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Abstract—Accurate estimation of soil moisture is crucial for
efficient agricultural management and environmental monitoring.
However, the task of predicting soil moisture levels becomes
challenging in regions with limited data availability. In this
study, we propose a knowledge distillation-based deep learning
approach to enhance soil moisture prediction with machine
learning apporach using the low resolution but wide coverage
soil moisture Active Passive (SMAP) satellite data.

Our framework leverages the knowledge distillation, where a
high-capacity teacehr model (VGG13) which is pre-traineed on a
large dataset (SMAP) and a lightweight student model (ResNet8)
which is then trained on sensor-based highly accurate but
extremely sparse station data. The student model benefits from
the distilled knowledge of the teacher model, acquiring a deeper
understanding of the underlying patterns and relationships in
the data.

The space-efficient student model significantly reduces the
inference time with high prediction accuracy and demonstrates
the potential benefit to agricultural management, water resource
planning, and ecological studies by providing accurate and
reliable soil moisture predictions in data-scarce regions. Our
findings reveal how to identify performant settings for achieving
the best trade-off between accuracy and model complexity.

Index Terms—knowledge distillation, smap, soil moisture, vgg,
resnet

I. INTRODUCTION

Soil moisture (SM) refers to the amount of water existing
within the pore spaces of the soil. SM is a vital observation
in various geoscientific domains such as plant sciences, me-
teorology, monitoring of floods and droughts, climate change,
and precision agriculture [1, 2]. Measurements of SM have
been performed using in-situ sensors and remote sensing.
In-situ sensors have traditionally been the dominant way
to measure SM, and often provide the most accurate and
detailed measurements. For example, the dielectric probe is
considered one of the most reliable methods achieving an
accuracy of over 96% [3]. However, landscape heterogeneity
entails installation of sensors every 1-100 m to capture high
variability in SM with soils type, composition, and climactic
conditions. The resulting costs stemming from deployment
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and maintenance of sensor networks precludes practicality.
Satellite-based remote sensing is an effective way to monitor
SM over a large spatial extent. Soil Moisture Active Passive
(SMAP) [4], Soil Moisture Ocean Salinity (SMOS) [5], and
ESA’s Sentinel missions [6] provide SM datasets. However,
estimating SM from satellite measurements can be limited
by the attenuation of the atmosphere, high cloud coverage,
and sparse revisit frequencies. Also, the spatial resolutions
available in current satellite systems are very coarse to capture
variability of SM for local or field scale decision making (Fig.
1 (a)). Hydrological models are widely used for estimating SM
by simulating physical processes by considering interactions
between components of the water cycle such as runoff, evap-
otranspiration, and precipitation [7]. However, topographical
variability and distribution of challenging features, alongside
the significant lack of ground observations makes model-
ing, parametrization, and application of such hydrological
models difficult to estimate SM at the desired resolution
[8]. Recently, there have been several studies using machine
learning approaches to capture nonlinear relationships across
ancillary conditions and complexity of soil characteristics [8,
9]. Constructing machine learning models to estimate high-
resolution SM map poses several computational challenges.
First, the number of ground-based SM measurements is sig-
nificantly low. The world largest Soil Moisture network — the
International SM Network (ISMN) — federates data from 71
networks and more than 2800 stations globally [10]. Although
these networks provide critical datasets for SM research and
modeling, the distribution density of these stations is too sparse
to capture spatial variability of SM values for training machine
learning models. Second, SM estimation is closely related
to ancillary observations in the surrounding area. Integrating
ambient observations with mismatching temporal and spatial
resolution is highly challenging to achieve acceptable accu-
racy. Third, deployment of a deep learning model to estimate
fast evolving SM measures requires substantial computational
resources to generate timely outputs. Finally, highly complex
machine learning models with extensive inference times are
not practical for real-world applications.

In this paper, we present our novel approach, DISCERN

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 26,2024 at 01:57:37 UTC from IEEE Xplore. Restrictions apply.



