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Abstract— Robots often need to learn the human’s reward
function online, during the current interaction. This real-
time learning requires fast but approximate learning rules:
when the human’s behavior is noisy or suboptimal, current
approximations can result in unstable robot learning. Ac-
cordingly, in this paper we seek to enhance the robustness
and convergence properties of gradient descent learning rules
when inferring the human’s reward parameters. We model
the robot’s learning algorithm as a dynamical system over
the human preference parameters, where the human’s true
(but unknown) preferences are the equilibrium point. This
enables us to perform Lyapunov stability analysis to derive the
conditions under which the robot’s learning dynamics converge.
Our proposed algorithm (StROL) uses these conditions to learn
robust-by-design learning rules: given the original learning
dynamics, StROL outputs a modified learning rule that now
converges to the human’s true parameters under a larger set
of human inputs. In practice, these autonomously generated
learning rules can correctly infer what the human is trying to
convey, even when the human is noisy, biased, and suboptimal.
Across simulations and a user study we find that StROL results
in a more accurate estimate and less regret than state-of-the-
art approaches for online reward learning. See videos and code
here:

I. INTRODUCTION

Modern robots can learn end-user preferences in real-
time from human feedback. For instance, in Figure | a user
physically corrects the robot arm to keep it away from a
pitcher. Based on this human input, the robot should learn
to consistently carry cups farther from pitchers. State-of-the-
art paradigms for real-time learning apply online gradient
descent, where the robot updates a point estimate over
the human’s preferences given the human’s feedback [1]-
[7]. While this learning approach is effective if the user
provides clear and unambiguous feedback (e.g., perfectly
correcting the robot’s motion), these approximate learning
rules can be highly sensitive to noisy, biased, and subop-
timal humans, leading to unstable robot learning [3]. In
Figure |, a human that over-corrects the arm causes the
robot to oscillate between avoiding and approaching the
pitcher, continually interacting without ever converging to
the human’s true preference. This raises the question, how
can robots leverage online learning algorithms while ensuring
robustness to suboptimal human feedback?

Instead of maintaining a fixed learning rule, and relying
on the human’s feedback to align with that learning rule:
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Fig. 1. Human physically correcting a robot arm to convey their reward
parameters 0*. The robot learns online, and updates its point estimate 6
after each human action. (Left) When the human takes noisy or suboptimal
actions, the given learning dynamics can become unstable and fail to
converge to 6*. (Right) We learn how to modify these dynamics to expand
the basins of attraction and increase robustness to imperfect human inputs.

We propose a control-theoretic approach that modifies the
robot’s learning rule to be more robust-by-design.

Specifically, we model the robot’s learning algorithm as
a dynamical system in the continuous space of preference
parameters. This formulation enables us to apply Lyapunov
analysis to robot algorithms that learn online from human
inputs. We derive the basins of attraction, i.e., the range
of human inputs that will cause the learning system to
converge to the human’s true preferences. We then introduce
StROL, an algorithm that modifies the robot’s learning rule to
expand the basins of attraction, causing the robot’s estimate
to converge to the human’s true preferences under a larger
set of human inputs. Designers can leverage StROL to
shape online learning rules to different users, tasks, and
settings, enabling fast convergence despite suboptimal human
feedback. Returning to Figure |, with StROL the human can
provide unintended forces — e.g., accidentally push too hard
— and still convey their intended preference.
Overall, we make the following contributions:



Formulating Conditions for Convergence. We write real-
time learning from human feedback as a dynamical system
where the human’s true preferences are the equilibrium point.
We then apply Lyapunov stability analysis to derive the
conditions for converging to this equilibrium.

Learning to Learn from Suboptimal Humans. We intro-
duce an approach that modifies the robot’s learning rule to be
more robust-by-design. Given a prior over human preferences
and/or a human model, the robot shapes the learning rule to
increase the basins of attraction and converge under a larger
set of human inputs. We refer to the resulting algorithm as
StROL: Stabilized and Robust Online Learning.

Collaborating with Imperfect Users. We perform simula-
tions and a user study across scenarios with robot arms and
autonomous driving. We demonstrate that the learning rules
produced by StROL are more robust to noisy and suboptimal
humans than state-of-the-art alternatives.

II. RELATED WORKS

We focus on real-time learning from humans. We seek to
learn what the human wants (i.e., preferences) while framing
learning in human-robot interaction as a dynamical system.

