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Abstract—Spatial data volumes have grown exponentially
alongside the proliferation of sensing equipment and networked
observational devices. In this study, we describe our framework
aQua for performing visualizations and exploration of spatiotem-
porally evolving phenomena at scale. We validate our ideas
in the context of data from the National Hydrology Database
(NHD) and the Environmental Protection Agency (EPA) to
support longitudinal analysis (53 years of data) for the vast
majority of water bodies in the United States. Our methodology
addresses issues relating to preserving interactivity, effective anal-
ysis, GPU accelerated visualizations, dynamic query generation,
and scaling. We consider optimizations and refinements at the
server-side, client-side, and how information exchange occurs
between the client and server-side. We report both quantitative
and qualitative assessments of several aspects of our tool to
demonstrate its suitability. Finally, our methodology is broadly
applicable to domains where visualization-driven explorations of
spatiotemporally evolving phenomena are needed.

Index Terms—Spatiotemporal Phenomena, Big Data, Visual-
izations, and High Dimensional Analyses.

I. INTRODUCTION

The past couple of decades have seen an exponential growth
in the amount of data being generated [1]. This growth has
been fueled in part by increases in the number of data sources,
falling costs for sensing equipment, increased battery capac-
ities, improvements in the quality and capacity of networks,
and the proliferation of sensors that measure features with
increased precision. Other data sources include simulations
and models.

A substantial amount of data that are generated is spatial,
i.e., data that have spatial coordinates associated with them.
These data can either be point measurements with geotagged
[lat, long] coordinates or N-sided polygons where each vertex
is defined using a [lat, long] tuple. The data also have a
timestamp representing when those observations were made.
Data collections that are geocoded alongside timestamps are
spatiotemporal datasets.

Spatiotemporal datasets arise naturally in several domains
such as geosciences, urban planning, agriculture, environmen-
tal sciences, and ecology among others — where the phenom-
ena are monitored using in situ or remote sensing equipment.
These data provide opportunities to understand phenomena or
inform decision making.
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As spatiotemporal datasets proliferate, researchers are in-
terested in tools that facilitate analyses over them [2]-[4]. In
particular, researchers are interested in identifying the implicit
characteristics associated with the spatiotemporal evolution
of the feature space [5]-[7]. These include visualizations at
vast spatiotemporal scales, spatial variation of the measure
of interest and also how they vary over time for longitudinal
analyses [8], [9]. However, researchers are stymied in their
analyses by issues stemming from data volumes, the amount
of I/O that needs to be performed, and precisely identifying
the data of interest [10].

The overarching objective of this study is to leverage
visualizations as a complement that undergirds complex data
analysis over spatiotemporally evolving phenomena where
both the spatial extent and time scales under consideration are
vast. A key goal is to accomplish these visualization driven
analyses and explorations while preserving interactivity [11].

The analysis and visualizations work in concert with each
other. Visualization is one of the primary ways to explore
both the raw data and the results of the analyses. These
visualizations themselves inform subsequent analyses [12].
Queries identify spatiotemporal scopes where the specified
predicates hold true and can be used to identify how the
analyses proceed.

We validate our ideas in the context of water quality
analyses. Our study involves every water body in the United
States, every HUC12 watershed boundary, every census county
and tract, and 1 million monitoring stations that profile and
track over 5000 chemicals in these various spatial extents. The
research questions and methodological aspects underpinning
our work are broadly applicable to other spatiotemporally
evolving phenomena such as urban sustainability and plan-
ning, assessing air quality, climatic clarifications, profiling
environmental and ecological impacts of manmade and natural
processes.

A. Research Challenges
Challenges in effectively supporting visualizations over spa-
tiotemporally evolving phenomena include:
1) The number of visual elements: As the number of
visual elements increases, cumulative overheads asso-
ciated with visualization and analysis also increase.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 26,2024 at 01:55:17 UTC from IEEE Xplore. Restrictions apply.



2) Complexity and diversity of the visual elements: The
visual elements may have a large number of vertices
each with a double precision [lat, long] tuple associated
with them. The complexity of these shapes increases the
per-element rendering overheads.

Input/Output (I/O) overheads: Data fetching operations
are I/O bound because they entail both disk I/O (re-
trievals) and network I/O (transmissions).

