
ARGUS: Rapid Wildfire Tracking using Satellite
Data Collections

Saptashwa Mitra, Paahuni Khandelwal, Shrideep Pallickara, Sangmi Lee Pallickara
Department of Computer Science, Colorado State University, Fort Collins, USA

{sapmitra,paahuni,shrideep,sangmi}@colostate.edu

Abstract—Interactive visual analytics over distributed systems
housing voluminous datasets is hindered by three main factors -
disk and network I/O, and data processing overhead. Requests
over geospatial data are prone to erratic query load and hotspots
due to users’ simultaneous interest over a small sub-domain of the
overall data space at a time. Interactive analytics in a distributed
setting is further hindered in cases of voluminous datasets
with large/high-dimensional data objects, such as multi-spectral
satellite imagery. The size of the data objects prohibits efficient
caching mechanisms that could significantly reduce response
latencies. Additionally, extracting information from these large
data objects incurs significant data processing overheads and they
often entail resource-intensive computational methods.

Here, we present our framework, ARGUS, that extracts low-
dimensional representation (embeddings) of high-dimensional
satellite images during ingestion and houses them in the cache
for use in model-driven analysis relating to wildfire detection.
These embeddings are versatile and are used to perform model-
based extraction of analytical information for a set of dif-
ferent scenarios, to reduce the high computational costs that
are involved with typical transformations over high-dimensional
datasets. The models for each such analytical process are trained
in a distributed manner in a connected, multi-task learning
fashion, along with the encoder network that generates the
original embeddings.

Index Terms—embedding, multi-task learning, science-guided
machine learning, visual analytics

I. INTRODUCTION

Over the past decade, there has been a significant increase in

the number of wildfire incidents across northern Europe and

North America fueled by higher temperatures and drought.

Heatwaves with prolonged dry conditions in western Europe

resulted in increased wildfire activity and intensity; the ensuing

wildfires burned 1.2 million acres over 4 summer months

in 2022, which is more than double the average over the

period 2006 – 2021 [1]. In Northern America, wildfires burned

through 363,917 acres in California, USA alone [2], and over

3.9 million acres in Canada [3] in 2022. Forest fires have

adverse effects like smogs from dense smokes on the urban

fringes of forests leading to thousands of premature deaths [4].

Wildfires often occur in remote regions, where surveillance

infrastructure is not always available, making remote sensing

a viable option. To monitor and track wildfires, planet-scale

geospatial observations such as satellite images have been

widely used [5], [6]. These datasets offer critical capabilities to

identify the locations of wildfires, discover underlying patterns

and track their progress. However, identifying and retrieving

highly relevant subsets of satellite images from voluminous

satellite imagery in real-time is an extremely challenging task.

Atmospheric conditions at proximate locations of an ongoing

wildfire are often covered with smoke and temperature-based

fire masking operations often create ambiguity in detecting the

precise extent of the wildfire coverage [7].

Most satellite observations have associated identifiers such

as timestamps and geospatial coordinates. Remotely sensed

satellite images have low pass frequency (temporal resolution),

which makes active fire detection challenging. Typically, the

key indicator of the relevance between a particular phe-

nomenon (e.g., wildfire) and observations, such as scientific

labels or annotations, are not available in the low-level data

product. It is quite common to see a small portion of highly

relevant datasets labeled by the subject matter experts [8], [9]

prior to being archived and hosted for broader dissemination.

Since manual labeling is extremely time-consuming, this solu-

tion is not well-suited for scenarios such as navigating recent

data collection or real-time monitoring. Similarly, it is hard to

extend the existing set of labels for different use cases. Despite

their low temporal frequency, periodically observed satellite

imagery are often the most feasible as well as economical and

less time-consuming solution for the analysis of phenomena

such as wildfire, since they often occur in remote regions, than

conventional methods of such as aerial images [10].

There have been several recent approaches to extracting

patterns using machine learning to indicate the presence or

absence of phenomena in observations [11]–[13]. However,

since training and executing models over large amounts of

data entails substantial computational requirements as well

as increased network and disk I/O, ad-hoc integration of

this approach into traditional data retrieval systems poses

significant overheads in the latency for the operations and

computing resources needed to complete them.

In this study, we present our framework, ARGUS, that

allows rapid retrieval of satellite observations that are closely

related to ongoing wildfire activities from unlabeled satellite

imagery. ARGUS indexes satellite imagery using novel low-

dimensional latent representations maintained in the memory

of a distributed cluster, where the underlying datastore is

continuously evolving with new observations continuously

ingested. With our approach, a storage system is able to

evaluate the user’s spatiotemporal query with phenomena-

specific keywords such as “has a wildfire”, “wildfire affected

area”, or “level of severity of a wildfire” of “wildfire affected

area” to retrieve more accurately relevant satellite tiles.

72

2023 IEEE 16th International Conference on Cloud Computing (CLOUD)

2159-6190/23/$31.00 ©2023 IEEE
DOI 10.1109/CLOUD60044.2023.00018

20
23

 IE
EE

 1
6t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
lo

ud
 C

om
pu

tin
g

(C
LO

U
D)

 |
 9

79
-8

-3
50

3-
04

81
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CL
O

U
D6

00
44

.2
02

3.
00

01
8

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 26,2024 at 02:03:47 UTC from IEEE Xplore. Restrictions apply.

A. Challenges

Enabling rapid multi-faceted query analytics over high-

dimensional voluminous datasets over a distributed system

poses several challenges:

1) It is important to ensure that supporting frameworks or

data structures needed for efficient retrieval of a related set

of analytics over these large data objects have low memory

utilization and can be generated/updated relatively quickly to

adapt to the fast-evolving nature of the underlying data store.

2) Data pre-processing, be it in the form of efficient indexing,

metadata extraction, or data-compression, to support interac-

tive query analytics over high-dimensional data objects can

negatively impact the data ingestion rate. Furthermore, it is

important to ensure that the processed data retain enough

information to be amenable for reuse in different analytical

queries.

3) Efficient orchestration of clients’ spatiotemporal query

evaluations, such as mapping and executing individual queries

to the list of data objects required for model evaluation, is a

challenge. To significantly reduce the overall query latency,

effective buffering/batching of image tiles as model inputs is

necessary. Also, avoiding redundant or overlapping operations

in a multi-user system introduces additional challenges.

B. Research Questions

Research questions that we explore in this study include

RQ1: How can we identify the existence or absence of wildfire

(or relevant characteristics) automatically and rapidly without

relying on human-generated annotations or labels? This also

involves identifying multiple related characteristics such as the

level of severity.

RQ2: How can we effectively index and rapidly evaluate

geospatial queries over voluminous, high-dimensional satellite

imagery while ensuring low memory footprints and computing

requirements?

RQ3: How can we design an indexing scheme that flexibly

increases the scope of the searchable target characteristics

without adding a significant overhead for memory or com-

puting capacity? The indexing scheme should also be able to

cope with additional computing requirements for fire-tracking

while maintaining a low memory footprint.

C. Overview of Methodology

We use multi-spectral satellite imagery as our proving

ground and attempt to create versatile low-dimensional latent

representations from the underlying image objects. These la-

tent representations(embeddings) are loaded into a distributed

in-memory cache and used to evaluate the level of relevance

of the satellite tile to a wildfire event, while completely

circumventing the need to access original data objects stored

on disk. This approach enables us to (1) reduce memory

footprints of the in-memory data objects, (2) improve the cache

hit ratio, and (3) facilitate faster data processing and reduce

response times.

