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ABSTRACT

In this paper, the causal bandit problem is investigated, in
which the objective is to select an optimal sequence of in-
terventions on nodes in a graph. By exploiting the causal re-
lationships between the nodes whose signals contribute to the
reward, interventions are optimized. First, a method to learn
the directed acyclic graph is proposed that strongly reduces
sample complexity relative to the prior art and adopts a novel
edge detection method based on mutual information by learn-
ing sub-graphs. It is assumed that the graph is governed by
linear structural equations; it is further assumed that the dis-
tribution of interventions is unknown. Under the assumption
of Gaussian exogenous inputs and minimum-mean squared
error weight estimation, a new uncertainty bound tailored to
the causal bandit problem is derived. This uncertainty bound
drives an upper confidence bound based intervention selec-
tion to optimize the reward. Numerical results compare the
new methodology to existing schemes and show a substantial
performance improvement.

Index Terms— Causal bandit, linear structure equation
model, causal graph identification, upper confidence bound,
mutual information

1. INTRODUCTION

The multi-armed bandit (MAB) is a useful model for sequen-
tial decision-making problems with applications to clinical
trials [1], recommendation systems [2], financial portfolio de-
sign [3], etc. In MAB problems, an agent selects an arm in
each step and observes corresponding outcomes to maximize
the long-term cumulative reward. In the classic setting, the
stochastic rewards generated by different arms are assumed to
be statistically independent. To model realistic scenarios with
dependence, causal bandits are considered [4]. The causal
structure can be exploited to improve decision-making.

Cause-effect relationships can be represented by Bayesian
networks, in the form of directed acyclic graphs (DAGs).

This work is funded in part by one or more of the following grants: NSF
CCF-1817200, ARO W911NF1910269, DOE DE-SC0021417, Swedish Re-
search Council 2018-04359, NSF CCF-2008927, NSF CCF-2200221, ONR
503400-78050, ONR N00014-15-1-2550, NSF CCF 2200221 and USC +
Amazon Center on Secure and Trusted Machine Learning.

DAGs can encode the causal relationship among factors that
contribute to the reward [4]. We interpret the arms as differ-
ent interventions on the nodes of a DAG and the reward as
the stochastic outcome of a certain node. The objective is to
maximize the cumulative reward by selecting a sequence of
interventions.

Existing literature on causal bandit can be categorized
based on their assumptions about the causal graph topology
and the probability distribution of the interventions. While
many works assume topology or DAG knowledge [4–8], it
is not known in practice. The setting with no knowledge of
topology and interventional distribution has been investigated
recently [9, 10], where algorithms are proposed with im-
proved regret guarantees over non-causal schemes. However,
these prior works are based on the hard intervention model,
where the causal relations between a node and its parents are
completely cut off. Herein, we consider soft interventions.

To solve causal bandit problems, the major challenges are
graph identification and the exploration-exploitation balance.
For graph identification, existing methods mainly fall into two
categories, independence-based and score-based [11]. Notice
that solving causal bandit problems solely by generic graph
identification is inefficient because optimal intervention se-
lection is not equivalent to graph identification. Regarding the
exploration-exploitation balance, the upper confidence bound
(UCB) is a widely adopted method that combines current es-
timates with future potential. The classic UCB scheme uses
the number of visits as a general uncertainty measure [12],
while in causal bandits, uncertainty can be better quantified by
bounding the variance of problem-specific estimators [8–10].

In this paper, we propose the Causal Sub-graph UCB (CS-
UCB) scheme that assumes no knowledge of the causal graph
topology and interventional distributions. The algorithm
learns the critical causal structure (defined in the sequel),
and utilizes causal knowledge for decision-making, in an
alternating manner. The main contributions of this paper are:

1. We first propose learning sub-graphs versus the entire
graph, which dramatically reduces compute and sample
complexities.

2. For the sub-graph learning problem, we propose an
edge-weighted mutual information measure for edge
detection. This framework makes efficient use of lim-
ited data to learn the critical part of the causal structure,
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such that only the crucial edges are learned accurately.
3. An uncertainty bound tailored to the causal bandit

framework is derived and used to drive an UCB strat-
egy to resolve the exploration-exploitation dilemma.

4. Numerical results indicate that the proposed algorithm
identifies the optimal intervention much faster than
standard MAB schemes by exploiting the causal struc-
ture. Moreover, compared to strategies that only focus
on graph identification, the proposed algorithm has low
sample complexity and learns the causal structure with
a limited loss of the long-term reward.