Variability of Features: Each visual element may have a
large number of variable features associated with it.
The data are continually evolving with new measure-
ments being reported continually. Furthermore no single
spatial extent has all features being tracked.

3)

4)

5)

B. Research Questions

The crux of this study is to enable interactive visualizations
and analysis over voluminous, high-dimensional spatiotempo-
ral data. Research questions that we explore include:

RQ-1: How can we preserve interactivity during explorations?
RQ-2: How can we limit the amount of I/O being performed?
RQ-3: How can we support rich data analyses at scale?

C. Approach Summary

Our methodology involves a carefully calibrated mix of (1)
data preprocessing so that computationally expensive oper-
ations are not duplicated or performed in the critical path,
(2) ensuring support for expressive analyses, (3) preserving
interactivity, (4) coping with issues of scale, and (5) supporting
exploratory analyses. We consider optimizations and refine-
ments at the server-side, client-side, and information exchange
between the client and server-side.

Our data preprocessing operations target creation of har-
monized datasets, computing intermediate values needed for
downstream analyses, and producing simplified representa-
tions of complex visual elements. Water bodies in our analyses
are represented using shapefiles (N-sided polygons) from the
NHD. Monitoring stations managed by the U.S. Environmental
Protection Agency (EPA) report measurements for observed
concentrations of diverse chemicals alongside the station’s
GPS coordinates and measurement timestamps. Our tool,
aQua (URL for tool @ [13]), supports explorations over data
reported by 1 million monitoring stations (for the 53-year
duration of the data that we consider). Our data preprocessing
targets associating measurements to spatial extents based on
their proximity and inclusion within the shapefiles. Once the
data sources, spatial extents, and measurements are harmo-
nized the data analysis can proceed over spatial extents where
individual data items are reported as multidimensional vectors
with measurement timestamps.

To support effective analysis, we include support for track-
ing changes in feature values over time alongside support for
drill-down and roll-up analyses. We supplement this with an
emphasis on user experience that blends interactivity with sim-
plicity of query composition, rich visualization, and graphing
support to analyze spatiotemporally evolving phenomena. To
effectively track and graph changes in feature values over time,
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we leverage discretization and binning to reduce the number
of observations that need to be retrieved. Our application is
designed as a Web Mercator projection system.

Query composition in aQua is dynamic and steered from the
visualization engine. The queries are declarative; the details of
the query composition and predicate formulation are shielded
from the user. The framework generates these queries dynami-
cally by constraining temporal bookends, spatial extents under
consideration, and the order in which the query predicates are
evaluated (based on features that have been indexed) — this
allows pruning of the search spaces during query evaluations.

To ensure interactivity we rely on a mix of streaming,
targeted rendering operations that account for boundary con-
ditions, and shape simplifications. We reduce computational
requirements by only rendering visual elements that exceed
perceptual limits: visual elements that are excluded from
rendering are included for rendering as a user zooms in.

Exploratory analyses are backed using dynamic query com-
positions alongside the configuration of powerful defaults for
several aspects with the option to override these based on
the analyses being performed. A key feature we support for
exploratory analyses is similarity-based analyses. Queries such
as “more like this” trigger dynamic composition of the query
predicates. We support two distinct mechanisms to detect sim-
ilarity: instance similarity and longitudinal similarity. Given
a spatial extent of interest (the reference), instance similarity
queries focus on identifying other spatial extents with observed
values for each measure of interest that are within “range” of
the area of interest. Longitudinal similarity is based on iden-
tifying spatial extents that exhibit similarity over much longer
time scales. In this case, each spatial extent is represented by
a profile vector that encapsulates the average values for each
feature monitored at the particular spatial extent. With each
spatial extent now represented using a spatial profile vector,
we then cluster these vectors in N-dimensional space. We use
longitudinal similarity to perform the unsupervised clustering
operation to cluster the spatial profile vectors.

D. Paper Contributions

Our methodology is broadly applicable to visualization
driven exploratory analyses of spatiotemporally evolving phe-
nomena and includes a mix of algorithmic and systems inno-
vations including:

1) Support for declarative queries and a novel framework
that dynamically generates query predicates with the
appropriate spatial scopes, and temporal bookends.
Support for discretization and binning of feature values
observed at a spatial extent. We do so while constraining
arbitrary temporal bounds.