The generated embeddings are amenable to analytics over

a collection of related target phenomena by training a set

of corresponding deep-learning models without generating

a separate set of embeddings for each phenomenon. The

embeddings are generated by an autoencoder network [14] that

is composed of multiple model heads, where each head uses

the generated embedding as input and is optimized to estimate

the level of relevance to a target phenomenon. These models

are trained simultaneously through multi-task learning [15] as

a conjoined network to enhance the accuracy and convergence

speed of the overall network. As a result, a single set of latent

representations is versatile enough to serve multiple types

of target geospatial events. The multi-task learning approach

enables these networks to have better generalization through-

out the shared representations. Training over these concise,

representative inputs also speeds up the model training (faster

convergence rates) while ensuring lightweight models.

We explore the problem of identification of wildfire regions

from satellite imagery from the Visible Infrared Imaging

Radiometer Suite (VIIRS) Thermal Anomalies (VNP14) [16]

dataset using the available bands (e.g., thermal and infrared)

as the inputs to our models. To evaluate the versatility of

our embeddings with various characteristics of the wildfire,

we have selected a set of related tasks that can benefit from

a multi-task learning setup. The set of related tasks that

we attempt to simultaneously train over our embeddings are

- 1) classification of wildfire image tiles, 2) classification

of wildfire severity, 3) bounding box object recognition for

wildfire-affected regions, and 4) semantic segmentation of

wildfire regions for each image tile.

Our benchmarks demonstrate that, with a compression fac-
tor of 120x for the generated embeddings, ARGUS segmenta-

tion models achieved an accuracy of 88% of that achieved with

a SegCaps segmentation model trained with actual satellite im-

age objects. Additionally, we demonstrate up to 27x reduction

in evaluation times for varying levels of overlapping queries

by fast identification of previously evaluated spatiotemporal

domains and avoiding re-evaluation through our models.

D. Paper Contributions

Our framework facilitates model-driven value extraction

over low-dimensional latent representations generated from

multi-spectral images to reduce memory footprint and improve

query evaluation speed for real-time wildfire monitoring. In

particular, our contributions include:

1) Our model-based evaluation scheme accurately predicts

the relevance of pixels to the ongoing wildfire event with-

out human intervention. The framework generates a concise,

representative latent representation of multispectral satellite

images, and parameterizes them for machine learning models

that evaluate relevance to the wildfire event.

2) Our approach significantly reduces the amount of data to

be stored in-memory, while ensuring comparable accuracy to

cases with actual data. Since satellite imagery is voluminous,

repeated retrievals and the corresponding network and disk I/O

would result in inefficiencies: our methodology circumvents

this inefficiency.

3) Our framework allows the storage system to enhance the

73

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 26,2024 at 02:03:47 UTC from IEEE Xplore. Restrictions apply.

set of target phenomena while still maintaining a single set of

embeddings. A set of different deep learning networks, each

optimized to evaluate relevance to different phenomena can be

trained in parallel using multi-task learning [17].

E. Paper Organization

The remainder of this paper is organized as follows. Section

II outlines related works, followed by the background in

Section III that introduces the nature of the actions and

spatiotemporal user queries. Section IV describes the various

components of ARGUS’s deep-learning architecture and its in-

memory data model. Section V details our in-memory data

store and its role in fast query evaluation. Experimental setups,

performance benchmarks, and analysis of results are outlined

in Section VI. Finally, Section VII outlines our conclusions,

followed by acknowledgements in Section VIII.

II. RELATED WORK

There have been several research studies on active fire de-

tection and burned area segmentation to automatically identify

the regions of an image that correspond to fire and sepa-

rate them from non-fire regions. Dataset collections such as

those from Landsat, Sentinel-2, and MODIS are popular open

databases that have been used for model-driven monitoring

of phenomena [18]–[20]. Specifically, semantic segmentation

through deep-learning has commonly been applied to satellite

images for fire detection due to their ability to learn complex

relationships from multi-spectral data [21]–[23].

Caching of highly-requested data elements is a common

strategy in enabling scalable visual analytics over voluminous

datasets. Forecache [24] implements a prefetching scheme that

predicts the data tiles to be queried in the future into the

memory to improve latency. In other words, multivariate data

tiles at various resolutions are precomputed to provide scalable

panning and zooming as done in Google Maps [25]–[28].

Since disk I/O is significantly more time-consuming than in-

memory operations, loading data objects in memory has been

an effective strategy to reduce latency. However, this is not

a feasible strategy if memory space is limited or if the data

objects involved are large in size. A compressed representation

of large data objects could be an alternative in such scenarios.

Deep neural networks-based autoencoders [29], [30] are

commonly used for a number of different applications, in-

cluding feature extraction and dimensionality reduction. The

driving principle behind an autoencoder is that the high-

dimensional data has a significantly smaller lower-dimensional

embedding in a latent space that is sufficient to represent

the information of the original data. The encoder part of

the autoencoder compresses the input data into a bottleneck

representation, which is then used by the decoder for re-

construction, the goal being to minimize the reconstruction

error. Autoencoders have been used for data compression [31],

[32] by training the network to learn a lower-dimensional

representation of the input data. A common approach is

to use a deep autoencoder network with multiple layers in

the encoder and decoder. The deeper layers of the network

learn higher-level features of the input data, which can be

used to accurately reconstruct the original data with a lower-

dimensional representation [33], [34].

Multi-task learning (MTL) [17] is an effective modeling

technique where multiple models learn related tasks jointly

to support a mutual exchange of knowledge that facilitates

generalization. MTL allows the model to learn shared repre-

sentations between tasks, which can lead to more efficient and

effective learning [35]. Feature-based multi-task learning aims

at learning common features through generalization among

related tasks as a way to exchange common knowledge. Multi-

task learning involves training of machine learning models

with data from multiple tasks simultaneously, using shared

representations. This enables the models to acquire shared

knowledge between a set of related tasks and also improve

its robustness by assimilating knowledge across multiple do-

mains. These shared representations increase data efficiency

and can potentially yield faster learning speed for related

or downstream tasks, helping to alleviate the well-known

weaknesses of deep learning: large-scale data requirements and

computational demand. Additionally, MTL can also reduce the

amount of data needed to train a model, as the model can use

data from one task to improve performance on another task

[36].

MTL has been successfully applied to the problem of object

detection and semantic segmentation through models such as

Faster R-CNN [37] and Masked R-CNN [38], where related

tasks like object boundary detection and image segmentation

are trained collaboratively through a shared trunk (backbone)

followed by branched heads for downstream individual tasks.

A potential pitfall of this approach is that training multiple

models jointly can be both compute and resource-intensive

since all the model layers combined have to be optimized si-

multaneously. This is especially true for deep learning models.

III. BACKGROUND

In this study, we explore rapid analytical keyword query

evaluation over voluminous multi-spectral satellite imagery.

Each of these data-objects have high spatial resolutions and

multiple data bands, making them large in size. Caching them

in their original form would significantly strain cache capacity

and negatively impact the hit-rate and the interactivity of

spatiotemporal query analytics. Our goal is to ensure high

fidelity for model-driven analytical information compared to

geoprocessing over actual data objects. Scalable management

of voluminous data collections [39], [40] underpins effective

training of deep networks [41]; data accesses are also pred-

icated on effective queries [42] and federation [43]. Several

systems also rely on outlier detection [44] to preferentially

identify training data of interest.

Useful analytical information can be extracted from these

multi-spectral images using geoprocessing algorithms such as

the computation of slopes, and curvatures from raster images

using spatial tools provided in frameworks like ArcGIS [45].

However, these algorithms are often not optimized for parallel

or GPU-driven execution, making them significantly slow,

74

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 26,2024 at 02:03:47 UTC from IEEE Xplore. Restrictions apply.

especially when the number of candidate tiles required to be

processed is large. This is particularly true in cases of sparse

events like wildfires.