60{ ® SMAPdata
o Insitu station data

Bsk

Csb

—E
1C

8

Soil Moisture Content (%)
8

yco

A
400 00
Data point

(a) (b)
Fig. 1: (a): 1000 random SMAP and In-situ station SM data points in
Colorado, year: 2020-2021 (b): Candidate teacher model accuracy

that estimates SM using a machine learning model with the
SM measurements from limited number of ground stations.
To address the aforementioned challenges, we use knowledge
distillation that transfers knowledge from a large and more
complex model (the teacher) to a simpler, space-efficient
model (the student) that is computationally frugal for time-
sensitive applications. Our teacher model captures nonlinear
relationships between the SM and weather as well as topo-
graphical conditions using geospatially contiguous satellite
measurements at coarse resolutions. Later, the knowledge
about this relationship is transferred to the student model that
targets SM estimation with higher precision while maintaining
accuracy over regions with extremely sparse (or no) in-situ
observations.

A. Research Questions

Research questions that we explore in this study include,
RQ-1: How can the model capture nonlinear relationships
between soil moisture and ancillary conditions over regions
with sparse in-situ observations? RQ-2: How can the model
generate accurate soil moisture estimations while ensuring
reduced inference times? RQ-3: How can we facilitate faster
training of models for regions with distinctive topographical
and climatic characteristics?

B. Overview of Approach

In this study, our goal is to accurately estimate SM at scale
while accounting for their significant geospatial variability. We
accomplish this using deep learning models that are trained on
sparsely labeled data samples. To this end, we first integrate
multi-modal datasets encompassing climate information, soil
properties, elevation data, and satellite images. These datasets
are available for the spatial scales that we consider (the
continental United States or CONUS); however, there are sig-
nificant variations in both the spatial resolutions and temporal
resolutions at which the data are available. We incorporate
SMAP satellite images, offering a low-resolution (L3_SM_A
3km product which is model derived from 36km product) view
of SM across a broad geospatial extent. We supplement these
with a limited number of (spatially sparse) high-precision SM
readings from ground stations for the target dataset during
model training.

To address the challenge posed by the extreme sparsity
of target data samples, our approach entails learning the
nonlinear relations between SM and environmental conditions
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using coarse-resolution SMAP satellite images. We transfer
the acquired insights to the final SM estimation model via
Knowledge Distillation (KD) techniques. KD involves two
distinct models — the teacher and student. Typically, the teacher
model has a more complex network structure that captures
the feature interactions more comprehensively. On the other
hand, the student model(s) are often smaller and simpler while
distilling the complex relationships by encapsulating knowl-
edge from the teacher model. The teacher model (VGG13,
[11]) in DISCERN learns interactions between SM and ancil-
lary observations by leveraging available (but low resolution)
SMAP satellite images. Our student model (ResNet8 [12])
extracts knowledge from the teacher model using multiple
KD methods such as feature map distillation, integrating
soft prediction from the teacher model, as well as the loss
calculated from the SM readings from the ground stations. Our
empirical evaluation demonstrates that our approach improves
the validation accuracy by 40% and test accuracy by 22%
for the unseen regions. We employ our KD methods to train
an ensemble of models over a larger geospatial extent. Due
to the significantly coarse spatial resolution of SMAP images
and the complexity of our teacher model, it is impractical to
train the student model across a substantially large geospatial
extent, especially considering the computing resources that this
would entail. As a result, our nested DISCERN training scheme
involves a teacher model encompassing multiple climatic re-
gions and student models per climatic region. In our empirical
benchmarks, we contrast accuracy and training efficiency with
the standalone traditional deep learning approach. Our results
show that DISCERN can converge with better accuracy earlier
than normal approach. Moreover, it can be very useful to
estimate SM for the case where we might not have enough
stations to train a model. DISCERN can be trained on a
different data-rich area with similar climate classification. For
instance, DISCERN can predict SM content in California with
94% accuracy while trained on the similar climate zone in
Colorado.

C. Paper Contributions and Transitional Impacts

Our methodology for estimating SM includes the following
contributions:

1) A novel scheme to achieve highly accurate SM estima-
tions through machine learning with extremely sparse
target SM samples.

2) Design of knowledge distillation techniques, that lever-
age multi-modal target datasets for both the teacher and
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student models.

3) A lightweight model trained using knowledge distillation
that captures the spatial variability of SM at a high
resolution.

