbations of Schwarzschild spacetime, although here, we focus

on the special case of a at rather than Schwarzschild background. The RWZ scalars are denoted by () where

m
. . Jr . . 11 .
m is the odd-parity Regge-Wheeler scalar, =  is the even-parity Zerilli scalar, and the subscripts m refer to a

spherical harmonic decomposition. They obey the following master equation for at spacetime:

(+1)
P L Qoo ®
The HOBCs given in Eq. (1) are perfectly absorbing for all perturbations with angular momentum numbers L.
Note that Eq. (1) is the well-known Bayliss-Turkel conditions [19] for the scalar wave equation.
As in reference [29], it is assumed in this paper that the metric elds can be linearized about at spacetime close

to the outer boundary, which is taken to be a sphere of constant radius 7 (which is constant in time as well)*. The
spacetime metric g is written as

g =9 +g (3)

and the background metric g is
g = gapdadz® + r?gypdz™ dz® (4)

where g = dt? + dr? is the standard Minkowski metric on a 2-manifold M and g = d 2 4 sin? d 2 is the standard
metric on the 2-sphere. The covariant derivative compatible with the metric g (g) [g] will be denoted by () [ ]
and the volume element by 4 ( ap) | ]

1 In standard SpEC BBH simulations, the outer boundary is not kept at a constant radius but rather allowed to drift inward at a slow
velocity. As a consequence of this slow drift, many characteristic fields change from zero-speed to outgoing which means that these
characteristic fields no longer need boundary conditions. As a result, reflections that may have been caused by these boundary conditions
no longer exist. Note that all the results in this paper are for runs with constant outer boundary radius.



The RWZ scalars are computed from the spacetime metric. Thus, the metric perturbations are decomposed with
respect to scalar, vector, and tensor spherical harmonics, using the basis harmonics:

YA AY SA BAYB
Vie [ oYo)]"= G Y +3 ( +DgsY

San (ASB) (5)
where Y is the standard scalar spherical harmonic. The odd and even parity metric perturbations are treated
separately (see [29] and [18] for details). Following the gauge-invariant procedure of [18], the odd parity perturbations
are

gab = hySa gas = 2kSap GJab = hay =0 (6)
where hg, k and hgp, are metric amplitudes, and the even parity perturbations are
gab = QbYA gas = r? (KgABY + GYAB) Jab = HapY (7)
where again Q,, K, G, and H,, are metric amplitudes. In terms of these metric amplitudes and for 2, the odd
parity Regge-Wheeler scalar is
m =" he h +2h T (8)
and the even parity Zerilli scalar is
to= Y 2rH, 2K (+1)G 4Q,+2r°G +rK+r ( +1)G 2 2Q,+7°G  ( +1)  (9)

where a dot denotes partial di erentiation with respect to ¢, a prime denotes partial di erentiation with respect to r,
and ( 1)( +2). The sign di erence between Eq. (9) above and Eq. (29) of [29] allows us to match our sign
conventions with those that have become standard in the numerical relativity community, as detailed in Appendix C
of [50], pages 43 and 44.

As was shown in [29], the HOBCs given in Eq. (1) can be implemented numerically by introducing a set of auxiliary
variables which are de ned only at the boundary. These are
Wi OO It ) (10)
It was further shown in [29] that the these auxiliary variables obey a system of ODEs on the boundary, namely
1 k
Wim =55l (D kG DGy 4wl W W (11)
This system of ODEs is closed by
() _
Wity m = 0 (12)

which is equivalent to the boundary condition given by Eq. (1). Eq. (11) is integrated on the boundary for 1 < k < L,

using Eq. (12) and Wé 731 = (m) T

Thus, simulations with HOBCs can be carried out by evolving two coupled systems: the partial di erential equations

for the metric in the interior (the interior system) and the set of ODEs for WEC 7)71 on the boundary (the auziliary system,).

III. COMPATIBILITY CONDITIONS AND NEW FORMULATIONS

The absorbing HOBCs in [29] were implemented in a single, non-rotating frame and tested for multipolar waves [33]
originating in the interior of the computational domain. The research presented in this paper extends what was done
in [29] to be applicable to BBH simulations in several ways. First, the HOBC implementation has been updated
for the rotating, dual-frame infrastructure of SpEC used for BBH simulations. Second, we studied cases where the
values of the auxiliary variables on the boundary were nonzero at ¢ = 0, mimicking the initial data of BBHs which
contain junk radiation. We found that in these scenarios, the auxiliary variables had to be initialized properly in order
to satisfy compatibility conditions (see section IIT A). Finally, the algebraic formulation presented in [29] has been
modi ed to the form of Eq. (68) or Eq. (69) of [30]. Note that Eq. (68) of [30] is currently used for the freezing- ¢
boundary condition in SpEC. We have named the HOBC formulation derived using Eq. (68) WeylHOBC , and that
derived using Eq. (69) dtHOBC . These are discussed in sections IIIB 1 and III B 2 below.



A. Compatibility Conditions

HOBC simulations evolve two coupled systems, interior and auxiliary, both of which provide information about the
RWZ scalars (m). For the two systems to be consistent, the values of W,(C 7)n evolved on the boundary should agree

with the corresponding derivatives of the (m) in the interior grid evaluated at the boundary. Thus, one can consider

Eq. (10) as a constraint establishing the compatibility of the two systems, a constraint known as a compatibility
()

condition (see Sec. 5 of [23]). We must initialize w,,

t=0.