For instance, the following SQL query provides a sample of

the type of spatiotemporal queries that the ARGUS framework

aims to evaluate for multiple simultaneous users. In particular,

we show a wildfire segmentation query for identifying and

demarcating potential wildfire regions (has fire) from multi-

spectral satellite imagery dataset (VIIRS) over a given spatial

and temporal range specified through the Query Polygon and

Query Time Range, respectively.

s e l e c t h a s f i r e (band 1 , band 2 , . . . , band n)
from VIIRS Data
where c o o r d i n a t e s in Query Polygon
and t ime s t amp in Query Time Range

The evaluation of the above query over a distributed storage

system would involve identifying image tiles with intersecting

spatiotemporal bounds, evaluating their wildfire-affected re-

gions, if any, and returning the compiled results back to the

users. ARGUS attempts to speed up the above process by im-

plementing the following - (1) the creation of embeddings out

of image tiles for easier storage in a distributed cache for rapid

identification, (2) training deep-learning analytical models that

use embeddings as input, circumventing the need for on-disk

data access as well as geoprocessing algorithms, (3) using

a combination of classification models for identification of

potential tiles with wildfires and running segmentation model

on those only, and (4) using efficient in-memory caching and

indexing schemes to avoid both disk access and re-evaluation

of embeddings. Since events like wildfires are sparse, running

a simpler classification model to weed-out unnecessary tiles

can significantly improve interactivity.

IV. METHODOLOGY

A. System Overview

ARGUS is designed to work in conjunction with any dis-

tributed hash table (DHT)-based spatiotemporal storage system

[46]. The overall ARGUS framework can be partitioned down

into two main components -

1) ARGUSNET: A collection of deep learning models trained

to perform encoding and keyword-based evaluation from the

unlabeled satellite data collections, and

2) Hierarchical Embedding Store: A graph-based in-memory

caching framework built to house latent representations gen-

erated by the ARGUSNET module.

Fig.1 shows the various components of our framework. The

ARGUSNET models utilize data from the underlying DHT

storage for their training through distributed modeling. Once

trained, the ingestion module utilizes the encoder portion of

the network to intercept data ingestion requests and house

them in the hierarchical embedding store. The classification

and segmentation models are used during query evaluations

over the cached latent representations in the embedding store.

Fig. (1) ARGUS System Overview: Hierarchical Embedding

Store is our distributed in-memory caching system. Encoder,

Decoder, Classifiers and Segmentation constitute the various

components of ARGUSNET

B. ARGUSNET

1) Model Overview: Ideally, the latent representations of

our image tiles must be versatile enough to support multiple

keywords (e.g., occurrence of wildfire and the level of severity)

without maintaining multiple embeddings for each problem.

To accomplish this, we train the models in a conjoined manner

through multi-task learning and generate a single embedding

for each tile that is used for multiple analytical models later

on. Related tasks trained through multi-task learning have been

shown to have better accuracy and convergence speed and

as evidenced by our benchmarks. Our models demonstrate

improved accuracy as well. Fig.2 depicts the overall model

architecture. We can see that it consists of the following

main components – an autoencoder network, classification
networks, and a segmentation network. Additional models

for the extraction of related analytical information from the

embeddings can be added to our network as needed. Apart

from the autoencoder network, all other networks (heads) use

embeddings as their input.

Fig. (2) ARGUSNET Architecture: Encoder forms the back-

bone of the network used during data ingestion to generated

embeddings. Decoder, Classifiers, and Segmentation heads are

used during query evaluations.

75

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 26,2024 at 02:03:47 UTC from IEEE Xplore. Restrictions apply.

2) Model Input: Let us denote our multi-spectral image

input as IRaw - this is the input to our ARGUSNET network,

which gets converted to its corresponding latent representation,

denoted by Ie, which is significantly smaller in size. In our

case, IRaw is complied by integrating various distributed

spatiotemporal datasets and extracting relevant bands from

them that are relevant to wildfire prediction. The target band,

along with the classification labels is extracted by combining

the fire-band available in the VIIRS dataset [47] along with

historical wildfire perimeter (and duration) information to cre-

ate a single-channel target mask for each image tile (ITarget).

C. Selection of Training Data:

Our input is created through a combination of multiple

remote-sensing data sources and includes bands relating to

emissivity, soil moisture, vegetation index, and land cover

type, all of which are known to be contributing factors that

influence wildfire. In total, our input, IRaw, consists of 15

bands/channels.

Class imbalance is common in case of wildfires since the

majority of the image tiles will not contain fire-pixels. In

order to circumvent models prioritizing the majority class, we

oversample the wildfire-containing tiles. We use the California

Fire Perimeter Database [48] for historical information on

wildfire perimeters and dates to identify tiles that have fire

pixels in them. Additionally, to reduce the uncertainty in the

training data, we ignore tiles that contain wildfires with an

overall perimeter area of more than 10 km2. Finally, we use

a 1:1 distribution of fire and non-fire tiles in our training.

D. Network Architecture:

Our goal is to perform semantic segmentation through

convolutional networks for the detection of wildfires from

multi-spectral imagery. ARGUSNET consists of two main

stages: a set of convolutional layers for feature extraction and

a set of heads for performing reconstruction, classification,

and segmentation. We explain each section of the overall deep

learning model below.

Encoder: The encoder constitues the backbone of the AR-

GUSNET architecture. In the first stage, this encoder portion

of our autoencoder, comprising a set of convolutional layers,

generates a dense representation of a multi-spectral image tile.

We expect these convolutional layers to take a multispectral

image vector as input and encapsulate complex and abstract

features from the input image for analytics. This extracted

feature map serves as an input to the three heads of the

ARGUSNET network.

The encoder network comprises a series of convolutional

layers followed by a downsampling through max-pooling that

incrementally reduces the spatial dimension while increasing

the number of channels leading to bottleneck. We introduce

batch normalization between the two layers to stabilize the

training process to avoid bias during training by normalizing

the input to each layer and accelerating the convergence

speed of the training. The output of the encoder network

produces our embeddings (Ie), a compressed representation

of the abstract features of the input image (as shown in Fig.2).

The main goal is to be able to utilize the generated Ie for the

extraction of multiple analytical observations. In order to make

it versatile enough, we have to ensure that the training process

takes into consideration the loss of each of these model-driven

analytical tasks during the construction of the embedding

and not just the reconstruction loss. Multi-task learning
(MTL) is an effective approach to training and optimizing

a combined model to perform multiple tasks simultaneously.

This conjoined training methodology, where a cumulative loss

from all the related tasks affects the weights of the network,

enables the model to leverage shared information between

tasks. This has been shown to produce better representation

learning, regularization, transfer learning, and improved data

efficiency. Multi-task learning can improve the accuracy of all

models in several ways, including the ability to learn more

general representations of the data, prevent overfitting, and

facilitate the reuse of learned features for related tasks. Over-

all, training our models through the combined architecture, as

shown in Fig. 2, can significantly improve the accuracy and

generalization of machine learning models.

Decoder: The compressed latent representation is passed on

to the decoder network, which uses upsampling of feature

maps through a series of transposed convolutional layers

(deconvolution) and increases the spatial dimensions of the

data to eventually reconstruct the input (IRec). Maintaining

a decoder head trained for image reconstruction serves two

purposes. First, it allows us to use the embedding to recreate

the bands of the original image in case of queries over the

actual bands. Secondly, it allows us to introduce new heads

into the network while ensuring faster re-training convergence

speed.

Classifier: The classifier heads are responsible for generating

a probability distribution over either a binary flag that predicts

whether an image tile has wildfire, or over the possible

wildfire intensity classes. The classifier head takes the latent

representation, Ie, as input and flattens it into a 1D vector.