Support for layering and apportioning of visualization
tasks so that the visualizations are amenable to paral-
lelization and rendering using GPUs.

Support for interactive visualizations and exploratory
analyses over a large number of spatial extents, features,
data sources, temporal and spatial scopes.

2)

3)

4)
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5) Assimilation of new data, data sources, and features
(chemicals) of interest.

6) Preserving locality to minimize data movements while
reducing contention in shared clusters.

E. Organization

Section 2 outlines our system architecture and methodology.
Section 3 includes a discussion of the empirical benchmarks,
performance profiling, and findings. Section 4 covers related
work and section 5 describes our conclusions and future work.

II. METHODOLOGY

To facilitate visualization driven analysis over voluminous
spatiotemporal datasets, our methodology addresses aspects
relating to: (1) data wrangling, (2) managing perceptual limits,
(3) facilitating GPU accelerated visualizations, (4) enabling
support for expressive queries that facilitate rich analyses, (5)
data streaming, (6) graphing at diverse temporal and spatial
scales, and (7) analyzing adherence to water quality standards.

A. Data Wrangling [RQ-1, RQ-2, and RQ-3]

The data leveraged in our analyses arrives from different
sources including the EPA [14], USGS National Hydrology
Database [15], and the US Census Bureau [16]. Our data
wrangling schemes are designed to ensure (1) harmonization
across diverse datasets, (2) reconciling measurements reported
in different units, (3) spatiotemporally aligning observations,
and (4) minimizing duplicate processing. A related goal is
to ensure that visualizations are not impacted by errors or
deficiencies in the data.

From the EPA Water Quality Data dataset we ingest the
Sites and Physical/Chemical collections. The Sites collection
contains records represented by a geoJSON point (coordinate
pair), metadata, and a unique identifier. The Physical/Chemical
collection contains records represented by measurement name,
unit of measurement, time measured, and an identifier which
associates the data with a measurement site. At the time of
this writing, this collection contains records starting January
1st 1970 - November 2023 within CONUS (continental United
States). In this study, the term measurement refers to data
points or groups of data points that have been measured:
chemical compounds, water temperature, weather patterns, etc.
From the EPA’s EnviroAtlas dataset we ingested the HUC12
watershed boundary collection. This collection contains geo-
JSON data representing watershed boundaries. We ingested
two shapefile collections from the NHD, which has been
federated by the USGS: Hydrography and Flowlines. The
Hydrography collection contains records (encoded using geo-
JSON) representing bodies of water such as lakes, reservoirs,
rivers, etc. that are represented as multi-polygons. The Flow-
lines collection contains records (also, encoded in geoJSON)
representing water flow lines as MultiLineStrings. When we
use the term water bodies, we refer to records from these
two collections. To support analyses based on administrative
boundaries, we ingested the most recently updated Counties
and Tracts shapefile collections from the U.S. Census Bureau.
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We use the EPA’s Water Quality Standards dataset, based on
the EPA Clean Water act, for analysis of water quality standard
violations.

a) Daily Data Ingestion: We ingest new data from the
EPA’s Water Quality Physical/Chemical and Sites collections
daily. Our auto-ingestion script runs at midnight to ensure
that the visualizations assimilate the most recent data. Our
data retrievals are targeted and avoid retrievals of data that
have been ingested within the system. We communicate with
the EPA’s servers to retrieve all new data. After performing
unit coercion and duplicate/empty values handling the data
are staged. To identify if new measurement sites have come
online, the collected data is aggregated across Site Id and the
resulting set (Set A) is compared to the set of Site Id’s already
in our database (Set B). We take the difference of these two
sets (Set A - Set B) to find all new sites. We ingest the resulting
site data and the staged measurement data into our production
datasets. Our ingestion script is containerized using Docker
and Kubernetes to ensure that it remains online.

b) Associating Measurements with Shapefiles: The asso-
ciation between measurements and shapefiles representing spa-
tial extents (water bodies, watershed boundaries, counties, or
tracts) is a foundational component of our data visualization.
The spatial component of all our visualizations come from
shapefiles and the data being visualized are measurements.
Measurements have an implicit association with the station
they were taken at. Because our measurement and station data
come from a different source than our shapefiles, we need
to build associations between the two sources. Specifically,
each station needs a reference to each shapefile that it resides
within or is proximate to. This involves extensive use of
inclusion, exclusion, intersections, and proximity calculations.
All distance calculations in aQua are based on spherical
coordinates and account for the earth’s curvature.