Transitional Impacts: Accurate SM estimation at high spatial
resolutions is critical for applications in many domains such as
agriculture, meteorology, microbial ecology, and plant disease
forecasting. The proposed methodology has broad applicability
in constructing machine learning models using a combination
of extremely sparse (spatially) target datasets with high preci-
sion and highly available target datasets with lower precision,
allowing for effective capturing spatial variability.

D. Paper Organization

The remainder of the paper is structured as follows: Section
IT covers Background and Dataset. Section III explains the
methodology. In Section IV, we delve into the experimental
setup, model performance analysis, model sensitivity analysis,
and evaluation of nested training using KD. Section V dis-
cusses related works, while conclusions and future directions
are outlined in Section VI.

II. BACKGROUND AND RELATED WORK
A. Soil Moisture Estimation

Soil moisture content is defined as the amount of water
present in the soil in volume. Although SM is a critical
parameter in various domains such as agriculture, hydrology,
and climate science, using highly accurate in-situ sensors is
not a suitable solution for obtaining SM due to the high spatial
variability of SM measurements.

Traditionally, physics-based models have been widely
adapted to estimate SM content [13, 14]. These models simu-
late the movement of water in the vadose zone by considering
physical processes such as infiltration, evapotranspiration, and
drainage. Environmental parameters, such as soil properties,
weather conditions, and vegetation characteristics, are critical
for obtaining accurate values using physics-based models.

Remote sensing techniques, including microwave and ther-
mal remote sensing, have been actively used to capture spa-
tially distributed estimates of SM over large areas [4—6]. These
techniques leverage the interaction between electromagnetic
radiation and soil properties to infer SM content. For in-
stance, microwave remote sensing exploits the sensitivity of
SM to the dielectric properties of the soil, which affects
the propagation and scattering characteristics of microwave
radiation. Thermal remote sensing, on the other hand, utilizes
the difference in thermal properties between wet and dry
soil to estimate moisture content. However, the spatial and
temporal heterogeneity of soil properties necessitates the need
for SM measurements at higher spatial resolution. Soil Mois-
ture Active Passive (SMAP), a widely known remote sensing
observatory is designed to carry two instruments that map SM
and determine the freeze or thaw state of the same area being
mapped. SM content can be mapped via the radiometer data
at a spatial resolution of 36 km every 2-3 days. Details about
such satellite datasets are discussed in the following section.
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TABLE I: Datasets integrated for training DISCERN deep learning model

Dataset Source Spatial Resolution | Temporal Resolution
gNATSGO NRCS USDA 10m one time
gridMET NRCS USDA 4km daily
DEM USGS 30m one time
SMAP NASA 3km daily
In-situ station NOAA single point daily

B. Dataset and Study Area

In this study, one of the primary challenges is the hetero-
geneous spatial and temporal resolution of different datasets
that we integrate. As depicted in Table I, we used the Gridded
National Soil Survey Geographic (gNATSGO) Database [15]
which is a 10m resolution with multiple bands (9 bands were
used for this study) representing different properties of soil.
The Gridded Surface Meteorological (gridMET) dataset [16]
offers daily surface meterological data such as temperature,
wind, humidity at the sptial resolution of 4km, 1/24 degree.
We used 10 different bands of gridMET data.

We also integrate the Digital Elevation model (DEM) [17],
which is a depiction of topographic characteristics that specifi-
cally represents the natural terrain, excluding trees, structures,
and other surface features covering entire US. We use ele-
vations at 30m resolution. We use SMAP [4] which directly
measures the amount of water in the top 5cm of surface soil
everywhere on Earth. SMAP was first launched in January
2015 and data operation started from April 2015. It has several
products starting from half orbit 36km. In our study we use
L3_SM_A product which is a 3km daily product. The last
dataset that we use is in-situ sensor based weather station
data that we primarily collect from National Oceanic and
Atmospheric Administration (NOAA) data repository for 146
stations across California and Colorado. The temporal range
for our study is 2020 to 2021. According to the experimental
scenario, these states are divided into multiple sub-regions
based on climatic characteristics. We organize the datasets into
two scenarios. The first parts of experiments were performed
on scenario-1 which includes data from Colorado that has
an area of 269,837 km?2. For scenario-2, we utilized the
Koppen Climatic Classification system [18] to segment our
study area. The Koppen Classification is a widely employed
climate classification system that offers hierarchical climatic
regions. we chose five different climate classes (Bsk, Csa,
Csb, Dfb, Dfc) and incorporate datatset for those classes from
California and Colorado area.

