Check for
Updates

RuBiks: Rapid Explorations and Summarization over High
Dimensional Spatiotemporal Datasets

Saptashwa Mitra
Matt Young

sapmitra@colostate.com
asterix@colostate.com
Colorado State University
Fort Collins, Colorado, USA

ABSTRACT

Exponential growth in spatial data volumes have occurred alongside
increases in the dimensionality of datasets and the rates at which
observations are generated. Rapid summarization and explorations
of such datasets are a precursor to several downstream operations
including data wrangling, preprocessing, hypothesis formulation,
and model construction among others. However, researchers are
stymied both by the dimensionality and data volumes that often
entail extensive data movements, computation overheads, and I/O.
Here, we describe our methodology to support effective summariza-
tions and explorations at scale over arbitrary spatiotemporal scopes,
which encapsulate the spatial extents, temporal bounds, or combina-
tions thereof over the data space of interest. Summarizations can be
performed over all variables representing the dataspace or subsets
specified by the user. We extend the concept of data cubes to encom-
pass spatiotemporal datasets with high-dimensionality and where
there might be significant gaps in the data because measurements
(or observations) of diverse variables are not synchronized and may
occur at diverse rates. We couple our data summarization features
with a rapid Choropleth visualizer that allows users to explore spa-
tial variations of diverse measures of interest. We validate these
concepts in the context of an Environmental Protection Agency
dataset which tracks over 4000 chemical pollutants, presenting in
natural water sources across the United States from 1970 onwards.

KEYWORDS

Spatial data, data cubes, summarizations

1 INTRODUCTION

Proliferation of data sources such as sensors, simulations, and sci-
entific models have all contributed to growth in data volumes. This
exponential growth in data volumes has continued uninterrupted
over the past couple of decades. The crux of this study focuses on
spatial data, where the data items are geocoded (data also have
latitude and longitude coordinates associated with them). In many
cases, chronological information in the form of timestamps repre-
senting when the observation was made are also included.

Spatial data occur naturally in several domains and their growth
has been sustained by the ability to effectively and efficiently mon-
itor spatiotemporally involving phenomena. Miniaturization and
improvements in battery capacity alongside enhancements in the

Jay Breidt
breidt-jay@norc.org
NORC at the University of Chicago

USA

This work is licensed under a Creative Commons Attribution International 4.0 License.

BDCAT ’23, December 4-7, 2023, Taormina (Messina), Italy
2023. ACM ISBN 979-8-4007-0473-4/23/12.
https://doi.org/10.1145/3632366.3632393

Sangmi Pallickara
Shrideep Pallickara

sangmi@colostate.com
shrideep@colostate.com
Colorado State University
Fort Collins, Colorado, USA

quality and capacity of networks have led to a proliferation of mon-
itoring devices and their use in monitoring diverse phenomena. All
of these have contributed to a sustained growth in the diversity and
types of phenomena that are being monitored. The spatial extent to
which these measurements can be attributed may be either point-
based (geocoded using <latJong> coordinates) or shape-based. In
the case of shape-based geocodings the shapes may be expressed as
N-sided polygon where each vertex is identified using <lat,long>
coordinates. Spatiotemporally evolving phenomena are used to
understand and inform decision-making in domains such as agri-
culture, geosciences, epidemiology, monitoring of environmental
and ecological hazards, and commerce.

Rapid explorations of the dataspace are a precursor to data anal-
ysis, wrangling and visualization. Because such explorations allow
the researcher to identify contours of the data space, they are critical
to informing several aspects of downstream analyses. In the case of
spatiotemporally evolving data, these explorations need to account
for spatial and temporal dimensions in addition to the inherent
multidimensional nature of the data. As such, these explorations
should facilitate summarization across arbitrary spatiotemporal
scopes. The term spatiotemporal scope refers to the scope of the
data of interest. A user may be interested in specific spatial extents
that may or may not be geographically contiguous. Similarly, the
temporal bounds associated with the data of interest may vary
from user to user. Finally, a user may be interested in a combina-
tion of constraints that are specified over the spatial and temporal
dimensions.

Rapid summarizations of available data at arbitrary spatiotempo-
ral scopes are critical to (1) informing data wrangling, (2) informing
hypothesis formulation, (3) identifying broad brushstroke patterns
in the data, and (4) identifying data to fit models over among others.
A key requirement is that these summarizations are timely, scalable,
and performant alongside the ability to perform these explorations
at high throughput. The crux of this study to perform rapid sum-
marizations and explorations of the spatiotemporal dataspace.

Data cubes[Gray et al. 1997] are considered an effective mecha-
nism to facilitate such summarizations[Gray et al. 1997; Lins et al.
2013; Wang et al. 2023]: we extend this concept of data cubes to spa-
tiotemporal data spaces where the number of observations may be
very large. Crucially, we support these aggregations at scale, with
low latency, alongside the ability to perform these operations along
diverse spatial hierarchies (administrative, watersheds, quadtiles,
etc.). We explore these ideas in the context of our research proto-
type, RUBIKS.

https://orcid.org/0000-0003-2459-8417
https://doi.org/10.1145/3632366.3632393
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632366.3632393&domain=pdf&date_stamp=2024-04-03

BDCAT ’°23, December 4-7, 2023, Taormina (Messina), Italy

1.1 Challenges

Rapid summarization of high-dimensional data spaces over arbi-
trary spatiotemporal scopes faces several challenges. These include:

(1) Data volumes: The datasets we consider are voluminous.
Inefficient schemes that rely on multiple sweeps of the data
may exacerbate the I/O requirements.

(2) Dimensionality of the datasets: The datasets we consider are
high-dimensional and users may be interested in summa-
rization and exploration capabilities across all features. Our
empirical benchmarks are performed over a dataset where
over 4,000 chemical pollutants are being tracked.

(3) The aggregations and summarization can be performed at
diverse spatiotemporal scopes i.e., users can specify arbi-
trary chronological bounds along spatial bounds. The spatial
bounds can be based on administrative boundaries, water-
shed, climatic regions, quad tiles, etc.

(4) The spatiotemporal characteristics of the data preclude ef-
ficiency of solutions that rely exclusively on indexing and
query evaluation efficiency.

1.2 Research Questions

Within the broader overarching goal of summarization and aggrega-
tion capabilities at scale, specific research questions that we explore
include:

RQ-1: How can we preserve interactivity?

RQ-2: How can support effective summarizations across arbitrary
spatiotemporal scopes?

RQ-3: How can we scale with increases in data volumes, new data
sources coming online, and continual (or streaming) data genera-
tion?

1.3 Overview of Approach

We leverage a novel mix of algorithmic, statistical and systems
approaches to facilitate real time data summarization at scale across
user-specified spatiotemporal scopes. Our methodology places no
constraints on the size of these spatiotemporal scopes.

We stage and disperse the data so that the data can be collated
effectively without significant data movements. Data from mod-
erately sized spatial extents (e.g., tracts, counties, or watershed
boundaries) are collated and stored on the same machine.

Summarizations allow a researcher to spot patterns that arise
at diverse spatiotemporal scopes. Summarizations provided by our
data cubes include min, max, mean, median, variance, standard
deviations, and distributional skew and kurtosis associated with in-
dividual features (or variables). We also supplement these measures
by tracking the covariance across a set of user-specified features.
RuBiks data cubes support pivot, aggregation, and disaggregation
operations. Pivots allow the data cube to be probed across a specific
dimension e.g., spatial, temporal, or any of the features encapsu-
lated within the cube. The roll-up and drilldown operations relate
to aggregation and disaggregation operations across spatiotempo-
ral scopes. For example, a user may be interested in exploring the
data space at coarse scales (roll-up) or at finer scales (drilldowns).
These operations allow a user to specify interest over the dataspace
at progressively larger or smaller spatial extents, time ranges, or
combinations thereof.