c) Data Cleaning: A majority of the Hydrography and
Flowlines shapefiles do not have any associated measurement
data. To prune the search space during query evaluations
and data retrievals, we defined new collections representing a
subset of these shapefiles. These subsets, one for Hydrography
and another for Flowlines, contain only those shapefiles with
associated measurement data. Henceforth when we reference
Hydrography or Flowlines we refer to these new, smaller
collections whose shapefiles have associated measurement
data.

d) Coercing Measurement Units: In order to improve
data availability (the number of measurements taken during a
given temporal window for a set of spatial extents), we perform
unit coercions when possible. Our unit coercion typically
involved converting measurement values to the smallest metric
unit used in the dataset with some exceptions. In some corner
cases, we converted units to a larger value, for example we
converted pg/l to ng/l. To preserve accuracy, we never coerced
a unit if that coercion would result in greater than a 3 order
of magnitude conversion. We allow users a choice of unit
coercion or not; this is possible because we do not alter the
original measurement values or unit, rather we added new
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fields for coerced values and units.

TABLE I
Topr 10 COERCED UNITS

Original Unit | Converted To Records
mg/1 ug/l 69,272,262
m cm 3,745,295
ft cm 2,958,144
ft3/s m3/sec 1,604,301
mg/kg ug/kg 1,333,580

deg F deg C 916,404

ppm ppt 739,802

mph km/hr 697,310

mg/L ug/l 548,199

cfs m3/sec 511,192

Unit coercion improves data availability because when we
aggregate measurement data for visualization we differentiate
between the same pollutant/chemical being measured in dif-
ferent units. This is important because we cannot convert units
on the fly during visualization especially when units may be
nonstandard or under specified; this is often the case for the
EPA Water Quality Physical/Chemical dataset. For example,
consider Phosphorus with the following units and associated
number of measurements: [mg/l: 122,453, ug/l: 1,594,356,
NONE: 532, stdUnits: 1,523, COLSTRAT 3: 3,285]. If we
convert mg/l to ug/l we stand to gain 122,453 datapoints
every time the user wants to visualize Phosphorus. For obvious
reasons we cannot do any conversions for NONE, stdUnits,
or COLSTRAT 3 but we do not remove these observations
because they could be meaningful to the organizations that
collected them. Table 1 displays the top 10 units we coerced
along with their respective numbers of coerced datapoints. We
coerced 66 units totaling 84,994,949 datapoints.

e) Duplicate/Empty Values Handling: Within the EPA’s
Physical/Chemical dataset we find that many rows have values
that are unusable. There are two cases that require special
handling during ingestion. Case-1 is when there is no value
for the measurement value column. Case-2 describes situations
when there are multiple rows with identical measurement time,
Site ID, and measurement name. This is problematic because
it suggests that the same compound was measured at the exact
same time and at the same place multiple times. We posit that
this may occur when organizations are collecting the same
data using a variety of collection techniques or sensor types.

In the event of Case-1, we discard the row. Case-2 ne-
cessitates more careful handling in order to increase data
availability. We attempt to preserve measurements meeting the
criteria for Case-2 by coercing units and averaging duplicate
values when possible.

B. Managing Perceptual Limits [RQ-1, RQ-2]

Our visualization and data analysis is structured as a web
Mercator projection based visual analytics tool that executes
within web browsers. As such, interactions with the tool are
likely to trigger data movements that may adversely impact
interactivity and responsiveness. We have explored two com-
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plementary methods to the problem of rendering voluminous
spatial data: shape simplification and perceptual limits.

a) Shape Simplification: Complex shapefiles are defined
as N-sided polygons represented by tens of thousands of
coordinate pairs. In the context of water data these are usually
shapefiles defining shorelines of large, irregular water bodies
e.g., Lake Michigan, Lake Superior. A single complex shape-
file may constitute megabytes of data. Trying to render com-
plex shapefiles in the user’s web browser can be problematic
because of the computational overheads and accompanying
latencies for rendering them at ever increasing precisions.

b) Surface Area Based Rendering: Front-end visualiza-
tions occur in the context of a map. This map may be zoomed
in and out. As a user zooms out to visualize a much larger
aggregate spatial extent, shapefiles below a certain surface area
become impossible to discern. Trying to render more than a
few thousand shapefiles at once may crash the user’s web
browser. We analyzed the surface area distribution in the Hy-
drography collection and found the following statistics for the
distribution of the spatial area: Min=0.0 km? Max=82,002.288
km?2, Mean=9.031 km?2, and Standard Deviation: 549.182
km?. Furthermore, we find that 30,021 records ( 81%) have a
surface area less than 1 km?2. This demonstrates a significant
left-skew of these data with respect to surface area; see [Fig.
1].