This vector then passes through a set of fully connected layers

to produce a vector of scores, one for each object class. A

softmax activation is applied to these scores to generate a

probability distribution over the classes.

Semantic Segmentation: We implement a SegCaps [49]

architecture as the deep semantic segmentation head for our

network. We leverage capsules, which are a variation of a

neuron or instantiations that represent a specific aspect of the

object and can encapsulate various properties of an object,

including, its spatial orientation, and scale. This feature of cap-

sule network helps us adapt to wildfires of different geospatial

scales and additionally leverages the capsule’s ability to under-

stand relative positions and orientations of objects in an image

to train on wildfires which also have regional characteristics.

Similar to [49], our network also contains a set of 8 primary

capsules, followed by digit capsules as the output layer that

generates the segmentation output. Another important benefit

of using capsule networks for wildfire segmentation is their

76

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 26,2024 at 02:03:47 UTC from IEEE Xplore. Restrictions apply.

ability to reduce the number of labeled datapoints for training,

which is useful for wildfire events, that tend to be pretty sparse.

E. Loss Function:

Our multi-task loss function is a combination of losses from
the heads of the ARGUSNET network. We explain each of
these components below.
Reconstruction Loss: This is the loss component from the
decoder head. Since we mainly want Ie to be useful in extrac-
tion of model-driven analytical information, we prioritize min-
imizing the reconstruction loss (Mean Squared Error) of bands
that are more closely correlated to wildfires, such as NDVI,
land-cover type, and soil-moisture. We update reconstruction
loss and give more weight(W1) to the bands with more
correlation(B1) to wildfire than the remaining bands(B2), i.e.,
W1 > W2:

Lrec = W1 ∗ Lrec(IRec[B1]) +W2 ∗ Lrec(IRec[BRem])

Classification Loss: Our classification loss (Lclass) is com-

puted as Cross Entropy loss. For predicting the presence of a

wildfire in a tile, we train using Binary Cross Entropy Loss

(BCE) and for the multi-label prediction of fire-severity, we

use BCE with Logits loss (combination of a Sigmoid layer

and BCE Loss).

Segmentation Loss: Wildfire-affected regions can comprise

varying portions of the pixels in an image. In case of smaller

fire perimeters, we ensure that we avoid a biased segmentation

model that prioritizes classifying the background pixels. Dice

loss has been shown to be suitable for such class-imbalance

problems [50]. So we make our overall segmentation loss

(Lseg) a combination of the BCE loss and the Dice Loss.

The overall loss of the network is computed as follows:

Lrec = WR ∗ Lrec +WC ∗ Lclass +WS ∗ Lseg

The weights of each loss, i.e. WR,WC ,WS are hyperparam-

eters that we optimize during the training process.

F. Distributed Training

Our ARGUSNET module is trained over a distributed spa-

tiotemporal filesystem. The server-side cluster tracks the fresh-

ness of the trained models with respect to new, incoming data

and triggers a fresh round of training iterations to further fine-

tune old models.

The training of the models is agnostic of the underlying

distributed file system. Our training leverages the spatiotem-

poral partitioning scheme of the storage system by collocating

the training modules with the partitioned data to avoid data

movements during training. The distributed training utilizes

a parameter server to aggregate the weights asynchronously

at certain intervals. We have used Pytorch Lightning [51] in

the Distributed Data Parallel (DDP) mode for our distributed

learning. Once trained, we use the encoder part of the net-

work for our ingestion processes, while the classification and

segmentation branches are used during query evaluations.

G. Hierarchical Embedding Store

The Hierarchical Embedding Store is a lightweight index-

ing scheme to better organize the in-memory latent representa-

tion of the on-disk images tile on each node in the distributed

cluster. The embedding store is a decentralized in-memory

metadata graph that holds the embedding object, Ie, in its

leaf nodes, along with other information that gets populated

with subsequent query evaluations, such as, predicted fire-

masks and flags marking the presence of wildfire pixels in

the corresponding tile. The graph is organized based on the

spatiotemporal metadata of the underlying tile, as shown in

Fig.3 to facilitate fast query evaluation and identification of

relevant in-memory embeddings for each node.

In addition to the Hierarchical Embedding Store, ARGUS

maintains the trained modules, mentioned in the previous

section, in-memory on each node for fast generation of embed-

dings (during ingestion) and for model-based query evaluation

(during runtime).

V. DATA MODEL AND QUERY EVALUATION

Here, we explain the various stages of data ingestion into

our embedding store and the subsequent process of querying

analytical information out of it.

A. Dataset Description

Our input data is curated to incorporate attributes that are

known to influence the likelihood and impact of wildfires in

a region. In doing so, our approach leverages science-guided

machine learning in our modeling for wildfire detection and

segmentation. Science-guided machine learning [52] combines

domain knowledge and scientific principles to enhance inter-

pretability, reliability, and generalization of the trained models.

In order to incorporate prior scientific knowledge into our

model building, we integrate multiple data sources containing

remote-sensing satellite data that provide global, near real-time

information that includes active fires, thermal anomalies, and

the Normalized Difference Vegetation Index (NDVI), which

is computed from the red and near-infrared (NIR) bands of

the VIIRS sensor [47]. Additionally, we incorporate relevant

attributes such as land-cover type, soil moisture, and water

retention, which are scientifically correlated with wildfires. By

integrating these attributes, our model improves the accuracy

of wildfire detection. The target segmentation mask is created

by intersecting the active fire band from the remote-sensing

data with historical wildfire perimeter information. For this

study, we use the wildfires in California during 2019 [48] as

our use-case.

B. Data Preprocessing and Partitioning

The raw data once downloaded and merged needs to be

partitioned for efficient storage, distribution, and querying

over a cluster. We split each multispectral image swath in

terms of its geospatial hash (9-character quadtile key) for

efficient indexing. These image tiles are then partitioned over

the cluster based on their temporal metadata and quadtile key.

77

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 26,2024 at 02:03:47 UTC from IEEE Xplore. Restrictions apply.

Quadtiles [53] is a hierarchical grid system that can re-

cursively partition the overall geospatial coordinate space,

incrementally, into a set of squares, each divided into four

sub-squares of equal size. Each sub-square is assigned a

unique code, which is appended to the unique code of the

cumulative square, forming a unique hash string that represents

the geospatial region contained within it. This quadtile key can

be easily manipulated to identify both neighboring geospatial

quadtiles/regions, along with encapsulated sub-regions.

In this work, we use the entire coordinate space of Cal-

ifornia as the overall geospatial region, represented by a

single square with a key of “0”, and recursively partition

them into incrementally smaller quadtile boxes, each divided

into four sub-squares, and appending each with either “0”,

“1”, “2”, or “3”. The generated tiles are distributed among

the cluster nodes based on their quadtile key and within

each node, are organized based on their date and time of

recording. This distribution scheme helps the zero-hop DHT

efficiently identify relevant tiles both during training and query

evaluation.

C. Embedding Store Population

The lightweight indexing scheme of the Hierarchical Em-

bedding Store enables fast population of entries. During data

ingestion, each incoming image tile, before being stored on

disk, gets converted into its low-dimensional latent represen-

tation, Ie, through the encoder module (E), and stored in-

memory. The spatiotemporal information of the tile is used to

add it to Hierarchical Embedding Store, with the reference to

the in-memory Ie object being added to the leaf-node. This

ensures co-location between the on-disk data objects and their

latent counterparts and the embeddings follow the partitioning

scheme of the underlying distributed system.