Saptashwa Mitra, Matt Young, Jay Breidt, Sangmi Pallickara, and Shrideep Pallickara

Rather than compute these data cubes exhaustively every time
a query is issued, we perform a limited number of one-time pre-
computations that we then leverage to support data cube opera-
tions. The smallest unit of data summarization in the system is a
cubelet representing the smallest, indivisible spatiotemporal scope
at which summarizations are performed. In our methodology, the
scope associated with the cubelet is configurable. Data cubes are
constructed from cubelets. Data cubes may either be constructed
from cubelets or hierarchically constructed from other cubes. We
leverage Welford’s algorithm to compute the cubelets in an online,
single-pass fashion. Information maintained within the data cubes
are also amenable to leveraging the same online method to compute
data cubes at ever coarser scales. Our methodology also allows data
cubes to be constructed from non-contiguous spatiotemporal cubes.

A challenge that we also consider that the measurements across
different variables are often not synchronized. For example, con-
sider the case where multiple monitoring stations are profiling a
water body for chemical pollutants. The pollutants may be mea-
sured at a different timepoints and frequencies. Correlation analysis
over such measurements with non-concurrent sampling between
the related attributes require special consideration and interpola-
tion. For such irregular time-series of measurements, we implement
kernel-based weighting in the computation of correlation and co-
variance in our cubelets.

Our pairwise covariance computations allow a user to first iden-
tify the pairs of covariances that are of interest. To reduce the
number of pairwise covariances that need to be maintained in the
data cube — O(N?) for N variables — we allow users to identify the
set of M covariances that are of interest. Alternatively, the covari-
ates of interest may be domain-specific or computed dynamically
by the system based on occurrence of variables in queries.

In RuBIKS, cubelets are space-efficient and persistently stored
since they are used in the computation of data cubes that may span
diverse spatiotemporal scopes. Persistent storage of the cubelets
also precludes duplicate computations alongside repeated sweeps
of the data involving I/O. The data cubes, on the other hand, are
ephemeral meaning they are garbage collected after a period of
time.

Our summarization capabilities are backed by a distributed cache
that serves two key purposes. First, the cache is used to store data
cubes that have been calculated based on user-specified queries.
We also store cubelets that were used to construct these data cubes;
the rationale for this is that it is often the case that users are incre-
mentally refining queries to customize the spatiotemporal scopes
of interest. As such, cubelets that are part of a query have a higher
likelihood of inclusion in the refinement queries. Second, the cache
can reduce duplicate processing alongside any I/O that such refine-
ments entail. Our distributed cache relies on a LRU (least recently
used) caching scheme with an additional preference for storing
cubelets rather than data cubes when the cache needs to evict
elements during a cache miss.

We supplement the summarization feature with the ability to
visualize these summarizations using a Choropleth map to render
spatial variations of measures of interest. As such, the queries may
be composed visually, and the roll-ups and drilldowns can be per-
formed using slider bars. We allow dynamically constructed data
cubes to be visualized using our Choropleth map service.

Rusiks: Rapid Explorations and Summarization over High Dimensional Spatiotemporal Datasets

1.4 Paper Contributions

This study describes a framework for summarization over volumi-
nous, high-dimensional spatiotemporal dataspaces. Specific contri-
butions of our methodology include:

(1) A scalable framework that supports continuous assimila-
tion of data, targeted I/O, and cache-residency schemes to
minimize duplicate processing.

(2) Our summarizations can be performed in near real-time
regardless of the spatiotemporal scopes involved. Except
for the pairwise covariances where users configure variable
pairs of interest, the other aspects of summarizations are
available for all variables of interest.

(3) Our summarization schemes are backed by a distributed
caching scheme that preferentially caches cubelets and data
cubes to reduce disk access times and re-computation costs.

(4) Finally, our methodology places no restrictions on the stor-
age frameworks that host the voluminous datasets.

Translational Impacts: Voluminous, high-dimensional spatiotem-
poral datasets continue to be made available in several domains
such as agriculture, epidemiology, monitoring of environmental
and ecological hazards, forest fire predictions, etc. The proposed
effort allows users to quickly explore the data space to identify
portions of the data space that are of interest.

1.5 Paper Organization

The remainder of this paper is organized as follows. Section 2
outlines related works, followed by the background in Section 3
that introduces the nature of the actions and spatiotemporal user
queries. Section 4 describes the contruction of RUBIKs cubelets and
its in-memory data model. Section 5 details our in-memory data
store and its role in fast query evaluation. Experimental setups,
performance benchmarks, and analysis of results are outlined in
Section 6. Finally, Section 7 outlines our conclusions, followed by
acknowledgements.

2 RELATED WORK

Approaches to data summarization have been explored using sketch-
ing algorithms [Buddhika et al. 2021a, 2017, 2021b] that leverage
probabilistic data structures. Rubiks does not leverage probabilistic
data structures and produces aggregations that have lower uncer-
tainties associated with them. Some approaches have explored the
use of metadata graphs to support diverse queries [Malensek et al.
2015, 2017]; a disadvantage of these approaches is that the memory
footprint can be substantial and involve traversals that may be
prolong query evaluation times. Brokering systems leverage dis-
tributed data structures to perform such coarse grained matching
[Pallickara and Fox 2004], but are unable to support finer-grained
queries of the type Rubiks supports. Rubiks is well-suited for de-
ployments in traditional cluster-based settings and grid settings
[Fox et al. 2003, 2005a,b].

The popularity of spatiotemporal data has intensified the de-
mand for efficient analysis and query processing techniques. The
confluence of spatial and temporal dimensions, along with the avail-
ability of a wide range of recordable attributes in these data, thanks
to the improvement in observational equipment, presents unique
challenges in terms of storage, retrieval, and analytical processing.

BDCAT 23, December 4-7, 2023, Taormina (Messina), Italy

Traditional databases often struggle to efficiently manage these
attributes, necessitating the development of specialized solutions.

The concept of data cubes has gained traction as a structured
means of aggregating and analyzing multi-dimensional data. These
are data structures constructed dynamically or through a prefetch-
ing scheme[Battle et al. 2016; Mitra et al. 2019, 2021b] in anticipation
of data tiles being queried in the future to improve latency. Often,
multivariate data cubes are maintained at various resolutions to en-
able comprehensive and flexible analysis of data across varying res-
olutions, providing a multi-dimensional analytical framework[Lins
et al. 2013; Mitra et al. 2023, 2021a; Pahins et al. 2017; Santos et al.
2011; Tao et al. 2019].

Techniques involving spatial hashing and distributed systems
have emerged to manage large-scale spatial data. These approaches
enhance scalability and enable efficient query processing in dis-
tributed environments. Cache-based storage of data in memory in a
distributed fashion has also proven to improve interactivity[Li et al.
2015, 2017, 2013; Pan et al. 2018; Paul and Fei 2001]. In dynamic
datasets, the evolving nature of data requires adaptive analytical
approaches. Existing solutions struggle to efficiently update and
maintain analytical structures while accommodating continuous
data changes.

The use of distributed clusters has become instrumental in han-
dling large-scale data processing. Techniques such as DHT-based
distribution and cluster synchronization have evolved to cater to the
complex requirements of spatiotemporal data[Whitman et al. 2014].
Several existing frameworks address spatiotemporal data analysis,
including GeoSpark[Yu et al. 2015], GeoMesa[Hughes et al. 2015],
and STARK[Hagedorn et al. 2017].