To address this, we define a set of perceptual limits rep-
resented by a zoom threshold and minimum visual surface
area pair. If the map crosses either one of these thresholds
we automatically filter out all shapefiles below the minimum
surface area. All surface areas are measured in square kilome-
ters. For example, consider the following {threshold: minimum
surface area} mapping: {13 : 0.001}, {11 : 0.01}, {9 :0.1},
{7 : 1}. When the map is zoomed out and crosses zoom level
9, we filter out all shapefiles with a surface area less than 0.1.
In other words, we only query and render shapefiles with a
surface area > 0.1 km?. In this way we effectively constrain
the search space to the subset of shapefiles which will be
visible, and therefore useful, to the user.

Hydrography: All Data (37110 datapoints)
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Fig. 1. Surface Area Distribution for Hydrography Collection. The y-axis is
plotted on a logarithmic scale and the x-axis is plotted on a linear scale.
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C. GPU Accelerated Visualizations [RQ-1, RQ-3]

Our software leverages GPU acceleration via the DeckGL
mapping framework. DeckGL is designed to simplify high-
performance, WebGL (Web Graphics Library) [17] based
visualization of complex datasets. DeckGL’s layers accomplish
rasterization by emulating 64 bit floating point computations
on the GPU. DeckGL exposes a number of useful layer types
optimized for handling both point-based and shapefile-based
data. Since our map-based visualizations depend primarily on
coloring and extruding shapefiles we were able to use these
layer types to simplify the parallelization of rendering tasks.

D. Expressive Queries [RQ-2 and RQ-3]

Queries underpin our analyses. We include support for: (1)
visual composition of queries, (2) longitudinal similarity, and
(3) instance-based similarity. We also support indexing subsets
of features to facilitate fast evaluation of queries.

Users can visually compose queries and render outcomes
of those queries. The query composition includes support for
dynamically refining the spatial scope of the queries (to the
viewport), the temporal bounds of interest, and the ranges
associated with the feature values based on summary statistics
computed during the ingestion phase. Our methodology in-
cludes support for indexing a subset of features and generation
of compound indices based on features most commonly used
during analysis.

Longitudinal similarity identifies spatial extents that are
similar to each other over much longer time scales. We
leverage an unsupervised learning technique to inform our
longitudinal similarity: clustering. Once the temporal bounds
of interest are identified, we represent each spatial extent with
a feature vector. We leverage longitudinal similarity to cluster
water data across a feature vector of the user’s choosing. This
is useful for identifying areas with unusually high or low
values for certain features. For example, a user could choose
[Sodium, Chloride, Calcium] as the feature vector and identify
spatial extents with outlying averages for these compounds. A
user could also use this feature to find spatial extents with
spiking averages for lead, arsenic, and other toxic chemicals
that can leach into water sources. The clustering operation
outputs a list of clusters each of which has a centroid and a
list of spatial extents with associated averages for each feature
in the vector.

E. Streaming [RQ-1 and RQ-3]

Interactions with aQua often trigger queries that are com-
posed on the fly and evaluated server-side. Our server-side
encompasses a distributed set of machines. As queries are
evaluated on the server-side, results become available. Rather
than wait for results to be available prior to returning them
to the client (or even waiting for all results to be available
before rendering them) we stream them back to the client.
This has two key advantages: responsiveness and the ability
to cancel responses (or evaluations) in case the application
no longer needs them. Streaming also amortizes the I/O and
rendering costs while ensuring that the users experience a
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responsive tool. This also allows the server-side to scale to
support multiple clients and the concurrent query evaluations
that this will entail. Crucially, our streaming approach allows
us to cancel responses (in cases where the queries trigger a
large number of responses) as the user navigates away from
the ongoing analysis and launches a new analysis.