We introduce the null coordinates v =t+r and u =t r to parameterize the numerical solution for the di erential
operator in Eq. (10). In these coordinates, the di erential operator r?( ; + ) represents a directional derivative
along a path of constant w. For a general choice of parameter (v) labeling points on this path, the corresponding
tangent vector will be given by

correctly for the compatibility condition to be satis ed at

r
— = — (.4 ) (13)
For appropriate choice of (r), namely that for which r w = r2, the derivative d d will be the di erential
operator 7?( ; + ) in Eq.(10). Solving for (),
1
- = 14
¥ (14)

We then utilize Eq. (13) on our boundary condition formulation to solve for the initialization of the auxiliary variables.

k

W](g 721 r (2k+1) (m) (15)
Our goal now is to gather (m)( ) for particular events along a line of constant u. This involves running a short-time
Cauchy evolution on a larger grid extending beyond the desired boundary location. The larger grid for the short run
is chosen to have an outer boundary su ciently distant from our desired outer boundary so as to remain out of causal
contact throughout the short run. Since the outer boundary of the short run does not matter, it can use the L = 1
(freezing- o) boundary condition which does not depend on initialization of W,(c 7)n Subsequently, we measure (m)

at several values of from the short run, and perform a polynomial t to (m)( ):

(D)= o+ 1 + 22+ 37 (16)

The Python scipy.optimize.curvefit function is employed to determine , (i =0,1,2,3) for achieving a least squares

best t. Subsequently, we evaluate W,(c 7)n using Eq.(15) in conjunction with Eq.(16).

Recall that our HOBC (Eq. (1)) is equivalent to WELL) . = 0 (Eq. (12)). Hoxzve)ver, whereas WELL) m

enforced in the auxiliary system, the corresponding condition on the derivatives of °, ’ is not imposed in the interior
evolution. So the enforcement of Eq. (12) at each timestep and for each , m, and parity is at least somewhat
inconsistent with with the compatibility condition given in Eq. (10). One might impose the compatibility condition

for order (L + 1) by setting WELL) . = 9(t), where g(t =0)  go is determined by the volume data metric evaluated
on the boundary for the initial time. The time dependence must then be speci ed explicitly. Setting g to a constant is
undesirable, since then the wave passing through at ¢ = 0 would leave a permanent imprint on the boundary. A better

alternative might be to damp this initial wave exponentially by employing something of the form g(t) = goe * . This

=0 is

still will not guarantee satisfaction of the compatibility condition for WE L3r1) m

is dynamically signi cant, it is advisable to evolve the HOBC auxiliary system to an order of at least

L+1). In all cases we have investigated, we have found that the magnitude of w! ) decreases rapidly with k, usually
km

approaching machine double precision by k& = 4, and furthermore, that the computational cost of increasing L to this
value (or higher) is negligible. Consequently, we always set go = 0.

at later times. It can be argued that

e ()
if W(rh1) m

B. New Higher Order Boundary Condition Formulations

In the rst order generalized harmonic formulation of the Einstein equations [30] used by SpEC, there are three
types of characteristic elds which require outer boundary conditions: constraint, physical, and gauge. As presented



in [30], constraint-preserving, freezing- , and constant-in-time gauge boundary conditions are the current standard in
SpEC. In this paper, we focus on improving the boundary conditions for the characteristic elds representing physical
gravitational waves. We start by outlining the mathematical description of these physical modes incoming at the
outer boundary. They are given in Eq. (33) of [30] as

u = n . i 29 (17)
where
t g and i ig (18)

In these equations, o is a parameter arising from the addition of constraint-damping terms to the evolution equations,
n is the outward-pointing unit spacelike normal to the boundary on the ¢ = constant slices, and ¢ 1is the future
directed unit timelike normal to the ¢ = constant surfaces (¢ n = 0).

In order to cast Eq. (17) in terms of covariant derivatives with respect to the background metric instead of partial
derivatives (which depend on the coordinate system), we introduce the outgoing and incoming null vectors as
(t +n )and k (t mn ), respectively, and let denote covariant di erentiation along . A simple
partial derivative operator ( ; + ) will be denoted by D. The incoming characteristic elds at the boundary can
then be expressed as

W= (4 2 (19)

Note that the introduction of a at-space covariant derivative in Eq. (19) simpli es the transformation to spherical-
polar coordinates.

Given that the 2-metric intrinsic to the boundary is P g +tt n n , the projection operator for the
boundary conditions on the two physical degrees of freedom is P° =P P %P P , where P¥  constructs
the transverse-traceless version of a symmetric spacetime tensor. Given that only the perturbation of the metric is
involved, the projection is onto the background geometry which in this case is the 2-sphere. The resulting non-zero
components of the physical boundary conditions are then the angular components:

ue =Pl ut = (et )0 2 gl) 2 g (20)

where TT denotes the trace-free part with respect to the metric g on the 2-sphere and = indicates at the boundary .

In [29], HOBCs are imposed using the auxiliary system of W,(c 7)n s to specify the elds ul, on the boundary, according

to Egs. (46) and (50) of that paper. This was shown in [29] to be successful when the multipolar wave initial data was
zero on the boundary. However, in the general binary black hole case, there is non-zero GW data on the boundary
initially. As discussed in [51] and [30], discontinuities produced with an algebraic boundary condition are avoided by
casting the boundary condition in a time-derivative form as per Bj rhus [52]. Hence the boundary conditions which
we present in the next two sections are represented by

dtu}%B: PfB tul (21)

Reference [30] presents two ways to implement such time derivative physical boundary conditions in Egs. (68) and (69),
reproduced here for clarity. Utilizing our notation, Eq. (68) of [30] is

dtuzle: P/FB [Dtul +U( BC Qnicg )] (22)

where the quantity D;u is the right hand side of the rst order generalized harmonic evolution system, v is the
characteristic speed at which the characteristic eld u! enters the boundary, is the projection of the Weyl

tensor, sc is the target value to which is to be xed at the boundary, and n’c} are incoming constraint elds
(see [30] for more details). Eq. (69) of [30] is

deul = PY ho (t7) (23)

where h (¢t r) is a pre-determined waveform (z +z). The precise form of these conditions and their interface
with the auxiliary system will be described in the two sections below. The WeylHOBC formulation uses the auxiliary
system to set a projection of the Weyl tensor and is equivalent to using the time derivative of u! to drive the radial
derivative of u! at the boundary to a desired value. The dtHOBC formulation directly sets the time derivative of
the incoming physical eld to its value in the auxiliary system.



1. WeylHOBC Formulation

The incoming wave projection of the Weyl tensor contains the information needed to construct the physical boundary
conditions, as proposed in [53]. These ideas as well as those in [51] were adapted for the 3D Einstein equations in [51]
and further developed for the rst order generalized harmonic system in [30].