While these frameworks offer valuable insights, RuBIiks distin-
guishes itself through its cubelets-based approach and its special-
ized methods for handling evolving datasets. Additionally, algo-
rithms that can update aggregations incrementally, like Welford’s
algorithm, have demonstrated their efficacy in handling real-time
data changes while minimizing computational overhead[Rehfeld
et al. 2011; Welford 1962]. The count-min (CM) sketch provides
event frequencies using sublinear memory space, where an event
could be a particular feature value or observation [Cormode 2009;
Cormode and Muthukrishnan 2005]. The CM sketch is closely re-
lated to Bloom filters, which employ hash functions over a fixed-size
bit array to determine set membership. With Bloom filters, false
positives are possible but false negatives are not [Bloom 1970]. Sev-
eral streaming algorithms have been developed to determine the
number of distinct (unique) elements in a multiset, such as Hyper-
LogLog++ [Heule et al. 2013], HyperLogLog, LogLog, and Linear
Counting [Whang et al. 1990]. RuBIKs implements online update of
statistics in its cubelets leading to improved speed of update.

RuBIKS’ novel framework improves spatiotemporal data analysis
over varying resolutions by effectively addressing the complexities
of evolving datasets. Its unique blend of cubelet aggregation, dy-
namic cubelet updates, distributed partitioning through spatiotem-
poral hashing, and distributed computing addresses a key need in
the domain of large-scale spatiotemporal data analysis.

BDCAT ’°23, December 4-7, 2023, Taormina (Messina), Italy

3 BACKGROUND

A data cube is a data structure that allows for efficient analysis of
large volumes of data from multiple dimensions. It is commonly
used in the field of business intelligence and data analytics.

A data cube organizes data in a multi-dimensional array format,
where each dimension represents a different attribute or measure of
the data. For example, in retail analytics, dimensions could include
time, product, store location, and customer segment. The measures
could include sales revenue, quantity sold, and profit.

Data cubes allow for efficient querying and analysis of data by
providing pre-computed aggregations along each dimension. These
aggregations, often referred to as “cuboids”, provide various levels
of granularity and summaries of the data. By pre-computing these
aggregations, queries can be executed much faster compared to
traditional relational database approaches.

In the context of distributed analytics, data cubes can be particu-
larly beneficial. They enable distributed storage and processing of
large datasets across multiple nodes or machines in a cluster. By
partitioning the data cube and distributing its components across
the cluster, each node can independently process a portion of the
data, allowing for parallel and distributed analysis.

Distributed data cubes help in scaling analytics workloads by
distributing the computation and storage resources across multiple
machines. This approach allows for handling larger datasets, pro-
cessing queries faster, and accommodating increased user concur-
rency. It can significantly improve the performance and scalability
of analytics systems, enabling organizations to derive insights from
vast amounts of data more efficiently.

Scaling data cubes to handle ever-increasing data volumes and
user concurrency can be a challenge. Distributing the cube across
multiple nodes or machines in a distributed environment can help
address scalability concerns, but it introduces additional complexi-
ties in terms of data partitioning, synchronization, and load balanc-
ing.

4 METHODOLOGY

Our methodology facilitates construction of hierarchical datacubes.
Data cubes may be constructed from cubelets (smallest, indivisible
unit of aggregation in the system) or from other data cubes. Data
cubes generate aggregated summarization of measurements over a
spatiotemporal scope at varying levels of coarseness, based on their
resolution. Here, we demonstrate our methodology for computing
and analyzing data cubes over disjoint spatiotemporal extents.

4.1 Cubelets

In the RuBiks framework, a cubelet serves as the fundamental
unit of aggregation and analysis. These cubelets play a pivotal role
in encapsulating aggregated values across a diverse spectrum of
measurements within a well-defined spatiotemporal scope. With
these cubelets, we develop a dynamic analytical framework that
facilitates iteratively identifying regions of interest that satisfy
desired properties or covariences.

Our cubelets encapsulate statistical summaries such as counts,
means, minimums, maximums, and standard deviations, alongside
distributional skew and kurtosis, for all observations for a particu-
lar variable within the specified spatiotemporal extent. The data

Saptashwa Mitra, Matt Young, Jay Breidt, Sangmi Pallickara, and Shrideep Pallickara

encapsulated within a cubelet is space-efficient and is amenable
to aggregations i.e., cubelets can combined to produce a new data
cube that encapsulates the aggregated measures of interest.

The ability to hierarchically aggregate cubelets (and cubes) fa-
cilitate a comprehensive exploration of spatiotemporal patterns,
trends, and relationships across the entirety of the dataset’s geo-
graphic and temporal domain. By orchestrating queries that target
data cubes, we aim to pinpoint regions of interest that align with
specific criteria or exhibit correlated behaviors with a predefined set of
features, enabling targeted analysis of intricate spatial and temporal
phenomena and extraction of nuanced insights, contributing to
informed decision-making in a wide array of applications.

Cubelets are created over a configurable spatiotemporal scope.
The cubelets can be aggregated hierarchically into data cubes at
varying spatiotemporal resolutions. We describe the hierarchical
organization of cubelets in section 4.6.

In RuBIKs, cubelets are perennial while the data cubes are ephemeral.
Cubelets are created and persisted on stable storage (and thus are
perennial) along with actual data points during ingestion. These
cubelets have a predetermined resolution and constitute the lowest
level of the cube hierarchy. Cubes are coarser in the sense that they
are computed on an on-demand basis from cubelets or other cubes
in a hierarchical fashion and are ephemeral (i.e., they may or may
not be persisted to disk).

4.2 Cubelet Content

Cubelets summarize data from a particular spatial extent and are
constructed from persistent data stored on disk (we place no con-
straints on the storage framework used to store such data). Each
cubelet summarizes data for a configurable but system-wide spa-
tiotemporal scope. The cubelet comprises a set of metadata at-
tributes recorded within that region. The supported metadata in-
cludes essential statistical measures such as count, mean, minimum,
maximum, and standard deviation for each attribute.

To enhance the analytical capabilities of cubelets, for a predefined
set of attribute pairs, we also maintain running covariances within
each cubelet. These covariances facilitate the evaluation of Pearson
correlation coefficients at runtime, enabling researchers to gain
insights into the relationships between different attributes within
the cubelet.

4.3 Cubelet Spatiotemporal Bound

Rusiks offers the flexibility to construct data cubes at different
spatiotemporal extents, tailored to the specific dataset, creating
non-overlapping regions as the foundation for construction of data
cubes. In RuBIKks, we allow data cubes to be created over varying
types of disjoint geospatial bounds, such as quadtiles, Hydrologic
Unit Codes (HUC)[Seaber et al. 1987], and Federal Information
Processing Standards (FIPS) codes that are used by the U.S. Cen-
sus Bureau. This feature enables the analysis of data with diverse
spatial characteristics, accommodating datasets that might have
irregular or complex geographical boundaries. By supporting mul-
tiple geospatial bounds, RuBiks allows researchers to perform de-
tailed analyses on localized regions while also gaining insights
into broader geographic trends, fostering a more comprehensive

Rusiks: Rapid Explorations and Summarization over High Dimensional Spatiotemporal Datasets

{Node1 { Node, e Nodey }-

‘\ ’ Steps:

1. Chunks Extraction
Coordinator

2. Local Cubelets Eval.

/ 3. Push Local Cubelets
4| % ° Cutfelet - 4. Aggregate Query
° 2 3z
2 2% \C 2 =)

2 %, z. £ . 4
el e\ = £ & 3
3 "N% % S

3 5 @ 5 § E:
= o

T &)

3

°

3

Local Cubelets,

Local Cubeletsy 4
tocat

g d
) Back-end
Persistent
Storage

Local Cubelets;

(a) Cubelet construction during ingestion

BDCAT 23, December 4-7, 2023, Taormina (Messina), Italy

Spatiotemporal
Query

. o cheNJ

Steps:
1. Id. relevant Nodes

2. Local Cache Lookup

3. Fetch/Eval Missing Cubelets
4. Return response

5. Populate Local Cache

Back-end
Persistent
Storage

Response
Response
/
/
Response

(b) Cubelet fetching/ dynamic evaluation during queries

Figure (1) RuUBIKS cubelet contruction and fetching

exploration of spatiotemporal patterns and relationships within the
data.