F. Graphing at Micro and Macro Scales [RQ-2 and RQ-3]

After loading spatial extents into the map, users can visual-
ize time series line charts of all measurement data associated
with the spatial extents. This visualization can be aggregated
across multiple selected spatial extents or specific to a single
spatial extent. The user interface (UI) is integrated such that
users can also easily view comparisons between the selected
spatial extents.

The time series analysis feature also displays data availabil-
ity along the same time series. Users can visually compare
observed measurement values and data availability simulta-
neously. This is important because data availability informs
confidence in the averages for a given temporal bucket. If
the current temporal window is wide, a single bucket may
comprise several months of data. Data availability matters
because the average of a bucket with 3,000 data points
provides a higher degree of confidence than the average of
a bucket with 2 data points.

G. Water Quality Standard Analysis [RQ-1]

This feature allows users to easily visualize which spatial
extents do or do not conform to a given water quality standard.
Users select a standard (default is EPA 304(a) Recommended
Criteria), then choose a pollutant to visualize water quality
standards for. We aggregate all measurements for the selected
pollutant, grouping by the selected spatial extent. We return
5 metrics associated with water quality standards: Total Ex-
ceedences, Rate of Exceedence, Average Exceedence Percent,
Mean, and Data Availability. The Total Exceedences represent
the number of measurements which exceed the standard.
Data Availability is the total number of measurements. The
Rate of Exceedence is the Total Exceedences divided by the
Data Availability. Average Exceedence Percent is the average
percent above the standard for all exceedences. For example,
if the standard is 10 and there are 3 exceedences: [12, 13,
14], the average exceedence would be 13. In this example, the
Average Exceedence Percent would be 30%. The mean is just
the mean value for the pollutant.

III. SYSTEM BENCHMARKS

In our implementation, we leverage gRPC to facilitate
client/server communication. We use a Flask server and our
client is written in JavaScript with React Hooks, ReCharts,
and DeckGL to support GPU accelerated map rendering. We
leverage a distributed data store based on MongoDB and
MapReduce via aggregation pipelines for data processing.
Our systems benchmarks profile ingestion times, server-side
evaluation of queries, interactivity assessments and shape
rendering time using the Google Lighthouse tool. We executed
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Fig. 2. Analyzing water quality violations for Zinc in Washington State.
Counties are colored based on Rate of Exceedence and extruded based on
Average Exceedence Percent. We can easily see that Stevens County has an
extreme Average Exceedence Percent ( 7000%) and a high Rate of Exeedence
( 40%) This means that 40% of measurements for Zinc are in excess of the
water quality standard, and on average these exceedences were 7000% above
the standard.

all benchmarks on a set of 50 Hewlett-Packard DL160-G6
machines equipped with a 6-core 2.4 GHz Intel Xeon CPU E5-
2620 v3 processor and 64 GB RAM. Each machine currently
runs Alma Linux with the 9.2 kernel.

a) Ingestion Benchmarks: We profiled the times involved
in targeted retrievals of new data from the EPA servers, while
accounting for new monitoring stations (data sources) and
types of chemicals being tracked. We tracked ingestion times
when the time gaps from the most recent ingestion was a
day, a week, and a month. The observed ingestion times
were 562 ms (for a day), 842 ms (for a week), and 1214
ms (for a month). The ingestion times were dominated by
communication latencies.

b) Query Latencies: We profiled query evaluation laten-
cies for several of our queries. We benchmarked each query
made to the server-side 30 times, and report the mean and
standard deviations for each query type. Several of our queries
are generalized to handle different versions of the same query.
For example, the measurements query can find measurements
associated with a set of spatial extents, measurements to build
a feature vector, or measurements with water quality standards.
Both mean and standard deviation are reported in milliseconds.
Because our queries can be performed across such a wide
variety of spatial extents we provide two benchmarks for many
of our queries at different spatial extents: one for the state of
Colorado and one for the continental United Sates (CONUS).
The temporal range for all of the reported benchmarks was 53
years. These benchmarks can be seen in Table II.