The goal of this section is to calculate the quantity sc of Eq. (22). To begin, recall

=P C (24)
where C is the Weyl tensor. Since a vacuum background is assumed and since the projection operator selects only
the angular components, Eq. (24) becomes

s = PL, R (25)

= R.s 3R°. Py (26)

where R is the Riemann tensor and P,; = 72g.s. In terms of metric perturbations with respect to the at
spacetime metric in Eq. (4), Eq. (26) becomes

AB = % B ga + A Ge B a g Jar (27)

% c g + c 9° c %9 gcc T29AB
After a lengthy calculation, Eq. (27) can be simpli ed for general parity. Recalling (note that is not an
index) and D = ( ¢+ ), the result is
1 2 2 1
AB— 3 B ga + oA gs r r gas B A 9 + - B da + 4 9gs
3 29 go N +- 9 g % gan
(28)

Specialization to odd and even parity GW metric perturbations, given the auxiliary variables W,(C % and the vacuum

linearized Einstein equations, is shown in sections IIIB1a and IIIB1b. The expressions then obtained for odd and
even parity ,jare used as the target values ,; gc-
a. Odd Parity Substituting the odd parity metric perturbations of Eq. (6) into Eq. (28), one obtains

1
AB —% B ha aSA + A ha aSB r 2 T2 2kS,s  + ; B Na aSA + A hg aSB

2
2 % hy%Se  r % ot 2kSC 42 % hySe 12gan
r
(29)

Expansion of the last (trace) term of Eq. (29) yields terms involving  «(hq *), <S¢ and S which equal zero with
the result that this last term vanishes. Further expansion and subsequent simpli cation of Eq. (29) gives

2 2
= D(hy )+ ~Dk  —k D%k Sy (30)
The auxiliary variables as de ned in Eq. (10), are now introduced through the term D?k. Using Eq. (45) of [29] to
relate DFE to the auxiliary variables and using Eq. (8) of [29] to nd expressions for Dw, . and Dw, , , we obtain
Dk =D (h )+ 2Dk k412 1
- (a )+; T—2—|—TW2m (3)

One can see by inspection that substituting Eq. (31) into Eq. (30) gives the nal simple and elegant result for odd
parity:

AB — T2W2 m Sas (32)

This value will now be used for the odd parity target value, . sc-



b. Ewen Parity Specializing Eq. (28) to even parity using the perturbations given in Eq. (7), one obtains

B = 3 » “QuYa + 4 “QaYs r? o KgpY+GYy, (33)

1 TT
B A ababy +; B aQaYA+ A aQaYB
Note here that it was found to be more straightforward to take the transverse-traceless part of each term rather than
to explicitly subtract the trace as in Eq. (28). Doing so and simplifying gives

AB — % 2D( aQG) D(T2DG) Hygyp ab Yis (34)

To make things simpler, we turn to the generalized Regge-Wheeler gauge with the idea that if the results are true in
one gauge, they are true in all gauges since the expression is gauge invariant. The generalized Regge-Wheeler gauge
is de ned so that Qp and G of Eq. (7) vanish (see [18] page 4). Also, in this gauge, H,, and K correspond with their

gauge-invariant counterparts, H ézm) and K(") for > 2. Thus in the Regge-Wheeler gauge and for > 2, Eq. (34)
simpli es to

AB — % H,S:W) b Yas (35)

In order to introduce the auxiliary variables w; | we make use of Eq. (19) of [24], which relates Hézm) to the even
parity Zerilli scalar +m via

Hy™ =2 0 v ggw ¢ ar i, (36)

Again, the sign di erence from Eq. (19) of [24] makes the sign of ™ agree with the usual sign conventions in

numerical relativity, as mentioned earlier. Plugging into Eq. (35), one gets

AR = o b 39 T oar T VY (37)
which simpli es to A5 = D2(r +m)YAB noting that gqp ¢ b = 0 for Minkowski spacetime. This expression is gauge

invariant provided the derivatives of +m are gauge invariant. Using the equation for W;_ ., Obtained from Eq. (10),
namely

r*wy, =r 'Dr*D T =D*r ) (38)
one again arrives at a wonderfully simple result:
Z_B = TQW;m YAB (39)

This is the value that will be used for the even parity target value, I, gc.
The complete 5 will be the sum of odd and even parity components for each mode. Combining all of the above
results, we can write

s = r? (W;rm Yie + Wy, San) (40)

2. dtHOBC Formulation

In this section, the HOBCs are implemented via Eq. (23), where b~ = u' . The result is
dtullaB = PfB tul = PfB 72( t2+ ¢ o)(r ? g ) QPEB t g (41)
Notice that the o term is annihilated by P¥  in the algebraic boundary condition implemented in [29], but not in

the corresponding time-derivative boundary condition.
Since Pap = r2gag, it follows that PY, = P, P, (1?2 2)gapP . Also keeping in mind that PA® =r 2¢*® and
PP = P we obtain

deuyy = (74 ) 7 gan) 2 ¢ Gaw (42)

Expressions for the right-hand-side of Eq. (42) are derived in the Regge-Wheeler-Zerilli formalism which involve the
auxiliary variables at the boundary.



a. Odd Parity The gauge-invariant potential h() [48] is related to the odd parity Regge-Wheeler scalar

via h0™) = d(r ), where denotes the Hodge dual with respect to g. In particular, wu,dz® = gu®da® (from

the top of page 3 of [45]), where g is the standard volume element in (M g), oriented so that , = g' 2. For at

spacetime, 4 = ,=1,and " = " = 1. Applying this to the expression h("¥) = d(r ,,), we obtain
R = A Yda = (o )dr o(r))dt (43)

Since the 1-form h(™) is decomposed as h(™) = h{™ dr + BI™dt, it follows that

R™ — ey and A = (e ) (44)
Using Egs. (16) and (17) of [29], which are hgi“") =h kand B =k, 42 +(r 2k), respectively, we re-express
the time-derivative boundary condition (42) in terms of the amplitudes h, and the odd-parity auxiliary variables w, .
to give

(ot o) 2k) =1 *(he+he + 10wy, + 1% ) (45)
With ¢ = 2kS,5 [29], substitution into Eq. (42) gives
diuyy, = 2[he +he + 17w, 41wy + 2 K]Sas (46)