C. Related Work

1) Physics based Approaches: Over the past few decades,
considerable research has been devoted to simulating and
predicting SM dynamics based on historical data and mete-
orological variables [19, 20]. Physics-based models (PBMs),
primarily based on Richards’ equation [21], have demonstrated
favorable performance in various complex scenarios, bene-
fitting from reliable descriptions of physical processes [13].
However, these traditional approaches often struggle to capture
complex nonlinear relationships inherent in SM dynamics.

2) Machine Learning Approaches: The data-driven ma-
chine or deep learning techniques have widely been used
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to map the relationship between input features including
geographical and meteorological variables and SM output.

Santi et al. [22] introduced an ANN-based approach to
estimate daily SM at a spatial resolution of 10 km. Their model
utilized backscatter, local incidence angle, azimuth angle,
Latitude, Longitude information from Advanced Scatterometer
(ASCAT), and SM data from the International SM Network
(ISMN) for training.

In a similar vein, Lee et al. [23] investigated twenty-five
different variations of an ANN-based deep learning model for
estimating daily SM at a spatial resolution of 4 km.

3) Knowledge Distillation: The concept of Knowledge dis-
tillation (KD) was first introduced by Hinton et al. in 2015
[24]. Knowledge distillation has been successfully applied to
a wide range of tasks and domains. DistilBERT [25] is a
distilled version of BERT, which applies knowledge distillation
to compress large-scale language models while maintaining
their performance. Zhang et al. [26] explored attention-based
self-distillation, where the student model learns to attend to
important features by distilling attention maps from the teacher
model.

Li et al. [27] investigated cross-modal distillation for few-
shot learning, leveraging knowledge transfer between different
modalities to enhance the student model’s ability to generalize
and learn from limited labeled data. Recently, Wang et al. [28]
proposed Semantic Calibration for Cross-Layer Knowledge
distillation (SemCKD) to solve the performance reduction
due to negative regularization from the mismatch of layer
semantics between teacher and student networks.

The majority of knowledge distillation (KD) studies have
demonstrated enhanced performance across various classifica-
tion tasks, particularly in the realm of image classification.
Our innovative approach involves harnessing KD to create
finely detailed SM maps using low-resolution satellite data. To
the best of our knowledge, this approach stands as a unique
contribution to this field.

III. METHODOLOGY

Our proposed approach encompasses model, data integra-
tion, and model training strategies working in concert with
each other to achieve one goal of generating accurate SM
estimations in a timely manner.

A. Data Wrangling:[RQI]

Our methodology involves training complex deep learning
models that require large amounts of training samples. As
depicted in Table 1, we utilize a set of diverse datasets
that are acquired from in-situ sensors, satellites, models and
surveys. To align datasets from multiple sources, we selected a
temporal range (2020-2021) and geospatial extents (Colorado
and California, USA) that are common across the training data
samples. Since DISCERN involves two types of models with
diverse spatial resolutions, we perform two sets of data clean-
ing processes. For the teacher model, we downscaled gNatsgo
(10m), DEM(30m) datasets, and then merged gridMET(4km)
with DEM dataset to align with the resolution of SMAP
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satellite images (3km). To align mismatching temporal ranges,
we first preprocess the SMAP data. Then we considered
only those dates for which we had valid SMAP data. After
preprocessing, we had more than 13 million input output data
samples for the teacher model. Meanwhile, we use the highest
possible resolution for the student model training. The detailed
descriptions of data preprocessing for each experiment are
included in the section 4.