Perennial cubelets represent the finest level of aggregation and
are persisted both on-disk over our distributed storage, as well as
in-memory cache that we construct over the cluster nodes. These
can be hierarchically combined to create coarser aggregates — the
ephemeral cubes - facilitating a multi-resolution analysis of spa-
tiotemporal patterns and trends. This provides a powerful tool for
efficient and flexible exploration of large-scale point datasets with
varying granularities. Ephemeral cubes are constructed as client-
queries get evaluated server-side to enable collaborative query
evaluation. At the finest level, perennial cubelets are constructed
and updated during data ingestion by aggregating and summarizing
point data that fall within a predefined spatiotemporal extent — for
instance, over a spatial bound of a HUC12 boundary and temporal
bound of a single day.

4.4 Distributed Ingestion: Perennial Cubelet
Generation

Perennial cubelets are generated during data ingestion. In Fig. 1a,
we illustrate the process of generating these cubelets. Preprocessing
of incoming voluminous data in a standalone fashion can be time-
consuming and compute-intensive. Rubiks relies on a distributed
cluster of nodes for handling data ingestion, cubelet creation and
query evaluation.

During ingestion, incoming data-points are partitioned into
chunks and ingested in a distributed manner across our cluster
nodes. Each node independently computes its local set of cubelets,
contributing updates to a temporary set of cubelets in the dis-
tributed storage backend. Subsequently, a coordinator node initi-
ates an aggregation query to combine local cubelets with overlap-
ping keys, if any, into usable perennial cubelets. Only cubelets are
constructed and persisted; data cubes themselves are constructed
hierarchically on an on-demand basis.

4.5 Cubelet Update

To adapt to the continuous updates to the underlying storage, we
ensure concurrent data ingestion and the update of cubelets in
persistent memory.

4.5.1 Welford’s Algorithm for Rapid construction/Updates. To en-
sure efficiency and scalability within Ruiks, we employ dynamic
merging and updates of cubelets using Welford’s algorithm, which
provides a computationally efficient (single-pass) approach for in-
crementally calculating the mean and variance as new data are
added or cubelets are merged. This method allows for real-time
updates and analysis without the need to recompute the entire
dataset, reducing both computational complexity and memory re-
quirements.

Leveraging Welford’s algorithm and associated metadata mean
that our cubelets can efficiently accommodate data updates and
adapt to changing input without sacrificing analytical accuracy.
The algorithm’s incremental, online nature makes it particularly
well-suited for handling continuous data ingestion and maintaining
up-to-date statistics within cubelets and across data cubes that
are hierarchically constructed using cubelets and other data cubes.
As a result, both cubelets and data cubes can dynamically adjust
to new data points, supporting real-time analyses and ensuring
a robust and scalable solution for data management and analysis.
Utilizing Welford statistics for aggregation over cubelets allows us
to 1) rapidly identify cubelets that require change/creation, and 2)
perform rapid, decentralized updates over our cluster.

Due to the disjoint nature of measurements of attributes at a
monitoring station, recorded measurements of any pair of desired
attributes at the same location is never guaranteed to be concurrent.
This complicates the process of measuring correlation between
such attributes. To account for this situation, we aim to estimate the
correlation measures in these cases by interpolating the recorded
values based on how distant their measurements are in time. We
explain the process of correlation computation for such misaligned
measurements next.

4.5.2 Correlation estimation for misaligned time series. If two time
series x and y are observed at irregular time points {s; ?jl *
{t; };l;’ 1> the empirical means iy, jiy and empirical standard devia-
tions Ty, oy for the two series can be computed directly. The empiri-
cal correlation, however, can only be computed directly if the obser-
vation times are aligned (n = ny = ny, sy = t;,s2 = f2,..., 5 = tp):

1 <A [x() =B)| [y(t)) - By
s SR R

Jj=1

BDCAT ’°23, December 4-7, 2023, Taormina (Messina), Italy

If observation times for the two series are misaligned, we use
the non-rectangular kernel approach described in [Rehfeld et al.
2011] to approximate the correlation. Let

1 { —(s—1)? }
exp
hV2r 2h?
denote the Gaussian kernel function with bandwidth parameter h.
This kernel function is used to determine which time points between
the x and y series are close enough to be used in estimating the
correlation, via

Kp(s,t) =

1
Z’lx an Ky (si — t‘)
x(s,) y(t])

Pxy

Kh(i~ t])
i=1 j=1
~ ny Ny
H x(si)
_A_yz Al Kh(sz_t])
Oy i=1 j=1

+&§iﬁiKh(si—tj) : 8

We compute the average distances Ag, A; between consecutive
time points in {s;}~, {t; ?;’1, respectively, and choose h = 0.25 x
max {Ag, A}, following [Rehfeld et al. 2011]. As noted in [Rehfeld
et al. 2011], pxy is not guaranteed to lie within [~1, 1]; we set it
equal to the closest boundary value if it falls outside.

If 1nf0rmat10n from two cubelets is to be combined, let {s(k) }
and {t(k>}
1,2. Assume that from pilot analysis a single value of h can be
determined across cubelets. Further, assume that

K (50.) o, K 260 =

that is, a misaligned pair in two different cubelets has time points
sufficiently far apart to contribute nothing to the correlation com-
putation. Then replace each cubelet mean and standard deviation
in equation (1) by the combined mean and standard deviation; and
replace each double sum in (1) by adding the two corresponding
double sums (one for each cubelet); e.g., replace the first double
sum in the numerator by

denote the observation time points for cubelets k =

x(s(k)) y(t())

(k)

x Yy
22
In addition to the information already required for updating the
mean and standard deviation when combining cubelets, this correla-

tion computation requires storing for each cubelet the four distinct
double sums in (1).

K (s = 1),
‘Ty

4.5.3 HashGrid for Updating Cubelets. In RUBiKs, the need for
continuous cubelet updates to ensure query accuracy stems from
the dynamic nature of the underlying data store. To effectively ac-
commodate this evolving data landscape, concurrent data ingestion

Saptashwa Mitra, Matt Young, Jay Breidt, Sangmi Pallickara, and Shrideep Pallickara

and cubelet updates within persistent memory are critical. This
process is orchestrated through a hashgrid-driven approach, aimed
at ensuring accuracy of constructed data cubes with the evolving
dataset through the following steps:

Binary Hierarchical Hashgrid: RuBIks maintains a binary hier-
archical hashgrid, wherein each element corresponds to a specific
cube. This hashgrid serves as a reference to indicate whether a cube
is up-to-date or requires updating due to changes in the underlying
data.

Coordinator-Initiated Updates: During execution of the aggre-
gation, the coordinator node also monitors and tracks cubes that
have undergone modifications since the last update. The coordina-
tor node updates the hashgrid based on the modifications detected.
Each corresponding element in the hashgrid is updated to reflect
the current status of its respective cube - indicating whether it is
up-to-date or not.