The time derivative w, ,, is removed by recalling rw, , =
parity in the dtHOBC formulation is:

and w, .. using Eq. (11). The nal result for odd

m

1
dtu}\B = 2 ht + hr % ( + 1)W0 m ™1 m + %T2W2 m ; (h’T +2k Tk) + 2 k SAB (47)

for 2. All the time derivatives of the metric perturbations (h¢, h., and k) are calculable in SpEC.
b. Ewen Parity Following [18] (page 5), a scalar eld is introduced according to Z = d , where Z is the Zerilli
one-form. The Zerilli scalar is then de ned as , recalling that ( 1)( +2). Since Z = Z,dr + Zdt

m

andd = , dr+ ; dt, it follows that Z. = , and Z; = ; . Thus,
Zv+Zr = (44 o) T o= rwf (48)

The Zerilli one-form of Eq. (48) is combined with the alternate form obtained using the amplitudes of the even parity
metric perturbations to give

Tz( t + ’I‘)G = 27‘2W-1i_m ZTQ( t + ’I‘)K + ZT(QT‘ TQt %Qr + Htr + Hrr) (49)

(Note that this equation was also derived in Sec. 2.5.2 of [29] modulo the sign in front of w , ). The substitution of
grY = r?GY,y into Eq. (42) gives

dtu}xB = t[T2( t+ ) GlYas 21? GY,p (50)

Substituting for the expression for 72( ; + ,)G given in Eq. (49) and eliminating wfm using Eq. (11), we obtain the
nal result for even parity, namely:

deuts =1 ( + l)warm + 2rwirm TQW;m + 23K+ ,K) 2r(Q, »Q4 %QT + Hy+ Hyp) 212 G)Y,p (51)

for 2.
IV. RESULTS

A. Multipolar Waves

We rst evolve GW packets on a at background to test our new boundary conditions. The tests we perform are
similar to those in [29]. We evolve a solution of the linearized (about at spacetime) Einstein equations, but using
the fully nonlinear SpEC code. We will compare the numerical solution to the (linearized) analytic solution, and we
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expect di erences of order A2, where A is the amplitude of the linearized solution. For the evolution, we choose the
harmonic gauge, which is consistent with the analytic solution.

The analytic solution is given by Rinne [33], and is a generalization of the ( = 2) Teukolsky wave [55] to arbitrary
multipoles. The solution depends on freely speci able mode functions F/(r t), where (r t) is a retarded radius. We
choose F with the same form as in [29]:

F(r t)=Aexp (52)

Here, A is the amplitude, is the width, and r¢ is the radius of the peak of the wave packet at t = 0. The at
spacetime master equation for the Regge-Wheeler-Zerilli scalars, Eq. (2), can be solved by making the ansatz

) _ ¢ ( m)rj F(j)(r t) (53)

where FU)(r )  d’F(r t) d(r t)/for an outgoing solution. For all reported multipolar wave tests, the outer
boundary radius Rhq4yy of the computational domain is placed at Rpqry = 30, and the width of the Gaussian wave-
packet is chosen to be =15.

In addition to the wave-packet envelope function F', a multipolar wave is characterized by its angular mode numbers
( m) and and by its parity, even (4) or odd (-). Furthermore, each mode has distinct real and imaginary components

(constrained by the requirement that (m) itself be real). We have tested our boundary condition algorithms with
both =3 and = 4 modes and both even and odd parity, with very similar results in all cases. In addition, we
have evolved a multipolar wave whose center is displaced from the coordinate origin, so that wavefronts do not match
coordinate spheres on the outer boundary, and the wave is a mixture of modes in the tensor spherical harmonic
decomposition in our code s coordinates. Results for such displaced waves are also very similar to those for centered
waves. Therefore, we choose to pick one representative case and provide an exhaustive description of its behavior
under di erent initialization and evolution choices. We choose an = 4, m = 2, even parity wave. Given the usual
complex spherical harmonics, the reality condition for (m) requires (W)l =( 1™ ( )m, so in this basis an
appropriate =4, m = 2 mode is also present.

A nal choice is whether to evolve in an asymptotically Minkowski or in a rotating coordinate system (ie. a non-
rotating or a rotating grid). For this particular problem, there is no advantage to the latter (and no natural non-zero
choice for angular velocity). However, since many of the most interesting applications involve binaries, for which SpEC
uses co-rotating frames, we have tried evolving with angular speed = 0 01 (so equatorial boundary grid points move
at 0.3¢). This has negligible e ect on the results, except that the problematic late-time behavior for the dtHOBC
implementation discussed below is only seen in runs with rotating grid. Therefore, we report only results for runs
with rotating grids below.

1. Ewolution of an interior wave

We rst evolve a wave with rg = 15, so the wave begins in the interior far from the boundary and propagates
outward. For this choice, the wave will vanish at the boundary to numerical roundo error at ¢ = 0, so it is acceptable

to initialize W,(c 721 = 0. We then track the RWZ scalar (m) in the subsequent evolution and compare it to (m) for
()

the analytic solution of the linearized equations. The di erence between the two, denoted o
construction) but will become nonzero at later times for three reasons.