B. Designing a Deep Network to Estimate SM: [RQI, RQ2]

One of the primary challenges to develop a deep learning
model to estimate SM lies in the scarcity of SM readings
from ground stations, which are crucial as labels during model
training. To overcome this challenge, DISCERN leverages
the non-linear relationships between the soil, topographical
and weather conditions of the area using low-resolution SM
map obtained from the SMAP satellite. Subsequently, the
insight gained are transferred to a light-weight deep learn-
ing model, ultimately trained using SM measures from the
ground stations. By harnessing the knowledge and exper-
tise encoded in the teacher model of DISCERN, the student
model can achieve comparable performance while requiring
reduced computational resources and reduced memory foot-
prints thus enabling the deployment of deep learning networks
in resource-constrained environments. In our proposed model,
we used VGGI3 [11] as the teacher model, while compar-
atively lightweight networks, ResNet8 [12] as the student
model. The MobileNetV2 [29] was used as a student model
for an experiment to compare the performance of ResNet8
as student model. To select the teacher model we contrasted
the accuracy and performance for all the candidate teacher
model shown in Fig. 3 to find out the most fitted one. We
have tested complex networks ResNet34 and VGGI13 as the
teacher model. The network is dense and there are around
21.28M learnable parameters. A speciality of ResNet is the
shortcut connection between layers which helps skip one or
more layers while training to maintain generalization of the
model. The other deep model, VGG13 has 13 convolution
layers followed by three fully connected layers with 9.41M
learnable parameters. Considering the model performance and
memory footprint, VGG13 has been selected as the teacher
for DISCERN to conduct further analysis.

C. Teacher Model to capture relationship between SM and
environmental conditions in the surrounding area

The input for the teacher model consists of meteorological
and weather related information that have impact on SM
content. We combine all the nine bands of gNATSGO, 10
bands of gridMET and single band of DEM data into a
3D array. So the dimension of each input sample becomes
32x32x10 which are then can be fed to the teacher model for
training.

We use L1 loss function (equation 2) for VGG13 based
on empirical analysis. The loss is calculated against the
model prediction and SMAP data and then the parameter
weights are adjusted accordingly with a multiplication factor

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 26,2024 at 01:57:37 UTC from IEEE Xplore. Restrictions apply.



2

MAE (log scale)

A

[ 50 150 200

]%%och
Fig. 3: Accuracy of all the candidate teacher
models

of learning rate. The insights acquired by the teacher model
are accessible in diverse formats. We integrate both outputs
from the intermediate layers of the teacher model (section 3-
B-(3)) and its final prediction outputs (section 3-B-(4)) during
the training of the student model.

1) Student Model trained using the SM measurements from
the sparse ground stations: The goal of DISCERN’s student
model is to provide precise SM estimates over a smaller
geospatial extent (point level). To capture the spatial variabil-
ity of SM the student model is trained with environmental
conditions and measures such as satellite imagery gNATSGO
, climate data from GridMET, and terrain attributes to produce
detailed soil maps at a finer-scale spatial resolution. To match
the fine spatial resolution of the results, the training samples
retain their original spatial granularity. The student model
predicts a single decimal value for a single point. To align
with the SMAP data, input data samples are taken from the
same geospatial bounds where the ground station location falls
in. The highest resolution of the input dataset gNATSGO is
10m. To incorporate knowledge distillation, the dimension of
input data tensor is kept the same as Teacher model which is
32x32x10.

For the student model, we used ResNet8 and MobileNetV2.
It has 78.46K learnable parameters which is quite lower than
VGG13 or ResNet34. We also used MobileNetV2 (for data
scenario-1) which is relatively heavier than ResNet8 but lighter
than VGG13 and ResNet34.

2) Knowledge Transfer using Feature-Map Distillation:
Feature-map distillation is a method that involves transferring
the knowledge from feature maps of the intermediate layers of
a teacher model to a student model. This process enables the
student model to capture and replicate the high-level mapping
of input and output data acquired by the trained teacher model.
Feature-map distillation has demonstrated promising outcomes
across diverse domains, spanning computer vision and natural
language processing [30].

In this study, DISCERN transfers the output of each layer
from the teacher model, which is trained with coarse SMAP
satellite images, to the corresponding layer of the student
model. We pair the output of each layer based on the model
structures and inform the student model training using the loss
function proposed in [30].
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on Accuracy (Area: Colorado)

where F,' and F® stand for the output of each target layer and
student layer respectively. The functions T'(.) and T%(.) are the
methods to transform the feature maps of all the candidate
teacher-student layer pairs into pairwise similarity matrices
[31]. Lpmp is the summation of the loss among all candi-
date teacher-student layer pairs calculated by Dist(.) function.
Based on the similarity matrices between teacher-student layer
pairs, the set of layers that have positive or higher than thresh-
old value are dynamically selected for feature distillation. If
there is a mismatch in the layer structure between teacher and
student model, it is resolved using the dimension reshaping
technique. For example, an extra convolution operation is
performed to project the required number of features from
teacher layer to student layer.