Hierarchical Update Propagation: The hierarchical structure of
the hashgrid streamlines the propagation of updates. The coordi-
nator node can efficiently update higher-level hashgrid elements
based on changes in the lower levels. This hierarchical mechanism
ensures a streamlined and efficient update process.
Cluster-Wide Synchronization: Once the hashgrid is updated
by the coordinator, this updated hashgrid is disseminated to all the
cluster nodes. This push informs each node about the cube that are
currently out-of-sync and cannot be used for query evaluation due
to outdated information.

By leveraging this hashgrid-driven approach, RuBiks seamlessly
incorporates continuous data updates into its cubes. This process en-
sures that the cubes remain relevant and accurate, enabling accurate
and up-to-date query evaluations even over dynamic, continually-
evolving datasets.

4.6 Hierarchical Aggregation of Cubelets

The computed cubelets, which represent fine-grained spatiotem-
poral aggregates, are systematically organized into a hierarchical
structure. This hierarchical organization is achieved through the
aggregation of lower-level cubelets that lie within the bounds of a
given parent cubelet, ensuring efficient representation and manage-
ment of the cubelets. Additionally, specific hierarchical structures
such as quadtiles, Hydrologic Unit Codes (HUC), and Federal Infor-
mation Processing Standards (FIPS) codes are employed to cater to
diverse geospatial bounds. Temporally, we allow aggregation to be
in units of days, weeks, months, or years.

To form coarser aggregates at higher levels of the hierarchy,
cubelets are combined. This merging process allows the creation
of larger aggregations, providing a multi-resolution perspective
of the data (Fig. 2). Moreover, higher-level spatiotemporal extents
are applied to encompass multiple cubes of varying types, further
enhancing the versatility of the hierarchical framework. By em-
ploying these methods, the hierarchical organization enables more
insightful analysis of spatiotemporal patterns and trends within
the datacubes.

The cube hierarchy (with cubelets at the lowest level and dynam-
ically, recursively constructed data cubes) is maintained in the form
of a metadata graph. However, since we can deterministically and
hierarchically aggregate based on spatiotemporal bounds, there is

Rusiks: Rapid Explorations and Summarization over High Dimensional Spatiotemporal Datasets

no need to maintain actual links between the cubes themselves. We
maintain these cubes as a set of hashmaps, grouped by their spatial
and temporal keys, allowing targeted, efficient O(1) retrievals.

L, Ephemeral
Cubelets
(Coarsest Resolution)

Ly.4 Ephemeral

Cubelets
LN
/ A\
r 1 —\;
.- -- RPN . oo .- ..LngEelmeral
Cubelet N, Cubelet ubelets
Aggregatio \Aggregation

(Finest
EEEEEEEE

esolution)

r \
ENEEEEEE
Perennial Cubelets

Figure (2) Dynamic construction of cubelet hierarchy

4.7 Query Evaluation

The following is a sample spatiotemporal query that we support
at client-side. RUBIKS supports spatiotemporal queries at varying
levels of resolution (spatial_resolution, temporal_resolution) over
any given viewport (Polygon) and timerange(Query_Time).
select pearson(iron ,mercury),

from Aqua_Dataset

where coornidates in Polygon

and time_stamp in Query_Time

group by spatial resolution, temporal resolution

Fig. 1b provides an insight into the query evaluation process
orchestrated by RuBiks. The system handles analytical queries
over spatiotemporal data through the utilization of datacubes. We
elaborate on the overall query evaluation mechanism of RUBIKS in
a distributed context. When a client query is initiated, it is initially
directed towards the relevant cluster nodes (as explained further
in the subsequent section). At each node, a search is conducted
within the in-memory cache for cubes that either precisely match
or can be repurposed to meet the requirements of the current query.
Subsequently, the query is enhanced to retrieve any unfulfilled
spatiotemporal extents from the backend storage.

In the backend storage, RUBIKS engages in a search for ephemeral
cubes that can be effectively employed or repurposed to furnish
accurate responses for the ongoing query. For any cubes that are
found missing, they are dynamically constructed from the collection
of perennial cubelets and subsequently dispatched to the request-
ing node. In addition to addressing the query at hand, these newly
formed data cubes are added to the roster of ephemeral cubes for
future potential use. Data cubes created using this dynamic and
targeted process are cached. By orchestrating this interplay of cache
utilization, dynamic data cube construction, and query enhance-
ments, RUBIKs realizes a robust and responsive query evaluation
mechanism that ensures efficient utilization of available data and
computational resources. Crucially, correctness is preserved while
ensuring efficient analysis of spatiotemporal datasets.

5 SYSTEM ARCHITECTURE

The RuBiks framework, along with its hierarchy of perennial and
ephemeral cubelets, comprises a distributed query evaluation and

BDCAT 23, December 4-7, 2023, Taormina (Messina), Italy

graph-based caching system. We explain each of these components
in detail.

5.1 Distributed cluster

We have designed a distributed data structure, RUBIKs, that allows
users to retrieve aggregated values over arbitrary spatiotemporal
granularities over large-scale data collections. The data collections
we consider comprise multidimensional observations that are stored
in files - each observation has associated spatial coordinates (lati-
tude and longitude) and an observational timestamp. RUBIKs aggre-
gates data based on the spatial coverage and temporal range using
statistical data aggregation methods. The distributed nodes compris-
ing RUBIKs are organized as a distributed graph that maintains the
level of granularity used for data aggregation. RUBiks’ distribution
across the cluster is orchestrated through a zero-hop Distributed
Hash Table (DHT) architecture. The overall spatiotemporal scope of
the data is uniformly partitioned among cluster nodes via a fusion
of spatial and temporal hashing mechanisms, ensuring efficient
identification of the responsible node(s) for any requested bound-
ary. Depending on the specific dataset, we allow the spatial hashing
to take various forms such as quadtiles, HUC12, or FIPS codes, in-
volving a segment of the spatial code along with timestamps to
distribute data across nodes. It’s crucial to highlight that RuBIKs’
node architecture doesn’t store raw data. Rather, it focuses on re-
taining cubelets that dynamically populate their in-memory cache
over time. This approach optimizes resource usage by capitalizing
on cubelets, which are compact and versatile analytical units. In
essence, RUBIKS cluster distribution, rooted in spatial and temporal
hashing, and its cubelet-centric storage strategy collectively en-
sure efficient data organization and rapid retrieval, underscoring its
ability to handle complex spatiotemporal queries with heightened
efficacy.

5.2 In-memory Cache

077 Spatial Resolution: 4
Temporal Resolution: <Month>

| 2023@3“

0
70,
2,
e 00770 Spatial Resolution: §
0p. 2; Temporal Resolution: <Month>
703 2355 Ooy 7

235 0p. 715 a0,

0075, (e, 00,

22305 %, 130, Ry

Figure (3) Cubelet spatiotemporal bounds

RuBiIks’ architecture includes a distributed cache on each node,
organized to accommodate the spatiotemporal partitioning of the
overall data domain. Cubelets pertinent to each node’s assigned
partition are maintained within their respective cache, establishing
a sparse hierarchical metadata graph.

The in-memory cache structure within RuBiks diverges from
conventional graph storage. Vertices correspond to sets of aggre-
gated values sharing a common index key, while edges capture
geospatial relations like granularities and proximity. Cached query

BDCAT ’°23, December 4-7, 2023, Taormina (Messina), Italy

outputs and interim results optimize density based on granular-
ity and spatiotemporal coverage. RUBIKs’ response time is nearly
real-time as it navigates through its distributed hash tables, circum-
venting traditional graph traversal costs.