The creation of latent embeddings using the encoder, along

with its population into the hierarchical embedding store con-

stitutes the computation overhead during data ingestion. AR-

GUS ensures that this computational overhead is insignificant

compared to the actual ingestion process by (1) ensuring that

the tree-based structure of the embedding store facilitates fast

indexing, (2) the encoder-decoder network is kept relatively

shallow, and (3) the multiple incoming tiles are ingested as

batched inputs to the encoder network for faster computation.

D. Containerized Data Ingestion

Since our query analytics framework relies on the effective-

ness of in-memory embedding cache, along with the trained

deep-learning models, we need to ensure that a sufficient

amount of memory and computational resources is available

at all times. We ensure that our data ingestion process, which

also requires GPU for the encoder network, does not adversely

affect the query analytics.

In order to ensure a scalable ingestion throughput, while

maintaining an upper bound on resource utilization, we paral-

lelize and containerize our data ingestion processes. Ingestion

requests for each node in the distributed system are inserted

into a job queue from which they are handled by one of our

Fig. (3) Hierarchical Embedding Store

available ingestion processes. We use Kubernetes [54] replica

sets to ensure parallelization. We set a limit on resource uti-

lization by configuring maximum resource limits on the overall

utilization of our data ingestion containers. The threshold is

set at 10% of the overall CPU, memory, and GPU cores.

E. Query Evaluation

The Hierarchical Embedding Store enables fast identifica-

tion of relevant embeddings for each spatiotemporal query on

each node of the distributed cluster. In a cold start scenario,

the graph is evaluated against the spatiotemporal bounds of the

query in a top-down fashion to identify the latent embeddings

that satisfy the specified predicate. These embeddings are

meant to be probed for potential wildfire regions using our

trained models. However, exhaustively evaluating all candidate

tile embeddings against our segmentation mode, which has

the most complicated architecture, for a sparse event such

as wildfire might lead to prolonged response times. Rather,

ARGUSNET maintains a simpler binary classification model

for the identification of wildfires, which is first run to identify

potential embeddings (containing wildfire) that get evaluated

against the segmentation model. As we show in our bench-

marks, this strategy leads to significantly reduced response

times with comparable accuracy. Additionally, similar to the

case of the encoder, the evaluation of embeddings for both

classification and segmentation models is done in batches.

F. Avoiding Redundant Evaluations

Geospatial access patterns have been shown to follow spatial

and temporal locality [55], i.e., at a given instant, users’

queries over the entire dataset are focused on a small spa-

tiotemporal neighborhood. While effective caching can lever-

age these patterns and greatly improve the hit-rates of our in-

memory structures, this does not avoid redundant evaluation of

our embeddings against the classification and the segmentation

model, which require GPU resources.

The structure of our Hierarchical Embedding Store makes

it conducive to support simultaneous query evaluations and

collaborative analytics. Since it is structurally a feature graph,

it can easily be traversed in a top-down manner while evaluat-

ing a spatiotemporal query. Fig.3 demonstrates our hierarchical

78

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 26,2024 at 02:03:47 UTC from IEEE Xplore. Restrictions apply.

strategy of tagging potential wildfire nodes in the Hierarchical

Embedding Store.

Upon evaluation of a tile against a spatiotemporal query, if

a non-zero fire-mask is returned by our segmentation model,

we store a compressed representation of the 2d array along

with the embedding object in the leaf node. When no wildfire

is detected, it will have a blank object and all unevaluated

tiles have a null object attached to their leaf. This helps our

framework avoid redundant computations of the same image

tile against our trained models when there are subsequent

overlapping requests. Additionally, it is to be noted that the

memory overhead of having this fire-mask info is quite low -

given the sparsity of the event, very few nodes will actually

require the fire-mask object to be stored.

G. Optimized Graph Evaluation

Due to the large number of tiles (leaf nodes) that might

be involved in queries over large spatiotemporal extents, we

attempt to identify parent nodes that do not have any tiles

of interest in their sub-tree. We keep track of these nodes

through successive query evaluations over our emdedding store

by maintaining an additional attribute (node importance)

on each node of the Hierarchical Embedding Graph. This

attribute signifies the combined number of unevaluated and

wildfire tiles under each parent node in the graph - a non-

zero importance value means that during evaluation, a parent

node may contain a tile of interest in one of the leaves in its

subtree. Over time, with a meaningful number of queries being

evaluated over our system, a majority of these tags should

amount to 0 (since wildfire is a sparse spatiotemporal event),

which would help us avoid unnecessary traversals down the

graph for irrelevant spatiotemporal extents.

Fig.3 demonstrates the update strategy of node importance

during the evaluation of queries over ARGUS. When the

segmentation output on a tile embedding is found to have

no fire pixels, the node importance of its immediate parent

is decremented. If the count of the parent is 0, we decrement

the count of its immediate parent, and so on, up the graph.

In general cases, this upward traversal of a tree would require

bidirectional links or extra computation. Since our Hierarchical

Embedding Store is a metadata graph, actual upward traversal

up the tree can be avoided, since, given the spatiotemporal

metadata of a node, we can easily deduce the exact parent

node. In successive query evaluations, any node with impor-

tance of 0 will not need to be traversed further since it signifies

non-fire tiles underneath.

H. Pruning: Node Replacement Strategy

Due to the limited size of the cache, we need an effi-

cient strategy to maintain frequently accessed and relevant

information in the cache in case of overflow. In order to

facilitate interactivity in evaluations over the metadata graph,

we need to maintain the most relevant regions in memory,

and to efficiently detect stale nodes and swap them out for

more requested regions, in case we breach the threshold due

to overpopulation.

In case of an overflow, we utilize the importance attribute

of a node in conjunction with the product of the number of

accesses to a node (updated every time it gets accessed), and

a time decay function that takes into consideration the last

time the node was accessed. Using this metric, which we call

adjusted node imporance, our cache pruning strategy

takes into consideration both the relevance of a node at a

particular instant alongside the contents of the sub-tree. Sub-

trees in ARGUS are replaced based on this adjusted importance

score. To leverage the spatial and temporal locality of access

patterns, when a request for a spatiotemporal region comes in,

we mark both the set of Cells in that region and the immediate

spatiotemporal neighborhood of that region as being of future

interest as prescribed in [56].

VI. SYSTEM EVALUATION

A. Experimental Setup

To evaluate compute-intensive operations with high-density

observations, we profiled our system while performing spa-

tiotemporal queries with spatiotemporal data on a cluster of 50

nodes. Each node in our distributed cluster is an Intel Xeon E5-

2620v3, with 64 GB RAM, each with a Quadro P2200 GPU

(5GB of memory) with 1280 cores and several local 7200RPM

SATA hard disks. The data is partitioned throughout the cluster

uniformly based on the first 9 characters of their Quadtile key.

Throughout our experiments, we use 2 types of spatiotem-

poral queries - state-level and county-level. These represent

2 geospatial query sizes with a fixed temporal extent of 2

weeks. We experiment with these 2 ranges to demonstrate

the scalability of our query evaluation. The state-level query

has a Query Polygon (see section III) that covers the state

of California. The county-level query is set to mimic the

size of an average county-wide region, with a latitudinal and

longitudinal extent of 4◦ and 8◦ respectively.

B. Study Region and Datasets

The dataset we use is a composite from multiple remote-

sensing satellite datasets. The first dataset we use is the VNP14

Active Fire Dataset [47], which provides global, and near real-

time information on active fires and thermal anomalies. The

dataset is produced by the Visible Infrared Imaging Radiome-

ter Suite (VIIRS) instrument aboard the Suomi National Polar-

orbiting Partnership (SNPP) and NOAA-20 satellites [57]. The

data has a spatial resolution of 750 meters and is updated

daily and encapsulates information regarding the location, tem-

perature, radiative power, fire mask, and confidence level of

active fires. We coalesce this dataset with VIIRS VNP21/NPP

Land Surface Temperature and Emissivity 6-Min L2 Swath

750m [58] which contains information derived from satellite

observations using physics-based algorithms. The dataset con-

tains multiple data fields, including land surface temperature,

emissivity, quality indicators, and other attributes for both

active fire and non-active fire regions. Both datasets have a

spatial resolution of 750 meters at daily temporal resolution.