3) Loss Function: To incorporate learned factors from the
teacher model during training with highly accurate SM obser-
vations, we introduce a loss function termed Lpscery integrat-
ing three distinct sources: SM readings obtained from sparse
ground stations, soft predictions from the teacher model, and
the feature distillation loss (section 3-B-3). Initially, as both
models function in a regression manner, we have opted for the
widely used L1 loss function to assess the disparity between
the output of the final layer and the ground truth.

e(‘r7y) :L:{l:l?"‘?lN}T?ln = |mn_y’n|7 (2)

where, x is input, y is target and N is the batch size. The
loss for the student model, Lg is computed using equation
(2), capturing disparity between the student models’ prediction
and the target station data. Furthermore, the same equation is
utilized to calculate the logit loss, Lxp, which represents the
distinction between the soft prediction of the teacher model
and the ground truth of the student model. Lastly, in each
batch, feature maps are produced by each layer of the student
model, and the discrepancy between the feature maps of the
corresponding layer in the teacher model is characterized as
Levp (section 3-B-3). Therefore, the overall loss for each
batch is computed as,

Lpiscern = Z LF\Ls+ LF5Lgp + LFsLpyp,  (3)

where LF;. LF,,LF; defines the factor to be considered for
each of the loss Lg, Lxp and Lpyp respectively. The average
loss computed from equation (3) at the end of each epoch is
employed to update the weights using a predefined learning
factor and subsequently backpropagated to the input layer.
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4) Nested Training of the Student Models by Extending
Knowledge Distillation: [RQ3] : Our nested training scheme
involves a teacher model that covers a broader geographical
area and a set of student models based on climate regions.
As depicted in Fig. 1 (b), we group regions with similar
sets of climate zones. For instance, California and Colorado
encompass areas primarily characterized by semi-arid and
Mediterranean climates (Csa, Csb, Bsk, Dfb, and Dfc in
Koppen’s climate classification). The teacher model is trained
using only labels retrieved from SMAP at a 3km resolution.

Subsequently, we train an ensamble of student models based
on the climate zones, all using the same teacher model.
Because there is no interdependence among our student mod-
els, we can train them in parallel to achieve scalability. For
climate zones with extremely sparse labels, DISCERN employs
the student model trained under the most similar climate
conditions. We utilize the hierarchical structure inherent in the
Koppen climate classification system. Koppen classifies the
world into five main groups and assigns subgroups beneath
each main group, with each group and subgroup represented
by a letter. Subgroups within the same main group share the
same prefix.

IV. EMPIRICAL EVALUATIONS

We performed experiments to assess the effectiveness of KD
technologies in enhancing model performance in areas with
sparse labels and to compare different KD strategies. Our eval-
uation comprises (1) model performance analysis, (2) model
sensitivity analysis, and (3) performance analysis of nested
KD learning. We have designed specific evaluation scenarios
for each group of experiments, and the data preprocessing for
each experiment is detailed in the following section.

A. Experiment Setup

1) Data Preprocessing: Our data preprocessing involves
several steps, including aligning the spatial resolutions of
the datasets through downscaling (e.g., gNatsgo and DEM),
as well as cropping aligned images to focus on the target
regions. For the model accuracy evaluation (Section IV-B),
we generated approximately 13 million training samples to
train the teacher model using observations from the state of
Colorado. The spatial resolutions were adjusted to match the
resolution of the SMAP satellite images (3km).