RUBIKs optimizes response times by utilizing a distributed hash
table architecture, replacing conventional graph storage structures.
Each level, comprising sets of vertices with the same granularity,
operates within a zero-hop DHT framework. These levels are navi-
gated using a simplified array structure. This design significantly
reduces computational complexity to O(1), enhancing RUBIKs’ effi-
ciency and speed.

5.3 Dynamic Construction of Cubelet Hierarchy

Rusiks’ hierarchical cubelets framework orchestrates the construc-
tion of coarser aggregates as part of the query evaluation process.
This dynamic procedure enhances the versatility of cubelets, en-
abling their transformation into higher-level aggregations for multi-
resolution analysis.

Initiated by query execution, the process commences with the
retrieval of pertinent cubelets based on their spatiotemporal ex-
tents. Once retrieved, the system assesses the feasibility of merging
neighboring cubelets to generate more comprehensive aggregations.
Predefined rules guide this evaluation, ensuring that the resulting
coarser cubelets align with desired parameters.

Upon identification of compatible cubelets, the system performs
mathematical operations to fuse metadata attributes. These opera-
tions range from summing counts to updating various summary
statistics including cross-feature covariances.

As queries progress, the hierarchical aggregation continually
assembles coarser cubelets at higher levels. This adaptive approach
integrates new aggregations into the query outcomes, affording
users the flexibility to explore data at varying levels of detail. This
allows RUBIKS’ to provide adaptable and efficient data exploration
within its hierarchical cubelets framework.

5.4 In-Memory Storage and Cache Eviction
Scheme

To ensure efficient storage and retrieval of cubelets within the hier-
archical datacubes framework, we propose an in-memory storage
scheme coupled with a cache eviction strategy to handle potential
overflow. This section presents the design and implementation of
this scheme.

5.4.1 Cubelet Eviction and Freshness. RUBIKs leverages an evic-
tion strategy that aligns with spatiotemporal user access patterns,
prioritizing regions of interest over individual cubelets. Since the
number of possible cubelets substantially outpaces the in-memory
capacity, RuBiks allows configuration of thresholds for the count
of cached cubelets.

Focusing beyond individual cubelet demand, the eviction strat-
egy emphasizes regions of interest—f{requently used spatiotempo-
ral scopes at a specific instance. RUBIKS’ discerns relevance, identi-
fies stale cubelets and swaps them for requested regions in case of
memory pressure.

RuBIKs uses the metric of freshness for this eviction strategy,
calculated by multiplying cubelet access frequency with a time de-
cay function, thus encapsulating both usage frequency and recency.

Saptashwa Mitra, Matt Young, Jay Breidt, Sangmi Pallickara, and Shrideep Pallickara

Table (1) Cubelet Generation: Comparison between time
(seconds) taken to create cubelets in a cold-start scenario vs
daily updates

County | Quadtiles | HUC-12
Cold-Start 187.53 219.90 363.77
Daily Updates 491 5.84 17.74

Cubelets are selected for replacement based on their freshness score.
Fig. 3 provides a two-dimensional depiction of a spatiotemporal
resolution with contained cubelets. Given recent access to regions
Ry and Ry, with spatiotemporal proximity implying future interest,
our dispersion scheme extends a fraction of the freshness score to
immediate neighborhood cubelets as well. This strategy safeguards
against staleness in the immediate region, despite infrequent access.

The rationale for prioritizing regions over precise query extents
is twofolds. First, users’ queries often form a sequence, with queries
spanning Ul actions. Our methodology discerns spatiotemporal
neighborhoods of interest encompassing potential future queries.
Second, considering multiple users’ queries, spatial access patterns
cluster around small spatiotemporal areas. Thus, focusing on im-
mediate query neighborhoods reconciles similar requests.

Cubelet replacement within RUBIKs entails evicting stale cubelets
with low-freshness scores till such time that memory pressure is
relieved. This freshness-focused scheme ensures in-memory persis-
tence of heavily accessed regions, enhancing query performance
and latency.

5.5 Visualization of Cubelets

Cubelets allow exploratory data analysis over backend data such
as heatmaps, time series plots, and interactive visualizations to
identify patterns and trends across different levels of the cubelet
hierarchy. We have used cubelets to generate heatmaps of water
contaminant proliferation at the county, watershed boundary, and
individual water body scales across the continental United States.
We used a JavaScript front-end leveraging the DeckGL mapping
framework to visualize heatmaps.

6 SYSTEM EVALUATION
6.1 Experimental Setup

To evaluate compute-intensive spatiotemporal queries and inges-
tion rates over our system, we profiled RUBIKs over a cluster of 20
nodes. The data ingestion and query evaluation occurs in a spa-
tiotemporally partitioned manner over the same cluster of 20 nodes.
Each node in our distributed cluster is an Intel Xeon E5-2620v3,
with 64 GB RAM, each with a Quadro P2200 GPU (5GB of mem-
ory) with 1280 cores and several local 7200RPM SATA hard disks.
The data ingestion operations and spatiotemporal queries over the
cluster get partitioned throughout the cluster uniformly based on
the first 6 characters of their Quadtile key[qua 2018]. A sharded,
replicated MongoDB cluster of 50 nodes was set up as our persis-
tent storage that houses both raw data nd cubelets. The machines
were organized into the following configurations: (1) 5 machines
with mongos routers (2) 39 machines running mongod instances,
co-located (3) 3 machines dedicated to running a Mongo config
replica set.

Rusiks: Rapid Explorations and Summarization over High Dimensional Spatiotemporal Datasets

* Data Movement
= Cubelet Computation

age o

Percenta;
8

Breakdown

Figure (4) Breakdown of overall cubelet construction time.
From left to right: total time (blue), pre-processing (yellow),
data movement (red), and cubelet computation (purple).

6.2 Dataset and Spatiotemporal Extent

In order to test our framework against large-scale data, we use the
Environmental Protection Agency’s water quality dataset[epa 2023],
which comprises over 4,000 different types of water quality-related
measurements recorded for the vast majority of water bodiues in
the United States from January 1st, 1970 through today. The dataset
includes measurements from over 991,000 monitoring stations with
a total of over 226 million data points, with new data ingested daily.
Spatiotemporal queries over a dataset this voluminous present a
significant challenge to query evaluation time, which the RUBIKS
framework manages elegantly.

6.3 Cubelet Construction Time

We evaluate the time taken to construct the perennial cubelets over
RUBIKS in a cold-start scenario, where we have to ingest ~ 226 M en-
tries into our distrubuted storage. Table 1 compares the time taken
to construct cubelets constructed over varying non-overlapping
geospatial bounds. We can see compared to the total number of
records being ingested, the overall time to construct cubelets is quite
low, in the order of a few minutes. Additionally, we note that the
overall time taken to construct the cubelets is directly proportional
to the total number of cubelets being constructed. For instance, for
the total geospatial extent of the CONUS, the number of unique
counties is 3163, the total number of quadtiles within the bounds is
~ 15,000, whereas the total number of HUC-12 regions is ~87,000,
which directly impacts the total number of cubelets required to be
created and saved into our framework. As expected, the overall
cubelet construction time is proof of that and it is to be noted that
ideally, cubelet construction would occur alongside data ingestion.

We can also see that the update time for cubelets for incom-
ing daily measurements is significantly low compared to a cold-
start scenario. The difference in times taken for various geospatial
cubelet bounds is also reflected here, as in the case of the cold-start
scenario. We also profile a breakdown of the overall operation of
cubelet construction during ingestion. During cold-start generation
of perennial cubelets, we need to fetch the relevant distributed data
to each computing node, perform preprocessing to load shapefiles
to identify specific geospatial cubelet boundaries and perform ag-
gregation and computation of cubelets, followed by persisting them.
Fig. 4 demonstrates the percentage of overall cubelet generation
time for a cold-start scenario where we create county-wise cubelets
for each month over records starting from 1970 till current day.