First, there can be re ections from the outer boundary due to imperfect boundary conditions. This is the deviation
that interests us, which the HOBCs are designed to minimize. The second is numerical truncation error; however,
convergence testing shows that this is not a major contribution to the di erence between numerical and analytic
solutions. The third reason is that the numerical and analytic solutions are solutions to a di erent set of equations
to the full and linearized Einstein equations, respectively. This is a large e ect, but it can be controlled by varying the
amplitude, A, of the wave packet. Di erences due to re ections can scale as A, while di erences due to nonlinearities

in Einstein s equations must scale as A% or higher. Therefore, following earlier work [29], we perform convergence
(

is initially zero (by

tests in A, plotting A ! (m). In the absence of re ections, A ! m) will decrease as A decreases until a roundo
error oor is reached.
This is, in fact, what happens for these interior wave evolutions, for both dtHOBC and WeylHOBC implementations,

as shown in Figure 1. We show results for boundary condition orders L = 1 and L = 4. For an = 4 wave, there
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should be reflections for boundary condition order L = 1 (see [1]) but not for order L = 4. These reflections should

manifest as contributions to A‘I’gi) linear in A, so that A_IA‘I'}(;) should converge to zero for the 4th order boundary
condition runs, but it should converge to a nonzero function for the 1st order boundary condition runs. This can be
seen especially by looking at the early evolution ¢ < 80; the separation of resolutions (indicating convergence to zero)

is clearly much cleaner for the output of the . = 4 runs. For the I = 1 runs, one sees that A_lA(I)E{;) converges to two
pulses at the early evolution as A decreases. The first pulse, at a time of t = 15, occurs when the outgoing wave reaches
the boundary (and is also seen in the L = 4 runs). The second pulse, at ¢ = 75, is the result of a spurious reflection
occurring at £ = 15 in the L = 1 run. The time interval between the two pulses, At = 60, is the time needed for
this reflection to travel inward across the Cauchy domain (which is a radial distance of 30), and outward again to the
outer boundary. Recall that, for the WeylHOBC implementation, the 1st-order boundary condition is algorithmically
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FIG. 1: Amplitude convergence of even parity multipolar wave with (4,2) mode. The wave is initially centered in the interior
with 7o = 15. The w\L. ’s are initialized to zero. Upper left: dtHOBC formulation with L = 1. Upper right: dtHOBC with
L = 4. Lower left: WeylHOBC formulation with L = 1. Lower right: WeylHOBC with L = 4.

A notable feature at late times is that, for each run, A_IA(I)E_,? settles to a nonzero constant. This is a nonlinear
effect, as demonstrated by the fact that the settled value converges to zero as amplitude is decreased. Nevertheless,
it indicates that, even after the wave is long past, the interior spacetime plus boundary system may settle to some
stationary vacuum state other than Minkowski. This possibly could be a gauge effect so that the system settles to flat
spacetime in some slightly different coordinate system. We test this by plotting the Newman-Penrose scalar ¥g. As
a projection of the Weyl tensor, ¥y should go to zero if the spacetime is settling to a zero-curvature state. Figure 2
shows U (4,2) for the high-amplitude case A = 1072, We see that ¥ (4,2) does decrease toward zero at late times
for WeylHOBC but not for dtHOBC. Perhaps this is because the dtHOBC implementation only controls the time
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derivative of the metric on tk
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FIG. 2: Real ¥} (4,2) mode. The wave is initially centered in the interior with 7o = 15. The wave amplitude is 1072 in all
cases.

2. Initial wave on the boundary: early times

Next we center the wave on the boundary, with r; = 30. In this case, initialization of WS;L is nontrivial. With

(&)

the wave centered initially on the boundary, initializing w;,,, = 0 will produce spurious reflections. One can see

m
by studying Figure 3, that the A_IAQE;? convergence fails; thus, we do not recover the analytic solution at early
times. This indicates that there are linear errors corresponding to reflections. The exception is the first-order Weyl
implementation, which does not show strong early-time reflections. This is expected because order L = 1 WeylHOBC
is identical to the standard freezing-¥y boundary condition for which the auxiliary system is not used; thus, it does
not matter how poorly it is initialized.

The proper initialization of the auxiliary variables should allow (I)gi) to evolve correctly as the wave passes through

the outer boundary. We extract WS;L values consistent with the compatibility conditions as described in IITA. In

Table I, we compare the extracted to the analytic solutions of the linearized Einstein equations, and see that we can
extract up to wigyn and wag, to yield a correct answer, but not up to wsg,. Even apart from an analytic value with
which to compare, the variance in the fit indicates that the extracted wsgy, is unreliable.

Analytic Extracted Variance
Wiem 1.31431 x 1078 1.31432 x 1078 3.50284 x 10710
Waem —4.36397 x 1071 —4.36469 x 10710 4.95063 x 10~12
Waem —1.70706 x 10~12 —1.47191 x 10713 8.42510 x 10~

TABLE I: Comparison of extracted with analytic wﬁfm including variance, for initialization when an even parity (4,2) multipolar
wave is centered on the outer boundary at time ¢ = 0. The WeylHOBC implementation is used, and the multipolar wave
amplitude is 1074,

Results for 7o = 30 with correct initial WS;L are shown in Figures 4 and 5. In Figure 4, we initialize WE‘.:;L up
through k = 4 (the highest used by the 4th order method) using the analytic multipolar wave solution. In Figure 5,

we initialize WSWL using all of the reliably extracted values, leaving the others zero. In both cases, we see the expected
convergence with amplitude. This is most clear for the first £ = 50 of the evolutions when reflections, if present, are
visible.
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FIG. 3: Same as Figure 1 except ro = 30.

3. Imitial wave on the boundary: late times

It is at late times, long after the wave has passed through the outer boundary (so there should be nothing left
but static Minkowski spacetime), that the difference between dtHOBC and WeylHOBC most clearly manifests. We

observe a drift, nearly linear with time, in @gi) for the dtHOBC evolution, but not for the WeylHOBC evolution.
This drift becomes visible from about ¢ = 50 onward, as seen in the upper panels of Figures 4 and 5. Interestingly,
while the drift does appear in the real component of the £ = 4, m = 2 mode (the only mode initially excited), it is

stronger in the £ = 4, m = —2 imaginary component (consistent with the condition that ‘i’gi) be real). The drift is
)

insensitive to the method of initialization of wfgm (ze., extracted vs. analytic), and its late-time slope is linear in the
wave amplitude A. This suggests an effect which initially is stimulated by a nonlinear effect (so that modes which are
zero at ¢ = 0 can grow) but whose later increase is a linear effect.