The in-situ station SM data was used as the ground truth for
student models. We selected samples from each input dataset
based on their geospatial proximity to the avaialable ground
station location. To support the model sensitivity (Section I'V-
C) evaluation and nested model (Section IV-D) performance
we generated approximately 500,000 samples for the teacher
model and 73,000 samples for the student model from datasets
covering the states of Colorado and California. This broader

TABLE II: Model Performance with and without Knowledge Distillation
(Area: Colorado)

Model Ground Truth

VGGI3
ResNet8
MobileNetv2

Validation MAE(%) Test MAE(%) for unseen region Improvement(%)
without KD~ With KD  without KD with KD Validation ~ Test
5.1 6.1

6.7 20.6

9.2 20.7

SMAP
Station SMC
Station SMC

4.6
55

17.7 31 14
16.2 40 22
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geographic scope led us to use a total of 123 unique small
geospatial bounds (each containing at least one in-situ weather
station) for generating training samples for the student model.
Areas with more than 20% invalid or null values in gNatsgo,
gridMET or SMAP were excluded. We reduced the spatial
extent for the teacher model to account for possible variability
in soil properties. We ensured that the test dataset had no
overlapping spatial extent with the dataset used for model
training to avoid information leakage. We conducted a 70-30%
train-test split for teacher model and consider samples from
the unique areas for testing the teacher model to accomplish
the experiments.

2) Model Training Details: As illustrated in Fig. 2, we
utilize the outputs and feature maps from the teacher model
for training the student model. Initially, we train the teacher
model until it reaches a reasonable performance level. To
train the student model, we pass the input samples through
both the teacher and student models. We then calculate the
distillation loss using the features from intermediate layers
and the predictions from the output layer of the pre-trained
teacher model. Additionally, we compute another loss based
on the predictions of the student model. Please note that we
use the same ground truth values to calculate the loss for both
the teacher and student models. Finally, we calculate the total
loss using Equation (3) and backpropagate it to the student
model exclusively to adjust the learning weights.

3) Evaluation Metrics: To evaluate the proposed frame-
work, we used the Mean Absolute Error (MAE). MAE be-
tween predicted SM (as in %) and target SM readings (as in %)
was used to measure the model accuracy. Also, we used MAEs
to contrast the effectiveness of DISCERN to other deep learning
models. We tracked the average MAE for all the test samples.
In addition, we calculated the percentage of improvement, I,
for a better understanding of the contribution of the KD using
the following formula.

MAEModet,, o p — MAEModel

MAEnodel,, o p
B. Model Performance Analysis: [RQ1, RQ2]

1) Model Accuracy: In this evaluation scenario, we em-
ployed VGGI13 as the teacher model and ResNet8 as the
student model using 70% of all the available data covering
the entire area of Colorado. As shown in Table II, DISCERN
demonstrates a validation accuracy of 95.4%. Generally, SM
ranges from 10% to 45%, except during or after watering.
Considering that the most reliable in-situ SM sensor technol-
ogy, the dielectric probe method, estimates surface SM with
an error level of 4% [3], our model’s performance is highly
reliable for various applications. We also compared the model
accuracies with and without the KD approach. The validation
accuracy improved by up to 40% when we employed the KD
approach for model training.

To assess the effectiveness of our approach in regions that
were not part of the model training, we evaluated our model’s
accuracy in areas remote from the ones used for training. To
create the testing data samples for this experiment, we divided

withK D X 100 (4)

acc —
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the entire Colorado refion into unique 18x12km sub-regions
and trained and tested our model with data samples from
groups of these sub-regions without any overlap. As shown
in Table II, the model’s accuracy improved by 14-20% when
we applied KD technology to the unseen area.

2) Model Training Time, Inference Latency, and Memory
Requirement: In our methodology, the teacher model is a
sophisticated deep-learning network, while the student model
adopts a space-efficient architecture. In Fig. 4, we compared
the training time (for a single sample) and inference latency
for VGG13 (teacher model) and ResNet8 (student model) with
and without the KD approach.

Because the teacher models have a higher number of
learnable parameters (VGG13 has approximately 9.41M pa-
rameters in our evaluation), they require more time for training
and consume more memory. In contrast, student models are
relatively lightweight (ResNet8 has approximately 78.5K pa-
rameters in our evaluation) and require less time for training,
as well as frugal memory consumption [32]. Due to the
involvement of VGGI13 while training a student model, the
training time for the student model was longer compared to the
case without the KD approach. However, our model achieves
equivalent inference latency (0.4 milliseconds) compared to
ResNet8 without KD. Overall, our approach provides highly
accurate predictions with significantly lower latency (5.5 times
lower than VGG13) compared to the complex teacher model
(VGG13 at 2.2 milliseconds).