¢) Google Lighthouse Benchmarks: We used Google
Chrome’s Lighthouse tool [19] to benchmark client interactiv-
ity and to compare rendering times using a GPU accelerated
map framework (DeckGL) with a standard CPU based map
framework (leaflet). We report average blocking time for
various rendering tasks in Table III and average blocking time
for GPU vs CPU rendering in Table IV and Fig 3. All blocking
times are reported in milliseconds. Our benchmarks illustrated
in Table III demonstrate that aQua is interactive despite vast
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TABLE II
QUERY EVALUATION LATENCIES IN MILLISECONDS

Query Mean Std Dev | Spatial Scope
Shapes 996.71 688.27 813 Water Bd.
MoreLikeThis 914.63 2,604.58 CONUS
Chart 560.65 305.24 813 Water Bd.
Chart 947.14 461.88 Colorado
SiteOrg 619.49 623.60 813 Water Bd.
SiteOrg 2,853.65 749.58 Colorado
Comparison 749.73 235.31 813 Water Bd.
Comparison 2,187.26 569.72 Colorado
Longitudinal Similarity | 73,785.14 | 9,820.79 CONUS
Measurements 824.42 327.55 813 Water Bd.
Measurements 12,834.84 1,524.74 Colorado

spatiotemporal scope of the data that underpins the visual-
ization and analysis and our benchmarks illustrated in Table
IV demonstrate that GPU acceleration becomes increasingly
crucial with broader spatial extents.

TABLE III
GOOGLE LIGHTHOUSE BENCHMARKS

Task Blocking Time | Spatial Data Complexity
Render Shapes 230 873 WB
Overview Feature 0 873 WB
Load Measurements 53.33 873 WB, 79,955 M
Time Series Chart 423.33 873 WB, 79,955 M
Shape Comparisons 236.67 873 WB, 79,955 M
More Like This 33.33 15,314 M
Water Quality Standards 0 151,557 M

Blocking times (milliseconds) reported by Lighthouse. WB: Water Bodies,
M: Measurements

TABLE IV
CPU vs GPU BENCHMARKS

# Shapes Rendered | CPU Blocking Time | GPU Blocking Time
30 110 0
300 170 90
3,000 3,500 970

d) Server Benchmarks: We briefly describe these
queries: (1) the shapes query is responsible for retrieving
all spatial extents within the map view port bounds and
calculate data availability per spatial extent, (2) the "More Like
This” query identifies spatial extents that match a similarity
index computed based on user-specified preferences, (3) the
chart query is responsible for constructing chartable data by
aggregating measurement values, bucketing, and averaging. (4)
the SiteOrg query is responsible for identifying organizations
that perform data collection activities at a set of spatial
extents, (5) the comparison query is responsible for averaging
and normalizing measurement values across a collection of
shapefiles, (6) the longitudinal similarity query performs the
unsupervised k-means clustering [18] operation based on the
user-specified set of features, and (7) the measurements query
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Fig. 3. Due to the spatial density of water bodies in many regions throughout
CONUS, it is common to render thousands of water bodies on the map at
once. Interactivity in these spatial regions necessitates the visualization speed-
ups available using a GPU accelerated map framework.

can be parametrized to retrieve measurements associated with
spatial extents.

Our server-side queries (Table II) indicate that data explo-
ration at the water body level usually returns results with sub-
second latencies to ensure interactivity. Collate this with the
client benchmarks (Table III) and we find that data rendering
time is under half a second. Data exploration at the state
level can produce longer query times because, depending on
the state, the server may be performing computations across
hundreds of millions of data points. The longitudinal similarity
query takes as long as it does because it is considering every
data point associated with every body of water in the entire
CONUS; further, the k-means clustering underpinning this
query is also performed in the critical path.

IV. RELATED WORK

Rose and Hildebrand [20] leverage WebGL to facilitate
GPU Accelerated rendering of 3D molecular structures. By
calling WebGL’s API from the browser the authors are able
to send complex rendering tasks directly to the GPU. Perrot
et al. [21] describe browser-based visualizations optimized for
GPU acceleration using WebGL with a focus on generating
heatmaps at scale. Xie et al. [22] discuss the importance of
GPU acceleration in the context of large-scale data visualiza-
tion. Their research does not visualize data in the context of
a web browsers and thus does not involve WebGL, though it
does necessitate interactivity. The authors chose to use a GPU
accelerated approach to maintain interactivity which is often
lost in distributed computing settings. Li et al. [23] suggest
that visualization can be defined as a function mapping data
to visual primitives. Their framework ensures the availability
of visualizations using a threshold which defines the minimum
size of visual primitives.