Online Robot Learning from Humans. Online reward
learning explores how robots can infer preferences from hu-
mans in real-time. Prior works have applied online learning
from human feedback to autonomous vehicles [8], assis-
tive exoskeletons [9], and robot arms [10]. But to enable
rapid adaptation, online learning often requires simplifying
assumptions. Relevant works like [1]-[7] maintain a point
estimate of what the human wants, and update this estimate
using gradient descent. Unfortunately, the approximations
needed for online learning also make the system sensitive to
suboptimal human inputs. When the user inevitably makes
a mistake (and incorrectly intervenes) the robot may learn
the wrong preferences [3] or misrepresent the human’s true
intentions [5]. Instead of thinking of this as a learning
problem, we instead treat this as a control problem: how
should robots modify their learning rule to ensure effective
performance across suboptimal human inputs?

Learning from Humans as a Dynamical System. As a
step towards fast and seamless adaptation, we will model
online robot learning from humans as a dynamical system.
Recent works have found different ways to incorporate
learning mechanisms into dynamics models of human-robot
interaction. This includes shared control settings where the
robot adjusts its desired trajectory based on applied forces
and torques [11], [12], jointly learning a model of the human
policy and physical dynamics [13], modeling the human’s
learning process as a dynamical system [14], and dynamic
movement primitives that react to human behaviors [15].
Across many of these previous works, the authors propose
a learning rule, and then apply control theory to check if
the resulting dynamics are stable. In this paper we take
the opposite perspective. We first identify the conditions for
stability, and then modify the learning rule so that it satisfies

these conditions for as many human inputs as possible (i.e.,
we use control theory to design the learning rule).

III. PROBLEM STATEMENT

We consider interactive scenarios where robots learn from
humans in real-time. This includes settings where the robot
performs a task and the human is purely a teacher (e.g., a
human physically correcting a robot arm), or settings where
the human and robot are both performing a task in the
same environment (e.g., an autonomous car driving near a
pedestrian). In both settings the human has a task that they
want to perform, and the robot is trying to learn this task from
the human’s actions. Here we formulate real-time human-
robot interaction as a dynamical system with two parts: state
dynamics and robot’s learning dynamics. We assume the state
dynamics are known, and the robot is given some initial
learning dynamics (i.e., the designer provides the robot with
a baseline learning rule).

Physical Dynamics. Let x € & denote the system state.
In our experiments x can be the joint position of a robot
arm, or the combined pose of an autonomous car and human
pedestrian. At each timestep ¢ the human takes action uy €
Uz and the robot takes action ug € Ur. The system state
transitions according to the known state dynamics:

= f(ah uby, ub) (1

The interaction ends after a total of 7' timesteps. We empha-
size that the human and robot only collaborate for a single
interaction; the robot does not repeatedly work with the same
human across multiple, separate interactions.

xT

Unknown Parameters. During interaction the robot opti-
mizes its reward function. There may be some aspects of this
reward that the robot already knows — e.g., the robot arm
should carry water across the table. However, there are also
parameters the robot does not know — like whether the robot
should avoid moving over the pitcher. Let the true objective
be R(z,0*) — R, where 6* € R is a d-dimensional vector
of correct reward parameters (e.g., the task that the robot
should optimize for). Returning to our motivating examples,
0* could capture how the robot arm should carry a glass,
or where and when the pedestrian will cross the road. The
robot does not know #* and must learn these parameters from
human data — specifically, observations of human actions.

Prior. Although the robot does not know 6* a priori, we
assume the robot is given a prior P(6) over the continuous
space of reward parameters. This prior captures which reward
parameters 6 are likely and unlikely. For instance, in Figure
the prior could be a bimodal distribution where it is likely
that either (a) the human wants the robot to avoid the pitcher
or (b) the human does not care about moving over the pitcher.
In our experiments we hand-designed the priors as uniform
or multi-modal distributions. More generally, these priors
could be gathered from human demonstrations, teleoperation
data or pre-trained policies [16], obtained from data driven
models of human state occupancy [17], or queried from large
language models [18].



Learning Dynamics. The robot is trying to learn the true
reward parameters 6*. For tractable, real-time learning, the
robot maintains a point estimate of these true reward pa-
rameters: this point estimate is the robot’s best guess of 6*.
Let 6% denote the robot’s point estimate at timestep ¢, where
0 € O lies in a continuous Euclidean space.