79

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 26,2024 at 02:03:47 UTC from IEEE Xplore. Restrictions apply.

TABLE (I) Breakdown of Data Staging: Comparison be-

tween time taken to download and pre-process the data against

time to index and load it into ARGUS

Fetch Processing Staging Indexing
Time (Seconds) 132.07 539.53 303 2.04

Percentage 13.52% 55.24% 31.02% 0.2%

Normalized Difference Vegetation Index (NDVI) informa-

tion is incorporated in our data using the VNP09 prod-

uct, which provides the atmospherically corrected surface

reflectance, derived from the VIIRS/NPP Atmospherically

Corrected Reflectance (ACR) algorithm. It provides the surface

reflectance values at a spatial resolution of 375 meters for

the red and near-infrared (NIR) bands of the VIIRS sensor.

The red band of the VIIRS sensor has a wavelength range

of 0.6 to 0.7 micrometers and is sensitive to the reflectance

of vegetation, soil, and water surfaces. The NIR band of

the VIIRS sensor has a wavelength range of 0.84 to 0.88

micrometers and is sensitive to the reflectance of vegetation,

especially the chlorophyll absorption feature. We downscale

these 375m spatial resolution surface reflectance bands (I-

bands) to integrate the information into our dataset. All the

VIIRS [59] data products mentioned above are provided in

NetCDF format tiles that are approximately 3248×3200 pixels

in size, covering an area that is roughly 2436×2400 km2. The

scans of both satellites are co-located, that is, both satellites

capture the same regions at the same timestamp, resulting in

overlapping tiles that can be correctly merged together.

We also incorporate land-cover type information using the

National Land Cover Database (NLCD) [60], as well as at-

tributes relating to soil moisture, erodibility, and water capacity

through the STATSGO [61] dataset. Since the land-cover and

soil-related attributes are static in nature, they are generated

only once for each spatial bound of the image tiles through

the spatial analytics tool over ESRI’s ArcMap. We use the

California Fire Perimeter Database from the Fire and Resource

Assessment Program [48] to create the fire mask using the

methodology explained in section V. The database includes

records of perimeters of wildfires that occurred in the state of

California between the years 1950 and 2019 (inclusive). Our

merged tiles are split into non-overlapping bounds for regions

with quadtiles hashes 9 characters in length over California

and uniformly distributed across a cluster of 50 machines. Our

quadtile distribution is deterministic such that neighboring tiles

are co-located on the same machine. We leverage data locality

by avoiding any network I/O to transfer input tiles by locally

reading data available on each machine.

C. Model Training: Rate of Convergence

Fig.4 shows the rate of convergence of our MTL setup with

encoder output connected to the decoder, segmentation, and

classification heads. We profile the segmentation loss, which is

a combination of Binary Cross Entropy and Dice Loss for our

predicted wildfire-affected area (mask) for both our training

and validation data.

TABLE (II) Comparison of ARGUSNET Evaluation Perfor-

mance against Standalone Segmentation Model

Convergence Time(minutes) Epochs
ARGUSNET 6.31 31

SegCaps 155.8 164

We compare the performance of our multi-task learning

setup with a Classifier, Decoder, and Segmentation head

against that of the dedicated SegCaps modeled after [49]. We

can see, from Table II that the model stabilizes at around

31 iterations. The convergence of the SegCaps model is

significantly slower, around 155 minutes and 164 epochs,

which can be attributed to both the larger input size and the

number of model parameters involved – the total number of
optimizable parameters for our MTL setup was 47.35% that

of a standalone SegCaps model for image segmentation.

Fig. (4) Convergence Speed of Model: Variation of training

and validation error for ARGUSNET over epochs.

D. Model-driven Evaluation Latency vs Query Accuracy

We demonstrate the improvement in evaluation latency of

ARGUSNET over a standalone SegCaps model by profiling

the average evaluation latency of a single-batched input. As

expected, due to the simpler structure of the Segmentation

head compared to a standalone SegCaps, the evaluation latency

of our network is ∼27x faster than that of the SegCaps using

raw image (Table III). This improved latency is achieved while

maintaining a comparable accuracy, as shown in Table III; the

accuracy achieved by the ARGUSNET model is nearly 88%
of that achieved by the SegCaps model. The accuracy can be

attributed to the stability that model training of related tasks

through multi-task learning provides.

E. Data Ingestion Latency

We profile the ingestion rate of our framework. Since our

data is a combination of multiple satellite datasets, we have

evaluated the time taken for downloading, pre-processing,

staging, and indexing time of a day’s worth of data over the

entire state of California. ARGUS is responsible for the index-

ing phase of this process, where embeddings are generated and

entries are populated into the ARGUS metadata graph. Table I

demonstrates a breakdown of time for these ingestion-related

operations. We can see that the indexing phase of the process is

80

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 26,2024 at 02:03:47 UTC from IEEE Xplore. Restrictions apply.

very fast and insignificant (0.2%), compared to the remainder

of the process, which requires downloading and processing of

satellite images.

Fig. 5 shows a further breakdown of the indexing process.

Here we index and load a total of 5000 image tiles into

our distributed in-memory graph and evaluate the overall

throughput on each node. Here, we show the overhead of the

encoding process that creates embeddings for each incoming

image tile and stores a reference of the embedding object

on the in-memory graph. Our encoder is simple enough and

combined with the batched computation of embeddings, we

can see that the indexing throughput is only reduced by 16.7%.

Fig. (5) Ingestion Throughput With/Without Embedding:

Comparison of throughput of indexing the in-memory meta-

data graph with and without generation of embeddings through

encoder during ingestion.

F. Query Evaluation

We demonstrate the scalability of our model-driven query

evaluation in Fig.6. We profiled the average query latency for

state and county-level spatiotemporal queries for 2 scenarios -

one over spatiotemporal regions where we know had wildfires

and second over random spans and regions. We execute 1000

different queries over our cluster and evaluated the average

response time at a client node.

As expected, state-level queries take longer to evaluate than

county-level queries, but the average query time is reasonable.

Additionally, we can see that in fire-prone scenarios, the query

latency is higher than in average case scenarios, since the

number of tiles that are actually subjected to the segmentation

model is significantly low, due to the classifier model filtering

them out. The box-plots in Fig.6 show that a majority of the

queries have significantly lower query latency in the average

case since the majority of the spatiotemporal queries have

no wildfire in them and most of the server-side overhead is

simply from evaluation and classification over the in-memory

metadata graph.

Fig.7 demonstrates the utility of having a trained classifier

module to filter candidate tiles before being subject to segmen-

tation models. The evaluation was done using spatiotemporal

queries over a set of county-level wildfire scenarios. We see a

significant improvement in average query evaluation latency in

Fig.7 for evaluation with a filtering using classifier compared

Fig. (6) Query Latency vs Query Size: Evaluation of increase

in latency with the scale of the query’s spatiotemporal extent.

TABLE (III) Comparison of ARGUSNET Evaluation Latency

against Standalone Segmentation Model: ARGUSNET-based

evaluation is 27x faster

Eval. Latency Error(BCE)
ARGUSNET 0.0026 0.195

SegCaps 0.054 0.1714

to segmentation-driven evaluation for all candidate tiles. This

is due to the much simpler structure of the classifier network

than the segmentation head of the ARGUSNET.