3) Effectiveness of the KD components: To understand how
each component of KD in the distillation loss contributes to
model training, we conducted a microbenchmark by applying
different sets of weights within our loss function while using
ResNet8 as the student model. In Fig. 5, we compare the
effectiveness of the KD approaches that DISCERN collectively
employs. In the figures, LF1, LF2, LF3 are the three mul-
tiplicative factors which decide how much loss is considered
from each of student model loss, teacher model output loss and
feature distillation loss respectively (equation. 3). Empirically
we can find the appropriate combination that gives the best
improvement.

C. Model Sensitivity Analysis: [RQI, RQ3]

To assess model performance under various conditions,
we conducted sensitivity analysis across seasons and climatic
zones. To enhance diversity and have sufficient training sam-
ples, we expanded our target area to include both Colorado and
California in this evaluation. For this, we utilized VGG13 as
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the teacher model and ResNet8 as the student model. With the
extended spatial extent, our student model achieved a similar
overall accuracy, with a mean absolute error (MAE) of 5.9%
(Fig. 6). Furthermore, the use of KD improved the student
model’s accuracy by 37% compared to ResNet8 without KD.

We evaluated the model performance over different climac-
tic zones specified in the Koppen climate classification system.
We compared the model performance across five climate zones
that are most popular in Colorado and California. Our model
performs the best in the Cs (Csa and Csb, dry summer climate)
and Bsk (Semi-arid climate). These climate zones are the
majority of Colorado and California. The individual average
MAE of each climate class was lower than 2% throughout
these regions (Fig. 7). The model accuracy in the Dfb (warm
summer humid continental climate) region was relatively lower
than other climate zones due to the relatively low number of
samples from the area.

Fig. 8 presents a monthly sensitivity analysis, which as-
sesses the model’s ability to predict SM effectively across dif-
ferent months of the year. The analysis highlights the model’s
strongest performance during the months of July, August,
and September when the weather patterns in California and
Colorado exhibit notable consistency. In contrast, predictions
during the winter months exhibit a comparatively wider range
of mean absolute error (MAE) variation when compared to
other seasons. These variations can be attributed to unique
outliers primarily caused by snow effect. During this time,
usually the soil surface is covered with snow most of the time
and the external factors like temperature, wind have little effect
on the SM [33].

D. Performance Evaluation of Nested Training[RQ3]

DISCERN harnesses insights captured by the sophisticated
teacher model using coarse-resolution observations. In this
section, we assess the effectiveness of DISCERN in training
diverse student models, which is applicable for model training
over a large spatial extent. As described in Section 3-4, our
nested training involves a single teacher model and shared by
multiple student model based on the climate zones.

To evaluate our model’s capability to handle areas with
extremely sparse labels, we assessed model accuracy using
teacher models trained in different areas or under similar
climatic zones. Fig. 7) demonstrates the consistently high
accuracy observed across these diverse experiments. Notably,
we observed that a single teacher model pre-trained with large
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geospatial extent can assist multiple smaller student models
regularizing to local climate zone effectively.

V. CONCLUSION

Accurate prediction of SM holds considerable significance
for effective agricultural management and environmental mon-
itoring. The challenge of predicting SM in regions char-
acterized by limited data availability necessitates innovative
solutions. This study describes a novel approach through
the utilization of knowledge distillation-based deep learning
techniques.

By harnessing the knowledge distillation framework, we
have amalgamated the capabilities of a high-capacity VGG13
model as the teacher and a lightweight ResNet8 model as
the student [RQ1]. The teacher model, enriched by its pre-
training on extensive Soil Moisture Active Passive (SMAP)
data, imparts its intricate insights to the student model, which
in turn, is trained on sparsely available sensor-based station
data.

Notably, the adoption of the streamlined student model
not only enhances prediction accuracy but also significantly
reduces inference time, rendering it conducive to real-time
applications [RQ2]. Our approach improves throughput of the
model inference that is critical for various applications such
as agricultural, water resource planning and ecological studies.
By leveraging high level knowledge representation of mapping
topographical and climate characteristics with SM in larger
spatial extent from the trained DISCERN, the student model
can be trained anytime with significantly reduced latency on
a different spatial extent preserving high accuracy[RQ3].

In summary, this research underscores the capacity of
knowledge distillation to overcome challenges posed by lim-
ited data availability.
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