Building on the state-of-the-art in online learning from
human feedback [2]-[6], [19], we use gradient ascent to
capture the deterministic dynamics of the point estimate:

gt :9t+a~g(xt,u§_t,u$2,0t) 2)

Here o > 0 is the learning rate and g(z, us, ug, ) — R is
a function that determines how the point estimate changes in
response to human action uy. We can think of Equation (2)
as a dynamical system where 6 is the “state” that updates at
every timestep. We use the term learning dynamics to refer
to Equation (2) and g interchangeably. The choice of g is up
to the designer; in our analysis, the only requirement is that
g in Equation (2) must depend on human action wy,.

Example. Below we list one common choice of learning rule.
Let 3y = f(x,us, ur) be the next state if the human takes
action uy, and let xg = f(x,0,ug) be the next state if
only the robot acts. Related works [2]-[5] update the point
estimate to increase the reward for the human’s corrected
state x4 as compared to the default state z:

9= Vo (R(xy,0) — R(zr,0)) 3)

We will use Equation (3) in our experiments. However, our
underlying method is not tied to this specific instantiation.

Perturbations. We have formulated human-robot interac-
tion as a dynamical system with state dynamics for = in
Equation (1) and learning dynamics for ¢ in Equation (2).
Ideally, the estimate # should converge towards the human’s
preferences 6* so that the robot learns the correct reward
function. This could be straightforward if the human’s inputs
uy exactly aligned with the robot’s learning algorithm.
Consider our motivating example of a human teaching a
robot arm how to carry a cup: if the human physically
corrects the robot such that g(uz) causes §'Tt — 6*, then
the robot will learn the correct task. But what if the human
is not a perfect teacher? We recognize that humans are
suboptimal agents [20], [21], and thus the dynamical system
must be robust to perturbations in the human’s actions.

IV. SHAPING THE LEARNING DYNAMICS TO
ENLARGE BASINS OF ATTRACTION

In this section we present a control theoretic approach that
modifies the learning dynamics to be more robust-by-design.
Our proposed method is based on stabilizing the learning
dynamics around the equilibrium 6 = 6*. More specifically,
we leverage Lyapunov stability analysis in Section to
derive the condition under which the error between 6 and
0* is asymptotically decreasing. This condition defines the
basins of attraction, i.e., the set of human inputs that cause
the robot’s point estimate 6 to move towards the equilibrium
6*. Next, in Section we introduce StROL, an algorithm

that modifies the learning dynamics to expand the basins
of attraction. Given a prior over #* and/or a model of the
human, StROL learns a correction term offline that is then
added to the robot’s original learning dynamics. We conclude
with an example of our approach in Figure

A. Deriving a Stability Condition

Humans do not always provide perfect, consistent inputs.
Rather than assuming the human selects a single optimal
choice of uy to teach the robot, we are instead interested in
the set of human actions that convey 6*. Put another way,
under what conditions does the human’s action uy cause the
robot’s estimate # to converge to 6*?

To answer this question, we first introduce the modified
learning dynamics g. Under these new dynamics the robot’s
estimate 6 updates according to:

't = 0" + o - glat, u%,u%, ") 4)

where Equation (4) matches Equation (2) with g replacing
the original term g. At this point we do not know what to
choose for the robot’s new learning dynamics. However, our
choice of g should cause the robot’s estimate # to converge
towards the human’s true reward parameters 0*. Define e! =
0* — #¢ as the error in the robot’s estimate at the current
timestep, such that the equilibrium occurs when e = 0 and
0 = 0*. To identify the set of human actions that cause the
robot’s estimate to converge towards this equilibrium, we
will apply Lyapunov stability analysis.

Let the Lyapunov candidate function be V! = ||e!||3. Note
that this function is positive definite and radially unbounded,
i.e., the function cannot be 0 at any point except for the
equilibrium (6% = 6*) and V! — oo as e; — oo. The time
derivative of the candidate function is:

VRV V= e - [l )

For global asymptotic stability of the system around the
equilibrium, according to Lyapunov’s Direct Method we need
that V < 0 [22]. Substituting this condition into Equation (5),
the sufficient condition for convergence becomes [|e!™1||? <
|let||?. Plugging in e’ and the modified learning dynamics
from Equation (4), we reach:

16— 6" —a- g5 < [16” — 60|13 (6)

Expanding this inequality and rearranging the terms, the
sufficient condition for global asymptotic stability is:

a?)1g']13 — 2a(e' - ') < 0 Q)