2. SYSTEM MODEL

2.1. The Causal Graph Model with Soft Intervention

The observational causal structure is represented by a DAG,
(V ,B), where V is the set of N nodes and B is the edge-
weight matrix. We consider soft interventions, defined as

a = (a1, . . . , aN )T ∈ {0, 1}N ≡ A, (1)

where ai represents whether node i is intervened (1) or not
(0). Different from hard interventions, soft interventions do
not cut off causal relationships between the intervened node
and its parents, but change the upcoming edges to the node.

Further, we denote the interventional weight matrix by B′

so that the post-intervention matrix Ba can be constructed as

[Ba]i = 1(ai = 1) [B′]i + 1(ai = 0) [B]i , (2)

where 1(·) is the indicator function and [·]i represents the i-
th column of a matrix. Denote the set of parents of node
i by pa(i, ai) and the set of ancestors by an(i, ai). The i-
th column of the post-intervention weight matrix determines
pa(i, ai) and how these parents influence node i.

With intervention, the vector of stochastic values associ-
ated with the nodes is represented by X = (X1, . . . , XN )T .
The causal relationship among nodes is described by a linear
structure equation model (LinSEM),

X = (Ba)
TX + ϵ, (3)

where ϵ is a vector of Gaussian noise/exogenous variables,
independent of X . We assume ϵ has independent elements
with known mean vector ν and unknown covariance.

2.2. The Causal Bandit Model

In the MAB framework, an agent performs a sequence of ac-
tions to maximize cumulative reward over a finite horizon T .
We consider node N as the reward node in the causal graph
model, which generates stochastic rewards in each time step.
An example causal graph is given in Fig. 1, where the value
of the solid node is considered as the reward and the effects
of exogenous variables are represented by dashed arrows.

Fig. 1. A causal graph (N = 5) with the reward node 5.

To compute the expected reward under intervention a, we
recognize that in LinSEM, there exists a causal flow between
every ancestor-descendant pair. Thus each Xi can be written
as a linear combination of exogenous variables in ϵ, weighted
by the causal flow. Define the flow-weight matrix as

Ca
.
= (I −Ba)

−1
, (4)

where the (i, j)-th entry represents the net flow weight from
node i to j. In this way, we rewrite (3) as

X = (I −Ba)
−T

ϵ = (Ca)
T
ϵ, (5)

where I denotes the identity matrix. The expectation of X
under intervention a ∈ A is formulated as

µa
.
= E

[
(I −Ba)

−T
ϵ
]
= (I −Ba)

−T
ν. (6)

Thus with the knowledge of post-intervention weight matri-
ces, the optimal intervention can be obtained as

a∗ .
= argmax

a∈A
[µa]N . (7)

In each time step t, the agent selects an intervention at,
observes Xt and collects reward Xt

N . The randomness of the
observation comes from the exogenous variables ϵt, which
are independent of the intervention. The objective is to maxi-
mize the expected cumulative reward,

∑
t [µ

t
a]N .

3. THE CS-UCB ALGORITHM

In this section, we introduce two major components of the
proposed CS-UCB algorithm: sub-graph learning and uncer-
tainty bound based decision-making.

3.1. Causal Sub-graph Learning

Causal graph identification is equivalent to determining the
causal relationships between every pair of nodes in the graph,
represented by directed edges. To estimate the causal graph,
we adopt a score-based method. Specifically, given observa-
tions up to step t, X1:t .

= (X1, . . . , Xt) of dimension N × t,
we rate the ability of different graph structures to fit the data.

However, finding the exact structure is difficult in prac-
tice because the number of DAGs grows super-exponentially
with the number of nodes. The issue becomes even more se-
rious for causal bandits, because the agent only has t obser-
vations by which to score 2N possible distinct graphs. To
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alleviate computational complexity, we notice that although
there are 2N post-intervention distributions characterized by
Ba, those weight matrices are composed of columns of B
and B′. Therefore, instead of identifying 2N graphs, we can
identify causal relationships induced by columns of B and
B′. Since the complete edge set is uniquely decomposable
into sub-graph edge sets, we claim that identifying the com-
plete graph is equivalent to identifying all the sub-graphs.