G. Avoiding Redundant Computations

Fig.8 demonstrates the effectiveness of our framework in

avoiding duplicate evaluations for overlapping queries from

multiple user requests. We compare the average query eval-

uation latency for a county-size query for wildfire regions

at various levels of cache population. Fig.8 shows the query

evaluation times for a cold-start scenario, where no embedding

has been evaluated yet, a 50% evaluated tree, where we

remove half of the evaluated nodes, and a case where all

candidate tiles in a spatiotemporal query have evaluated entries

in the hierarchical metadata graph. We can see that there is

a significant improvement in query latency for overlapping

queries and our framework effectively identifies and avoids

redundant tile evaluation.

Fig. (7) Latency Improvement With Classifier Head: Com-

parison of latency of a State-level query with and without

running candidate tiles through a classifier first.

81

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 26,2024 at 02:03:47 UTC from IEEE Xplore. Restrictions apply.

Fig. (8) Improvement in Query Latency with cached evalu-

ations from historical queries.

VII. CONCLUSION

We described our methodology to track key characteristics

of wildfires over unlabeled high-dimensional satellite image

data collections and enable keyword search for image tiles in

a distributed storage system.

RQ1: Our approach leverages multiple machine-learning

based models to evaluate keyword search queries and the mod-

els demonstrate reliable accuracy. Instead of storing original

image tiles in memory, Argus maintains representative (space-

efficient) embeddings in memory and these embeddings are

used as inputs for the model execution as part of keyword

query evaluation. Our empirical evaluation demonstrates that

the multi-task learning effectively trains the encoder network

that generates a single set of embeddings for multiple wildfire

keywords.

RQ2: Our distributed, in-memory hierarchical embedding

store is structured in the form of a metadata graph for

fast evaluation of spatiotemporal queries and identification

of candidate embeddings. Also, the collaborative update of

the node importance metric of each node in the graph with

successive evaluations leads to a further reduction in evaluation

time for future queries.

RQ3: Our approach reduces the required memory footprints

significantly; this, in turn, allows the number of data objects

indexed in the memory to increase substantially. More im-

portantly, these embeddings reduce model complexity signifi-

cantly by lowering the number of parameters. This allows our

models to consider larger spatiotemporal extents to capture

more comprehensive conditions from the surrounding area

during keyword query evaluations.

VIII. ACKNOWLEDGEMENT

This research was supported by the National Science Foun-

dation [OAC-1931363, ACI-1553685], the National Institute

of Food and Agriculture [COL0-FACT-2019], and a Cochran

Family Professorship.

REFERENCES

[1] Europe’s summer wildfire emissions highest in 15 years, 2022,
https://atmosphere.copernicus.eu/europes-summer-wildfire-emissions-
highest-15-years.

[2] 2022 Incident Archive, 2022, https://www.fire.ca.gov/incidents/2022/.

[3] National Wildland Fire Situation Report, 2022,
https://cwfis.cfs.nrcan.gc.ca/report.

[4] S. N. Koplitz, L. J. Mickley, M. E. Marlier, J. J. Buonocore, P. S. Kim,
T. Liu, M. P. Sulprizio, R. S. DeFries, D. J. Jacob, J. Schwartz et al.,
“Public health impacts of the severe haze in equatorial asia in september–
october 2015: demonstration of a new framework for informing fire man-
agement strategies to reduce downwind smoke exposure,” Environmental
Research Letters, vol. 11, no. 9, p. 094023, 2016.

[5] E. Chuvieco Salinero, F. Mouillot, G. R. Van Der Werf, J. San Miguel,
M. Tanasse, N. Koutsias, M. Garcı́a Alonso, M. Yebra Álvarez,
M. Padilla Parellada, I. Gitas et al., “Historical background and current
developments for mapping burned area from satellite earth observation,”
2019.

[6] D. Fornacca, G. Ren, and W. Xiao, “Performance of three modis
fire products (mcd45a1, mcd64a1, mcd14ml), and esa fire cci in a
mountainous area of northwest yunnan, china, characterized by frequent
small fires,” Remote Sensing, vol. 9, no. 11, p. 1131, 2017.

[7] J. Engelbrecht, A. Theron, L. Vhengani, and J. Kemp, “A simple
normalized difference approach to burnt area mapping using multi-
polarisation c-band sar,” Remote Sensing, vol. 9, no. 8, p. 764, 2017.

[8] U. FEMA, OpenFEMA data sets, 2022,
https://www.fema.gov/about/reports-and-data/openfema.

[9] J. Welty and M. Jeffries, Combined wildfire datasets for the United
States and certain territories, 1878-2019: US Geological Survey data
release., 2020, https://www.usgs.gov/data/combined-wildfire-datasets-
united-states-and-certain-territories-1878-2019.

[10] M. H. Ismail and K. Jusoff, “Satellite data classification accuracy
assessment based from reference dataset,” International Journal of
Geological and Environmental Engineering, vol. 2, no. 3, pp. 23–29,
2008.

[11] Y. Ban, P. Zhang, A. Nascetti, A. R. Bevington, and M. A. Wulder,
“Near real-time wildfire progression monitoring with sentinel-1 sar time
series and deep learning,” Scientific reports, vol. 10, no. 1, p. 1322,
2020.

[12] Z. Tang, X. Liu, H. Chen, J. Hupy, and B. Yang, “Deep learning based
wildfire event object detection from 4k aerial images acquired by uas,”
AI, vol. 1, no. 2, pp. 166–179, 2020.

[13] H. U. A. Tahir, A. Waqar, S. Khalid, and S. M. Usman, “Wildfire
detection in aerial images using deep learning,” in 2022 2nd Interna-
tional Conference on Digital Futures and Transformative Technologies
(ICoDT2). IEEE, 2022, pp. 1–7.

[14] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” science, vol. 313, no. 5786, pp. 504–507,
2006.

[15] Y. Zhang and Q. Yang, “An overview of multi-task learning,” National
Science Review, vol. 5, no. 1, pp. 30–43, 2018.

[16] W. Schroeder and L. Giglio, “Viirs/npp thermal anomalies/fire 6-min l2
swath 750m v001,” NASA EOSDIS Land Processes DAAC, 2017.

[17] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp.
41–75, 1997.

[18] G. H. de Almeida Pereira, A. M. Fusioka, B. T. Nassu, and R. Minetto,
“Active fire detection in landsat-8 imagery: A large-scale dataset and
a deep-learning study,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 178, pp. 171–186, 2021.

[19] P. Borrelli, L. A. S. Rondón, and B. Schütt, “The use of landsat imagery
to assess large-scale forest cover changes in space and time, minimizing
false-positive changes,” Applied Geography, vol. 41, pp. 147–157, 2013.

[20] K. S. Yankovich, E. P. Yankovich, and N. V. Baranovskiy, “Classification
of vegetation to estimate forest fire danger using landsat 8 images: Case
study,” Mathematical Problems in Engineering, vol. 2019, 2019.

[21] D. Rashkovetsky, F. Mauracher, M. Langer, and M. Schmitt, “Wild-
fire detection from multisensor satellite imagery using deep semantic
segmentation,” IEEE Journal of Selected Topics in Applied Earth Ob-
servations and Remote Sensing, vol. 14, pp. 7001–7016, 2021.

[22] C.-Y. Chiang, C. Barnes, P. Angelov, and R. Jiang, “Deep learning-based
automated forest health diagnosis from aerial images,” IEEE Access,
vol. 8, pp. 144 064–144 076, 2020.

[23] R. Ghali, M. A. Akhloufi, M. Jmal, W. Souidene Mseddi, and R. Attia,
“Wildfire segmentation using deep vision transformers,” Remote Sensing,
vol. 13, no. 17, p. 3527, 2021.