Equation (7) defines the basins of attraction as a function of
the robot’s new learning rule g(z*, u},, u,6"). Any human
action ug which satisfies Equation (7) will cause the robot’s
estimate 6 to converge to the true parameters 6*. These stable
human actions lie within the basins of attraction. Conversely,
any human action u4; for which Equation (7) does not hold
will cause the magnitude of the error to increase and drive 6
away from 6*. This set of unstable human actions lies outside
the basins of attraction. We emphasize that the stability
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Example of how StROL autonomously generates robust-by-design learning rules that expand the basin of attraction. (Left) The robot does not

know how it should carry a cup near a laptop. When 6 = 41 the human wants the robot to move straight to the goal, and when § = —1 the human wants
the robot to avoid moving above the laptop. (Right) Plots of the robot’s estimate € as a function of the human’s action uy; at the start state. With the
original learning dynamics ¢ the learning is inconsistent and gradual (i.e., nearby actions can convey either ignoring or avoiding the laptop). But StROL
outputs the modified learning dynamics g to expand the basin of attraction, so that nearby actions teach the robot the same parameters.

condition derived in Equation (7) depends on how g maps the
human’s actions to changes in #: a given human action may
satisfy Equation (7) for one choice of learning dynamics g
but not for another. We also note that a more negative value
in this constraint means that the human action u4; is causing
f to converge more rapidly.

B. StROL: Learning the Correction Term

Our Lyapunov analysis indicates that to enlarge the basins
of attraction we need modified learning dynamics ¢ that
satisfy Equation (7) across a wider range of human inputs.
We instantiate these modified learning dynamics as the sum
of the original term ¢ and a correction term §:

()

where g is short for g(z',ub;,ub,60") and g is short for
g(a',ul,, uk, 0%). The designer provides the original learn-
ing rule g; our proposed StROL algorithm will autonomously
generate the correction term §. More specifically, g is a
neural network that StROL learns offline so that the resulting
g satisfies Equation (7) for as many human inputs as possible.

In practice, if we are going to train g using Equation (7),
we must be able to evaluate Equation (7) for different choices
of § = g+¢. This means sampling true reward parameters 6*
(to get the error e) and sampling human actions uy (to get
g and g). Under our proposed approach the robot samples
these values from the prior over reward parameters and a
nominal human model.

g=9g+g

Prior. Within Section III we defined P(f) as the prior over
the human’s reward parameters. Here we apply this prior
to sample preferences 6* ~ P(-). Intuitively, by learning
§ across parameters sampled from P(f), we are training
the modified dynamics to more rapidly converge to reward
parameters that are likely under the given prior.

Human Model. In addition to the prior, we assume access
to a nominal human model. This human model inputs reward
preferences 0* and outputs actions 1y the human might take
to teach those reward preferences. For example, an optimal
human always takes actions uj, that align with the original
learning dynamics and drive the robot’s estimate 6% — 0*.

Offline, we can sample these optimal actions u}, by solving:

wy' = min 0* — (0 + agl), 6% ~ P(6) 9)

ug €U

In practice the human’s actions are noisy and suboptimal.
Without loss of generality, we write the actions of a subop-
timal human as uy, = uj, + 6, where ¢ represents the noise,
bias or any other factor that perturbs the human. The choice
of § is up to the designer: StROL is not dependent on any
specific human model. For example, in our experiments we
set & ~ N (e,0), where o is the variance from the optimal
actions and ¢ is a consistent bias.

One limitation of StROL is that it requires the designer to
provide a prior and human model. Our experiments suggest
that increasing the accuracy of both components will improve
StROL’s performance. However, neither component is strictly
necessary: we find that StROL outperforms the baselines
when given an accurate prior but inaccurate human model,
and when given no prior but an accurate human model.

Offline Learning. We outline the offline training process
for StROL in Algorithm . The robot first generates a syn-
thetic dataset D containing reward parameters * and human
actions wuy. This dataset is generated using the prior and
nominal human model. Next, the robot evaluates the stability
condition in Equation (7) across the synthetic dataset:

L= 3 a3~ 2a 3"

0* ,uy €D

(10)

where loss function £ is formed from the left side of Equa-
tion (7). The neural network g is then trained to minimize this
loss function. Minimizing £ optimizes the correction term §
so that as many human actions from the dataset as possible lie
within the basins of attraction and cause the robot’s estimate
f to converge to the true parameters 6*. As a result, StROL
outputs new online learning dynamics ¢ = g + g which are
autonomously designed to be robust to suboptimal human
inputs and enlarge the basins of attraction.