BDCAT 23, December 4-7, 2023, Taormina (Messina), Italy

Table (2) Spatiotemporal Query: Comparison between la-
tency (seconds) for varying sizes

1 Month | 1Year | 10 Years
RUBIKS 33 3.32 6.51
Brute Force 12556.6 12606.2 12686.9

We note that data movements, which constitutes both moving in-
gested data to the cluster nodes and computed cubelets back to the
persistent storage takes up a majority of the overall time.

6.4 Comparison of Accuracy

Since the RuUBIKs cubelets form the backbone of its query evalu-
ations, we compare the accuracy of RUBIKS’ aggregate statistics
against those computed through brute force. Since we use Welford’s
online algorithm to compute and update our cubelets, we expect
them to accurately represent independent statistical measures such
as mean, standard deviations, skewness and kurtosis, which are
derived from the first four order of moments.

Fig. 5 depicts choropleth maps computed using both brute-force
and through aggregation of RUBIKS’ perennial cubelets. The geospa-
tial bounds used here are US counties. We compare the mean for
the decades 1990s, 2000s, and 2010s for the water temperature in
Celsius. We can see that along with significantly improved fetch
latency the cubelets are constructed accurately (i.e., no deviations
observed versus brute force traditional calculations) in an online
fashion.

6.5 Query Evaluation Latency

We profile the improvement in latency through our RuBixs frame-
work, compared to that of a spatiotemporal query over raw data.
Here, we profile the latency over queries of varying size. We eval-
uate the time taken to compute county-wise aggregate statistics
per month. By keeping the spatial bounds of the query fixed to
the entire CONUS, we vary the temporal extent of the query to a
month, a year and a decade. Table 2 profiles the average time taken
for each of these 3 types of queries with and without the use of
RuBIKs cubelets. We can see significant improvement in query
times compared to fetching of raw data, with improvement
ranging from ~3800-2000x.

6.6 Improvement in Latency Through Caching

Rusiks’ hierarchical distributed caching scheme at the cluster nodes
helps avoid redundant processing and network communication. We
evaluate the improvement in latency of various levels of overlapping
queries. To profile the efficacy of our caching scheme, we populate
our in-memory cache with 25, 50, and 100% of the query domain
and execute random queries of a fixed size (CONUS, monthly) over
that fixed domain. The average latency results for each of the 3
cases are shown in Table 3. We can see that the reduction in query
latency is directy proportional to the amount of potential cache-hits
which helps reduce the amount of cubelets that would need to be
queried and fetched from the persistent store.

BDCAT 23, December 4-7, 2023, Taormina (Messina), Italy

Saptashwa Mitra, Matt Young, Jay Breidt, Sangmi Pallickara, and Shrideep Pallickara

(d) Cubelet-based Computation for 1990s (e) Cubelet-based Computation for 2000s (f) Cubelet-based Computation for 2010s

Figure (5) Comparing choropleth maps vertically. The top row was generated using raw data, and the bottom row was generated
using data cubes. Each choropleth map visualizes mean water temperature measured in degrees celcius, aggregated across
counties. RUBIKS queries return accurate (i.e. identical to brute force) results but do so substantially (2000x - 3800x) faster.

Table (3) Query Latency: Comparison between query time
(seconds) with varying levels of cache-hit

25% | 50% | 100%
Latency (secs) | 2.8 | 2.47 | 0.86

7 CONCLUSION

Here we described, RuBiks, our framework for rapid summarization
and explorations of high-dimensional, voluminous spatiotemporal
datasets.

ROQ-1: Preservation of interactivity is predicated on precomputing
cubelets (atomic units) that can be leveraged in the computation
of data cubes. Space efficiency of the cubelets alongside storage
of additional metadata allows the same data cube to be leveraged
in the computation of diverse data cubes. Relying on hierarchical
spatial aggregations allows the operations to be targeted while also
limiting the number of I/O operations that need to be performed.
Our distributed caching schemes reduce duplicate processing and
by prioritizing the residency of cubelets over ephemeral cubes re-
duce I/O requirements.

RQ-2: Hierarchical aggregations alongside the online Welford’s
algorithm lay the groundwork for effective summarizations across
diverse spatiotemporal scopes. We supplement this with a kernel-
based weighing of misaligned measurements to cope with the com-
plexity of covariance computations when the measurements across
variables are not synchronized in time and when the number of
discrete measurements across variables are different. Deterministic
identification of spatial scopes for aggregation (based on hierarchi-
cal prefix matching) alongside identification of temporal bounds
allow us to be very targeted in the cubelets that are involved the cal-
culation of data cube. We support diverse spatial extents: schemes
that we currently support include administrative boundaries, wa-
tershed boundaries, and quad tiles.

RQ-3: Summarizations at scale are predicated on minimizing du-
plicate processing, leveraging hierarchical aggregations, and a dis-
tributed cache. The incremental creation of cubelets allows the
framework to cope with continuous data arrivals and targeted up-
dates. Persistent cubelets preclude recomputations while their space
efficiency allows cache residency of a large number of cubelets to
reduce disk I/O.

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation
(OAC-1931363, CNS-2312319), and an NSF/NIFA Artificial Intelli-
gence (Al) Institutes AI-CLIMATE Award [2023-03616].

REFERENCES

2018. QuadTiles. https://wiki.openstreetmap.org/wiki/QuadTiles

2023. Water Quality Data Download | US EPA. https://www.epa.gov/waterdata/water-
quality-data-download.

Leilani Battle, Remco Chang, and Michael Stonebraker. 2016. Dynamic prefetching
of data tiles for interactive visualization. In Proceedings of the 2016 International
Conference on Management of Data. ACM, 1363-1375.

Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM 13, 7 (1970), 422-426.

Thilina Buddhika, Matthew Malensek, Shrideep Pallickara, and Sangmi Lee Pallickara.
2021a. Living on the edge: Data transmission, storage, and analytics in continuous
sensing environments. ACM Transactions on Internet of Things 2, 3 (2021), 1-31.

Thilina Buddhika, Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara.
2017. Synopsis: A distributed sketch over voluminous spatiotemporal observational
streams. IEEE Transactions on Knowledge and Data Engineering 29, 11 (2017), 2552—
2566.

Thilina Buddhika, Sangmi Lee Pallickara, and Shrideep Pallickara. 2021b. Pebbles:
Leveraging sketches for processing voluminous, high velocity data streams. IEEE
Transactions on Parallel and Distributed Systems 32, 8 (2021), 2005-2020.

Graham Cormode. 2009. Count-Min Sketch.

Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms 55, 1 (2005), 58-75.

GC Fox, Hasan Bulut, Kangseok Kim, Sung-Hoon Ko, Sangmi Lee, Sangyoon Oh,
Shrideep Pallickara, Xiaohong Qiu, Ahmet Uyar, Minjun Wang, et al. 2003. Col-
laborative web services and peer-to-peer Grids. SIMULATION SERIES 35, 1 (2003),
3-12.

https://wiki.openstreetmap.org/wiki/QuadTiles

Rusiks: Rapid Explorations and Summarization over High Dimensional Spatiotemporal Datasets

Geoffrey Fox, Sang Lim, Shrideep Pallickara, and Marlon Pierce. 2005a. Message-
based cellular peer-to-peer grids: foundations for secure federation and autonomic
services. Future Generation Computer Systems 21, 3 (2005), 401-415.