As a foundation of causal reasoning, the principle of in-
dependent mechanisms [11] states that the causal variables
and the mechanism producing the effect variable are indepen-
dent. Thus, testing the independence of residuals has been
investigated for causal inference [13–15]. Herein, we con-
sider the minimum mean-square error (MMSE) estimation,
with the estimator and residual defined as

X̂t
i (ai)

.
= E

[
Xi

∣∣∣X1:t
p̂a(i,ai)

]
, Rt

i(ai)
.
= X̂t

i (ai)−Xi, (8)

where p̂a(i, ai) represents the estimated parent set. Also, we
denote the estimated edge-weight and flow-weight matrices at
step t by B̂t

a and Ĉt
a. With the estimated mechanism produc-

ing Xi, the principle of independent mechanisms implies that
the residual should be independent from any causal covari-
ate. Therefore, the dependence between Rt

i and Xj provides
information about the causal relation between node i and j.

As a general dependence measure, mutual information,
denoted by I(·), is widely utilized for causal inference (see
e.g. [11]). However, for a multivariate model with limited
data, pure mutual information based methods suffer from
stochastic errors. The next proposition1 illustrates this issue.

Proposition 1. With the signal model defined in Section 2.1,
the following inequalities hold, ∀a,

I(Rt
i(ai);Xj) ≤ I

( ∑
l ̸∈an(i,ai)

[
Ĉt

a

]
li
ϵl − ϵi;

∑
l ̸∈an(i,ai)

[Ca]lj ϵl
)

+ I
( ∑
k∈an(i,ai)

[
Ĉt

a −Ca

]
ki
ϵk;

∑
k∈an(i,ai)

[Ca]kj ϵk
)
, (9)

I
( ∑
l ̸∈an(i,ai)

[
Ĉt

a

]
li
ϵl − ϵi;

∑
l ̸∈an(i,ai)

[Ca]lj ϵl
)
≤

log
(
1 +

σE1

σE2
|
[
B̂t

a

]
ji
|
)
− 1

2
log(1− ρ2E), (10)

where σ2
E1, σ2

E2 are the variance of the following variables

E(Xj , i)
.
=

∑
l ̸∈an(i,ai)

[Ca]lj ϵl, (11)

E(Rt
i(ai), \j)

.
=

∑
l ̸∈an(i,ai)

[
Ĉt

a

]
li
ϵl − ϵi −

[
B̂t

a

]
ji
E(Xj , i),

(12)

and ρE stands for the correlation between them.
1 See https://github.com/Chen-Peng-98/Causal-Bandit-Supplementary.git

for the proofs.

In (9), the first part is induced by causal error while the
second part is induced by intrinsic error. Observe that for a
small estimated edge weight, the causal error induced mu-
tual information could be hard to detect, especially when the
intrinsic error induced mutual information is not negligible.
Since the goal is to detect causal errors, we propose an edge-
weighted measure,

Iw(R
t
i(ai);Xj)

.
= I(Rt

i(ai);Xj)− log |
[
B̂t

a

]
ji
|, (13)

that can be used as a criterion to reject incorrect edges from
sub-graphs. To estimate empirical mutual information, the k-
nearest neighbour distance based method is employed [16].

Since a complete graph is required to evaluate interven-
tions, we make edge rejecting decisions by considering sub-
graphs jointly. The remaining problem is to determine the
number of edges to reject. In general, any residual based test
for causal identification suffers from type I error [11], thus the
threshold should be chosen carefully. In terms of finding the
optimal intervention, rejecting an actual edge is worse than
accepting a nonexistent edge. Thus we consider the estimated
observational graph as a critical failure if

∃ [B]ij ̸= 0,
[
B̂t

]
ij
= 0, (14)

or B̂t does not represent a DAG. The same criterion is used
to evaluate the estimated interventional graph.

To minimize the critical failure rate, an edge is only re-
jected when necessary. Specifically, the edge-weighted mu-
tual information is calculated for each (i, j) pair and the one
with the largest Iw is rejected, until the complete graph be-
comes a DAG. Once the estimated edge set is determined, we
construct the weight matrices by MMSE estimation.

3.2. Uncertainty Bound

Since uncertainty exists about the accuracy of the estimated
weights, exploration is necessary. Interventions should be
evaluated by both how close the estimated rewards are to be-
ing maximal and the uncertainties in those estimates. Assum-
ing no causal error, we derive an uncertainty bound on the
estimation error of the expected reward, so that the potential
of an intervention is taken into account. Define weight error
matrices and expectation error vectors as

∆Bt
a

.
= B̂t

a −Ba, ∆µt
a

.
= µ̂t

a − µa, (15)

where µ̂t
a is the estimated mean of X . Further, denote the

covariance of the i-th weight error vector by Σt
a(i). The fol-

lowing theorem1 provides a concentration inequality for the
error of the estimated reward.