Example. In our experiments ¢ is a fully connected 5 layer
multi-layer perception with a rectified linear unit activation
function. The output of § is bounded by a tanh(-) activation
function such that ||g|| < ||g||. This prevents the correction



Algorithm 1 StROL: Stabilized and Robust Online Learning
1: Define original learning dynamics g > see Equation (3)
2: Randomly initialize correction term g
3: fori=1,2,--- do
4: Initialize the empty training dataset D
5 for j =1,2,--- /N do
6 Sample (x,0,6*) tuple, where 0* ~ P(6)

7: Get optimal actions uj3, using Equation (9)

8

9

Up —uj + 0
Update the training dataset D <« (x, uy, 0*,0)
10: end for
11: Compute the loss £ using Equation (10)
12: Update § to minimize £
13: end for

term g from overpowering the original learning dynamics
g. In Figure 2 we show an example of how our corrective
term modifies the learning dynamics to expand the basins
of attraction. We first trained ¢ offline using our StROL
algorithm (Algorithm 1). We next measured the estimate 6
that the robot learned with the original learning dynamics
g and the modified learning dynamics § = ¢g + g¢. In this
example g expands the basin of attraction so that one region
of human actions teaches the robot to avoid the laptop
(0 — —1), and the opposite region of human actions causes
the robot to ignore the laptop (0 — +1).

V. SIMULATIONS

In Section we presented StROL, and approach for
learning robust-by-design learning dynamics. In this section
we perform controlled simulations to examine how StROL
compares to state-of-the-art baselines. We consider two simu-
lated environments: (a) a multi-agent driving scenario where
the robot car needs to learn the human’s driving style to
avoid a collision, and (b) a household setting where the
human physically corrects a robot arm. In both environ-
ments we simulate suboptimal humans whose actions are
sampled with increasing levels of noise and bias. We also
perform simulations to test the performance of StROL when
simulated humans change their reward preferences midway
through the task. For additional results and implementation
details, see our repository here:

Independent Variables. We compare our proposed algo-
rithm (StROL) to four baselines that update 6 using gradient-
based learning rules. Gradient descent (Gradient) directly
uses Equation (2) with learning dynamics g. Users who
provide clear and unambiguous feedback can coordinate
with Gradient to convey their reward preferences. But
for suboptimal users, the robot’s learning may be unstable
and learn the wrong parameters. One-at-a-time (One) [3]
modifies these learning dynamics to account for noisy and
imprecise humans: instead of updating each element of 6
at every timestep, the robot only changes the element of
0 that best aligns with the human’s action. The advantage
of this approach is that it can help filter suboptimal human

inputs. However, one downside is that the robot only ever
learns one reward parameter at a time, slowing down the
overall learning. Misspecified Objective Functions (MOF)
[5] also modifies the learning dynamics in Equation (2)
to accommodate unexpected human behaviors. Specifically,
here the robot ignores — and does not learn from — human
actions uy that are not aligned with any of the parameters in
#. Similar to One, MOF helps the robot filter out accidental
and suboptimal human inputs. However, because the robot
only learns from inputs that are optimal or close to optimal,
this approach can cause the robot not to learn anything (i.e.,
keep 6 constant) when interacting with very noisy humans.

Finally, we test an ablation of our proposed approach
that we refer to as End-to-End (e2e). In StROL the robot’s
learning dynamics g are the sum of the original dynamics
g and the corrective term §g. We hypothesize that g provides
an important starting point (i.e., the designer’s knowledge)
about the correct learning dynamics. In e2e we test whether
including g is really necessary by setting g = g, and training
the robot’s learning rule completely from scratch. e2e uses
the exact same network architecture for § as StROL.

Environments. We tested two settings: a multi-agent High-
way environment and a collaborative Robot environment.