By introducing the auxiliary variables, we have in effect added a new set of constraint equations to the overall
system, namely the compatibility conditions. At any given time, WSWL at the boundary can be computed in two

ways: either from the outgoing null derivatives of the interior metric evaluated on the boundary or from the evolved

()
kém?

truncation error is expected to cause the two solutions for WS;L at the boundary to drift apart. We have tried to

auxiliary system. By properly initializing w we force these constraints to be satisfied at ¢ = 0. However, at ¢ > 0,

measure Wﬁ,m from the interior metric throughout the evolution, using the techniques described in Section III A, but
with observation radii inside = 30. Unfortunately, these extracted wﬁm values are found to be much less accurate
than those obtained using exterior points on an enlarged grid, making confident conclusions difficult. However, we
do indeed see that the two values of wﬁm seem to diverge quickly (one growing and positive, the other growing
and negative) during the drift phase of the dtHOBC evolution. The experience of interior (volume data) constraints
in numerical relativity is that violations tend to grow disastrously unless the formulation is carefully chosen, with
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FIG. 4: Same as Figure 3 except for initialization of wﬁ) . Here, the wﬁfn 's are initialized to their analytic values, where
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terms proportional to the violation added back to the evolution to “damp” constraint violations, driving the solution
towards the constraint satisfying subspace of states. It is possible that the auxiliary evolution system or the boundary
conditions imposed on the interior metric could be altered in such a way as to damp violations of the compatibility
conditions in the dtHOBC formulation. However, since WeylHOBC shows no signs of any such problem, we see no
reason to pursue this line of thought further. As we move to binary black hole simulations presented in the next
section, we utilize exclusively the Weyl[HOBC implementation.

B. Binary Black Holes

Next, we evolve an inspiralling binary black hole system. The binary has a high mass ratio, 7:1, ensuring a
significant contribution from subdominant modes. The initial data is constructed from a superposed Kerr-Schild
background [56]. The initial binary separation is chosen to be 27M, where M is the sum of the Christodoulou masses
of the two horizons. Both black holes are initially non-spinning. With this initial data scenario, the time to merger
is especially long (fmerger = 106,000M ). Hence in this paper, we focus on the inspiral phase of the coalescence only
and plan to discuss mergers in a follow-up paper. Tests are performed with two outer boundary locations: first, the
outer boundary is placed at Rpary = 250M and second, at Rpary = 500M. These are intentionally placed closer to
the source than for typical simulations so as to test the boundary conditions.

For binary black hole simulations, there are no analytic solutions with which to compare. Instead, we run reference
simulations, which have grids identical to that of the test runs inside of Rpqry, but are surrounded by extra spherical
shell domains which extend the outer boundary to either R = 2,400M (for test runs with Rpary = 250M) or to
R = 2,646M (for test runs with Rypqry = 500M). The reference runs use the 4th order boundary condition in the
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FIG. 5: Same as Figures 3 and 4 except for initialization of w; - . Here the w; .’ ’s are extracted, where k = 1, 2.

WeylHOBC implementation. Any spurious reflections of outgoing GWs from this extended outer boundary radius
should be small and should not affect the test Rpary shell before ¢ = 4, 500M.

We evolve the high mass ratio binary black hole initial data using the standard freezing-¥, SpEC implementation
and the 4th order WeylHOBC (corresponding to L = 1 and L = 4, respectively), with boundary at Rpary. We
monitor the six RWZ scalar modes with the highest amplitudes at the outer boundary of the test runs (ie. at either
Ryary = 250M or Ryary = 500M ). These are (in order of descending amplitude) ‘I’I 2 (I’ID: D54, (13'3’:3, ‘I’.‘-{l: and ‘I’I‘l.

For the fourth order WeylHOBC, we perform two separate evolutions: (i) with all WE‘.:;L initialized to zero, and
(i) with w5, W3, Wi, Wan0, W11, Waa1, W1ass Waass Wia1s Wast, Wias, Wagy initialized using a short evolution on the
reference grid, according to the procedure of Section IIT A (with the rest of the WSWL initialized to zero). The modes

initialized in the second evolution were chosen because they were found to have the largest early-time WST;. For this
binary black hole case, we alter the fitting formula Eq. (16) and only fit to a quadratic function in A (ie. we take

o3 = 0). We find that we cannot extract WS‘% using the usual cubic function; fitting to a cubic function only leads

to large variance on all extracted variables, although it gives almost exactly the same w&}% and wgﬁ;, and wg:n),l is

(+)

not distinguished from zero. Using the variance of the quadratic fit, we extract wy,,,
¢ ;m) with a relative uncertainty of 10> and wé}% modes with a relative uncertainty of 10-2-10—3.
We define the error of a mode at time t to be the difference between @‘gi} of that mode extracted at R = Rpary

and @gi) of the same mode extracted at the same radius and time from the reference simulation. Errors for these six
highest modes from runs with Rpary = 250M are shown in Figure 6, and those from runs with Ryqry = 500M are

modes (for the most significant

shown in Figure 7. Each error is normalized by the amplitude of the mode @gi) measured at the extraction radius

shortly after the initial burst of junk radiation has passed. Since the inspiral for this high mass ratio BBH is so slow,
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FIG. 6: Errors for the six highest amplitude RWZ scalar modes (calculated and normalized as described in the text), from BBH
simulations with test Rpary = 250M and reference Rpary = 2,400M . All waves are extracted at R = 2500M. The turquoise and
blue curves are runs which use the L = 4 WeylHOBC without and with proper Wgem initialization, respectively. The red curve
is a run which uses the L = 1 freezing-W¥y boundary condition.

First, we will discuss the results which are most readily apparent. For the time range between approximately
1,200M and 4,500M, the errors in the WeylHOBC runs with L = 4 and proper Wkem initialization are about an
order of magmtude smaller than the errors in the L = 1 runs for the modes ‘i’z 2 P21, ¢’3 3 @3 1, and ®F 14 in Figure 6
and the modes <IJ2 2 <IJ2 1, and ‘I’ 3110 Figure 7. For the time range between approxm'lately 1,200M and 12,000M , the

mode ‘I@" o (which should mclude the largest GW memory effect) shows about two orders of magnitude reduction in
error in both figures when 4th order WeylHOBC with proper wgsm, initialization is used as opposed to the freezing-¥,
boundary condition. As for the errors in @3,3 and @4,4, they are relatively independent of boundary condition order
(except in Figure 6 between approximately 650M and 4,500M ). We attribute the lack of improvement in these two
modes with HOBCs to the fact that @;'3 and ®F 14 are domlnated by high-frequency noise, indicating that they are
contaminated by numerical error in the interior evolution. It is 1mp0rta:nt to note that the normahzed errors in all the
modes plotted are small. For example, the normalized errors in @2,2 for both L = 1 and L = 4 boundary conditions
are of order 1%. Finally, these figures clearly show that the Wey]HOBC implementation is stable and well-behaved
even for a lengthy binary black hole simulation. This is not true of the dtHOBC implementation (not shown), which
produces a linear drift superimposed on the actual waveform.