Theorem 1. Under the assumption of no causal error, MMSE
estimation, and the signal model in Section 2.1, we have

P
{∣∣[∆µt

a

]
N

∣∣ ≥ U(X1:t,a, δ)

}
≤ δ, (16)
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where the error upper-bound U(X1:t,a, δ) is defined as

U(X1:t,a, δ)
.
= 2(N2 + 2N)

1
4

∥∥∥[(I − B̂t
a)

−1
]
N

∥∥∥
2
·

∥µa∥2

√√√√ln
(2N

δ

) N∑
i=1

λmax(Σt
a(i)). (17)

Based on the uncertainty bound, the proposed algorithm
selects intervention in each time step as

at+1 = argmax
a∈A

{[
(I − B̂t

a)
−1

]T
N
ν + αU(X1:t,a, δ)

}
,

(18)
where α is a parameter that controls the exploration level.

4. NUMERICAL RESULTS

In this section, we numerically evaluate the performance of
the proposed CS-UCB algorithm, with LinSEM and soft in-
tervention. We focus on graphs with size N = 8 where the
nonzero elements of B and B′ are randomly generated fol-
lowing the uniform distribution on [−2, 2]. The distribution
of each exogenous variable ϵi is set to N (1, 1). The horizon
length is set as T = 1000 and the Monte Carlo run for each
set of parameters is repeated 100 times.

For comparison, first we consider the vanilla UCB algo-
rithm, which selects interventions according to

at+1 = argmax
a

{∑
τ 1(a

τ = a)Xτ
N

Nt(a)
+α′

√
ln t

Nt(a)

}
, (19)

where Nt(a) denotes the number of visits and α′ is the param-
eter controlling the exploration level. Notice that the vanilla
UCB algorithm does not exploit causal structure and its sam-
ple complexity scales as 2N . Another comparison scheme we
consider is a penalized Likelihood-based causal graph identi-
fication algorithm, called GOLEM [17]. Since the GOLEM
algorithm identifies the whole graph, intervention is required
to be the all-zeros vector for learning B and all-ones for learn-
ing B′. In order to adapt the GOLEM algorithm to causal
bandits, we divide the horizon into two parts. The first part is
dedicated to graph identification while the second part is for
earning rewards, with interventions selected according to

at+1 = argmax
a

{(
I − B̃t

a

)−T

ν
}
, (20)

where B̃t
a denotes the weight matrix learned by GOLEM.

Figure 2 plots the cumulative reward as a function of time
for three different algorithms. Also, we plot the percentage of
selecting the optimal intervention in Fig. 3. The vanilla UCB
algorithm gains some information about the optimal interven-
tion after exploring every intervention with 2N = 256 time
steps. By the end of the horizon, the vanilla UCB selects the

optimal intervention 69% of the time. The GOLEM-MAB al-
gorithm tries to identify the causal graph in the first 400 steps,
and exploits this knowledge to achieve an optimal interven-
tion selection ratio of 73%. The proposed CS-UCB algorithm
gains causal knowledge and utilizes it in an alternating man-
ner, to achieve an optimal intervention selection ratio of more
than 70% after the first 100 steps. In terms of cumulative
rewards, the CS-UCB algorithm achieves a 27.3% improve-
ment compared with the vanilla UCB algorithm and a 49.9%
improvement compared with the GOLEM-MAB algorithm.
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Fig. 2. Cumulative reward as a function of time steps.
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Fig. 3. The percentage of selecting the optimal intervention
as a function of time steps.

5. CONCLUSIONS

In this paper, we investigated the causal bandit problem with-
out prior knowledge of the causal graph topology and the
interventional distribution. The sub-graph learning-based
causal identification approach is proposed, which inherently
makes efficient use of the limited data to learn the criti-
cal causal structure. Moreover, we analyze and propose an
uncertainty bound to balance exploration with exploitation.
Numerical results show that the proposed algorithm is able
to identify the optimal intervention much faster than existing
methods and achieves larger cumulative reward by exploiting
the causal structure effectively.
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