In Highway a robot car is driving in front of a human car
on a two-lane highway. We simulate both vehicles in CARLO
[23]. The cars start at randomized positions in the left lane
with the human behind the autonomous car. Both the human
and robot cars have two-dimensional action spaces. For this
simulation, we consider three features, (a) distance between
the cars, (b) speed of the robot car and (c) heading direction
of the human car indicating whether the human will change
lane. The robot’s goal is to minimize the distance travelled
and avoid any collisions. To train the corrective term § in
StROL and e2e we assume a bimodal prior: either (a) the
human car will change lanes and then pass the robot car
(i.e. the human car does not care about distance but has a
preference for speed and change lane), or (b) the human will
follow the robot until the robot switches lanes (the human
car does not want to change lane and maintains a minimum
distance with the robot car). Both the agents choose their
actions using a model predictive controller.

In Robot a simulated human corrects a collaborative robot
arm. The robot’s action space is its 3-DoF linear end-effector
velocity. The environment includes two objects: a cup and a
plate. The robot is not sure whether it should reach or avoid
each object, and learns the human’s preferences 6 based on
the human’s corrections. When training the corrective term g,
the robot is randomly initialized in the environment and we
assume that the human has a bimodal prior over the features.
The human likely prefers to either (a) reach the plate and
avoid the cup or (b) go to the cup and avoid the plate. During
each interaction the simulated human corrects the robot’s
behavior over the first 5 timesteps. After each timestep the
robot updates its preferences 6 and recomputes its trajectory
to optimize for the learned reward function.

For both simulation environments we set the robot’s initial
estimate 6° as the mean over the prior P(f). We also
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Fig. 3.  'We compare StROL to state-of-the-art baselines in a multi-agent Highway environment (Top) and a collaborative Robot setting (Bottom). In

Highway, the robot car takes turns interacting with 250 simulated human cars and tries to predict whether it should change lanes. We measure the Error
between the robot’s learned estimate 6 and the simulated human’s objective 0*. In Robot, 100 simulated humans teach a 7 DoF Franka-Emika robot arm to
reach for or avoid two stationary objects (also see Figure 2). We measure the Regret over the robot’s learned behavior. For both environments we simulate
humans with different levels of noise and bias. During offline training, e2e and StROL expected 10% noise in Highway and 25% noise in Robot. The
left column corresponds to this training setting. The other columns compare each method as the simulated human’s noise, bias, and prior over 8* deviates
from the training data. An * represents statistical significance (p < 0.05). A tabular version of these results is presented in our GitHub repository.

provided Gradient, One, and MOF with all the features of
the task as a part of their learning rule g from Equation (3).

Dependent Variables. We measured the accuracy of the
robot’s learned estimate # in both environments. In Highway
we recorded the Error between the learned parameters 6 and
the true parameters 6*, where Error = [|6* — 0||. In the
competitive, multi-agent highway environment, error is es-
pecially important because if the robot incorrectly estimates
6, the actions taken by the robot car can lead to a collision.

In the collaborative Robot setting, we explore whether the
robot’s learned behavior aligns with the human’s preferences.
We measure the Regret across the robot’s learned trajectory:

Regret(§) = Y R(x,0") = > R(z,0%) (11

TEL* €LY

Here £* is the optimal trajectory for reward weights 6* and
&p is the robot’s learned trajectory (i.e., the trajectory that
optimizes reward parameters 6. Regret quantifies how much
worse the robot’s trajectory is compared to the human’s ideal
trajectory: lower values indicate better performance.

Simulated Humans. We simulated humans with different
priors and increasing levels of suboptimality. More specifi-
cally, our simulated human chose actions according to:

up =uy +0, d~N(eo), 0°~PO) (12

where o is controls the Noise and € is the Bias. When training
StROL and e2e we assumed a given level of noise and
zero bias. When training in the Highway environment we
set 0 = 10% of the magnitude of the largest action, and in
Robot we set o = 25% of the magnitude of the largest action.
For Highway, the the correction term g was trained offline
for 1000 Epochs (i.e. generating dataset D and updating
g 1000 times), while for Robot, § was trained offline for
500 Epochs. We then performed online simulations with
increasing levels of noise and bias, and with changing priors
P(6). Hence, the simulated human’s behavior deviated from

the training behavior that our approach expected.

Hypothesis. We had the following two hypotheses:

H1. StROL will outperform the baselines when the human’s
behavior is similar to the training behavior.

H2. When humans act in unexpected ways, StROL will
perform better than or comparable to the baselines.