We chose to use a WebGL based mapping framework for
similar reasons that [20] and [21] chose to integrate WebGL
into their research. We leveraged a WebGL-based framework
(DeckGL) for GPU acceleration while harnessing mapping
layer types we need for our visualizations. Crucially, the use of
DeckGL frees up the CPU to maintain user interaction while
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rendering is taking place. While [23] defined a threshold for
the minimum size of visual primitives we defined a threshold
for the minimum surface area of water bodies to ensure the
user’s browser wouldn’t crash and that we were not rendering
information that is not visible to the user.

Mayorga and Gleicher [24] describe their approach to
visualizing voluminous spatial data in scatter plots by defining
perceptual limits which define the maximum data density
visible in a given area of the screen. Healey and Sawant
[25] discuss their work on perceptual level-of-detail limits for
visualizing data. To avoid performing wasteful computations
the authors sought to define a process for determining when
there are not enough pixels on the screen to render a visual
element. Liu et al. [26] present methods for maintaining
interactivity in systems designed to visualize big data. Their
methods follow the principle that perceptual limits determine
the scalability of visual information. Their experiments were
conducted in the context of a web browser-based application
which used WebGL to facilitate GPU accelerated rendering.
Harrison et al. [27] attempt to determine the effectiveness
of perceptual limits in defining visualization design using
Weber’s Law to quantify the perceived change in a given
stimulus and to compare perceptual precision.

Our work is complimentary to the work described in [24]
and [25] because we also implemented perceptual limits in
order to deal with problems relating to interactivity in the
context of vast spatial data rendering. Our work differs in
the exact implementation of perceptual limits. Where [24]
defined maximum data density and [25] identified minimum
numbers of pixels we mapped zoom thresholds to minimum
water body surface areas. This implementation of perceptual
limits allows us to cut out computation relating to water bodies
which would be imperceptible to the user. Further, the impact
on interactivity in [27] validates our use of perceptual limits.

Stream processing frameworks such as Spark [28], Storm
[29], and Samza [30] have been used to support efficient
streaming in several applications. Our choice of using a Flask
server was driven primarily by its lightweight properties (lower
memory footprints and reduced computational overheads) that
though not quite as full-featured, meets all our functional and,
more importantly, performance requirements.

V. CONCLUSIONS & FUTURE WORK

In this study we described our methodology to facili-
tate visualization-driven exploratory analyses over voluminous
spatiotemporal data collections.

RQ-1: Dynamically pruning the rendering complexity of
the visual elements based on shape simplifications and per-
ceptual limits during drill-down and roll-up operations re-
duces computational requirements while preserving interac-
tivity. Prefetching data to account for boundary conditions
around the viewport allows us to ensure responsiveness during
panning operations. Streaming and rendering visual elements
allows incremental rendering, amortizes rendering overheads,
and preserves responsiveness.
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RQ-2: Our preprocessing tasks are expressed such that
they have data locality reducing network I/O and contention.
Accounting for perceptual limits allows us to avoid streaming
and rendering visual elements. More importantly, this reduces
the amount of I/O that needs to be performed. To support data
retrievals at scale, we preferentially index a subset of features
based on their usage and include support for compound indices
for features that are often used in tandem with each other. This
allows faster query evaluations while conserving memory.

RQ-3: Declarative queries and dynamic query generation
simplify the complexity of analyses tasks. Our similarity
analysis allows users to specify features of interest and
leverage unsupervised learning to cluster spatial extents in a
multidimensional space. Users also have the ability to con-
figure and override several aspects. Finally, our discretization
and binning capabilities allow users to analyze feature value
changes compactly and at scale. Leveraging GPU accelerated
visualizations on the client-side allows our framework to be
responsive and scale with a large number of users.

As part of future work, we propose to explore imputation
schemes based on spatiotemporal variation in the pollutants.
Our current work lays the groundwork for identifying data
sources that are malfunctioning based on the rates, times,
and gaps in data availability. We propose to fit lightweight
timeseries models over data at different water bodies. Because
these timeseries models can capture trends and seasonality in
the data, they can be used to both forecast expected pollutant
values and to impute values where gaps exist.
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