[24] L. Battle, R. Chang, and M. Stonebraker, “Dynamic prefetching of
data tiles for interactive visualization,” in Proceedings of the 2016
International Conference on Management of Data. ACM, 2016, pp.
1363–1375.

82

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 26,2024 at 02:03:47 UTC from IEEE Xplore. Restrictions apply.

[25] L. Lins, J. T. Klosowski, and C. Scheidegger, “Nanocubes for real-
time exploration of spatiotemporal datasets,” IEEE Transactions on
Visualization and Computer Graphics, vol. 19, no. 12, pp. 2456–2465,
2013.

[26] C. A. Pahins, S. A. Stephens, C. Scheidegger, and J. L. Comba,
“Hashedcubes: Simple, low memory, real-time visual exploration of
big data,” IEEE transactions on visualization and computer graphics,
vol. 23, no. 1, pp. 671–680, 2017.

[27] W. Tao, X. Liu, Ç. Demiralp, R. Chang, and M. Stonebraker, “Kyrix:
Interactive visual data exploration at scale.” CIDR, 2019.

[28] L. Santos, J. Coutinho-Rodrigues, and C. H. Antunes, “A web spatial de-
cision support system for vehicle routing using google maps,” Decision
Support Systems, vol. 51, no. 1, pp. 1–9, 2011.

[29] W. H. L. Pinaya, S. Vieira, R. Garcia-Dias, and A. Mechelli, “Autoen-
coders,” in Machine learning. Elsevier, 2020, pp. 193–208.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

[31] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[32] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Deep convolutional
autoencoder-based lossy image compression,” in 2018 Picture Coding
Symposium (PCS). IEEE, 2018, pp. 253–257.

[33] S. Mitra, D. Rammer, S. Pallickara, and S. L. Pallickara, “Glance: A
generative approach to interactive visualization of voluminous satellite
imagery,” in 2021 IEEE International Conference on Big Data (Big
Data). IEEE, 2021, pp. 359–367.

[34] ——, “A generative approach to visualizing satellite data,” in 2021 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE,
2021, pp. 815–816.

[35] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. De Freitas, “Learning to learn by
gradient descent by gradient descent,” Advances in neural information
processing systems, vol. 29, 2016.

[36] B. Zoph, D. Yuret, J. May, and K. Knight, “Transfer learning for low-
resource neural machine translation,” arXiv preprint arXiv:1604.02201,
2016.

[37] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Advances in neural
information processing systems, vol. 28, 2015.

[38] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[39] S. L. Pallickara, S. Pallickara, and M. Pierce, “Scientific data manage-
ment in the cloud: A survey of technologies, approaches and challenges,”
Handbook of Cloud Computing, pp. 517–533, 2010.

[40] S. Mitra, Y. Qiu, H. Moss, K. Li, and S. L. Pallickara, “Effective
integration of geotagged, ancilliary longitudinal survey datasets to
improve adulthood obesity predictive models,” in 2018 17th IEEE
International Conference On Trust, Security And Privacy In Computing
And Communications/12th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE). IEEE, 2018, pp.
1738–1746.

[41] S. Mitra, M. Warushavithana, M. Arabi, J. Breidt, S. Pallickara, and
S. Pallickara, “Alleviating resource requirements for spatial deep learn-
ing workloads,” in 2022 22nd IEEE International Symposium on Cluster,
Cloud and Internet Computing (CCGrid). IEEE, 2022, pp. 452–462.

[42] M. Malensek, S. Pallickara, and S. Pallickara, “Fast, ad hoc query eval-
uations over multidimensional geospatial datasets,” IEEE Transactions
on Cloud Computing, vol. 5, no. 1, pp. 28–42, 2015.

[43] M. Malensek, S. L. Pallickara, and S. Pallickara, “Hermes: Federating
fog and cloud domains to support query evaluations in continuous
sensing environments,” IEEE Cloud Computing, vol. 4, no. 2, pp. 54–62,
2017.

[44] W. Budgaga, M. Malensek, S. Lee Pallickara, and S. Pallickara, “A
framework for scalable real-time anomaly detection over voluminous,
geospatial data streams,” Concurrency and Computation: Practice and
Experience, vol. 29, no. 12, p. e4106, 2017.

[45] Esri, An overview of the Spatial Analyst toolbox,
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-
analyst/an-overview-of-the-spatial-analyst-toolbox.htm.

[46] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”

ACM SIGCOMM Computer Communication Review, vol. 31, no. 4, pp.
149–160, 2001.

[47] W. Schroeder, P. Oliva, L. Giglio, and I. A. Csiszar, “The new viirs 375
m active fire detection data product: Algorithm description and initial
assessment,” Remote Sensing of Environment, vol. 143, pp. 85–96, 2014.

[48] (2023, March) Fire perimeters. [Online]. Available:
https://frap.fire.ca.gov/frap-projects/fire-perimeters/

[49] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” Advances in neural information processing systems, vol. 30,
2017.

[50] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional
neural networks for volumetric medical image segmentation,” in 2016
fourth international conference on 3D vision (3DV). Ieee, 2016, pp.
565–571.

[51] W. Falcon, “Pytorch lightning,” GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning, vol. 3, 2019.

[52] A. Karpatne, G. Atluri, J. H. Faghmous, M. Steinbach, A. Banerjee,
A. Ganguly, S. Shekhar, N. Samatova, and V. Kumar, “Theory-guided
data science: A new paradigm for scientific discovery from data,” IEEE
Transactions on knowledge and data engineering, vol. 29, no. 10, pp.
2318–2331, 2017.

[53] (2018, November) Quadtiles. [Online]. Available:
https://wiki.openstreetmap.org/wiki/QuadTiles

[54] M. Luksa, Kubernetes in action. Simon and Schuster, 2017.
[55] D. Fisher, “Hotmap: Looking at geographic attention,” IEEE transac-

tions on visualization and computer graphics, vol. 13, no. 6, pp. 1184–
1191, 2007.

[56] S. Mitra, P. Khandelwal, S. Pallickara, and S. L. Pallickara, “Stash:
Fast hierarchical aggregation queries for effective visual spatiotemporal
explorations,” in 2019 IEEE International Conference on Cluster Com-
puting (CLUSTER). IEEE, 2019, pp. 1–11.

[57] C. Cao, F. J. De Luccia, X. Xiong, R. Wolfe, and F. Weng, “Early
on-orbit performance of the visible infrared imaging radiometer suite
onboard the suomi national polar-orbiting partnership (s-npp) satellite,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 2,
pp. 1142–1156, 2013.

[58] Hulley, G., Hook, S., Distributed by NASA EOSDIS Land
Processes DAAC., “VIIRS/NPP Land Surface Temperature
and Emissivity 6-Min L2 Swath 750m V001 [Data set].”
https://doi.org/10.5067/VIIRS/VNP21.001, 2012.

[59] Schroeder, W., L. Giglio, NASA EOSDIS Land Processes DAAC.,
“VIIRS/NPP Thermal Anomalies/Fire 6-Min L2 Swath 750m V001
[Data set],” https://doi.org/10.5067/VIIRS/VNP14.001, 2012.

[60] (2016) National land cover database 2016 (nlcd2016) legend.
[Online]. Available: https://www.mrlc.gov/data/legends/national-land-
cover-database-2016-nlcd2016-legend

[61] G. E. Schwarz and R. Alexander, “State soil geographic (statsgo) data
base for the conterminous united states,” Tech. Rep., 1995.

83

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 26,2024 at 02:03:47 UTC from IEEE Xplore. Restrictions apply.