Results. Our results are summarized in Figure 3. First we
will breakdown these results for the Highway environment.
Across all trials and conditions, a repeated measures ANOVA
found that the robot’s learning algorithm had a significant
effect on learning error (F(4,996) = 32.1, p < 0.05).
Looking at the error plots in Figure 3 (Row 1, Columns 2-3),
when the human actions at test time are similar to the human
actions during training, StROL significantly outperforms all
the baselines (p < 0.05). As the noise and bias in the
human’s actions increase (Row 1, Column 4), each algorithm
performs similarly: StROL is not significantly different from
Gradient (p = 0.051), MOF (p = 0.98), or e2e: (p = 0.80).
The same trend occurs when the human’s 6* are sampled
from an unexpected prior (Row 1, Column 5). Put together,
these results suggest that — when the human driver behaves
similar to the designer’s given model — StROL leads to
robust robots that accurately predict 6. In the worst case —
where the human significantly deviates from prior and human
model — StROL is on par with existing methods.

We found similar trends when analyzing the Robot results.
A repeated measures ANOVA with a Greenhouse-Geisser
correction (e = 0.552) revealed that the learning algorithm
had a significant effect on the regret (F'(2.2,218.5) =
1287.1, p < 0.05). The plots in Figure 3 (Row 2, Columns
2-3) show that the robot’s regret is significantly lower when
the robot uses StROL (p < 0.05). As the humans become
increasingly random, the regret for StROL increases, but it
is still lower than the baselines (p < 0.05). On the other
hand, if StROL is trained with an incorrect prior, StROL
performs on par with the baselines (Gradient (p = 0.40),



One (p = 0.30), and MOF (p = 0.31)).

Interestingly, we observed that the relative performance
of e2e changed between Highway and Robot. This may
have occurred because of the complexity of the learning
rule e2e needed to recover. In Highway the autonomous car
can estimate the human’s # based purely on how the human
changes lanes. By contrast, in Robot the system needs to
account for both the robot’s position and the human’s inputs
to recover #. This suggests that we can learn the learning
rules from scratch in simple settings, but as the environment
becomes more complex, incorporating the original learning
dynamics g becomes increasingly important.

VI. USER STUDY

To evaluate our approach in real-world environments, we
next conducted an in-person user study where participants
interacted with a 7-DoF Franka-Emika Panda robot arm.
During each trial users attempted to teach the robot their
desired reward by applying forces and torques to the robot
arm. We compared StROL to state-of-the-art approaches that
learn online from human interventions [3], [5]. Implementa-
tion details and videos of our user study are provided here:

Independent Variables. We trained StROL offline using
Algorithm |. Similar to the simulations in Sections V, our
baselines include One [3] and MOF [5].

Experimental Setup. A 7-Dof Franka-Emika robot arm
carried a cup across a table that contained a plate and a
pitcher of water (see Figure 1). The robot started each trial by
following a trajectory generated using randomly initialized
feature weights 6°. Users then physically intervened to
correct the motion of the robot arm to teach it three different
tasks. For Task 1 users taught the robot to carry the cup to
the plate, while keeping the cup close to the rable and away
from the pitcher. Task 2 was similar to Task 1, with the
addition that the users had to teach the robot to carry the cup
at the correct orientation. Finally, in Task 3 the users taught
the robot to move away from all objects while keeping the
cup upright. Task 1 had three features (f € R?) while Tasks
2 and 3 had four features (§ € R*). These manipulation
tasks with physical human corrections were similar to the
user study environments used in [5] and [3]. When training
StROL offline the robot’s multimodal prior included Task
1 and Task 2, but Task 3 involved a new region of reward
parameters that the learner did not expect.

Participants and Procedure. We recruited 12 participants
from the Virginia Tech community (6 female, average age
23.5%3.08). Participants gave informed consent prior to the
start of the experiment under Virginia Tech IRB #22 — 755.

The participants performed all three tasks with each learn-
ing algorithm. The order of the learning algorithms was
counterbalanced using a Latin square design (e.g., some
participants started with StROL, others started with One,
etc.). Before each task the robot played the ideal trajectory
for that task (i.e., the robot showed the behavior that the
participant should teach to the robot). Between each trial the

robot reset from scratch: the robot did not carry over what
it learned about # from one trial to another.

We trained StROL offline to shape the learning dynamics.
During training we used the noisy human model in Equa-
tion (12) with ¢ = 25% of action magnitude and ¢ = 0.
The multimodal prior P(#) used during training consisted
of 3-4 modes; these modes includes the desired behaviors
for Task 1 and Task 2, but not for Task 3. We emphasize
that StROL was trained offline with simulated human data,
and then deployed online to perform zero-shot learning with
real humans and improve the overall robot performance.