Geoffrey Fox, Shrideep Pallickara, and Xi Rao. 2005b. Towards enabling peer-to-
peer Grids. Concurrency and Computation: Practice and Experience 17, 7-8 (2005),
1109-1131.

Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali
Venkatrao, Frank Pellow, and Hamid Pirahesh. 1997. Data cube: A relational
aggregation operator generalizing group-by, cross-tab, and sub-totals. Data mining
and knowledge discovery 1 (1997), 29-53.

Stefan Hagedorn, Philipp Gotze, and Kai-Uwe Sattler. 2017. The STARK framework for
spatio-temporal data analytics on spark. Datenbanksysteme fiir Business, Technologie
und Web (BTW 2017) (2017).

Stefan Heule, Marc Nunkesser, and Alexander Hall. 2013. Hyperloglog in practice:
Algorithmic engineering of a state of the art cardinality estimation algorithm. In
Proceedings of the 16th International Conference on Extending Database Technology.
683-692.

James N Hughes, Andrew Annex, Christopher N Eichelberger, Anthony Fox, Andrew
Hulbert, and Michael Ronquest. 2015. Geomesa: a distributed architecture for
spatio-temporal fusion. In Geospatial informatics, fusion, and motion video analytics
V, Vol. 9473. SPIE, 128-140.

Rui Li, Jiapei Fan, Xinxing Wang, Zhen Zhou, and Huayi Wu. 2015. Distributed
cache replacement method for geospatial data using spatiotemporal locality-based
sequence. Geo-spatial Information Science 18, 4 (2015), 171-182.

Rui Li, Wei Feng, Huayi Wu, and Qunying Huang. 2017. A replication strategy for a
distributed high-speed caching system based on spatiotemporal access patterns of
geospatial data. Computers, Environment and Urban Systems 61 (2017), 163-171.

Rui Li, Yinfeng Zhang, Zhengquan Xu, and Huayi Wu. 2013. A Load-balancing method
for network GISs in a heterogeneous cluster-based system using access density.
Future Generation Computer Systems 29, 2 (2013), 528-535.

Lauro Lins, James T Klosowski, and Carlos Scheidegger. 2013. Nanocubes for real-time
exploration of spatiotemporal datasets. IEEE Transactions on Visualization and
Computer Graphics 19, 12 (2013), 2456-2465.

Matthew Malensek, Sangmi Pallickara, and Shrideep Pallickara. 2015. Fast, ad hoc
query evaluations over multidimensional geospatial datasets. IEEE Transactions on
Cloud Computing 5, 1 (2015), 28-42.

Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara. 2017. Hermes:
Federating fog and cloud domains to support query evaluations in continuous
sensing environments. IEEE Cloud Computing 4, 2 (2017), 54-62.

Saptashwa Mitra, Paahuni Khandelwal, Shrideep Pallickara, and Sangmi Lee Pallickara.
2019. Stash: Fast hierarchical aggregation queries for effective visual spatiotemporal
explorations. In 2019 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 1-11.

Saptashwa Mitra, Paahuni Khandelwal, Shrideep Pallickara, and Sangmi Lee Pallickara.
2023. ARGUS: Rapid Wildfire Tracking Using Satellite Data Collections. In 2023
IEEE 16th International Conference on Cloud Computing (CLOUD). IEEE, 72-83.

Saptashwa Mitra, Daniel Rammer, Shrideep Pallickara, and Sangmi Lee Pallickara.
2021a. A generative approach to visualizing satellite data. In 2021 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 815-816.

Saptashwa Mitra, Daniel Rammer, Shrideep Pallickara, and Sangmi Lee Pallickara.
2021b. Glance: A generative approach to interactive visualization of voluminous
satellite imagery. In 2021 IEEE International Conference on Big Data (Big Data). IEEE,
359-367.

Cicero AL Pahins, Sean A Stephens, Carlos Scheidegger, and Joao LD Comba. 2017.
Hashedcubes: Simple, low memory, real-time visual exploration of big data. IEEE
transactions on visualization and computer graphics 23, 1 (2017), 671-680.

Shrideep Pallickara and Geoffrey C Fox. 2004. On the matching of events in distributed
brokering systems.. In ITCC (2). 68-76.

Shaoming Pan, Lian Xiong, Zhengquan Xu, Yanwen Chong, and Qingxiang Meng.
2018. A dynamic replication management strategy in distributed GIS. Computers &
geosciences 112 (2018), 1-8.

Sanjoy Paul and Zongming Fei. 2001. Distributed caching with centralized control.
Computer Communications 24, 2 (2001), 256—-268.

Kira Rehfeld, Norbert Marwan, Jobst Heitzig, and Jiirgen Kurths. 2011. Comparison
of correlation analysis techniques for irregularly sampled time series. Nonlinear
Processes in Geophysics 18, 3 (2011), 389-404.

Luis Santos, Jodo Coutinho-Rodrigues, and Carlos Henggeler Antunes. 2011. A web
spatial decision support system for vehicle routing using Google Maps. Decision
Support Systems 51, 1 (2011), 1-9.

Paul R Seaber, F Paul Kapinos, and George L Knapp. 1987. Hydrologic unit maps.
Vol. 2294. US Government Printing Office Washington, DC, USA.

Wenbo Tao, Xiaoyu Liu, Cagatay Demiralp, Remco Chang, and Michael Stonebraker.
2019. Kyrix: Interactive visual data exploration at scale. CIDR.

Guoren Wang, Yue Zeng, Rong-Hua Li, Hongchao Qin, Xuanhua Shi, Yubin Xia,
Xuequn Shang, and Liang Hong. 2023. Temporal Graph Cube. IEEE Transactions on
Knowledge and Data Engineering (2023).

BP Welford. 1962. Note on a method for calculating corrected sums of squares and
products. Technometrics 4, 3 (1962), 419-420.

BDCAT 23, December 4-7, 2023, Taormina (Messina), Italy

Kyu-Young Whang, Brad T Vander-Zanden, and Howard M Taylor. 1990. A linear-time
probabilistic counting algorithm for database applications. ACM Transactions on
Database Systems (TODS) 15, 2 (1990), 208-229.

Randall T Whitman, Michael B Park, Sarah M Ambrose, and Erik G Hoel. 2014. Spatial
indexing and analytics on Hadoop. In Proceedings of the 22nd ACM SIGSPATIAL
international conference on advances in geographic information systems. 73-82.

Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. Geospark: A cluster computing frame-
work for processing large-scale spatial data. In Proceedings of the 23rd SIGSPATIAL
international conference on advances in geographic information systems. 1-4.

	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Research Questions
	1.3 Overview of Approach
	1.4 Paper Contributions
	1.5 Paper Organization

	2 Related Work
	3 Background
	4 Methodology
	4.1 Cubelets
	4.2 Cubelet Content
	4.3 Cubelet Spatiotemporal Bound
	4.4 Distributed Ingestion: Perennial Cubelet Generation
	4.5 Cubelet Update
	4.6 Hierarchical Aggregation of Cubelets
	4.7 Query Evaluation

	5 System Architecture
	5.1 Distributed cluster
	5.2 In-memory Cache
	5.3 Dynamic Construction of Cubelet Hierarchy
	5.4 In-Memory Storage and Cache Eviction Scheme
	5.5 Visualization of Cubelets

	6 System Evaluation
	6.1 Experimental Setup
	6.2 Dataset and Spatiotemporal Extent
	6.3 Cubelet Construction Time
	6.4 Comparison of Accuracy
	6.5 Query Evaluation Latency
	6.6 Improvement in Latency Through Caching

	7 Conclusion
	Acknowledgments
	References