On further inspection, we see a large initial growth of error at early times (¢ < 1,700M ) in both the L =1 order

runs and the L = 4 runs in which the WS;L are tmproperly initialized to zero (red and turquoise curves, respectively),

for both Rpgry locations. When WS;L are initialized properly, however, there is no such initial (transient) growth in

error for the L = 4 order runs. After this time, both of the L = 4 boundary condition runs (with and without proper
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FIG. 7: Same as Figure 6 except: test Ryary = 500M , reference Ryq4r, = 2, 6460, and all waves are extracted at Ryary, = 500M.

(+)
Whem

of w;(j;l does not leave a lasting effect, and therefore one might be willing to suffer this transient error for simplicity
of initialization.
Now let us examine in more depth the errors in ‘i’{z, ‘I’z_, 1 (I);:l and (I’—Zi_,o beyond early times. The errors in the

initialization) converge together and track each other fairly closely. This suggests that incorrect initialization

quadrupolar '1"2",2 mode for both boundary condition orders display different behavior depending on whether the test

Ryary is 250M or 500M. For Rpdry = 250M, and for ¢t < 9,000M, the error in (I)IZ is significantly lower when L = 4
than it is when L = 1 (see Figure 6). Past that time, two effects are visible. First, accumulation of error in the
L = 4 simulation brings the error closer in magnitude to that of the L = 1 simulation, which was larger from the
beginning but does not grow. Second, all boundary condition methods show an accelerating drift away from zero.
The latter effect is a known feature of SpEC simulations that disappears for large Rpdry and is associated with a
drift in the coordinate center of mass of the system [57]. In Figure 8, we plot the drift of the coordinate center
of mass versus time for Rpary = 250M, 500M, and 2,646M. We see that the drift is sensitive to outer boundary
location, in agreement with prior studies (see [5%], for example). The drift grows much more slowly for Rpary = 500M
than for Rpary = 250M, and even more slowly for the reference run which has Rygry = 2,646M. Enhancements
in numerical resolution yield a marginal improvement in mitigating this drift. Altering the order of the boundary
conditions, with or without proper initialization of WSWL, has no effect. To understand what causes this drift, first
recall that the HOBCs implemented here are for the physical characteristic fields, which represent gravitational wave
inflow and outflow. There are, in addition, constraint and gauge characteristic fields and corresponding boundary
conditions. The fact that the drift is insensitive to the HOBC order suggests that it is not caused by the physical
boundary conditions; in other words, it is not caused by asymmetric GW reflections producing an unphysical radiation
reaction effect. The most likely culprit for the coordinate center of mass drift is the gauge boundary conditions, and
indeed, experiments in progress show that this drift is in fact sensitive to gauge boundary conditions [59]. Further
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FIG. 8: The drift of the coordinate center of mass in BBH simulations using the freezing- o boundary condition at Rpary =
250M, 500M, and 2 646M.

examination of the ;2 error reveals that the early-time error for L = 1 is much lower when the test Ryqry = 5000
than it is when Rpdry = 250M. Consequently, the di erence in early-time error between L = 1 and L = 4 is smaller
when Rydry = 500M. For the modes ,, and 4, the fourth order method gives reduced errors for the duration of
the simulation for both boundary locations, even though it grows after ¢ 4 500. This growth in error, which occurs
in most of the tests plotted, could be the result of compoundmg errors accumulating from outer boundary re ections
and/or gauge BC errors. Finall - A "' ™is mode should contain the largest

x10°
T 1
05 Rh/M (2,0)
_ 00
e | -
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: —— L=4 with w, init | |
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FIG. 9: Errors (as measured by the di erence between the test and reference runs) in the strain (h) of the (2 0) mode. The
strain is computed at future null in nity using the SpECTRE codes Cauchy-characteristic evolution (CCE) module. Note that
these errors are not normalized since the amplitudes from the di erent test run vary. Otherwise, the legend is the same as in
Figures 6 and 7. The test Rpary = 500M and the reference Rpary = 2 646M.

contribution to GW memory e ects [14, 15] and has been di cult to compute in numerical relativity simulations [10]
without Cauchy-characteristic evolution (CCE) [15, 60, 61] or post-processing [62] methods. In Figures 6 and 7, the
+

5o mode error settles to a value o set from zero with the standard L = 1 freezing- o boundary condition. With

the L = 4 WeylHOBC method, however, the error in ;ro quickly settles to zero, although if w,(C 731 are incorrectly
initialized to zero, the error has a large initial transient. These results indicate that HOBC with L = 4 gives more
accurate results for J, than does the freezing- o boundary condition, with respect to the reference run.
Nonetheless, studying only the RWZ scalars extracted at nite radii is not su cient to understand whether or not
HOBCs improve the resolution of the GW memory in the GW strain, h, that is measured at future null in nity. To
verify this, we extract the GW strain at future null in nity using SpECTRE s CCE module [15, 60, 61]. Furthermore,
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we map these waveforms to the superrest frame at 4,000M using a 3-orbit window to ensure that they are in a more
reasonable BMS frame than that which is output by CCE | ]. With these waveforms, we then study the error
in the (2 0) mode, as measured by the di erence between the test and reference runs. This is highlighted in Fig. 9,
where one sees that the HOBC curves outperform the standard freezing- ¢ boundary condition to a large degree.
Furthermore, although not shown in this gure, comparison to a 3 PN waveform whose parameters match those of
the simulation shows that the net change over time in the (2 0) mode is much more on par with that of the waveform
for the HOBC simulations than those for the standard freezing- ¢ boundary condition simulation. This suggests that
the HOBCs indeed improve the resolution of GW memory in numerical relativity simulations. In the future, we will
perform a more robust comparison of waveforms from simulations that utilize HOBCs with PN waveforms to illustrate
the improved GW accuracy produced by HOBCs.