Dependent Variables. To analyze how accurately the robot
learned, we measured the robot’s Regret according to Equa-
tion (11). To analyze how rapidly the robot learned, we
measured the total amount of time the human spent correct-
ing the robot arm (Correction Time). We also administered
a 7-point Likert scale survey to access the participants’
subjective responses. Our survey questions were organized
into two multi-item scales: whether the users thought the
robot learned to perform the task correctly, and how intuitive
it was for participants to teach the robot.

Hypothesis. We had the following hypotheses for this study:
H3. With StROL users will teach the robot more quickly
(shorter correction time) and accurately (lower regret).

H4. Participants will find StROL to be a more intuitive
learner as compared to the baselines.

Results. We first explore hypothesis H3, and refer to
the objective results portrayed in Figure 4 (Column 1-
3). A Repeated Measures ANOVA revealed that robot’s
learning algorithm had a significant effect on the cor-
rection time (F'(2,22) = 5.602, p < 0.05) and regret
(F(1.332,14.651) = 9.108, p < 0.05). Post hoc compar-
isons showed that StROL had significantly lower correction
time and regret as compared to the baselines (p < 0.05)
(see 4 Column 1-2). Column 3 in Figure 4 shows how a
scatter plot of how the regret for each learning algorithm
varied with the correction time. Across all participants and
tasks, we observed consistently lower regret with StROL.
But with One and MOF, there were some cases where the
teacher spent a long time correcting, and the regret remained
high. With One and MOF we also observed cases where the
participants gave up teaching after a few corrections, leading
to a short correction time and high regret.

To explore hypothesis H4 we refer to the Likert scale
survey in Figure 4 (Column 4). After verifying that the scales
used for the survey were reliable (Cronbach’s o > 0.7), we
grouped the responses for each scale into a combined score.
A repeated measures ANOVA (F'(2,70) = 21.301, p < 0.05)
suggested that the users perceived StROL to be significantly
more intuitive than the baselines (p < 0.05). Similarly, a
repeated measures ANOVA with a Huynh-Feldt correction
(e = 0.807, F(1.6,56.5) = 18.1, p < 0.05) revealed that
after observing the robot’s final behavior, the users thought
StROL learned better than the baselines (p < 0.05).
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Fig. 4. Objective and subjective results from the user study in Section VI. Participants physically interacted with a 7-DoF robot arm (see Figure 1) to

teach it three different tasks. The robot used StROL or other online learning methods [3], [5] to infer the human’s reward parameters in real-time. (Left)
The time users spent correcting the robot and the regret across the robot’s learned trajectory averaged over all three tasks. (Middle) For each individual
task and participant (3 tasks X 12 participants) we plot their regret vs. correction time. (Right) The average user ratings from our 7-point Likert scale
survey. Error bars show SEM and an * denotes statistical significance (p < 0.05). A tabular version is presented in our GitHub repository.

VII. CONCLUSION

In this paper we presented a control-theoretic approach to
learn robust-by-design online learning rules for human-robot
interaction. We introduced StROL, an algorithm that modifies
the robot’s original learning dynamics to enlarge the basins
of attraction and cause the robot’s estimate 6 to converge
to the human’s true preferences * under a wider range of
human actions. Our simulations and user study show that
robots can apply the modified learning rules produced by
StROL to more accurately and rapidly infer the preferences
of noisy, suboptimal, and real-world users.

Limitations. Our proposed approach augmented the initial
learning dynamics g with a correction term g to reach the
modified learning rule § = g + §. The relative weights of
g and ¢ must be tuned by the designer. If g is unbounded,
the learned correction term may override g and constrain
the robot learner into the basins of attraction, preventing the
human from teaching reward parameters 6 that lie outside
of these basins. Conversely, if the designer constrains § to
be too small, then StROL will not have a significant effect
on the robot’s learning. In general, we recommend using a
smaller value for A when the robot does not have access
to a reliable prior or nominal human model. One possible
way to tackle this limitation and automatically tune the
relative weights of g and § could be inspired by [24]. During
interaction the robot could infer how close-to-optimal the
human teacher is using Bayesian inference. For near optimal
humans the robot could increase the weight of g so that the
human’s teaching is not adjusting by StROL. Conversely, for
increasingly suboptimal humans the robot could increase §
and leverage the robust learning facilitated by StROL.
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