The appearance of a small amount of high-frequency noise in the errors of all modes at early times in Figure 7
warrants explanation. Notice that this noise disappears rather abruptly at ¢ 4 800M. This high-frequency com-
ponent is present only in the reference run and thus shows up in the di erence between waves extracted from the
Rpary = 500M runs and the reference run. Its presence in the reference run is due to high-frequency, short-wavelength
junk radiation in the initial data which pervades the grid. It persists in the reference run for about the amount of
time a signal takes to pass from near the binary black holes to the reference outer boundary of R = 2 646 M and back
again to Rpary = 500M (which would be a total time of 4 792M). One might have hoped that the L = 4 WeylHOBC
in the reference run would have eliminated even a single round of re ections, but this short-wavelength radiation is
not well resolved by the SpEC code at the grid resolutions we have used, so unphysical backscatter and re ections
are possible even with absorbing boundary conditions. This high frequency junk radiation component is not visible
in Figure 6 (which shows the Rp4ry = 250M boundary errors) because these errors are larger; hence, the scales of the
plots are larger.

In Figure 10, we study the convergence of our runs with numerical resolution. We plot the di erences between
consecutively higher resolutions for the Rpqry = 500M runs using 4th order WeylHOBCs with properly initialized

W,(C 7)n Here Lev in the gure refers to the adaptive-mesh-re nement tolerance that determines the grid resolution;
larger Levs have mner grids. All the modes show nice convergence except for the ;0 mode in the time range

3 000M < t < 4 000M. We attribute the non-convergence in this time range to the fact that o is primarily
non-oscillatory, in the sense that there is a non-zero o set component to the wave, which dwarfs the sinusoid, and
in addition there is a linear drift component. Because of these features, when the amplitude of the 5, mode with
one resolution crosses the amplitude of the same mode with a di erent resolution at ¢ 3 0000, they linger close to
each other. On the other hand, the other modes, which show nice convergence properties, are more purely oscillatory.
Thus, zero crossings between resolutions are sharp and brief, as seen in the remaining ve panels of Figure 10.

We conclude our discussion of HOBCs for BBH systems by extrapolating the gravitational wave strain, h, to future
null in nity, since extrapolated strain waveforms are the ultimate product of most numerical relativity simulations
and are used in gravitational wave detection and interpretation. Our results, shown in Figure 11, show dramatic

improvement in accuracy with HOBCs for all the modes analyzed. In addition, for the (2 2) mode, HOBCs with

proper W,(c 7)n initialization result in signi cantly lower normalized errors than freezing- ¢ boundary conditions and

HOBCs without proper initialization, even for times as late as 12 000M. Extrapolation was performed using the
scri python code [58, ]. The strain wave amplitudes hy and h are de ned from the metric perturbation in
the transverse-traceless gauge. An expression for b hy ih in terms of our gauge-invariant Regge-Wheeler-Zerilli
scalars (Eqs. (8) and (9)) is given, to leading order in 1 7, by

1 [—
h== (+0 P+ () oy (54)

r m
m
recalling that ( 1)( +2). Note that we follow the sign conventions outlined in [50] (see Eq. (10) and Appendix
C). While reading o h directly from the metric perturbation only works in the transverse-traceless gauge, Eq. 54 is
valid in any gauge.

There is no extra computational cost when implementing the HOBCs for BBH simulations. HOBC runs are found
to run at about the same speed as those using SpEC s freezing- ¢ boundary condition. Furthermore, use of HOBC
causes no detectable di erence in the violation of the generalized harmonic constraints, neither the norm of constraint
violation over the whole grid nor that of the outermost spherical domain.
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V. CONCLUSIONS AND FUTURE WORK

We have presented two new implementations of the high-order absorbing boundary conditions for the Einstein
eld equations, WeylHOBC and dtHOBC, and nd WeylHOBC to be clearly superior in accuracy, robustness, and
simplicity of implementation (given a code that already uses the freezing- ( boundary condition). We point out that
the problem of coupling a second evolution system to an interior Cauchy evolution at the latter s boundary occurs

in other schemes besides HOBC, notably in Cauchy characteristic matching. Our ndings on how best to implement

this coupling may be applicable to these schemes as well. A simple recipe for initializing the WEC 7)71 auxiliary functions,

which signi cantly reduces initial transients, has been demonstrated. This recipe is the rst attempt to satisfy
compatibility conditions between the initial and boundary surfaces. For an unequal mass binary black hole inspiral,
WeylHOBC signi cantly reduces boundary errors in gravitational waveforms when compared with the freezing-
boundary condition. It is clear especially in the strain waveforms extrapolated to future null in nity that these
improvements in accuracy occur for the quadrupolar and subdominant modes, and persist throughout a long inspiral
simulation. We veri ed that the improvement in accuracy of the (2 0) mode actually re ects an improvement in the
resolution of the gravitational wave memory by extracting the strain at future null in nity with Cauchy characteristic
extraction, and by comparison with post-Newtonian waveforms.

Although successful implementation of WeylHOBCs for BBHs has been demonstrated, there are several avenues for
future work to gain increased accuracy in the years ahead. Implementation of the rst order corrections for curvature
and backscatter given in [24] would improve accuracy even further and allow for smaller computational grids. By
simulating BBHs through merger and ringdown, one could perhaps reproduce correctly the tail decay. Implementing
WeylHOBCs without demanding the outer boundary radius to be constant in time would perhaps further increase
accuracy by allowing various outgoing characteristic elds to exit the grid as the evolution proceeds. Finally, we plan
to compare the accuracy of gravitational waveforms computed with our WeylHOBCs to those computed with the
recent implementation of CCM in the SpECTRE code.

The center of mass drift problem seen in SXS long-time BBH simulations was not improved by our WeylHOBCs,
leading one to believe that the source of this problem is from the gauge boundary conditions. We plan to investigate
whether or not some form of WeylHOBCs could be applied to the gauge modes and thereby alleviate this problem.
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